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HOW MANY PYTHAGOREAN TRIPLES WITH A GIVEN INRADIUS?

TRON OMLAND

Abstract. We present a very short proof to answer the question of the title.

If a circle with radius r > 0 is inscribed in a right-angled triangle with catheti a and b
(whose lengths must be > 2r), then 2A = rP , where A and P are the triangle’s area and
perimeter, that is, ab = r(a + b +

√
a2 + b2). For a given radius r we find all the possible

right-angled triangles with inradius r by manipulating this equation, and the solution is:
For each radius r > 0 and each cathetus a > 2r, the other cathetus b is given by

(1) b = 2r · a − r

a − 2r
.

Now set a = 2r + m for m > 0 so that b = 2r + n for n > 0 with mn = 2r2. Then all
right-angled triangles with inradius r has edges with lengths (2r + m, 2r + n, 2r + (m + n))
for some m, n > 0 with mn = 2r2.

Therefore, given a natural number r, the possible Pythagorean triples with inradius r
coincide with the possible ways of factoring 2r2 into a product of two numbers m and n.
Lemma. Let r = 2α0pα1

1 pα2
2 · · · pαn

n for distinct odd primes p1, p2, . . . , pn and integers α0 ≥ 0
and α1, α2, . . . , αn ≥ 1. Then there are

(α0 + 1)(2α1 + 1)(2α2 + 1) · · · (2αn + 1)
Pythagorean triples with inradius r, and 2n of these triples are primitive.
The formula also holds for n = 0, i.e., when r = 2α0 for some α0 ≥ 0.
Proof. To distinguish between m and n, we factor 2r2 as m · n such the highest power of 2
that divides m and n is odd and even, respectively. That is, m = 2β0pβ1

1 pβ2
2 · · · pβn

n , where
β0 ∈ {1, 3, . . . , 2α0 + 1} and βi ∈ {0, 1, . . . 2αi} for all i.

The primitive triples appear precisely when gcd (m, n) = 1, i.e. for m = 22α0+1pβ1
1 pβ2

2 · · · pβn
n ,

where βi ∈ {0, 2αi} for all i. �
The result for primitive triples is well-known [1], but our proof is simpler also in this case.

Finally, we remark that by solving (1) with respect to r, we get that the inradius r and
catheti a, b of a right-angled triangle satisfy

r = a + b − √
a2 + b2

2 .

If a, b,
√

a2 + b2 are all natural numbers, then either none or two of these are odd, so r is also
a natural number. Hence, the technique of the above proof generates all Pythagorean triples.
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