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Text. The goal of this note is to generalize a formula of Dats-
kovsky and Wright on the zeta function associated with integral
binary cubic forms. We show that for a fixed number field K of
degree d, the zeta function associated with decomposable forms
belonging to K in d − 1 variables can be factored into a prod-
uct of Riemann and Dedekind zeta functions in a similar fashion.
We establish a one-to-one correspondence between the pure mod-
ule classes of rank d − 1 of K and the integral ideals of width
< d − 1. This reduces the problem to counting integral ideals of
a special type, which can be solved using a tailored Moebius in-
version argument. As a by-product, we obtain a characterization of
the conductor ideals for orders of number fields.
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1. Introduction

Let K be a cubic extension of Q. We say a binary cubic form f (x, y) ∈ Z[x, y] belongs to K if
f (θ,1) = 0 for some irrational θ ∈ K . Let S2,K denote the set of binary cubic forms belonging to K .
The group Γ = SL(2,Z) acts on S2,K by

γ f (x, y) = f
(
(x, y)γ

) = f (ax + cy,bx + dy),

where γ = ( a b
c d

) ∈ Γ and f ∈ S2,K . We denote by D( f ) the discriminant of f and by

Γ f = {γ ∈ Γ | γ f = f }
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the isotropic subgroup of f in Γ . The cardinality |Γ f | is finite and is an invariant of the Γ -orbit of f .
We define

ξK (s) =
∑

f

1

|Γ f |
∣∣D( f )

∣∣−s
, s ∈ C (1)

where the sum is taken over a set of Γ -orbit representatives of S2,K .
In the course of adelizing Shintani’s work [19] on binary cubic forms, Datskovsky and Wright [5]

discovered the following formula

ξK (s) = 2m−1
K |�K |−sζ(4s)ζ(6s − 1)

ζK (2s)

ζK (4s)
. (2)

Here mK = 3 if K is Galois and 1 otherwise, �K denotes the discriminant of K , ζ(s) and ζK (s) denote
respectively the Riemann zeta function and the Dedekind zeta function of K .

Such a beautiful relation could not hold only in the case of cubic fields. Since there is a
discriminant-preserving bijection between the GL(2,Z)-classes of integral binary cubic forms belong-
ing to a cubic field K and the isomorphism classes of orders of K [6], one way to generalize this
formula is to count the orders of a fixed number field by index. This difficult task is accomplished by
Nakagawa [15] in the quartic case. However, the formula he obtained is somewhat complicated; for
example it is not clear at present whether his zeta function can be continued meromorphically to the
whole complex plane.

The goal of this note is to give a direct generalization of (2) in arbitrary number fields. As a natural
candidate for binary cubic forms, we consider decomposable forms belonging to a degree d number
field K in d − 1 variables. After introducing the concept of semi-discriminants and module indexes,
we obtain an analogous zeta function (8) for ξK (s). We show that this zeta function can be factored
into a product of Riemann and Dedekind zeta functions in a similar fashion (see Theorems 2.1, 2.5).
As it turns out, our counting result can also be formulated in terms of orders. But here, instead of
counting the index of orders, we count the module index of the incomplete canonical module of
orders (Theorem 2.3).

As a by-product, we obtain a characterization of the fractional ideals generated by subsets of a
dimension d − 1 subspace of K and the conductor ideals of orders in K (Theorems 5.2, 5.8). We also
compute the conductor ideals of some widely used orders and discuss their Gorenstein properties.
Considering the vast literature on the subject, it is somewhat surprising that these results have not
been discovered before.

In Sections 2 and 3 we develop the concept of module index and formulate the main results
in terms of module classes and decomposable forms belonging to a number field K . In Section 4
we establish a one-to-one correspondence between pure module classes of rank d − 1 of K and
integral ideals of width < d − 1. Some of its consequences and applications to orders are discussed
in Section 5. In Section 6 we show that our zeta function has an Euler product and compute these
factors using a tailored Moebius inversion argument.

Much of the theory developed in this note can be stated for a finite dimensional associative algebra
over a Dedekind domain, and this will be given in [9]. The recent proof of Ohno’s conjecture on
Shintani zeta functions associated with the space of binary cubic forms [16] suggests that in this area
interesting structures can still be dug out.

2. Definitions and results

Let K be a number field of degree d over Q. Let δK denote the different, �K the discriminant, and
O K the ring of integers of K . The field K has d distinct embeddings σ1, σ2, . . . , σd into an algebraic
closure Q of Q. Let Mn (1 � n � d) denote the set of free Z-submodules of K of rank n. We call two
modules M and M ′ ∈ Mn equivalent if there is a γ �= 0 in K such that γ M = {γα | α ∈ M} = M ′ . We
denote by [M] the module class of M and by M∼

n the quotient of Mn modulo the action of K ∗ .
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Let M ∈ Mn . We define the semi-discriminant of M , denoted by dis M , as follows. Choose a Z-basis
α1,α2, . . . ,αn for M , write a for the fractional ideal of O K generated by M and Na for the absolute
norm of a. Then

dis M = Na
−2(d−1

n−1)
∏

1�i1<···<in�d

det
(
σiv (α j)

)2
1�v, j�n.

Note that dis M is well defined and depends only on the module class of M . Moreover, as we shall
see in Lemma 3.1 below, there is a unique integer m � 0 such that

dis M = �
(d−2

n−2)
K m2. (3)

This integer m is called the index of M , and denoted by ind M . It depends only on the module class
of M .

We call M and its module class [M] degenerate if ind M = 0. When n = 1,d−1 or d, every M ∈ Mn

is non-degenerate. In the case n = 2, M is degenerate if and only if M is equivalent to a module
contained in a proper subfield of K . In the general case, however, M can be degenerate even if K does
not contain any non-trivial subfield. For instance, let ζ be a primitive 23rd root of unity, θi = ζ i + ζ−i

for 1 � i � 11, and K = Q(θ1). Let M ∈ M3 be the Z-submodule of K generated by 1, θ1, h(θ1), where
h(x) = x7 + x6 − 7x5 − 5x4 + 14x3 + 6x2. Then M is degenerate since

det

[1 θ1 h(θ1)

1 θ3 h(θ3)

1 θ5 h(θ5)

]
= 0.

In this note we are mostly interested in the case n = d − 1. We attach to each number field K
a zeta function

ηK (s) =
∑

[M]∈M∼
d−1

ind M−s, s ∈ C. (4)

Our main result is the following.

Theorem 2.1. Let K be a number field of degree d � 3. Let ζ(s) denote the Riemann zeta function and ζK (s)
the Dedekind zeta function of K . Then

ηK (s) = ζ(ds − 1)ζ(ds − 2) · · · ζ(ds − d + 2)
ζK (s)

ζK ((d − 1)s)
. (5)

In particular, ηK (s) converges absolutely for Re s > 1 and has a meromorphic extension to the whole complex
plane.

The proof of Theorem 2.1 is broken up into a sequence of lemmas and is given in Sections 4 and 6.

Corollary 2.2. Let N(K , X) denote the number of module classes in M∼
d−1 whose module index is < X, and let

ρK be the residue of ζK (s) at s = 1. Then, for any ε > 0,

N(K , X) = ζ(d − 1)ζ(d − 2) · · · ζ(2)

ζK (d − 1)
ρK X + O

(
X1− 1

d +ε
)
.
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Proof. We use the classical theorem

∑
n<X

an = ρK X + O
(

X1− 1
d
)
, where ζK (s) =

∑
n�1

an

ns
.

Observe that the Dirichlet series

ζ(ds − 1)ζ(ds − 2) · · · ζ(ds − d + 2)

ζK ((d − 1)s)
=

∑
m�1

bm

ms

converges absolutely for Re s > 1 − 1/d. It follows that

N(K , X) =
∑

km<X

akbm =
∑

m<X

bm

∑
k<X/m

ak

= ρK X
∑

m<X

bm

m
+ O

(
X1− 1

d +ε
∑

m<X

|bm|
m1− 1

d +ε

)

= ρK X
∞∑

m=1

bm

m
− ρK X

∑
m�X

bm

m
+ O

(
X1− 1

d +ε
)
.

Clearly

∣∣∣∣X
∑

m�X

bm

m

∣∣∣∣ �
∑

m�X

|bm|
m1− 1

d +ε

X

X
1
d −ε

= O
(

X1− 1
d +ε

)

and this gives the result. �
Theorem 2.1 can also be formulated in terms of orders.
Let V 0 = {α ∈ K | TrK/Q(α) = 0} denote the trace zero hyperplane of K . If O is an order of K , write

O∨ = {β ∈ K | TrK/Q(αβ) ∈ Z, ∀α ∈ O} for its dual module. We call the Z-module O∨ ∩ V 0 ∈ Md−1
the incomplete canonical module of O. It can be shown that the map

ψ : {primitive orders of K } → M∼
d−1,

O �→ [
O∨ ∩ V 0

]
is a bijection (cf. Theorem 5.9). Moreover, the incomplete canonical module of O has module index

g(O) = [O : fO]d−1

[O K : O] ,

where fO denotes the conductor of O. Note that g(O) is an integer dividing [O K : O]d−2. It is equal
to [O K : O]d−2 if and only if O is a Gorenstein order (Lemma 5.11). Since primitive cubic orders are
always Gorenstein, we have in this case g(O) = [O K : O].

To each number field K we define a zeta function

ςK (s) =
∑

O⊆O
g(O)−s,
K
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where the sum extends over all primitive orders O of K . Combining Theorem 2.1, we immediately
have the following result.

Theorem 2.3. With the notations above,

ςK (s) = ζ(ds − 1)ζ(ds − 2) · · · ζ(ds − d + 2)
ζK (s)

ζK ((d − 1)s)
. (6)

We next translate Theorem 2.1 into the context of decomposable forms. Assume that 1 < n � d.
Let Sn,K denote the set of n-ary degree d homogeneous polynomials f (x1, . . . , xn) ∈ Z[x1, . . . , xn] be-
longing to K , that is, f has a linear factor l(x1, . . . , xn) = α1x1 + · · · + αnxn with α j ∈ C for 1 � j � n
such that

Q(αi/α j | α j �= 0, 1 � i, j � n) = K .

The group GL(n,Z) acts on Sn,K by

U f (x1, . . . , xn) = f
(
(x1, . . . , xn)U

)
, ∀U ∈ GL(n,Z), f ∈ Sn,K .

For each f ∈ Sn,K , let

f (x1, . . . , xn) =
d∏

i=1

(αi1x1 + · · · + αinxn), αi j ∈ C

be a factorization into linear forms and define

D( f ) =
∏

1�i1<···<in�d

det(αiv j)
2
1�v, j�n.

Clearly D( f ) does not depend on the factorization of f and satisfies

D(U f ) = D( f ), ∀U ∈ GL(n,Z).

Put

Sn,K = {
f ∈ Sn,K

∣∣ f is primitive and D( f ) �= 0
}
/{±1}

and G = GL(n,Z)/{±1}. The action of GL(n,Z) on Sn,K induces a G-action on Sn,K . We define the
discriminant of f̄ = {± f } ∈ Sn,K by D( f̄ ) = D( f ). Clearly D( f̄ ) is an invariant of the G-orbit of f̄ .

Let M ∈ Mn be a non-degenerate module with a Z-basis α1, . . . ,αn , and let a be the fractional
ideal generated by M . Observe that

f (x1, . . . , xn) = 1

Na

d∏
i=1

(
σi(α1)x1 + · · · + σi(αn)xn

)

is a primitive irreducible homogeneous polynomial in Z[x1, . . . , xn]. Moreover, multiplying α1, . . . ,αn

by a non-zero element of K changes f at most by a sign, choosing a different Z-basis for M amounts
to a GL(n,Z) action on f . Thus we have a well-defined map

Φ : [M] �→ G-orbit of f̄ (7)
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from the set of non-degenerate classes in M∼
n onto Sn,K /G . Note that Φ preserves discriminants, i.e.,

D( f̄ ) = dis M for f̄ ∈ Φ([M]).
Let G f̄ denote the isotropic subgroup of f̄ in G and Aut(K ) the automorphic group of K . Put

m f̄ = |G f̄ | and mK = |Aut(K )|. Note that m f̄ is an invariant for the G-orbit of f̄ .

Lemma 2.4. For 1 < n < d and f̄ ∈ Sn,K , the isotropic group G f̄ is isomorphic to a subgroup of Aut(K ).

Furthermore, the G-orbit of f̄ has precisely mK /m f̄ inverse images under Φ .

Proof. Let f̄ = {± f } ∈ Sn,K and let l( x ) = α1x1 + · · · + αnxn be a linear factor of f with Q(α j | 1 �
j � n) = K . For each U ∈ GL(n,Z) satisfying U f = ± f , there is a unique σ ∈ Aut(K ) such that

Ul( x ) = l( xU ) = γ
(
σ(α1)x1 + · · · + σ(αn)xn

)
for some 0 �= γ ∈ K . It is easy to check that the map {±U } �→ σ−1 is a monomorphism from G f̄ into
Aut(K ). The second statement follows from the fact that the G f̄ -action on {σ l( x ) | σ ∈ Aut(K )} has
mK /m f̄ distinct orbits. �

In the case n = d − 1, we define an analogue of (2) as

ξ∗
K (s) =

∑
f̄

m−1
f̄

∣∣D( f̄ )
∣∣−s

, s ∈ C (8)

where the sum is taken over a set of G-orbit representatives in Sd−1,K .

Theorem 2.5. Let K be a number field of degree d � 3 with discriminant �K . Then

ξ∗
K (s) = m−1

K |�K |−(d−2)sηK (2s). (9)

In the case where K is a cubic field, we may identify G-orbits in S2,K with primitive GL(2,Z)-
orbits in S2,K defined in the introduction. To include non-primitive GL(2,Z)-orbits, we have to
multiply ξ∗

K (s) by the factor ζ(4s). Finally, each GL(2,Z)-orbit in S2,K splits into two Γ -orbits, we
get

ξK (s) = 2ζ(4s)ξ∗
K (s)

which is exactly (2) by Theorem 2.1.

3. Preliminaries

Throughout this note, K denotes a number field of degree d over Q, Mn denotes the set of free
Z-submodules of K of rank n. If M , N are Z-submodules of K , MN will be the Z-submodule of K
generated by elements αβ with α ∈ M and β ∈ N . If N is a submodule of M , we write M/N for the
quotient module of M modulo N . We use NK/Q and TrK/Q to denote respectively the norm and trace
map from K to Q. Write

V 0 = {
α ∈ K

∣∣ TrK/Q(α) = 0
}

for the trace zero hyperplane of K . For each M ∈ Md , we define its dual module by

M∨ = {
β ∈ K

∣∣ TrK/Q(αβ) ∈ Z for all α ∈ M
} ∼= Hom(M,Z).



1000 X. Gao / Journal of Number Theory 131 (2011) 994–1019
Let δi j denote the Kronecker delta symbol, i.e., δi j = 1 if i = j and δi j = 0 otherwise. If S is a finite
set, we use |S| and #S to denote its cardinality. If U = (uij) is a k × l matrix, I = {i1, . . . , ir} (1 � i1 <

· · · < ir � k) and J = { j1, . . . , jr} (1 � j1 < · · · < jr � l), we denote by

U I, J = det(uij)i∈I, j∈ J

the minor of U obtained from the corresponding r × r sub-matrix. In the case r = l � k, we also write

U I = U I, J = det(uij)i∈I,1� j�l.

Furthermore, we denote by

Λr(U ) = (U I, J )|I|=| J |=r

the r-th compound matrix of U [12, §7.2, p. 417].

Lemma 3.1. For M ∈ Mn, the index of M defined by (3) is a rational integer.

Proof. Let ω1, . . . ,ωd be a Z-basis for O K and α1, . . . ,αn a Z-basis for M . Put

a = O K M and A = (
σi(α j)

)
1�i�d,1� j�n.

We claim that

β = Na
−(d−1

n−1)
(
det

(
σi(ω j)

)
1�i, j�d

)−(d−2
d−n)

∏
|I|=n

AI

is a rational integer.
Let L be the Galois closure of K . Note that each τ ∈ Gal(L/Q) induces a permutation σ �→ τσ on

the set of embeddings σ1, . . . , σd . It is easy to check that τ (β) = β , ∀τ ∈ Gal(L/Q). Thus β ∈ Q.
To show that β is an integer, we argue locally. Let p be a rational prime, Qp the completion of Q

at p. Since multiplying M by a non-zero element of K changes β at most by a sign, we may assume
that a is integral and coprime to p.

Let P1, . . . ,Pr be the prime ideals of O K lying above p. For 1 � v � r, let KPv denote the comple-
tion of K at Pv , OPv the valuation ring of KPv . Then OPv = Zp[γv ] for some γv ∈ OPv . Moreover,
set dv = [KPv : Qp], s0 = 0 and sv = ∑

1�i�v di for 1 � v � r.

Regarding σ1, . . . , σd as embeddings of K into an algebraic closure Qp of Qp , we may index them
so that σi(K ) (sv−1 < i � sv) and KPv are conjugate over Qp . Let γv,k (1 � k � dv ) denote the
corresponding conjugate of γv in σsv−1+k(K ). Thus

1, γv,k, . . . , γ
dv −1
v,k

form a Zp-basis for the valuation ring of σsv−1+k(K ). Write

B v = (
γ l

v,k

)
1�k�dv ,0�l<dv

for the Vandermonde matrix and B = diag1�v�r(B v) for the d × d matrix with B v ’s in the diagonal.
Then there exists a d × n matrix C with entries in Zp such that A = BC . Taking the n-th compound
matrix on both sides, we obtain

Λn(A) = Λn(B)Λn(C),

where Λn(C) = (C I )|I|=n is a column vector with entries in Zp .
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Let vp denote the unique non-archimedean valuation on Qp extending the usual one on Qp , i.e.,
vp(p) = 1. We have

∑
|I|=n

vp(AI ) �
∑
|I|=n

min| J |=n

{
vp(B I, J )

}

=
∑

n1,...,nr�0
n1+···+nr=n

∑
1�v�r

∑
|I v |=nv

min| J v |=nv

{
vp

(
(B v)I v , J v

)}
. (10)

It is clear that for subsets I v , J v ⊆ {1,2, . . . ,dv} of nv elements,

vp
(
(B v)I v , J v

)
� vp

(
det

(
γ l

v,k

)
k∈I v ,0�l<nv

)
=

{∑
k,k′∈I v ,k<k′ vp(γv,k − γv,k′) if nv � 2,

0 otherwise.

Let �Pv denote the discriminant of KPv over Qp . The right-hand side of (10) now becomes

=
(

d − 2

n − 2

) ∑
1�v�r

∑
1�k<k′�dv

vp(γv,k − γv,k′)

= 1

2

(
d − 2

n − 2

) r∑
v=1

vp(�Pv )

= 1

2

(
d − 2

n − 2

)
vp(�K ).

This proves that vp(β) � 0 for any prime p ∈ Z. Hence ind M = |β| is a rational integer. �
4. Pure modules and the width of complementary ideals

In this section we assume 1 � n < d. Let M ∈ Mn and a the fractional ideal generated by M . We
say that M is pure if M is a direct summand of a. Equivalent modules must share the same pureness
property. We call a module class pure if it consists of only pure modules.

If M ∈ Mn is a pure module, its complementary module is defined as follows. Choose a Z-basis
α1, . . . ,αn for M and extend it to a Z-basis α1, . . . ,αn, . . . ,αd for a. Let {β j}1� j�d be the dual basis
of {αi}1�i�d , i.e.,

TrK/Q(αiβ j) = δi j, ∀i, j.

Thus β1, . . . , βd form a Z-basis for the fractional ideal a∨ = (δK a)−1. The Z-module generated by
βn+1, . . . , βd is a pure module in Md−n , which does not depend on the choice of bases for M and a. It
is called the complementary module of M , and denoted by M∧ . Moreover, let b be the unique integral
ideal of O K satisfying

(βn+1, . . . , βd) = a∨b.

Then b depends only on the module class of M . It is called the complementary ideal associated
with [M].
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Lemma 4.1. With M and b as above, we have

ind M = Nb(d−1
n ) ind M∧.

Proof. Let A = (σi(α j))1�i, j�d and B = (σi(β j))1�i, j�d . Thus

AT = B−1 and det A2 = Na2�K .

If U is a d × d matrix, we write Λ∗
r (U ) = (U∗

I, J ) for the matrix obtained from the r-th compound
matrix Λr(U ) = (U I, J ) by replacing U I, J in each entry with its cofactor U∗

I, J in U (see [12, p. 417]).
Using Laplace’s expansion formula and the properties of compound matrix, we have

Λ∗
d−n(A) = det A

(
Λd−n(A)T )−1 = det AΛd−n(B).

In particular, for J = {1,2, . . . ,n}, J ′ = {n + 1, . . . ,d}, I = {i1, . . . , in} and I ′ = {in+1, . . . , id} such that
{i1, . . . , id} is a permutation of {1,2, . . . ,d}, we have

AI, J = ±det AB I ′, J ′ .

Therefore

ind2 M = �
−(d−2

n−2)
K Na

−2(d−1
n−1)

∏
|I|=n

A2
I, J

= �
(d

n)−(d−2
n−2)

K Na2(d−1
n )

∏
|I ′|=d−n

B2
I ′, J ′

((
d

n

)
=

(
d − 1

n

)
+

(
d − 1

n − 1

))

= �
(d−1

n )+(d−2
n−1)

K Na2(d−1
n )N

(
δ−1

K a−1b
)2(d−1

n ) dis M∧

= Nb2(d−1
n ) ind2 M∧.

Taking square roots gives the desired result. �
Corollary 4.2. If M ∈ Md−1 is a pure module, b is its complementary ideal. Then ind M = Nb.

Let b be a non-zero integral ideal of O K . By the elementary divisor theorem for torsion free mod-
ules, there exists a Z-basis ω1, . . . ,ωd for O K and positive integers b1, . . . ,bd such that

b = Zb1ω1 ⊕ · · · ⊕ Zbdωd

with bi | bi−1 for 1 < i � d. The integers b1, . . . ,bd are uniquely determined by b. The largest sub-
script l with bl �= 1 (in the case b1 = 1, put l = 0) is called the width of b in O K , denoted by width(b).
It is the minimal number of cyclic components of the finite abelian group O K /b.

Lemma 4.3. If M is a pure module in Mn with 1 � n < d and b the complementary ideal associated with M.
Then width(b) < n.

Proof. Suppose width(b) = l � n. Then there exists a rational prime p such that N(b + pO K ) = pl .
Thus the integral ideal c = (b + pO K )−1 pO K has norm pd−l . As before, let α1, . . . ,αn be a Z-
basis for M and α1, . . . ,αn, . . . ,αd a Z-basis for a = O K M . Let {β j}1� j�d denote the dual basis
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of {αi}1�i�d . Then (βn+1, . . . , βd) = a∨b. By the elementary divisor theorem, there exists a Z-basis
ω1, . . . ,ωd for a such that ω1, . . . ,ωl ∈ ca. Thus, for 1 � i � l, n < j � d, we have

ωiβ j ∈ caa∨b = cbδ−1
K ⊆ pδ−1

K and so TrK/Q(ωiβ j) ∈ pZ. (11)

Put F = Z/pZ. Note that TrK/Q(xy) (x ∈ a, y ∈ a∨) induces a non-degenerate F-bilinear pairing be-
tween the F-vector spaces a/pa and a∨/pa∨ . Let V denote the subspace of a/pa generated by the
images of α1, . . . ,αn , and N the subspace of a∨/pa∨ generated by the images of βn+1, . . . , βd . Clearly
V is the orthogonal complement of N with respect to the above pairing. Moreover, let W be the sub-
space of a/pa generated by the images of ω1, . . . ,ωl . Then by (11), W ⊆ V . Since dimF W � dimF V ,
we have W = V , l = n. But this would imply

a = (α1, . . . ,αn) ⊆ (ω1, . . . ,ωn) + pa ⊆ ca + pa

which is impossible. �
Let I K ,l denote the set of integral ideals of O K of width < d − l. We have now constructed a

map Ψn from the set of pure module classes in M∼
n into I K ,d−n by sending [M] to the complementary

ideal associated with M . Such maps are in general difficult to deal with. But in the case n = d − 1, we
have:

Lemma 4.4. The map Ψd−1 is a bijection.

Proof. Suppose first that M, M ′ ∈ Md−1 are pure modules with

Ψd−1
([M]) = Ψd−1

([
M ′]) = b.

We claim that M and M ′ lie in the same module class. Let a = O K M and a′ = O K M ′ . Clearly a and a′
lie in the same ideal class. Multiplying M by a suitable non-zero element of K if necessary, we may
assume that a = a′ . Now M and M ′ both have the form{

α ∈ a
∣∣ TrK/Q(αβ) = 0

}
for some β ∈ K determined by the condition (β) = δ−1

K a−1b. Hence M and M ′ differ by at most a unit
factor and thus are equivalent.

To prove that Ψd−1 is surjective, take any b ∈ I K ,1. We can always extend βd = 1 to a Z-basis
β1, . . . , βd−1, βd for b−1. Let {αi}1�i�d denote the corresponding dual basis of {β j}1� j�d , i.e.,
TrK/Q(αiβ j) = δi j , ∀i, j. Thus α1, . . . ,αd form a basis for a = δ−1

K b. Let M denote the Z-module gener-
ated by α1, . . . ,αd−1, and c the integral ideal satisfying (α1, . . . ,αd−1) = ac. Note that M is pure and

α1, . . . ,αd−1, (Nc)αd

is a Z-basis for ac. Thus

β1, . . . , βd−1, (Nc)−1βd

forms a basis for (ac)∨ = (bc)−1. In particular, (Nc)−1 ∈ (bc)−1, or Nc | bc. If c is divisible by any prime
ideal P of O K , we would have

P−1NP | b,

contradicting our assumption that width(b) < d − 1. Thus c = O K and Ψd−1([M]) = b. �
Corollary 4.5. For b ∈ I K ,1 , let Mb = δ−1

K b ∩ V 0 . Then O K Mb = δ−1
K b and Ψd−1([Mb]) = b.
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5. Applications to orders

Lemma 4.4 clearly has an interest of its own. We give some applications below.
For each Q-subspace V of K , we let I(V ) denote the set of fractional ideals of O K generated by

subsets of V . Note that a fractional ideal a belongs to I(V ) if and only if O K (a ∩ V ) = a.

Lemma 5.1. With the notation above, we have:

(1) If U is a subspace of V , then I(U ) ⊆ I(V );
(2) For 0 �= β ∈ K , β I(V ) = I(βV );
(3) If a1,a2 ∈ I(V ), then a1 + a2 ∈ I(V );
(4) If a is a fractional ideal, then M = a ∩ V is a pure module and b = O K M is the largest fractional ideal

of I(V ) contained in a. Moreover, the integral ideal a−1b has width � d − dim V .

Proof. (1), (2) and (3) are clear. (4) Note that M ⊆ b∩ V ⊆ a∩ V = M , so M = b∩ V is pure. If b′ ∈ I(V )

is contained in a, then M ⊆ (b+b′)∩ V ⊆ a∩ V = M . By (3), b+b′ ∈ I(V ), so b+b′ = O K M = b. Thus
b′ ⊆ b.

For the last statement, observe that as finite abelian groups, O K /(a−1b) ∼= a/b. The group a/b can
clearly be written as a product of at most d − dim V cyclic groups. �

In the case dim V = d − 1, I(V ) has a particularly simple form. For the rest of the sequel, we write

I∗K ,1 = {
γ b

∣∣ γ ∈ Q∗, b ∈ I K ,1
}
. (12)

Theorem 5.2. For any β ∈ K ∗ , we have I(βV 0) = βδ−1
K I∗K ,1 .

Proof. It is enough to prove the case β = 1. By Corollary 4.5, I(V 0) ⊇ δ−1
K I∗K ,1. Conversely, given

a ∈ I(V 0), let b ∈ I K ,1 be the complementary ideal associated with M = a ∩ V 0. Then a = γ bδ−1
K for

some γ ∈ Q∗ . Thus I(V 0) ⊆ δ−1
K I∗K ,1. �

For the rest of the section we will apply Theorem 5.2 to study orders of a number field. We adopt
the following convention. If α1, . . . ,αm are elements of K , we write

{α1, . . . ,αm}Z

for the Z-module generated by α1, . . . ,αm . If M, N ∈ Md , we let

(M : N) = {α ∈ K | αN ⊆ M}.

Our treatment of orders is based on the following simple observation.

Lemma 5.3. Let M, N ∈ Md, then (M : N) = (M∨N)∨ .

Proof. Note that for α ∈ K , αN ⊆ M if and only if TrK/Q(αN M∨) ⊆ Z, or equivalently, α ∈
(M∨N)∨ . �

We next summarize some basic definitions on orders of number fields. For a classical treatment
on this subject, see [16,17,4].

Let K be a number field of degree d and Mn the set of free Z-submodules of K of rank n. We call
a subring O of K containing 1 an order if O ∈ Md . For example, (M : M) is an order of K whenever
M ∈ Md . All orders of K are contained in the maximal order O K and thus have a finite index in O K .
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Let O be an order of K and a ∈ Md . We call a a (fractional) O-ideal if Oa ⊆ a, or equivalently,
O ⊆ (a : a). When O = (a : a), we say that a is O-proper. Moreover, we say that a fractional O-ideal a

is O-invertible if a(O : a) = O. An invertible O-ideal is always O-proper. But the converse is not true
in general.

Lemma 5.4. Let O be an order of K and let a be a fractional ideal of O. Then:

(1) a is O-proper if and only if a∨a = O∨;
(2) aO∨ is O-proper if and only if a is O-invertible;
(3) For non-zero prime ideals p of O, we have (O : (O : p)) = p.

In particular, p is O-proper if and only if p is O-invertible.

Proof. (1) follows directly from Lemma 5.3. (2) By (1), O∨ is always O-proper, thus aO∨ is O-proper
for any O-invertible ideal a. Conversely, suppose that aO∨ is O-proper, then aO∨(aO∨)∨ = O ∨ , thus
a(aO∨)∨O K = O K . Since a(aO∨)∨ = a(O : a) ⊆ O, we have a(aO∨)∨ = O by Nakayama’s lemma.
(3) Since p(O : p) ⊆ O and 1 ∈ (O : p), we have

p ⊆ (
O : (O : p)

) ⊆ O.

If (O : (O : p)) = O, then O∨(O : p) = O∨ , so we have O ⊆ (O : p) ⊆ (O∨ : O∨) = O. Thus (O : p) =
O, or O∨p = O∨ , which is impossible by Nakayama’s lemma. Hence p = (O : (O : p)). For the second
statement, suppose p is O-proper but not O-invertible. Then, by (2), O∨p and so (O : p) cannot be
O-proper. This contradicts our assumption that p = (O : (O : p)) is O-proper. �
Remark 5.5. It is a basic fact in algebraic number theory that ideals in a maximal order factor uniquely
into prime ideals. Lemma 5.4 (2) can be used to give a simple proof of this theorem.

We call an order O of K Gorenstein if O∨ is O-invertible. By Lemma 5.4, Gorenstein orders O
of K are characterized by the property that all proper O-ideals are O-invertible.

Let O be an order of K and f = (O : O K ). Note that f is the largest integral ideal of O K con-
tained in O. It is called the conductor of O. The conductor ideal is the most important invariant
of an order. It measures the extent of failure of unique factorization for O-ideals. For example,
a non-zero prime ideal p of O is O-invertible if and only if p � f (cf. [17, p. 84]). For, if p ⊇ f is

O-invertible, then O = p−1p ⊇ p−1f � f, contradicting the maximality of f. Conversely, by a lemma of
Dedekind [16, Lemma 1.4], every ideal of O coprime to f is O-invertible.

On the quantitative side of the conductor, we have:

Theorem 5.6. Let O be an order of K with conductor f. Then [O : f] divides [O K : O] and the two invariants
are equal if and only if O is Gorenstein.

This important result is a direct consequence of [7] (see [18, Theorem 11.8]). The analogous result
of Theorem 5.6 in the context of one-dimensional Cohen–Macaulay ring is well known [11, p. 29]. For
the convenience of the reader, we sketch a proof at the end of the section.

As we shall see, the Z-module O∨ ∩ V 0 ∈ Md−1 also plays an important role in the arithmetic of
an order. We call O∨ ∩ V 0 the incomplete canonical module of O.

Lemma 5.7. Let O be an order of K with conductor f and incomplete canonical module M. Then

(1) O M = O∨; (2) f = (O K M)∨.

Proof. (1) Clearly M ⊆ O M ∩ V 0 ⊆ O∨ ∩ V 0 = M , so M = O M ∩ V 0. Let α1 = 1,α2, . . . ,αd be a
Z-basis for O and β1, β2, . . . , βd its dual basis. Put m = [O∨ : O M]. Then mβ1, β2, . . . , βd form a
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Z-basis for O M . Thus m−1,α2, . . . ,αd is a Z-basis for (O M)∨ . Since O · 1 ⊆ m(O M)∨ ⊆ O, we have
m = 1 and O M = O∨ . (2) By Lemma 5.3, f = (O : O K ) = (O∨O K )∨ = (O K M)∨ . �
Theorem 5.8. An integral ideal f of O K is the conductor of an order of K if and only if f ∈ I†

K ,1 . Here we put

I†
K ,1 = {

mb−1
∣∣ b ∈ I K ,1 and m ∈ Z ∩ b, m �= 0

}
.

Proof. If f is the conductor of an order O with incomplete canonical module M , then f∨ = O K M ∈
I(V 0). By Theorem 5.2, f∨ = m−1δ−1

K b for some b ∈ I K ,1 and 0 �= m ∈ Q. Thus f = mb−1 and so m is an

integer contained in b. Hence f ∈ I†
K ,1. Conversely, given f ∈ I†

K ,1, thus f∨ ∈ I(V 0), it is easy to check
that

Z + f = {a + α | a ∈ Z, α ∈ f}

is an order of K having incomplete canonical module M = f∨ ∩ V 0 and conductor (O K M)∨ = f. �
We call an order O pure if O = Z + c for some integral ideal c of O K . In this case we can always

replace c by the conductor f of O and write O = Z + f. Note that the conductor f is the unique
smallest ideal in I†

K ,1 containing c. By Theorem 5.6, a pure order O = Z + f is Gorenstein if and only

if Nf = m2, where m denotes the smallest positive integer contained in the conductor f. Writing out
explicitly, we have the factorization

f =
∏

p

fp,

where fp are integral ideals of the following three types

(1) fp = (P1P2)
k , where P1 and P2 are distinct prime ideals of O K of norm p (with ramification

index e(P1 | p) = e(P2 | p) = 1 if k > 1);
(2) fp = P2k , where P is a prime of O K of norm p and e(P | p) > 1 (in the case k > 1 we require

that e(P | p) = 2);
(3) fp = Pk , where P is a prime of O K of norm p2 (with e(P | p) = 1 if k > 1).

We call an order O Bass if every order O′ with O ⊆ O′ ⊆ O K is Gorenstein. It is easy to see that
pure Gorenstein orders are Bass orders.

An order O is called primitive if O �= Z + mO′ for any integer m > 1 and any order O′ . For
example, a pure order O = Z + f is primitive when its conductor f is a primitive integral ideal of O K ,
i.e., mO K � f for any integer m > 1. Every order O of K can be written uniquely as O = Z + mO1,
where O1 is a primitive order and m is a positive integer called the content of O. In fact, we have
the following correspondence.

Theorem 5.9. The mapping ψ : O �→ [O∨ ∩ V 0] is a surjection from the set of orders of K onto M∼
d−1 . More-

over, for each class [M] ∈ M∼
d−1 , there is a unique primitive order O1 such that ψ(O1) = [M]. All orders in the

fiber ψ−1([M]) have the form O = Z + mO1 for some positive integer m.

Proof. We first fix in each class [M] ∈ M∼
d−1 a unique representative M ⊂ V 0 such that (O K M)∨ is a

primitive integral ideal of O K . We may choose basis for M and O K M so that

M = {β1, β2, . . . , βd−1}Z ⊂ O K M = {
β0, c−1

1 β1, c−1
2 β2, . . . , c−1 βd−1

}
.
d−1 Z
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Here c1, c2, . . . , cd−1 are positive integers satisfying ci | ci−1 for 1 < i � d −1. Let α0 = c0,α1, . . . ,αd−1
be the dual basis of β0, β1, . . . , βd−1. Note that c0 is an integer in (O K M)∨ .

Now let ck
i j denote the rational numbers such that

αiα j = c0
i j +

d−1∑
k=1

ck
i jαk, ∀1 � i, j � d − 1.

Let ρ be the smallest positive integer such that

c0
i jρ

2 and ck
i jρ ∈ Z, ∀1 � i, j,k � d − 1.

Then

O1 = {1,ρα1, . . . , ραd−1}Z

is an order of K with ψ(O1) = [M].
Next suppose there exists an order O of K such that ψ(O) = [M], that is, O∨ ∩ V 0 = c−1M for

some c ∈ Q, c > 0. By Lemma 5.7, O has conductor c(O K M)∨ . So c is a positive integer. Moreover, we
may write

O∨ = Zβ ⊕ c−1M,

for some β ∈ c−1 O M ⊆ c−1 O K M with TrK/Q(β) = 1. Thus

β = c0β0 + c−1β ′,

where β ′ ∈ O K M ∩ V 0. On the other hand, we have c0 O ⊆ (O K M)∨ , so c0 O K M ⊆ O∨ . In particular,
c0β0 = β − c−1β ′ ∈ O∨ , or β ′ ∈ M . Thus we may choose at the beginning that β = c0β0 and write

O = (
Zc0β0 ⊕ c−1M

)∨ = {1, cα1, . . . , cαd−1}Z.

By our choice of ρ , we have c = mρ and O = Z + mO1 for some positive integer m. This also implies
that O1 is a primitive order. �
Remark 5.10. In the above proof ρ is a positive integer dividing c2

1 such that c1 | c0ρ . Moreover, by
Theorem 5.6, we have

(c0c1 · · · cd−1)
2 | [O K : (O K M)∨

]
ρd−2

with equality holding if and only if O1 is Gorenstein. In the case where K is a cubic field, we have
ρ = c2

1 (see Theorem 5.13).

It is easy to see that the restriction of ψ induces a bijection between the set of primitive pure
orders of K and the set of pure module classes in M∼

d−1.
Given an order O of a number field K , there are several interesting invariants we can consider. For

example, the index [O K : O], the norm of the conductor [O K : f] (or simply [O : f]), and the module
index of the incomplete canonical module.



1008 X. Gao / Journal of Number Theory 131 (2011) 994–1019
Lemma 5.11. Let O be an order of K with conductor f and incomplete canonical module M. Then

ind M = [O : f]d−1

[O K : O] .

Moreover, ind M is a factor of [O K : O]d−2 and the two invariants are equal if and only if O is Gorenstein.

Proof. We may write O K M = (mδK )−1b with b ∈ I K ,1 and m ∈ b ∩ Z so that f = mb−1. Note that the
pure module M ′ = O K M ∩ V 0 has complementary ideal b and [O : f] = [O K M : O∨] = m[M ′ : M]. Thus
we have

ind M = [
M ′ : M

]d
ind M ′ = m−d[O : f]dNb = [O : f]d

[O K : f] .

The rest of the lemma follows from Theorem 5.6 and the observation that

ind M = [O K : O]d−2
( [O : f]

[O K : O]
)d−1

. �
Besides the pure orders, we examine another class of widely used orders. Let θ be a generator

of K and put N = Z1 + Zθ ∈ M2. Then Nd−1 = {1, θ, . . . , θd−1}Z ∈ Md . We compute explicitly a basis
for the order

O = (
Nd−1 : Nd−1) = ((

Nd−1)∨
Nd−1)∨

.

By [13, §3.1], the dual basis of 1, θ, . . . , θd−1 is given by

βd−1

f ′(θ)
, . . . ,

β0

f ′(θ)
,

where

f (x) = a0xd + a1xd−1 + · · · + ad ∈ Z[x]
is a primitive polynomial such that f (θ) = 0, and

βi = a0θ
i + a1θ

i−1 + · · · + ai, 0 � i � d. (13)

Since θβi−1 = βi − ai for 1 � i � d, we have

(
Nd−1)∨

N = 1

f ′(θ)
{β0, β1, . . . , βd−1, θβ0, . . . , θβd−1}Z

= 1

f ′(θ)
{β0 = a0,a1, . . . ,ad, β1, . . . , βd−1}Z

= 1

f ′(θ)
{1, β1, . . . , βd−1}Z. (14)

In general we can prove by induction that for 1 � k � d,

(
Nd−1)∨

Nk = 1
′

{
1, θ, . . . , θk−1, βk, . . . , βd−1

}
Z
.

f (θ)
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In particular,

O∨ = (
Nd−1)∨

Nd−1 = 1

f ′(θ)

{
1, θ, . . . , θd−2,a0θ

d−1}
Z

(15)

and so

O = {1, β1, β2, . . . , βd−1}Z. (16)

This is the order used by [14,3,1] and many other authors. Note that O depends only on the module
class [N] of N and has incomplete canonical module

O∨ ∩ V 0 = 1

f ′(θ)

{
1, θ, . . . , θd−2}

Z

and conductor

f = f ′(θ)δ−1
K (O K N)−(d−2). (17)

In the case that f is not primitive, say f = mf1 where f1 is a primitive polynomial and m > 1 is an
integer, one can still use (16) and (13) to define an order, namely, O = Z + mO1 with O1 the order
defined by f1.

Theorem 5.12. Let f (x) be an integral polynomial of degree d > 2 with a root θ that generates K , and let O
be the order of f given by (16) and (13). Let a denote the O-ideal generated by 1 and θ . Then

ak = {
1, θ, . . . , θk, βk+1, . . . , βd−1

}
Z
, 0 � k � d − 1,

and O∨ = ad−2/ f ′(θ). Furthermore, the following three conditions are equivalent:

(1) f is primitive; (2) O is Gorenstein; (3) O is primitive.

Proof. We need only to prove the equivalence of the last three conditions. The rest can be argued as
above. (1) ⇒ (2) If f is primitive, then a is O-invertible with inverse

a−1 = {β0, β1, . . . , βd−1}Z.

Thus O is Gorenstein as O∨ = ad−2/ f ′(θ) is O-invertible. (2) ⇒ (3) By an observation of Bhar-
gava [2, §3.6], any Gorenstein order of rank greater than 2 must be primitive. This is also an easy
consequence of Theorem 5.6. (3) ⇒ (1) This follows directly from above. �

The restriction of the map ψ in Theorem 5.9 gives a bijection between the set of orders of primi-
tive polynomials f and the set of module classes of the form [Nd−2] with N ∈ M2.

We now restrict our attention to the case where K is a cubic field. Let O be an arbitrary primitive
order of K . Suppose the incomplete canonical module of O is equivalent to N = Z1 + Zθ for some
θ ∈ K . Then, by Theorem 5.12,

O∨ ∩ V 0 = N/ f ′(θ),

where f (x) = a0x3 + a1x2 + a2x + a3 ∈ Z[x] is the primitive minimal polynomial of θ . Thus

O = (
N2 : N2) = {

1,a0θ,a0θ
2 + a1θ

}
. (18)



1010 X. Gao / Journal of Number Theory 131 (2011) 994–1019
We associate to O a system of pure orders. Let u0 be the smallest positive integer in the conductor f

of O. Choose a Z-basis γ0, γ1, γ2 for O K N so that

(a0θ
2

θ

1

)
=

( u0 v0 v1
0 u1 v2
0 0 u2

)(
γ0
γ1
γ2

)
.

Here u1, u2, v0, v1, v2 ∈ Z and u1, u2 � 1. Then by (17),

f = f ′(θ)(δK N)−1 = {u0, u1β1 + v0, u2β2 + v2β1 + v1}Z

with β1 = a0θ +a1 and β2 = a0θ
2 +a1θ +a2. Let N ′ denote the pure module O K N ∩QN = Zγ1 +Zγ2.

Then O0 = (N ′ 2 : N ′ 2) is a primitive pure order. Put α = γ1/γ2 = (u2θ − v2)/u1. Then (1,α) =
u2(γ1, γ2) = u2(1, θ). By Gauss’s lemma [10, Theorem 87], α has primitive minimal polynomial

g(x) = NK/Q(x − α)

N(1,α)
= |a0|

u3
2

x3 + · · · .

Thus O0 has conductor

g′(α)
(
δK (1,α)

)−1 = f ′(θ)

u2
1u2

(
δK u2(1, θ)

)−1 = f

c2
.

Here c = [N ′ : N] = u1u2. Moreover, note that cN ′ ⊆ N and u0 O ⊆ f, so we have

{u0γ0, cγ1, cγ2}Z ⊆ {
a0θ

2, θ,1
}

Z
= f ′(θ)O∨.

Hence O ⊆ O1 = Z + c−1f. It can be shown that O1 is the smallest pure order containing O.

Theorem 5.13. Let O be a primitive order of a cubic field K with conductor f and incomplete canonical mod-
ule M. Put

M ′ = O K M ∩ QM and c = [
M ′ : M

]
.

Then c−2f is a primitive integral ideal in I†
K ,1 and

Z + f ⊆ O ⊆ O1 = Z + f

c
⊆ O0 = Z + f

c2
⊆ O K . (19)

Corollary 5.14. Each primitive order of a cubic field K has conductor of the form c2c0b
−1 , where b ∈ I K ,1 , c0 is

the smallest positive integer in b, and c is any positive integer. Moreover, the number of primitive cubic orders
of conductor f = c2c0b

−1 is given by

a(f) = c
∏
p|c

λp, (20)

where

λp =

⎧⎪⎨
⎪⎩

1 − tp−1
p , if p � c0;

1 − 1
p , if p | c0 and b + pO K is a prime unramified over p;

1, otherwise.

Here tp denotes the number of prime ideals P with NP = p.
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Proof. We need only to prove (20). Note that I(V 0) = δ−1
K I∗K ,1. For a ∈ I∗K ,1, we write Ma = δ−1

K a∩ V 0.
Then, by Theorem 5.13,

a(f) = #
{

M ⊆ Mb

∣∣ [Mb : M] = c, O K M = δ−1
K b

}
. (21)

Let MK = δ−1
K ∩ V 0. By using the argument at the beginning of Section 6, we may reduce the proof to

the case where both M and Mb are submodules of MK of prime power indexes. Let p be a rational
prime. If a is a non-zero integer, we let a(p) = pv p(a) , where v p denotes the p-valuation normal-
ized so that v p(p) = 1. Similarly, if a is a non-zero integral ideal, we write a(p) = ∏

P|p PvP(a)

for the p-component of a. Here vP denotes the P-valuation so that vP(P) = 1. Moreover, if
M ∈ M2 is a submodule of MK , we let M(p) denote the unique submodule of MK containing M
such that

[
MK : M(p)

]
is a power of p and p �

[
M(p) : M

]
.

Then M(p) = MK for all but finitely many p and [MK : M] = ∏
p[MK : M(p)]. Moreover, we have

(δK M)(p) = δK M(p) and (Ma)(p) = Ma(p) , ∀a ∈ I K ,1. Using the bijection (25), we obtain

a(f) =
∏

p

#
{

M ⊆ Mb(p)

∣∣ [Mb(p) : M] = c(p), O K M = δ−1
K b(p)

}

=
∏

p

a
(
f(p)

)
.

In the following we assume that Nf = c6c2
0 is a power of p. Then we have b = Pl and c0 = pl for some

integer l � 0 and prime ideal P with NP = p. In the case l > 1, P must also be unramified over p.
If c = 1, then clearly a(f) = 1. So we assume henceforth that c = pk , k � 1. Observe that for each

integral ideal a ∈ I∗K ,1, the number of submodules of Ma of index pm(m � 0) is given by

a
(

pm,a
) = 1 + p + · · · + pm.

To count the submodules M with O K M = O K Ma , we apply the inclusion–exclusion principle. We
consider three cases.

Case 1: b = O K . Then

a(f) = a(c, O K ) −
∑

NP′=p

a

(
c

p
,P′

)
+ (tp − 1)a

(
c

p2
, pO K

)

= pk
(

1 − tp − 1

p

)
.

Case 2: b = Pl with l � 1 and P is unramified over p. Then

a(f) = a
(
c,Pl) − a

(
c

p
,Pl+1

)
− a

(
c

p
, pPl−1

)
+ a

(
c

p2
, pPl

)

= pk
(

1 − 1

p

)
.
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Case 3: b = P and P is ramified over p. Then

a(f) = a(c,P) − a

(
c

p
, pO K

)
= pk.

Putting all these cases together, we obtain (20). �
There is another way to construct primitive cubic orders which is easier to generalize in a wider

context.

Corollary 5.15. Let K be a cubic field and f0 a primitive integral ideal in I†
K ,1 . Let c be any positive integer

and f = c2f0 . Define O0 = Z + f0 and O1 = Z + cf0 as in Theorem 5.12. Let S(f) denote the set of O1-proper
ideals c with O1 ⊆ c ⊆ O0 and [O0 : c] = c. Then we have the following bijection

ϕ : S(f) → {primitive orders of conductor f},
c �→ O = Z + cc.

The inverse map is given by ϕ−1(O) = c−1(O : O1) = O0 ∩ c−1 O.

Proof. We first let O be a primitive cubic order of conductor f and write c1 = (O : O1). Then c∨1 =
O∨O1, or equivalently, O∨

1 = O∨c1, as O∨ is O-invertible. Thus c∨1 is O1-invertible and (O : c1) = O1.
Moreover, from O∨

1 O K = O∨O K c1, or (c−1f)∨ = f∨c1, we deduce that c1 O K = (c−1f)−1f = cO K . Thus

c1 ⊆ O ∩ cO K = O ∩ (O1 ∩ cO K ) = O ∩ cO0.

We claim that c1 = O ∩ cO0 and O = Z+ c1. Let c0 denote the smallest positive integer in f0. Observe
that

[c1 : f] = [
O∨c1 : O∨f

] = [
O∨

1 : O∨
K

] = [O K : O1] = c2c0

and [O : f] = (Nf)1/2 = c3c0. So we have [O : c1] = c. On the other hand, [O : O ∩ cO0] � c. This forces
c1 = O ∩ cO0. Similarly, we have O = Z + c1 as [Z + c1 : c1] = c. Moreover, from cO1 ⊆ c1 ⊆ cO0, we
see that c1 = cc for some O1-ideal c with O1 ⊆ c ⊆ O0 such that c∨ is O1-invertible. By Corollary 5.17,
the last condition can be replaced by

c is O1-proper and [O0 : c] = c.

In this way we associate to each primitive cubic order O a unique O1-ideal c = c−1(O : O1) = O0 ∩
c−1 O ∈ S(f).

It remains to show that for each c ∈ S(f), O = Z + cc is primitive order of conductor f and O ∩
cO0 = cc. Let c ∈ S(f) and O = Z + cc. Notice that

O0c
∨ = O0cc

∨ = O0 O∨
1 = (O1 : O0)

∨ = c−1 O∨
0 .

Write M ′ = f∨0 ∩ V 0. Then

O∨
0 = Zγ ⊕ M ′ and O∨

1 = Zγ ⊕ c−1M ′

for some γ ∈ O∨
0 = O0M ′ . Since O∨

0 ⊆ c∨ ⊆ O∨
1 , we have c∨ = Zγ ⊕ M , where M = c∨ ∩ V 0 is a

Z-module such that M ′ ⊆ M ⊆ c−1M ′ . Then

O0c
∨ = γ O0 + O0M ⊆ O0M ′ + O0M = O0M ⊆ O0c

∨.
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So O0M = O0c
∨ = c−1 O∨

0 . Hence O = Z+cc has incomplete canonical module (cc)∨ ∩ V 0 = c−1M and
conductor (c−1 O K M)∨ = c2(O K O∨

0 )∨ = f. It is easy to check that O is primitive and O ∩cO0 = cc. �
In the case where K is a cubic field, the restriction of ψ in Theorem 5.9 establishes a bijec-

tion ψ3 between the set of primitive orders of K and M∼
2 . Observe that the module classes in M∼

2
with GL(2,Z)-equivalent norm forms correspond to isomorphic orders of K . Composing ψ3 with the
map

Φ : M∼
2 → S2,K /G

defined in (7), and extending the bijection trivially to the non-primitive forms and orders, we ob-
tain the classical correspondence of Delone and Faddeev [2,6,8] stated in the introduction. For the
parametrization of quartic orders using pairs of ternary quadratic forms, see the celebrated paper [2].

In the rest of this section we outline a proof of Theorem 5.6.

Lemma 5.16. Let o be a one-dimensional Noetherian local domain with field of fraction K . Suppose the integral
closure õ of o in K is a finitely generated o-module. Then for any o-submodule b of õ,

lo(õ/o) � lo(bõ/bo)

with equality holding if and only if b is a principal o-ideal. Here lo(a) denotes the length of an o-module, i.e.,
the maximal length of a strictly decreasing chain

a = a0 � a1 � · · · � al = 0

of o-submodules.

Proof. By [17, §12], õ is a Dedekind domain with finitely many prime ideals and is thus a principal
ideal domain. There exists an α ∈ K such that bõ = αõ. Since lo(bõ/bo) is unchanged if we replace b

by α−1b, we may assume in the following that bõ = õ.
Let f = (o : õ) denote the conductor of o in õ. Note that b = ob ⊇ fõb = f and f �= 0. Write R = õ/f,

A = o/f and B = b/f. Then A is a subring of the Artin ring R with unique maximal ideal, B is an
A-submodule of R with R B = R . We claim that

lA(R/A) � lA(R/B) (22)

with equality holding if and only if B = εA for some unit ε of R . This will imply our lemma. Let
f = ∏s

i=1 p
ei
i denote the prime factorization of f in õ. Then

R =
s∏

i=1

Ri with Ri = õ/p
ei
i .

Let mi denote the unique maximal ideal of Ri and let

mR,i = (R1, . . . , Ri−1,mi, Ri+1, . . . , Rs), 1 � i � s

denote the maximal ideals of R . Since A has a unique maximal ideal, it can be written as

mR,i ∩ A = (m1, . . . ,ms) ∩ A, ∀1 � i � s. (23)
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We prove inequality (22) by induction on s. In the case s = 1, R is a local ring. Since R B = R , there
exists in B a unit ε of R . Thus εA ⊆ B and so

lA(R/A) = lA(R/εA) � lA(R/B).

Moreover, we have lA(R/A) = lA(R/B) if and only if B = εA.
Now suppose s > 1 and assume the claim holds when R is a product of s − 1 local rings. Let

pr : R → R ′ =
s−1∏
i=1

Ri

denote the canonical projection. Write A′ = pr(A), B ′ = pr(B), and put

As = {
α ∈ A

∣∣ pr(α) = 0
}

and Bs = {
α ∈ B

∣∣ pr(α) = 0
}
.

Note that A′ is a subring of R ′ with unique maximal ideal and B ′ is an A′-submodule of R ′ with
R ′B ′ = R ′ . By the induction hypothesis,

lA′
(

R ′/A′) � lA′
(

R ′/B ′). (24)

Since R B = R = R ′ ⊕ Rs , there exists an element ε = ε′ + εs ∈ B such that ε′ ∈ R ′ and εs is a unit
of Rs . Thus ε As = εs As ⊆ Bs and so

lA(Rs/As) � lA(Rs/Bs).

Combining this with (24), we have

lA(R/A) = lA
(

R ′/A′) + lA(Rs/As) � lA
(

R ′/B ′) + lA(Rs/Bs) = lA(R/B).

Next suppose that lA(R/A) = lA(R/B). Then lA(Rs/As) = lA(Rs/Bs) and lA′ (R ′/A′) = lA′ (R ′/B ′). Thus
εs As = Bs . Moreover, by the induction hypothesis, there exists a unit ε′ of R ′ such that B ′ = ε′ A′ .
Since ε′ ∈ B ′ , there exists an element ε ∈ B such that pr(ε) = ε′ . Now

B = εA + Bs = εA + εs As and so R = R B = εR + Rs As.

But by (23), As ⊆ mR,1 ∩ A ⊆ mR,s . This shows that ε is a unit of R and by our assumption that
lA(R/A) = lA(R/B), we must have B = εA. The proof of the converse direction is straightforward. �
Corollary 5.17. Let O be an order of K with conductor f, a a fractional ideal of O. Then:

(1) [O K a : a] is an integer dividing [O K : O]. It is equal to [O K : O] if and only if a is O-invertible;
(2) In the case a is O-proper, [O : f] divides [O K a : a] and with equality holding if and only if a∨ is

O-invertible.

Proof. (1) Localize the O-ideals O K , O and a with respect to the multiplicative set O\p for each
maximal ideal p of O and apply Lemma 5.16. For the second statement, use the fact that a is

O-invertible if and only if its localization ap is a principal Op-ideal at every non-zero prime ideal p

of O [17, §12]. (2) Observe that

[
O K a∨ : a∨] = [

(O K a)−1 O K O∨ : a∨] = [
(af)∨ : a∨] = [a : af],
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so [O K a : a][O K a∨ : a∨] = [O K a : af] = [O K : f] = [O K : O][O : f]. Now (2) is a direct consequence
of (1). �

Applying Corollary 5.17 to [O : f] = [O K O∨ : O∨], we obtain Theorem 5.6.

6. The Euler product and the Moebius inversion

From now on, we let MK = {α ∈ δ−1
K | TrK/Q(α) = 0} denote the incomplete canonical module of

the maximal order O K . Put

L = {M ∈ Md−1 | M ⊆ MK }
and

L p = {
M ∈ L

∣∣ [MK : M] = pv for some v ∈ Z, v � 0
}

for each rational prime p. Moreover, let
∏

p L p denote the restricted product of L p over all primes p.

The elements in
∏

p L p are of the form (M(p))p with each p-component M(p) ∈ L p and M(p) = MK
for all but finitely many p.

There is a natural bijection E between L and
∏

p L p defined as follows (cf. [15]). Given M ∈ L,

there is a unique module M(p) ∈ L p with M ⊆ M(p) ⊆ MK such that [M(p) : M] is coprime to p. In
fact, M(p) = (M ⊗ Zp) ∩ MK , where we identify M ⊗ Zp and MK with their images in MK ⊗ Zp via
the canonical embedding. Then we define

E (M) = (
M(p)

)
p ∈

∏
p

L p. (25)

We show next that the bijection E preserves module indexes. Let M ∈ L with E (M) = (M(p))p . Then
[MK : M] = ∏

p[MK : M(p)]. Moreover, let c and c(p) denote respectively the integral ideals of O K such

that O K M = δ−1
K c and O K M(p) = δ−1

K c(p) . Then c(p) = O K for all but finitely many p and c = ∏
p c(p) .

Since ind MK = 1, we have

ind M = Nc−(d−1)[MK : M]d ind MK =
∏

p

ind M(p).

Now put

L∗ = {
M∗ ∈ L

∣∣ M∗ �= kM for any M ∈ L and k ∈ Z, k > 1
}

and L∗
p = L p ∩ L∗ . The restriction of E to L∗ induces a bijection between L∗ and the restricted

product
∏

p L∗
p preserving module indexes. Since each module class of M∼

d−1 contains exactly one
representative in L∗ , we obtain:

Lemma 6.1.

ηK (s) =
∑

M∈L∗
(ind M)−s =

∏
p

ηp(s), (26)

where

ηp(s) =
∑

M∈L∗
p

(ind M)−s.
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For the rest of the section, we compute the Euler factor ηp(s) for a fixed rational prime p. Let I p

denote the set of integral ideals of O K whose norms are powers of p. Put I p,1 = I p ∩ I K ,1 and

I ∗
p,1 = {

pmb
∣∣ b ∈ I p,1 and m ∈ Z, m � 0

}
.

For b ∈ I ∗
p,1, we write Mb = δ−1

K b ∩ V 0 as in Corollary 4.5. Moreover, for M ∈ L, let M† = O K M ∩ V 0

denote the smallest pure module in Md−1 containing M . In the case M ∈ L∗
p , we have M† = Mb with

b = δK M ∈ I p,1. By Corollary 4.2, M has module index

ind M = [
M† : M

]d
ind M† = [

M† : M
]d

Nb.

Plug this into Lemma 6.1, we obtain:

Lemma 6.2.

ηp(s) =
∑

b∈I p,1

λ(ds,b)Nb−s, (27)

where we put

λ(s,b) =
∑

M∈L p

M†=Mb

[Mb : M]−s, ∀b ∈ I ∗
p,1.

To compute λ(s,b) (b ∈ I ∗
p,1), we invoke the following well-known identity [20, p. 175]:

∑
b′∈I∗

p,1
b|b′

λ
(
s,b′)[Mb : Mb′ ]−s =

∑
M∈L p
M⊆Mb

[Mb : M]−s = ζd,p(s)

where

ζd,p(s) = ζp(s)ζp(s − 1) · · · ζp(s − d + 2) and ζp(s) = (
1 − p−s)−1

.

Let μ denote the Moebius function on non-zero integral ideals of O K , i.e., μ(O K ) = 1, μ(P) = −1,
μ(Pl) = 0 for any prime ideal P and integer l > 1 and μ(a)μ(b) = μ(ab) for coprime integral ideals a

and b.

Lemma 6.3. For each b ∈ I ∗
p,1 , there exist coprime integral ideals b1,b2 ∈ I p with b2 | p and Nb2 > p such

that

b = pm b1

b2
for some integer m > 0.

In this notation, we have

λ(s,b) = ζd,p(s)ζ−1
K ,p(s)

(
1 + (

ps − 1
)μ(b2)

Nb2
s

∏
P|b2

(
1 − 1

NPs

)−1)
,

where ζK ,p(s) = ∏
P|p(1 − NP−s)−1 .
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Proof. We need to define a special Moebius function reflecting the inclusion relation on I ∗
p,1 (cf. [12,

p. 482]). Let b′ ∈ I ∗
p,1. If b � b′ , we put μ(b′,b) = 0. Otherwise there exist integral ideals c1, c2 ∈ I p

uniquely determined by b and b′ such that c1c2 = b−1b′ , c1 + b2 = O K , and c2 | bv
2 for sufficiently

large v ∈ Z. In this case we define

μ
(
b′,b

) =
{

μ(c1)(μ(c2) + ∑
P|b2,NP=p μ(b2P

−1)) if c2 = b2;
μ(c1)μ(c2) if c2 �= b2.

Note that μ(c2) = 0 if c2 � b2, and c2 �= b2P
−1 for any prime P | b2 with NP = p. It is easy to

check that for b′′ ∈ I ∗
p,1,

∑
b′∈I∗

p,1
b|b′,b′|b′′

μ
(
b′,b

) =
{

1, if b′′ = b;
0, otherwise.

Now we have

λ(s,b) =
∑

b′′∈I∗
p,1

b|b′′

( ∑
b′∈I∗

p,1
b|b′,b′|b′′

μ
(
b′,b

))
λ
(
s,b′′)[Mb : Mb′′ ]−s

=
∑

b′∈I∗
p,1

b|b′

μ
(
b′,b

)[Mb : Mb′ ]−s
∑

b′′∈I∗
p,1

b′|b′′

λ
(
s,b′′)[Mb′ : Mb′′ ]−s

= ζd,p(s)
∑

b′∈I∗
p,1

b|b′

μ
(
b′,b

)[Mb : Mb′ ]−s.

Observe that μ(b′,b) = 0 unless c2 | b2, and

[Mb : Mb′ ] =
{

Nb′/Nb = N(c1c2), if c2 | b2 but c2 �= b2;
N(c1c2)/p, if c2 = b2.

We have

ζd,p(s)−1λ(s,b) =
∑

c1∈I p
(c1,b2)=O K

μ(c1)Nc
−s
1

( ∑
c2|b2

μ(c2)Nc
−s
2 −

∑
P|b2

NP=p

μ
(
b2P

−1)N
(
b2P

−1)−s

− μ(b2)Nb
−s
2 +

(
μ(b2) +

∑
P|b2

NP=p

μ
(
b2P

−1))(
p−1Nb2

)−s
)

=
∏

P|p,P�b2

(
1 − NP−s)( ∏

P|b2

(
1 − NP−s) + (

ps − 1
)
μ(b2)Nb

−s
2

)

= ζ−1
K ,p(s)

(
1 + (

ps − 1
)
μ(b2)Nb

−s
2

∏
P|b

(
1 − NP−s)−1

)
. �
2



1018 X. Gao / Journal of Number Theory 131 (2011) 994–1019
We conclude the proof of Theorem 2.1 with the following lemma.

Lemma 6.4.

ηp(s) = ζp(ds − 1)ζp(ds − 2) · · · ζp(ds − d + 2)
ζK ,p(s)

ζK ,p((d − 1)s)
.

Proof. By applying Lemma 6.3 to (27), we have

ζ−1
d,p (ds)ζK ,p(ds)ηp(s) =

∑
b∈I p,1

Nb−s + (
1 − p−ds) ∑

b∈I p,1

μ(b2)N(b/p)−sNb
−ds
2

∏
P|b2

(
1 − NP−ds)−1

= A1 + (
1 − p−ds)A2.

It is clear that

A1 = (
1 − p−ds) ∑

b∈I p

Nb−s −
∑
P|p

NP=p

N
(

pP−1)−s ∏
P′|p

P′ �=P

(
1 − NP′−s)−1

= ζK ,p(s)
(
1 − p−ds + tp

(
1 − ps)p−ds),

where tp denotes the number of prime ideals P with NP = p.
As b2 goes through integral ideals with b2 | p and Nb2 > p, b1 ranges over ideals in I p coprime

to b2, b = pb1b
−1
2 would go through I p,1. This enables us to write

A2 =
∑
b2|p

Nb2>p

μ(b2)Nb
−(d−1)s
2

( ∑
b1∈I p

(b1,b2)=O K

Nb
−s
1

) ∏
P|b2

(
1 − NP−ds)−1

= ζK ,p(s)
∑
b2|p

Nb2>p

μ(b2)Nb
−(d−1)s
2

∏
P|b2

(
1 − NP−s)(1 − NP−ds)−1

= ζK ,p(s)

( ∏
P|p

(
1 − NP−(d−1)s(1 − NP−s)(1 − NP−ds)−1)

− 1 +
∑
P|p

NP=p

p−(d−1)s(1 − p−s)(1 − p−ds)−1
)

= ζK ,p(s)
(
ζK ,p(ds)ζ−1

K ,p

(
(d − 1)s

) − 1 + tp p−ds(ps − 1
)(

1 − p−ds)−1)
.

Putting the above two parts together gives the stated result. �
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