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In this paper, we are interested in the Poitou–Tate duality in Galois
cohomology. We will formulate and prove a theorem for a nice
class of modules (with a continuous Galois action) over a pro-p
ring. The theorem will comprise of the Tate local duality, Poitou–
Tate duality and the Poitou–Tate’s exact sequence.
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1. Introduction

The classical Poitou–Tate duality is a duality principle for a local–global statement, namely it re-
lates the kernels of the localization maps. Using compactly supported cohomology groups, one can
give a cleaner formulation of the statement which we now do. Let F be a global field with charac-
teristic not equal to p, and let S be a finite set of primes of F containing all primes above p and all
Archimedean primes of F . We let G F ,S denote the Galois group Gal(F S/F ) of the maximal unramified
outside S extension F S of F inside a fixed separable closure of F . In its usual formulation, Poitou–Tate
duality relates the kernels of the localization maps on the G F ,S -cohomology of a module and the Tate
twist of its Pontryagin dual. For simplicity, we assume in this introduction that p is odd if F has any
real places. The general result without this assumption can be found in Theorem 4.2.6.
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The nth compactly supported G F ,S -cohomology group Hn
c,cts(G F ,S , M) with coefficients in a topo-

logical G F ,S -module M is defined as the nth cohomology group of the complex

Cone

(
C ·

cts(G F ,S , M)
resS−→

⊕
v∈S f

C ·
cts(G F v , M)

)
[−1],

where G F v is the absolute Galois group of the completion of F at v , and resS is the sum of restriction
maps on the continuous cochain complexes. It therefore fits in a long exact sequence

· · · → Hn
c,cts(G F ,S , M) → Hn

cts(G F ,S , M) →
⊕
v∈S

Hn
cts(G F v , M) → Hn+1

c,cts(G F ,S , M) → ·· · .

We now let R denote a commutative complete Noetherian local ring with finite residue field of
characteristic p. Then we have the following formulation of Poitou–Tate duality due to Nekovář [9,
Prop. 5.4.3(i)].

Theorem. Let T be a finitely generated R-module with a continuous (R-linear) G F ,S -action. Then there are
isomorphisms

Hn
cts(G F ,S , T )

∼−→ H3−n
c,cts

(
G F ,S , T ∨(1)

)∨
,

Hn
c,cts(G F ,S , T )

∼−→ H3−n
cts

(
G F ,S , T ∨(1)

)∨

of R-modules for all n, where T ∨ = Homcts(T ,Qp/Zp).

We now recall some notation from the language of derived categories. We denote by D(ModR)

the derived category of R-modules which is obtained from the category Ch(ModR) of chain com-
plexes of R-modules by inverting the quasi-isomorphisms, i.e., the maps of complexes that in-
duce isomorphisms on cohomology. We have the derived functors RHomR(−,−), RΓcts(G F ,S ,−) and
RΓc,cts(G F ,S ,−) that are obtained from HomR(−,−), Ccts(G F ,S ,−) and Cc,cts(G F ,S ,−). Then Poitou–
Tate duality can be reformulated as the following isomorphisms

RΓcts(G F ,S , T )
∼−→ RHomZp

(
RΓc,cts

(
G F ,S , T ∨(1)

)
,Qp/Zp

)[−3],
RΓc,cts(G F ,S , T )

∼−→ RHomZp

(
RΓcts

(
G F ,S , T ∨(1)

)
,Qp/Zp

)[−3]

in D(ModR).
Now suppose that F∞ is a p-adic Lie extension of F contained in F S . We denote by Γ the Galois

group of the extension F∞/F , and we let Λ = R �Γ � denote the resulting Iwasawa algebra over R . Let
T be a finitely generated R-module with a continuous (R-linear) G F ,S -action, and let A be a cofinitely
generated R-module with a continuous (R-linear) G F ,S -action. The Λ-modules of interest are the fol-
lowing direct and inverse limits of cohomology groups (and their counterparts with compact support)

lim−→
Fα

Hn
cts

(
Gal(F S/Fα), A

)
and lim←−

Fα

Hn
cts

(
Gal(F S/Fα), T

)
,

where the limits are taken over all finite Galois extensions Fα of F which are contained in F∞ . By an
application of Shapiro’s lemma, one can show that they are respectively isomorphic to

Hn
cts

(
G F ,S , FΓ (A)

)
and Hn

cts

(
G F ,S ,FΓ (T )

)
,
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where the Λ-modules FΓ (A) and FΓ (T ) are defined by

lim−→
Fα

HomR
(

R
[
Gal(Fα/F )

]
, A

)
and lim←−

Fα

R
[
Gal(Fα/F )

] ⊗R T

respectively. Therefore, we can reduce the question of finding dualities on the Iwasawa modules of
interest to that of obtaining dualities over G F ,S , but with R replaced by Λ.

In his monograph [9], Nekovář considers the above situation over a commutative p-adic Lie ex-
tension (e.g., a Zr

p-extension) and develops an extension of Poitou–Tate global duality for the above
cohomology groups. In view of the vast activity in the study of noncommutative generalizations of
the main conjecture of Iwasawa theory [1,3,6,11], one would like to extend the above theory to the
noncommutative setting.

In fact, in this paper, we study generalizations of the above duality of Poitou–Tate over a general
pro-p ring Λ (not necessarily commutative). Together with the module theory, we carefully develop
the theory of continuous group cohomology in our setting. From there, we are able to state and prove
our duality theorem (cf. Theorem 4.2.6).

Theorem. Let M be a bounded complex of objects that are profinite Λ-modules with a continuous (Λ-linear)
G F ,S -action. Then we have the following isomorphism

⊕
v∈S RΓ (G v , M)[−1] ⊕

v∈S RHomZp (RΓ (G v , M∨(1)),Qp/Zp)[−3]

RΓc(G F ,S , M) RHomZp (RΓ (G F ,S , M∨(1)),Qp/Zp)[−3]

RΓ (G F ,S , M) RHomZp (RΓc(G F ,S , M∨(1)),Qp/Zp)[−3]

of exact triangles in D(ModΛ).

We now give a brief description of the contents of each section of the paper. In Section 2, we
introduce notations and results from homological algebra required for the paper. Section 3 is about the
discussion of profinite rings and their topological modules. We also introduce continuous cohomology
groups with coefficients in compact modules and discrete modules. In Section 4, we will formulate
and prove our duality theorems. In Section 5, we will apply the duality theorems proved in Section 4
to extensions of global fields.

2. Preliminaries

We begin by reviewing certain objects and notation that will be used in this write-up. Most of
the material presented in this section can be found in [4,9,13]. Throughout the paper, every ring is
associative and has a unit.

Fix an abelian category A and denote the category of (cochain) complexes of objects in A by
Ch(A). We also denote the category of bounded below complexes, bounded above complexes and
bounded complexes by Ch+(A), Ch−(A) and Chb(A) respectively. For each n ∈ Z, the translation by
n of a complex X is given by

X[n]i = Xn+i, di
X[n] = (−1)ndn+i

X .

If f : X −→ Y is a morphism of complexes, then f [n] : X[n] −→ Y [n] is given by f [n]i = f n+i .
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If X is a complex, we have the following truncations of X :

σ�i X = [· · · −→ Xi−2 −→ Xi−1 −→ Xi −→ 0 −→ 0 −→ · · ·],
τ�i X = [· · · −→ Xi−2 −→ Xi−1 −→ ker

(
di

X

) −→ 0 −→ 0 −→ · · ·],
σ�i X = [· · · −→ 0 −→ 0 −→ Xi −→ Xi+1 −→ Xi+2 −→ · · ·],
τ�i X = [· · · −→ 0 −→ 0 −→ coker

(
di−1

X

) −→ Xi+1 −→ Xi+2 −→ · · ·].
The cone of a morphism f : X −→ Y is defined by Cone( f ) = Y ⊕ X[1] with differential

di
Cone( f ) =

(
di

Y f i+1

0 −di+1
X

)
: Y i ⊕ Xi+1 −→ Y i+1 ⊕ Xi+2.

There is an exact sequence of complexes

0 −→ Y
j−→ Cone( f )

p−→ X[1] −→ 0,

where j and p are the canonical inclusion and projection respectively. The corresponding boundary
map

δ : Hi(X[1]) = Hi+1(X) −→ Hi+1(Y )

is induced by f i+1.
If X is a complex and x ∈ Xi , we write x̄ = i for the degree.
Let Λ, S and T be rings. Let M (resp., N) be a left Λ-S-bimodule (resp., a Λ-T -bimodule). Then

HomΛ(M, N) is taken to be the S-T -bimodule of all left Λ-module homomorphisms from M to N ,
where the left S-action is given by (s · f )(m) = f (ms) and the right T -action is given by ( f · t)(m) =
f (m)t for f ∈ HomΛ(M, N), m ∈ M , s ∈ S and t ∈ T . If M• is a complex of Λ-S-bimodules and N• a
complex of Λ-T -bimodules, we define a complex Hom•

Λ(M•, N•) of S-T -bimodules by

Homn
Λ

(
M•, N•) =

∏
i∈Z

HomΛ

(
Mi, Ni+n)

with differentials defined as follows: for f ∈ HomΛ(Mi, Ni+n), we have

df = di+n
N ◦ f + (−1)n f ◦ di−1

M .

In the case when S = T , we have a similar definition for the complexes Hom•
Λ-S (M•, N•) of abelian

groups, where HomΛ-S (M, N) is the group of all of Λ-S-bimodule homomorphisms from M to N .
It follows immediately from the definition that for an element f ∈ Hom0

Λ-S(M•, N•), we have f ∈
HomCh(Λ-S)(M•, N•) if and only if df = 0. Here Ch(Λ-S) denotes the category of complexes of Λ-S-
bimodules.

Suppose that M• is a complex of Λ-S-bimodules and L• a complex of S-T -bimodules. We define
the complex M• ⊗S L• of Λ-T -bimodules by

(
M• ⊗S L•)n =

⊕
Mi ⊗S Ln−i
i∈Z
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with differentials

d(m ⊗ l) = dm ⊗ l + (−1)m̄m ⊗ dl.

We end the section by collecting some technical results which will be used in the paper.

Lemma 2.1. The following formulas define isomorphisms of complexes:

Hom•
Λ

(
M•, N•)[n] ∼= Hom•

Λ

(
M•, N•[n]),

f �→ f ,(
M•[n]) ⊗S L• ∼= (

M• ⊗S L•)[n],
m ⊗ l �→ m ⊗ l,

M• ⊗S
(
L•[n]) ∼= (

M• ⊗S L•)[n],
m ⊗ l �→ (−1)nm̄m ⊗ l.

Proof. This follows from a straightforward verification of the definition of translation and the sign
conventions. �
Lemma 2.2. The adjunction morphisms define morphisms

Hom•
Λ-T

(
M• ⊗S L•, N•) −→ Hom•

Λ-S

(
M•,Hom•

T o

(
L•, N•)),

f �→ (
m �→ (

l �→ f (m ⊗ l)
))

,

Hom•
Λ-T

(
M• ⊗S L•, N•) −→ Hom•

S-T

(
L•,Hom•

Λ

(
M•, N•)),

f �→ (
l �→ (

m �→ (−1)m̄l̄ f (m ⊗ l)
))

of complexes and morphisms

HomCh(Λ-T )

(
M• ⊗S L•, N•) −→ HomCh(Λ-S)

(
M•,Hom•

T o

(
L•, N•)),

HomCh(Λ-T )

(
M• ⊗S L•, N•) −→ HomCh(S-T )

(
L•,Hom•

Λ

(
M•, N•))

of abelian groups. All of these maps are monomorphisms; they are isomorphisms if M• and L• are bounded
above and N• is bounded below.

Lemma 2.3. Given the following data:

(1) Complexes A1 , B1 of Λ-S-bimodules, complexes A2 , B2 of S-T -bimodules, and complexes A3 , B3 of Λ-T -
bimodules.

(2) Morphisms of complexes f j : A j −→ B j preserving the respective bimodule structures.
(3) Morphisms of complexes of Λ-T -bimodules

∪A : A1 ⊗S A2 −→ A3,

∪B : B1 ⊗S B2 −→ B3
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such that f3 ◦ ∪A = ∪B ◦ ( f1 ⊗ f2). For j = 1,2,3, define E j to be the complex

Cone(A j
f j−→ B j)[−1].

Then we have morphisms of complexes

∪0,∪1 : E1 ⊗S E2 −→ E3

given by the formulas

(a1,b1) ∪0 (a2,b2) = (
a1 ∪A a2, (−1)ā1 f1(a1) ∪B b2

)
,

(a1,b1) ∪1 (a2,b2) = (
a1 ∪A a2,b1 ∪B f2(a2)

)
,

and the formula

s
(
(a1,b1) ⊗ (a2,b2)

) = (
0, (−1)ā1 b1 ∪B b2

)
defines a homotopy s : ∪1 � ∪0 .

Proof. This is a special case of [9, Prop. 1.3.2]. �
3. Profinite rings

Completed group algebras of profinite groups arise naturally in the study of Iwasawa theory, and
such rings are profinite rings. In this section, we shall study the properties of profinite rings and their
(topological) modules. We will also develop a cohomological theory over such rings.

Throughout the section, Λ will always denote a profinite ring, and I is a directed fundamental
system of open neighborhoods of zero consisting of two-sided ideals of Λ. We use Λ◦ to denote the
opposite ring to Λ.

3.1. Topological Λ-modules

In this subsection, we will study the topological modules over a profinite ring Λ. These are Haus-
dorff topological abelian groups with a continuous Λ-action. In particular, we are interested in the
following two classes of topological Λ-modules.

Definition 3.1.1. We say that a topological Λ-module M is a compact (resp., discrete) Λ-module if its
underlying topology is compact (resp., discrete). The category of compact Λ-modules (resp., discrete
Λ-modules) is denoted by CΛ (resp., DΛ).

The following proposition records some of the properties of the above two categories, whose proofs
can be found in [12, Chap. 5].

Proposition 3.1.2. (i) Every compact Λ-module is a projective limit of finite modules and has a fundamental
system of neighborhoods of zero consisting of open submodules. In particular, it is an abelian profinite group.

(ii) Every discrete Λ-module is the direct limit of finite Λ-modules. In particular, it is an abelian torsion
group.

(iii) Pontryagin duality induces a duality between the category CΛ of compact Λ-modules and the category
DΛ◦ of discrete Λ◦-modules.

(iv) The category CΛ is abelian and has enough projectives and exact inverse limits. The category DΛ is
abelian and has enough injectives and exact direct limits.
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We give another description of discrete Λ-modules. If M is a Λ-module and a is a two-sided ideal
of Λ, we define

M[a] = {
x ∈ M

∣∣ a ⊆ Ann(x)
}
.

With this, we have the following lemma.

Lemma 3.1.3. Let M be an abstract Λ-module. Then M is a discrete Λ-module (i.e., the Λ-action is continuous
with respect to the discrete topology on M) if and only if

M =
⋃
a∈I

M[a].

Proof. Suppose that M is a discrete Λ-module. Let x ∈ M . Then by the continuity of the Λ-action,
there exists a ∈ I such that a · x = 0. This implies that x ∈ M[a].

Conversely, suppose that

M =
⋃
a∈I

M[a].

We shall show that the action

θ : Λ × M −→ M

is continuous, where M is given the discrete topology. In other words, for each x ∈ M , we need to
show that θ−1(x) is open in Λ × M . Let (λ, y) ∈ θ−1(x). Then y ∈ M[a] for some a ∈ I . Therefore, we
have (λ, y) ∈ (λ + a) × {y}, and the latter set is an open set contained in θ−1(x). �

When working with topological Λ-modules, one will have to consider continuous homomorphisms
between the modules. In general, an abstract homomorphism of modules may not be continuous. In
the next lemma, we record a few situations where every abstract homomorphism is continuous. We
say that a topological Λ-module M is endowed with the I-adic topology if the collection {aM}a∈I
forms a fundamental system of neighborhoods of zero.

Lemma 3.1.4. Let M and N be two topological Λ-modules. Suppose one of the following cases holds.

(1) Both M and N have the I-adic topology.
(2) Both M and N have the discrete topology.
(3) M is a finitely generated Λ-module endowed with the I-adic topology, and N is a compact Λ-module.
(4) M is a finitely generated Λ-module endowed with the I-adic topology, and N is a discrete Λ-module.

Then every abstract Λ-homomorphism is continuous. In other words, we have

HomΛ,cts(M, N) = HomΛ(M, N).

Proof. (1) and (2) are straightforward.
(3) Suppose M is generated by e1, . . . , er . Let f : M −→ N be an abstract Λ-homomorphism, and

for each i, set xi = f (ei). Let V be an open Λ-submodule of N . By continuity of the Λ-action on N ,
for each i, there exists ai ∈ I such that ai · xi ⊆ V . Since I is directed, we can find a ∈ I such that
a ⊆ ai for all i. It follows that f (aM) ⊆ V , establishing the continuity of f .

(4) We retain the notation in (3). By Lemma 3.1.3, for each i, there exists ai ∈ I such that xi ∈ N[ai].
Since I is directed, we can find a ∈ I such that a⊆ ai for all i, and f (aM) = 0. �
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Corollary 3.1.5. Let M be a compact Λ-module. Then every finitely generated abstract Λ-submodule of M is a
closed subset of M. In particular, every finitely generated left (or right) ideal of Λ is closed in Λ.

Proof. Let N be a Λ-submodule of M generated by x1, . . . , xr . By Lemma 3.1.4(3), the following Λ-
homomorphism

φ :
r⊕

i=1

Λ −→ M,

ei �→ xi

is continuous. Since
⊕r

i=1 Λ is compact, so is its image N . �
Corollary 3.1.6. Let M be a finitely presented abstract Λ-module. Then M is a compact Λ-module.

Proof. Since M is finitely presented, we have an exact sequence Λr f−→ Λs −→ M −→ 0 for some
integers r and s. By Lemma 3.1.4(1), the map f is a continuous Λ-homomorphism of compact Λ-
modules. Since the category CΛ is abelian by Lemma 3.1.2(iv), it follows that M is an object in CΛ . �

In view of Corollary 3.1.6, one may ask the following two questions. The first is if one can say
anything about the I-adic topology on an abstract Λ-module M . In general, it is not even clear
whether this topology is Hausdorff. The second question that one may ask is if there are other ways
to endow a finitely presented Λ-module with a topology such that it becomes a compact Λ-module.
In response to these two questions, we have the following proposition. In fact, as we shall see, if M is
already a compact Λ-module, the I-adic topology is Hausdorff, and it is the only one with which one
can endow a finitely presented Λ-module in order to make it into a compact Λ-module. One may
compare the following proposition with [10, Prop. 5.2.17].

Proposition 3.1.7. Let M be a compact Λ-module. Then the I-adic topology is finer than the original topology
of M, and the canonical homomorphism

α : M −→ lim←−
a∈I

M/aM

of Λ-modules is injective. Furthermore, if M is a finitely generated Λ-module, then the topologies coincide,
and the above homomorphism is a continuous isomorphism of compact Λ-modules.

Proof. Let N be an open submodule of M . Then by continuity, for each x ∈ N , there exist a neighbor-
hood V x of x and ax ∈ I such that ax V x ⊆ N . Since M is compact, it is covered by finitely many such
sets, say V x1 , V x2 , . . . , V xr . Choose a ∈ I such that a ⊆ ai for all i = 1, . . . , r. Then we have aM ⊆ N ,
and this shows the first assertion. Since M is Hausdorff under its original topology, it follows that M
is Hausdorff under the I-adic topology and so

kerα =
⋂
a∈I

aM = 0.

Now if M is finitely generated, we have a surjection

Λm � (M with I-adic topology),

which is continuous by Lemma 3.1.4(1). This implies that M with the I-adic topology is compact. By
the first assertion, the identity map
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(M with I-adic topology) −→ M

is continuous. This in turn gives a continuous bijection between compact spaces and is therefore a
homeomorphism. If M is given the I-adic topology, then the image of α is dense in lim←−a∈I M/aM ,
and so is surjective since M is compact. �

We conclude with a description of projective objects in CΛ that are finitely generated over Λ.

Proposition 3.1.8. Let P be a projective object in CΛ that is finitely generated over Λ. Then P is a projective
Λ-module. Conversely, let P be a finitely generated projective Λ-module. Then P , endowed with the I-adic
topology, is a compact Λ-module and is a projective object in CΛ .

Proof. Let P be a projective object in CΛ that is finitely generated over Λ. Then there is a surjection
f : Λr � P of Λ-modules. By Proposition 3.1.7, the topology on P is precisely the I-adic topology,
and it follows from Lemma 3.1.4(1) that f is a continuous homomorphism of compact Λ-modules.
Now since P is a projective object in CΛ , the map f has a continuous Λ-linear section. In particular,
this implies that we have an isomorphism Λr ∼= P ⊕ (ker f ) of Λ-modules. Hence P is a projective
Λ-module.

Conversely, suppose that P is a finitely generated projective Λ-module. Then there exists a finitely
generated projective Λ-module Q such that P ⊕ Q is a free Λ-module of finite rank. We then have
a surjection π : Λn � Q , and this gives a finite presentation

Λn −→ P ⊕ Q −→ P −→ 0

of P where the first map sends an element x of Λn to (0,π(x)) and the second map is the canonical
projection. It then follows from Proposition 3.1.6 that P is a compact Λ-module under the I-adic
topology. Now suppose we are given the following diagram

P

α

M
ε

N

of compact Λ-modules and continuous Λ-homomorphisms. Since P is a projective Λ-module, there
is an abstract Λ-homomorphism β : P → M such that εβ = α. On the other hand, it follows from
Lemma 3.1.4(3) that β is also continuous. Therefore, this shows that P is a projective object of CΛ . �
3.2. Continuous cochains

Definition 3.2.1. Let G be a profinite group. We define CΛ,G to be the category where the objects
are compact Λ-modules with a continuous Λ-linear G-action and the morphisms are continuous
Λ[G]-homomorphisms. Similarly, we define DΛ,G to be the category where the objects are dis-
crete Λ-modules with a continuous Λ-linear G-action and the morphisms are (continuous) Λ[G]-
homomorphisms.

Proposition 3.2.2. (i) The category CΛ,G is abelian, has enough projectives and exact inverse limits.
(ii) The category DΛ,G is abelian, has enough injectives and exact direct limits.
(iii) The Pontryagin duality induces a contravariant equivalence between CΛ,G and DΛ◦,G (resp. CΛ◦,G and

DΛ,G ).
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Proof. We shall prove (iii) first. For a topological group A, we shall denote A∨ to be its Pontryagin
dual. By Proposition 3.1.2, it suffices to show that if M (resp., N) is an object of CΛ,G (resp., DΛ◦,G ),
then M∨ (resp., N∨) is an object of DΛ◦,G (resp., CΛ,G ). We define a G-action on M∨ by σ · f (m) =
f (σ−1m) for f ∈ M∨, σ ∈ G and m ∈ M . This is clearly Λ◦-linear, and since G is profinite, we may
apply [2, Prop. 3] to conclude that the G-action is continuous. The same argument works for N . Hence
we have proven (iii). It remains to prove (ii), since (i) will follow from (ii) and (iii).

To prove (ii), we note that it is clear that DΛ,G is abelian and has exact direct limits. It remains to
show that it has enough injectives. By the lemma to follow, we see that the functor

M �→
⋃
a∈I

⋃
U

(
M[a])U : ModΛ[G] −→ DΛ,G

is right adjoint to an exact functor, and so preserves injectives by [13, Prop. 2.3.10]. Since ModΛ[G]
has enough injectives, it follows that DΛ,G also has enough injectives. �
Lemma 3.2.3. An abstract Λ[G]-module N is an object in DΛ,G if and only if

N =
⋃
a∈I

⋃
U

(
N[a])U

,

where U runs through all the open subgroups of G. Moreover, if M is an abstract Λ[G]-module, then⋃
a∈I

⋃
U

(
M[a])U

,

is an object of DΛ,G , and there is a canonical isomorphism

HomΛ[G],cts

(
N,

⋃
a∈I

⋃
U

(
M[a])U

)
∼= HomΛ[G](N, M)

for every N ∈DΛ,G .

Proof. Suppose N is an object in DΛ,G . Then, in particular, it is a discrete Λ-module. By Lemma 3.1.3,
we have N = ⋃

a∈I N[a]. Let x ∈ N[a]. Then by continuity of the G-action, there exists an open sub-
group U of G such that U · x = x.

Conversely, suppose that

N =
⋃
a∈I

⋃
U

(
N[a])U

.

Clearly this implies that N = ⋃
a∈I N[a], and so N is a discrete Λ-module. It remains to show that

the G-action

θ : G × N −→ N

is continuous. Let x ∈ N , and let (σ , y) ∈ θ−1(x). Then y ∈ N[a]U for some a ∈ I and open subgroup U .
In particular, we have (σ , y) ∈ σ U ×{y} ⊆ θ−1(x). Therefore, this proves the first assertion. The second
assertion is an immediate consequence of the first. �
Lemma 3.2.4. Let M be an object of CΛ,G . Then M has a fundamental system of neighborhoods of zero con-
sisting of open Λ[G]-submodules.
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Proof. Let N be an open Λ-submodule of M . Then for each g ∈ G , there exist an open Λ-submodule
Ng of M and an open subgroup U g of G such that gU g · Ng ⊆ N . Since G is compact, it is covered by
finite number of such cosets, say g1U g1 , . . . , gr U gr . Set N0 = ⋂r

i=1 Ngi . This is an open Λ-submodule
of M . Then Λ[G] · N0 is a Λ[G]-submodule of M which contains N0 and is contained in N . �

For the remainder of the subsection, we will be studying the continuous cochain complex (and its
cohomology) of G with coefficients in certain classes of topological Λ-modules.

Definition 3.2.5. Let M be a topological Λ-module with a continuous Λ-linear G-action. The
(inhomogeneous) continuous cochains C i

cts(G, M) of degree i � 0 on G with values in M are defined
to be the left Λ-module of continuous maps Gi → M with the usual differential

(
δic

)
(g1, . . . , gi+1) = g1c(g2, . . . , gi+1) +

i∑
j=1

(−1) jc(g1, . . . , g j g j+1, . . . , gi+1)

+ (−1)i−1c(g1, . . . , gi),

which maps C i
cts(G, Mα) to C i+1

cts (G, Mα). It then follows that

· · · −→ C i
cts(G, M)

δi
M−→ C i+1

cts (G, M) −→ · · ·

is a complex of Λ-modules and its ith cohomology group is denoted by Hi
cts(G, M). The following

lemma is a standard result (cf. [10, Lemma 2.7.2]).

Lemma 3.2.6. Let

0 −→ M ′ α−→ M
β−→ M ′′ −→ 0

be a short exact sequence of topological Λ-modules with a continuous Λ-linear G-action such that the topol-
ogy of M ′ is induced by that of M and such that β has a continuous (not necessarily Λ-linear) section. Then

0 → C•
cts

(
G, M ′) α∗→ C•

cts(G, M)
β∗→ C•

cts

(
G, M ′′) → 0

is an exact sequence of complexes of Λ-modules.

We are particularly interested in the case when M is an object of CΛ,G or DΛ,G . We now discuss
cohomology and limits.

Proposition 3.2.7. Let N = lim−→α
Nα be an object of DΛ,G , where Nα ∈DΛ,G . Then we have an isomorphism

C i
cts(G, N) ∼= lim−→

α

C i
cts(G, Nα)

of continuous cochain groups which induces an isomorphism

Hi
cts(G, N) ∼= lim−→

α

Hi
cts(G, Nα)

of cohomology groups.
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Proof. The first isomorphism is immediate and the second follows from the first since direct limit is
exact. �

In the next proposition, we shall examine the relationship between cohomology and inverse limit.
We shall denote lim←−(i) to be the ith derived functor of lim←−.

Proposition 3.2.8. Let M = lim←−α
Mα be an object in CΛ,G , where each Mα is finite. Then we have an isomor-

phism

Ccts(G, M) ∼= lim←−
α

Ccts(G, Mα)

of complexes of Λ-modules and a spectral sequence

lim←−
α

(i)H j
cts(G, Mα) �⇒ Hi+ j

cts (G, M).

Suppose further that G has the property that Hm
cts(G, N) is finite for all finite discrete Λ-modules N with a

continuous commuting G-action and for all m � 0. Then

Hi
cts(G, M) ∼= lim←−

α

Hi
cts(G, Mα).

Proof. The first assertion is immediate from the definition. The second assertion follows from a sim-
ilar argument as in [9, Prop. 8.3.5]. We consider the two hypercohomology spectral sequences for the
functor lim←− and the inverse system C i

cts(G, Mα):

lim←−
α

( j)C i
cts(G, Mα) �⇒ Hi+ j,

lim←−
α

(i)H j
cts(G, Mα) �⇒ Hi+ j.

For each i, it is clear that

lim←−
α

C i
cts(G, Mα) −→ C i

cts(G, Mα)

is surjective for every α, and so the inverse system C i
cts(G, Mα) is “weakly flabby” in the sense of [5,

Lemma 1.3]. Therefore, by [5, Thm. 1.8], we have that lim←−( j)
α

C i
cts(G, Mα) = 0 for j > 0. Hence, the first

spectral sequence degenerates and we obtain

Hi = Hi
(

lim←−
α

Ccts(G, Mα)
) ∼= Hi(Ccts(G, M)

) = Hi
cts(G, M).

For the last assertion, the additional assumption allows one to invoke [5, Cor. 7.2] to conclude that
lim←−(i)

α
H j

cts(G, Mα) = 0 for i > 0. �
For the remainder of the subsection, we let A denote either CΛ,G or DΛ,G . Let M• be a complex

of objects in A with differentials denoted by di
M . We define C•

cts(G, M•) by

Cn
cts

(
G, M•) =

⊕
i+ j=n

C j
cts

(
G, Mi).
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Its differential δ
i+ j
M• is determined as follows: restriction of δ

i+ j
M• to C j

cts(G, Mi) is the sum of(
di

M

)
∗ : C j

cts

(
G, Mi) −→ C j

cts

(
G, Mi+1)

and

(−1)iδ
j
Mi : C j

cts

(
G, Mi) −→ C j+1

cts

(
G, Mi).

We denote its ith cohomology group by Hi(G, M•).

Proposition 3.2.9. Let 0 → M ′ α→ M
β→ M ′′ → 0 be an exact sequence of objects in A. Then

0 → C•
cts

(
G, M ′) α∗→ C•

cts(G, M)
β∗→ C•

cts

(
G, M ′′) → 0

is an exact sequence of complexes of Λ-modules. The statement also holds true if we replace M ′ , M, M ′′ by
complexes of objects in A.

Proof. By Lemma 3.2.6, it suffices to show that β has a continuous section. If A = DΛ,G , this is
obvious. In the case when A = CΛ,G , since every compact Λ-module is profinite by Proposition 3.1.2,
every continuous surjection has a continuous section. �

Let M• be a complex of objects in A. The filtration τ� j M• induces a filtration

τ� jC
•
cts

(
G, M•) = C•

cts

(
G, τ� j M

•)
on the cochain groups which fit into the following exact sequence of complexes

0 −→ C•
cts

(
G, τ� j M•) −→ C•

cts

(
G, τ� j+1M•) −→ τ� j+1C•

cts

(
G, M•)/τ� jC

•
cts

(
G, M•) −→ 0

by Proposition 3.2.9. This filtration gives rise to the following hypercohomology spectral sequence

Hi
cts

(
G, H j(M•)) �⇒ Hi+ j

cts

(
G, M•),

which is convergent if M• is cohomologically bounded below.

Lemma 3.2.10. Let f : M• −→ N• be a quasi-isomorphism of cohomologically bounded below complexes of
objects in A. Then the induced map

f∗ : C•
cts

(
G, M•) −→ C•

cts

(
G, N•)

is also a quasi-isomorphism.

Proof. The map f induces isomorphisms

Hi
cts

(
G, H j(M•)) ∼−→ Hi

cts

(
G, H j(N•)).

By convergence of the above spectral sequence, this implies that the induced maps

Hi
cts

(
G, M•) −→ Hi

cts

(
G, N•)

are isomorphisms. �
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Hence we can conclude the following.

Proposition 3.2.11. The functor

C•
cts(G,−) : Ch+(A) −→ Ch+(ModΛ)

preserves homotopy, exact sequences and quasi-isomorphisms, hence induces the following exact derived func-
tors

RΓcts(G,−) : Db(CΛ,G) −→ D+(ModΛ),

RΓcts(G,−) : D+(DΛ,G) −→ D+(ModΛ).

Proof. This proposition follows from what we have done so far. The only subtlety lies in the fact that
CΛ,G does not necessarily have enough injectives and therefore we do not know if D+(CΛ,G) exists.
However, we know that CΛ,G has enough projectives. Therefore, D−(CΛ,G) exists, and we may apply
Lemma 3.2.10 to Db(CΛ,G). �

We now like to extend Proposition 3.2.8 to the case of complexes. Before that, we first prove a
lemma which will be required in our discussion.

Lemma 3.2.12. Let f : M −→ N be a morphism of objects in CΛ,G . Then there exists a directed indexing set I
with the following properties:

(1) There exists a fundamental system {Ui} (resp., {V i}) of neighborhoods of zero consisting of open Λ[G]-
submodules of M (resp., N).

(2) For each i ∈ I , there is a Λ[G]-homomorphism fi : M/Ui −→ N/V i which fits into the following commu-
tative diagram

M
f

N

M/Ui
fi

N/V i

where the vertical morphisms are the canonical quotient map.
(3) One has f = lim←−i

f i .

Proof. Let {Uα}α∈IM (resp., {Vβ}β∈IN ) be a system of neighborhoods of zero consisting of open Λ[G]-
submodules of M (resp., N). Then we set I = IM × IN , Uα,β = Uα ∩ f −1(Vβ) and Vα,β = Vβ . It is
then straightforward to verify that f factors through M/Uα,β to give a Λ[G]-homomorphism fα,β :
M/Uα,β −→ N/Vα,β and f = lim←−α,β

fα,β . �
In view of the above lemma, we say that a morphism f : M −→ N in CΛ,G is compatible with a

directed indexing set I if the conclusion in the lemma holds. By the lemma, we have that for every
morphism f : M −→ N in CΛ,G , there exists a directed indexing set I such that f is compatible
with I . In particular, if M is a bounded complex in CΛ,G , we can find a directed indexing set I such
that the differentials are compatible with I .
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Proposition 3.2.13. Suppose that G has the property that Hm
cts(G, N) is finite for all finite discrete Λ-modules

N with a continuous commuting G-action and for all m � 0. Let M• = lim←−i∈I
M•

i be a bounded complex of

objects in CΛ,G with I-compatible differentials. Then we have the following isomorphism

Hn
cts

(
G, M•) ∼= lim←−

i

Hn
cts

(
G, M•

i

)
of hypercohomology groups for each n.

Proof. The canonical chain map M• −→ M•
i induces the following morphism of (convergent) spectral

sequences

Hr
cts(G, Hs(M•)) �⇒ Hr+s

cts (G, M•)

Hr
cts(G, Hs(M•

i )) �⇒ Hr+s
cts (G, M•

i )

which is compatible with i. By the hypothesis, the bottom spectral sequence is a spectral sequence of
finite Λ-modules. Therefore, the inverse limit is compatible with the inverse system of the spectral
sequences, and we have the following morphism

Hr
cts(G, Hs(M•)) �⇒ Hr+s

cts (G, M•)

lim←−i
Hr

cts(G, Hs(M•
i )) �⇒ lim←−i

Hr+s
cts (G, M•

i )

of (convergent) spectral sequences. By Proposition 3.2.8, we have the isomorphisms

Hr
cts

(
G, Hs(M•)) ∼= lim←−

i

Hr
cts

(
G, Hs(M•

i

))
.

Hence, by the convergence of the spectral sequences, we obtain the required isomorphism. �
For ease of notation, we will drop the ‘•’ for complexes. We also drop the notation ‘cts’. Therefore,

we write C(G, M) as the complex of continuous cochains and RΓ (G, M) for its derived functor. Its ith
cohomology group is then written as Hi(G, M).

3.3. Total cup products

We first recall the definition for topological G-modules (in other words, abelian Hausdorff topo-
logical groups with a continuous G-action).

Definition 3.3.1 (Cup products). Let A, B and C be topological G-modules. Suppose

〈 , 〉 : A × B −→ C
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is a continuous map satisfying σ 〈a,b〉 = 〈σa, σb〉 for a ∈ A, b ∈ B and σ ∈ G . Then we define the cup
product on the cochain groups

C i(G, A) × C j(G, B) −→ C i+ j(G, C)

as follows: for α ∈ C i(G, A), β ∈ C j(G, B) and σ1, . . . , σi+ j ∈ G , we have

(α ∪ β)(σ1, . . . , σi+ j) = 〈
α(σ1, . . . , σi),σ1 · · ·σiβ(σi+1, . . . , σi+ j)

〉
.

The cup product satisfies the following relation

δC (α ∪ β) = (δAα) ∪ β + (−1)iα ∪ (δBβ)

and induces a pairing

Hi(G, A) × H j(G, B) −→ Hi+ j(G, C)

on the cohomology groups.

Now fix a prime p. For the remainder of the paper, we shall assume that our profinite ring Λ is
pro-p. In other words, for each a ∈ I , the ring Λ/a is finite of a p-power cardinality. Let M and N
be objects in CΛ,G and DΛ◦,G respectively, and let A be a topological G-module. Suppose there is a
continuous pairing

〈 , 〉 : N × M −→ A

such that

(1) σ 〈y, x〉 = 〈σ y, σ x〉 for x ∈ M , y ∈ N and σ ∈ G , and
(2) 〈yλ, x〉 = 〈y, λx〉 for x ∈ M , y ∈ N and λ ∈ Λ.

As before, condition (1) will give rise to the cup product

C i(G, N) × C j(G, M) −→ C i+ j(G, A),

which is Λ-balanced by condition (2). The cup product induces a group homomorphism

C i(G, N) ⊗Λ C j(G, M) −→ C i+ j(G, A)

which gives rise to the following morphism

C(G, N) ⊗Λ C(G, M) −→ C(G, A)

of complexes of abelian groups. Taking the adjoint, we have a morphism

C(G, M) −→ HomZp

(
C(G, N), C(G, A)

)
of complexes of Λ-modules.
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Lemma 3.3.2. Suppose we are given another continuous pairing

( , ) : N ′ × M ′ −→ A

such that

(1) σ(y′, x′) = (σ y′, σ x′) for x′ ∈ M ′ , y′ ∈ N ′ and σ ∈ G;
(2) (y′λ, x′) = (y′, λx′) for x′ ∈ M ′, y′ ∈ N ′ and λ ∈ Λ; and
(3) there are morphisms f : N ′ −→ N in DΛ◦,G and g : M −→ M ′ in CΛ,G such that the following diagram

N ′ ⊗Λ M

f ⊗ id

id⊗ g
N ′ ⊗Λ M ′

( , )

N ⊗Λ M
〈 , 〉

A

commutes. Then we have the following commutative diagram

C(G, M)

g∗

HomZp (C(G, N), C(G, A))

f∗

C(G, M ′) HomZp (C(G, N ′), C(G, A))

of complexes of Λ-modules.

Proof. It follows from a direct calculation that following diagram

C(G, N ′) ⊗Λ C(G, M)

f ⊗ id

id⊗ g
C(G, N ′) ⊗Λ C(G, M ′)

∪( , )

C(G, N) ⊗Λ C(G, M)
∪〈 , 〉

C(G, A)

is commutative, where ∪( , ) and ∪〈 , 〉 are the cup products induced by the pairings ( , ) and 〈 , 〉
respectively. By taking the adjoint and another straightforward calculation, we have the commutative
diagram in the lemma. �

Now let M and N be bounded complexes of objects in CΛ,G and DΛ◦,G respectively, and let A be
a bounded complex of topological G-modules. Suppose there is a collection of continuous pairings

〈 , 〉a,b : Na × Mb −→ Aa+b

where each pairing satisfies conditions (1) and (2), and the following hold:

(a) 〈da
N y, x〉a+1,b = da+b

A (〈y, x〉a,b) for y ∈ Na and x ∈ Mb , and

(b) (−1)a〈y,db
M x〉a,b+1 = da+b

A (〈y, x〉a,b) for y ∈ Na and x ∈ Mb .
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For each pair (a,b), we have a morphism

∪ab
i j : C i(G, Na) ⊗Λ C j(G, Mb) −→ C i+ j(G, Aa+b)

of abelian groups induced by the cup product. Then the total cup product

∪ : C(G, N) ⊗Λ C(G, M) −→ C(G, A)

is a morphism of complexes of Zp-modules given by the collection ∪ = ((−1)ib∪ab
i j ). The definition

given for the total cup products follows that in [9, 3.4.5.2]. We also have an analogous result to
Lemma 3.3.2 for complexes.

Lemma 3.3.3. Suppose we are given another collection of continuous pairings

〈 , 〉a,b : N ′a × M ′b −→ A′a+b

as above. Then we have the following commutative diagram

C(G, M)

g∗

HomZp (C(G, N), C(G, A))

f∗

C(G, M ′) HomZp (C(G, N ′), C(G, A))

of complexes of Λ-modules.

3.4. Tate cohomology groups

We shall now describe the Tate cochain complexes of a finite group G . We begin by giving an
alternative description of the (inhomogeneous) cochain complexes. Throughout this subsection, G will
always denote a finite group. Consider the standard Z[G]-resolution (in inhomogeneous form) of Z

(cf. [13, Sect. 6.5]),1

X0 ←− X1 ←− X2 ←− · · ·

where X0 = Z[G] and, for n � 1, Xn is the free Z[G]-module generated by the set of all symbols
(g1, . . . , gn) with gi ∈ G , and the differentials are given by the formula

∂n(g1, . . . , gn) = g1(g2, . . . , gn) +
n−1∑
j=1

(−1) j(g1, . . . , g j g j+1, . . . , gn) + (−1)n(g1, . . . , gn−1).

For any Z[G]-module M , there is a natural isomorphism C i(G, M) −→ HomZ[G](Xi, M) which is
compatible with the differentials, thus giving an identification of complexes. Furthermore, if M is
a Λ[G]-module, the above identification is an isomorphism of complexes of Λ-modules.

We now construct the complete cochain groups. For a Z[G]-module A, we write A∗ = HomZ(A,Z).
Note that this is a Z[G]-module in a natural way. Applying HomZ(−,Z) to the long exact sequence

1 Weibel calls this the unnormalized bar resolution.
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0 ←− Z←− X0 ←− X1 ←− X2 ←− · · · ,
we obtain the following long exact sequence

0 −→ Z −→ X∗
0 −→ X∗

1 −→ X∗
2 −→ · · · ,

since each Xi is a free Z-module. Splicing the two long exact sequence and applying HomZ[G](−, M)

to the resulting long exact sequence, we obtain the following complex

· · · −→ HomZ[G]
(

X∗
1, M

) −→ HomZ[G]
(

X∗
0, M

) −→ HomZ[G](X0, M) −→ · · · .

The completed cochain complexes Ĉ i(G, M) are defined by

Ĉ i(G, M) =
{

C i(G, M) ∼= HomZ[G](Xi, M) if i � 0,

HomZ[G](X∗
−1−i, M) if i � −1.

Following [9, 5.7.2], we may extend the above definition to a complex M• of G-modules by setting

Ĉn(G, M•) =
⊕

i+ j=n

Ĉ i(G, M j)
with differential defined using the sign conventions of the previous sections. As before, for ease of
notation, we will drop the ‘•’ for complexes. The usual cup product for Tate cohomology groups (cf.
[10, Prop. 1.4.6]) extends to a total cup product with the same sign convention as in the preceding
section.

4. Duality over pro-p rings

Let p be a fixed prime. Throughout the section, our profinite ring Λ will always be pro-p. In this
section, we will formulate and prove Tate’s (and Poitou’s) local and global duality theorems.

4.1. Tate’s local duality

Let F be a non-Archimedean local field with characteristic not equal to p. Fix a separable closure
F sep of F . Set G F = Gal(F sep/F ).

Lemma 4.1.1. We have

H j(G F ,Qp/Zp(1)
) ∼=

{
Qp/Zp if j = 2,

0 if j > 2.

Proof. For j > 2, the conclusion follows from the fact that G F has p-cohomological dimension 2 (see
[10, Thm. 7.1.8(i)]). By [10, Thm. 7.1.8(ii)], we have H2(G v ,Z/pr(1)) ∼= Z/pr . The assertion now follows
by taking direct limits. �

By the preceding lemma, we have a quasi-isomorphism Qp/Zp[−2] i−→ τ�2C(G F ,Qp/Zp(1)) of
complexes of Zp-modules. Since Qp/Zp is an injective Zp-module, the map i has a homotopy inverse.
We shall fix one such map

r : τ�2C
(
G F ,Qp/Zp(1)

) −→ Qp/Zp[−2].
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This gives a morphism

θ : C
(
G F ,Qp/Zp(1)

) −→ τ�2C
(
G F ,Qp/Zp(1)

) r−→ Qp/Zp[−2]

of complexes of Zp-modules.
Let M be a bounded complex of objects in CΛ,G F . We shall write M∨ to be the complex

Homcts(M,Qp/Zp). The obvious pairing

M∨(1) ⊗Λ M −→ Qp/Zp

induces the total cup product

C
(
G F , M∨(1)

) ⊗Λ C(G F , M) −→ C
(
G F ,Qp/Zp(1)

)
.

Suppose that N is another bounded complex of objects in CΛ,G F , and there is a morphism f : M −→ N
of complexes in CΛ,G F . Then we have the following commutative diagram

N∨(1) ⊗Λ M

f ∨ ⊗ id

id⊗ f
N∨(1) ⊗Λ N

M∨(1) ⊗Λ M Qp/Zp(1)

with the obvious pairings. Applying cochains and θ , we obtain the following commutative diagram

C(G F , N∨(1)) ⊗Λ C(G F , M)

f ∨ ⊗ id

id ⊗ f
C(G F , N∨(1)) ⊗Λ C(G F , N)

C(G F , M∨(1)) ⊗Λ C(G F , M) Qp/Zp[−2]

which induces the following commutative diagram

C(G F , M)
αM

HomZp (C(G F , M∨(1)),Qp/Zp)[−2]

C(G F , N)
αN

HomZp (C(G F , N∨(1)),Qp/Zp)[−2]

of complexes of Λ-modules by Lemma 3.3.2. We are now able to prove the following formulation of
Tate’s local duality.

Theorem 4.1.2. Let M be a bounded complex of objects in CΛ,G F . Then we have the following isomorphism

RΓ (G F , M) −→ RHomZp

(
RΓ

(
G F , M∨(1)

)
,Qp/Zp

)[−2]

in D(ModΛ).
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Proof. We shall show that αM (in the above diagram) is a quasi-isomorphism. Now if A −→ B −→
C −→ A[1] is an exact triangle2 in Db(CΛ,G F ), we then have a morphism

RΓ (G F , A)
αA

RHomZp (RΓ (G F , A∨(1)),Qp/Zp)[−2]

RΓ (G F , B)
αB

RHomZp (RΓ (G F , B∨(1)),Qp/Zp)[−2]

RΓ (G F , C)
αC

RHomZp (RΓ (G F , C∨(1)),Qp/Zp)[−2]

of exact triangles. Therefore, if any two of the morphisms αA , αB and αC are isomorphisms, so is the
third. For a bounded complex M in CΛ,G F , we have the following exact triangle

σ�i−1M −→ σ�i M −→ Mi[−i].

Therefore, by induction, we are reduced to showing that αM is a quasi-isomorphism in the case when
M is a single module. Write M = lim←−β

Mβ , where each Mβ is a finite module. By the functoriality

of α, we have the following commutative diagram

C(G F , M)

u

αM

HomZp (C(G F , M∨(1)),Qp/Zp)[−2]
v

lim←−β
C(G F , Mβ)

lim←−αMβ

lim←−β
HomZp (C(G F , M∨

β (1)),Qp/Zp)[−2]

of complexes of Λ-modules. By Proposition 3.2.7 and Proposition 3.2.8, we have that u and v in the
above diagram are isomorphisms of complexes, and the vertical maps in the following commutative
diagram

Hi(G F , M)

u∗

(αM )∗
HomZp (H2−i(G F , M∨(1)),Qp/Zp)

v∗

lim←−β
Hi(G F , Mβ)

lim←−(αMβ
)∗

lim←−β
HomZp (H2−i(G F , M∨

β (1)),Qp/Zp)

are isomorphisms. Since each (αMβ )∗ is an isomorphism by Tate local duality [10, Thm. 7.2.6], we
have the required conclusion. �

2 We write an exact triangle A → B → C → A[1] more compactly as A → B → C throughout.
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4.2. Global duality over pro-p rings

Let F be a global field with characteristic not equal to p, and let S be a finite set of primes of F
containing all primes above p and all Archimedean primes of F (if F is a number field). Let S f (resp.,
SR) denote the collection of non-Archimedean primes (resp., real primes) of F in S .

Fix a separable closure F sep of F . Set G F ,S = Gal(F S/F ), where F S is the maximal subextension of
F sep/F unramified outside S . For each v ∈ S f , we fix a separable closure F sep

v of F v and an embedding
F sep ↪→ F sep

v . This induces a continuous group homomorphism G v := Gal(F sep
v /F v) → G F ,S . If v is a

real prime, we also write G v for Gal(C/R).
If M is a complex in CΛ,G F ,S (resp., DΛ,G F ,S ), then we can view M as a complex in CΛ,G v (resp.,

DΛ,G v ) via the continuous homomorphism G v −→ G F ,S . Therefore, the cochain complexes C(G F ,S , M)

and C(G v , M) can be defined. Recall that for v ∈ S f , we have the restriction map

resv : C(G F ,S , M) −→ C(G v , M)

induced by the group homomorphism G v −→ G F ,S . For a real prime v , we have the following

resv : C(G F ,S , M) −→ C(G v , M) ↪→ Ĉ(G v , M).

To shorten notation in what follows, for v ∈ SR , we will abuse notation and use C(G v , M), Hi(G v , M),
and RΓ (G v , M) to denote the Tate cochains Ĉ(G v , M), its cohomology groups, and its derived object.
We now make the following definition.

Definition 4.2.1. Let M be a complex in CΛ,G F ,S or DΛ,G F ,S . The complex of continuous cochains of M
with compact support is defined as

Cc(G F ,S , M) = Cone

(
C(G F ,S , M)

resS−→
⊕
v∈S

C(G v , M)

)
[−1],

where the elements of

C i
c(G F ,S , M) = C i(G F ,S , M) ⊕

(⊕
v∈S

C i−1(G v , M)

)

have the form (a,aS ) with a ∈ C i(G F ,S , M), aS = (av )v∈S , av ∈ C i−1(G v , M), and the differential is
given by

d(a,aS) = (
da,−resS(a) − daS

)
.

The ith cohomology group of Cc(G F ,S , M) is denoted by Hi
c(G F ,S , M).

Remark. If F is a function field in one variable over a finite field or F is a totally imaginary number
field, then SR is empty, and the cone is given by

Cone

(
C(G F ,S , M)

resS f−→
⊕
v∈S f

C(G v , M)

)
[−1].

Now suppose that p is odd and F is a number field with at least one real prime. Let v ∈ SR . Then
Ĥ i(G v , M) = 0 for every M in CΛ,G F ,S (resp., DΛ,G F ,S ) and for all i, since G v is a finite group of
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order 2 and M is an inverse limit of finite p-groups (resp., direct limit of finite p-groups). Therefore,
it follows that the canonical map

Cone

(
C(G F ,S , M)

resS f−→
⊕
v∈S f

C(G v , M)

)
[−1] −→ Cc(G F ,S , M)

is a quasi-isomorphism. Therefore, one may take the above cone as a definition of the complex of
continuous cochains with compact support in this case.

Proposition 4.2.2. The functor

Cc(G F ,S ,−) : Ch+(CΛ,G F ,S ) −→ Ch(ModΛ)(
resp., Cc(G F ,S ,−) : Ch+(DΛ,G F ,S ) −→ Ch(ModΛ)

)
preserves homotopy, exact sequences and quasi-isomorphisms, hence induces the following exact derived func-
tors

RΓc(G F ,S ,−) : Db(CΛ,G F ,S ) −→ D(ModΛ)(
resp., RΓc(G F ,S ,−) : D+(DΛ,G F ,S ) −→ D(ModΛ)

)
such that for M in Db(CΛ,G F ,S ) or D+(DΛ,G F ,S ), we have the following exact triangle

RΓc(G F ,S , M) −→ RΓ (G F ,S , M) −→
⊕
v∈S

RΓ (G v , M)

in D(ModΛ) and the following long exact sequence

· · · −→ Hi
c(G F ,S , M) −→ Hi(G F ,S , M) −→

⊕
v∈S

Hi(G v , M) −→ Hi+1
c (G F ,S , M) −→ · · · .

Proof. This is immediate from the definition of the cone. �
By [10, Thm. 7.1.8(iii), Thm. 8.3.19], Proposition 3.2.8 can be applied to G F ,S and G v , where v ∈ S f .

For v ∈ SR , G v is a finite group of order 2, and so the finiteness hypothesis in Proposition 3.2.8 is
satisfied, so the conclusion also holds in this case. The following analogous statement to Proposi-
tion 3.2.8 for cohomology groups with compact support will now follow from the definition of the
cone and the long exact sequence of cohomology groups in the preceding proposition.

Proposition 4.2.3. The functor Cc(G F ,S ,−) preserves direct limits in DΛ,G F ,S . Moreover, if M = lim←−α
Mα is

an object in CΛ,G F ,S , where each Mα is finite, then we have the following isomorphism

Cc(G F ,S , M) ∼= lim←−
α

Cc(G F ,S , Mα)

of complexes and isomorphisms

Hi
c(G F ,S , M) ∼= lim←−

α

Hi
c(G F ,S , Mα)

of cohomology groups.
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Lemma 4.2.4. We have

H j
c
(
G F ,S ,Qp/Zp(1)

) ∼=
{
Qp/Zp if j = 3,

0 if j > 3.

Proof. By the long exact sequence of Poitou–Tate [10, 8.6.13], we have the following exact sequence

H2(G F ,S ,Z/pnZ(1)
) −→

⊕
v∈S

H2(G v ,Z/pnZ(1)
) −→ Z/pnZ −→ 0

and an isomorphism

H3(G F ,S ,Z/pnZ(1)
) res−→

⊕
v∈SR

Ĥ3(G v ,Z/pnZ(1)
)
.

By the definition of continuous cochains with compact support and the fact that cdp(G v ) = 2 for
v ∈ S f , we have H3

c (G F ,S ,Z/pnZ(1)) ∼= Z/pnZ. The remainder of the lemma will then follow from a
similar argument to that in Lemma 4.1.1. �

Let M be a bounded complex in CΛ,G F ,S . For each v ∈ S , we define a morphism ∪v of complex of
Zp-modules to be

C
(
G v , M∨(1)

) ⊗Λ C(G v , M) −→ C
(
G v ,Qp/Zp(1)

) −→ Cc
(
G F ,S ,Qp/Zp(1)

)[1],

where the first map is the total cup product, and the second is the natural morphism arising

from the definition of the cone. By Lemma 4.2.4, we have a quasi-isomorphism Qp/Zp[−3] i−→
τ�3Cc(G F ,S ,Qp/Zp(1)) of complexes of Zp-modules. Since Qp/Zp is an injective Zp-module, the
map i has a homotopy inverse. We shall fix one such map

r : τ�3Cc
(
G F ,S ,Qp/Zp(1)

) −→ Qp/Zp[−3],

and this induces the following morphism

ϑ : Cc
(
G F ,S ,Qp/Zp(1)

) −→ τ�3Cc
(
G F ,S ,Qp/Zp(1)

) r−→ Qp/Zp[−3]

of complexes of Zp-modules. Combining this with ∪v , we obtain a morphism

C
(
G v , M∨(1)

) ⊗Λ C(G v , M)
∪v−→ Cc

(
G F ,S ,Qp/Zp(1)

)[1] ϑ[1]−→ Qp/Zp[−2]

of complexes of Zp-modules. For v ∈ S f , this is essentially the morphism constructed in Section 3.1,
which will give the Tate local duality as in Theorem 4.1.2. We also have the following.

Theorem 4.2.5. Let p = 2, and let v ∈ SR . For a bounded complex M of objects in CΛ,G v , we have the following
isomorphism

R̂Γ (G v , M) −→ RHomZp

(
R̂Γ

(
G v , M∨(1)

)
,Q2/Z2

)[−2]

in D(ModΛ).
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Proof. By a similar argument to that in Theorem 4.1.2, it suffices to consider a finite module M , and
the conclusion then follows from [10, Thm. 7.2.17]. �

For ease of notation, we shall write P (G F ,S ,−) for
⊕

v∈S C(G v ,−). We now define a morphism
∪S by

P
(
G F ,S , M∨(1)

) ⊗Λ P (G F ,S , M)
ν−→

⊕
v∈S

Cc
(
G F ,S ,Qp/Zp(1)

) ∑
−→ Cc

(
G F ,S ,Qp/Zp(1)

)
,

where ν(aS ,bS ) = (av ∪v bv )v∈S .
We now construct the total cup products for the compactly supported cochain groups. Since these

are defined as cones, it follows from Lemma 2.3 that there are two morphisms

∪0,∪1 : Cc
(
G F ,S , M∨(1)

) ⊗Λ Cc(G F ,S , M) −→ Cc
(
G F ,S ,Qp/Zp(1)

)
of complexes of Zp-modules given by

(a,aS) ∪0 (b,bS) = (
a ∪ b, (−1)ā resS(a) ∪S bS

)
,

(a,aS) ∪1 (b,bS) = (
a ∪ b,aS ∪S resS(b)

)
where ∪ is the total cup product

C
(
G F ,S , M∨(1)

) ⊗Λ C(G F ,S , M) −→ C
(
G F ,S ,Qp/Zp(1)

)
.

The morphisms ∪0 and ∪1 induce the following morphisms

∪c : C
(
G F ,S , M∨(1)

) ⊗Λ Cc(G F ,S , M) −→ Cc
(
G F ,S ,Qp/Zp(1)

)
,

c∪ : Cc
(
G F ,S , M∨(1)

) ⊗Λ C(G F ,S , M) −→ Cc
(
G F ,S ,Qp/Zp(1)

)
of complexes of abelian groups which are given by the following respective formulas (see also [9,
5.3.3.2, 5.3.3.3])

a ∪c (b,bS) = (
a ∪ b, (−1)ā resS(a) ∪S bS

)
,

(a,aS) c∪b = (
a ∪ b,aS ∪S resS(b)

)
.

All of these fit into the following diagram

Cc(G F ,S , M∨(1)) ⊗Λ Cc(G F ,S , M) C(G F ,S , M∨(1)) ⊗Λ Cc(G F ,S , M)

∪c

Cc(G F ,S , M∨(1)) ⊗Λ C(G F ,S , M)
c∪

C(G F ,S ,Qp/Zp(1))

which is commutative up to homotopy by Lemma 2.3. Also, the following diagrams



M.F. Lim / Journal of Number Theory 132 (2012) 2636–2672 2661
C(G F ,S , M∨(1)) ⊗Λ (P (G v , M)[−1]) P (G F ,S , M∨(1)) ⊗Λ (P (G F ,S , M)[−1])
t

(P (G F ,S , M∨(1)) ⊗Λ P (G F ,S , M))[−1]

∪S [−1]

C(G F ,S , M∨(1)) ⊗Λ Cc(G F ,S , M)
∪c

Cc(G F ,S ,Qp/Zp(1))

P (G F ,S , M∨(1))[−1] ⊗Λ C(G F ,S , M) P (G F ,S , M∨(1))[−1] ⊗Λ P (G F ,S , M)

t′

(P (G F ,S , M∨(1)) ⊗Λ P (G F ,S , M))[−1]

∪S [−1]

Cc(G F ,S , M∨(1)) ⊗Λ C(G F ,S , M)
c∪

Cc(G F ,S ,Qp/Zp(1))

are commutative, where t and t′ are the morphisms defined as in Lemma 2.1. These in turn induce
the following morphism of exact triangles in K(ModΛ).

P (G F ,S , M)[−1] ⊕
v∈S HomZp (C(G v , M∨(1)), Cc(G F ,S ,Qp/Zp(1)))[−3]

Cc(G F ,S , M) HomZp (C(G F ,S , M∨(1)), Cc(G F ,S ,Qp/Zp(1)))[−3]

C(G F ,S , M) HomZp (Cc(G F ,S , M∨(1)), Cc(G F ,S ,Qp/Zp(1)))[−3]

Combining this with the morphism

ϑ : Cc
(
G F ,S ,Qp/Zp(1)

) −→ τ�3Cc
(
G F ,S ,Qp/Zp(1)

) r−→ Qp/Zp[−3],
we obtain the following morphism of exact triangles

⊕
v∈S RΓ (G v , M)[−1] ⊕

v∈S RHomZp (RΓ (G v , M∨(1)),Qp/Zp)[−3]

RΓc(G F ,S , M) RHomZp (RΓ (G F ,S , M∨(1)),Qp/Zp)[−3]

RΓ (G F ,S , M) RHomZp (RΓc(G F ,S , M∨(1)),Qp/Zp)[−3]

in D(ModΛ).



2662 M.F. Lim / Journal of Number Theory 132 (2012) 2636–2672
Theorem 4.2.6. For any bounded complex M in CΛ,G F ,S , the above morphism of exact triangles is an isomor-
phism.

Proof. The top morphism is an isomorphism by Theorem 4.1.2. It remains to show that the middle
morphism is an isomorphism. By a similar argument (using Proposition 4.2.3 for the limiting argu-
ment for the compactly supported cohomology) to that of Theorem 4.1.2, we can reduce to the case
that M is a single finite module. The conclusion then follows from the usual Poitou–Tate duality (cf.
[10, 8.6.13]). �
Remark. Theorem 4.1.2 and Theorem 4.2.6 are stated in [3] for the case that Λ is a profinite ring
with a basis of neighborhoods consisting of powers of the Jacobson radical of Λ, and M is a finitely
generated projective Λ-module.

5. Iwasawa modules

In this section, we will introduce certain modules over an Iwasawa algebra. The next two para-
graphs will introduce some notations which will be adhered to throughout this section.

Fix a prime p. Let R be a commutative pro-p ring with a directed fundamental system I of
neighborhoods of zero consisting of open ideals. Let G and Γ be two profinite groups such that there
is continuous homomorphism π : G −→ Γ of profinite groups. Set Λ = R �Γ �. We now describe the
natural profinite topology on Λ (see [12, Sect. 5.3]). Let U be the collection of open normal subgroups
of Γ , and consider the following family of two-sided ideals:

aΛ + I(U ), a ∈ I, U ∈ U .

Here I(U ) denotes the kernel of the map Λ � R[Γ/U ]. We take these ideals as a fundamental system
of neighborhoods of zero.

We have a map ι : Λ → Λ which sends γ to γ −1. Note that this is only a homomorphism of
R-modules. It is a ring homomorphism if and only if Γ is abelian. Denote by

ρ = ρΓ : G
π−→ Γ ⊆ Λ×

the tautological one-dimensional representation of G over Λ.

Remark. In most situations, the ring R is usually a commutative complete Noetherian local ring with
finite residue field of characteristic p, and the group Γ is a compact p-adic Lie group. However,
despite motivated by the above situation, we shall consider the theory in more generality.

5.1. Induced modules

For a given Λ-module M , we define a Λ◦-module Mι by the formula m ·ι λ := ι(λ)m for λ ∈ Λ,
m ∈ M . Similarly, if N is a Λ◦-module, we define a Λ-module, which is also denoted as Nι , by λ ·ι m :=
mι(λ).

We shall prove the following lemma. Let A and B be two rings, and suppose that M has a left
A-action and right B-action. We say that the actions of A and B are balanced if for every a ∈ A, b ∈ B
and x ∈ M , we have a(xb) = (ax)b.

Lemma 5.1.1. (a) If M is a Λ[G]-module, then Mι is a Λ◦[G]-module.
(b) If M is a Λ[G]-Λ-module (not necessarily balanced), then Mι is a Λ◦[G]-Λ-module (not necessarily

balanced).
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Proof. (a) Let g ∈ G, λ ∈ Λ and m ∈ Mι . Then we have

(gm) ·ι λ = ι(λ)gm = g
(
ι(λ)m

) = g(m ·ι λ).

(b) Similar argument as above. �
For a given U ∈ U and a given R[G]-module M , we define two Λ[G]-Λ-modules as follows:

U M = HomR
(

R[Γ/U ], M
)
,

MU = R[Γ/U ]ι ⊗R M,

where G acts on R[Γ/U ] via ρΓ/U and Λ acts on R[Γ/U ] via the canonical projection Λ � R[Γ/U ].
Note that the Λ[G]-Λ-modules defined above are balanced as Λ-Λ-modules. They are balanced as
Λ[G]-Λ-modules if Γ/U is abelian.

Let V ∈ U with U ⊆ V . Then there is a canonical surjection pr : R[Γ/U ] � R[Γ/V ] and a map
Tr : R[Γ/V ] −→ R[Γ/U ] given by

gU �→
∑

v∈V /U

gvU .

These in turn induce the following maps.

pr∗ : V M −→ U M,

pr∗ : MU −→ MV ,

Tr∗ : U M −→ V M,

Tr∗ : MV −→ MU .

Denote by δβ : G/U → Z the Kronecker delta-function

δβ

(
β ′) ∼=

{
1 if β = β ′,
0 if β �= β ′.

The next two lemmas then follow from a straightforward calculation.

Lemma 5.1.2. We have the following isomorphism of R[G]-modules

MU
∼−→ U M,∑

β∈G/U

β ⊗ xβ �→
∑

β∈G/U

xβδβ

which is functorial in M. Moreover, if V is another open normal subgroup of G such that U ⊆ V , then the
isomorphism fits into the following commutative diagrams.

MU

pr∗

∼
U M

Tr∗

MV

Tr∗

∼
V M

pr∗

MV
∼

V M MU
∼

U M
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Lemma 5.1.3. We have the following equalities of Λ◦[G]-modules:

(U M)ι = HomR
(

R[Γ/U ]ι, M
)
,

(MU )ι = R[Γ/U ] ⊗R M.

Let M be an R[G]-module. We define two Λ[G]-Λ-modules as follows:

FΓ (M) = lim−→
U∈U

U M,

FΓ (M) = lim←−
U∈U

MU ,

where the transition maps are induced by the surjections R[Γ/U ] � R[Γ/V ] for U ⊆ V . Note that
the Λ[G]-Λ-modules defined above are balanced as Λ-Λ-modules. They are balanced as Λ[G]-Λ-
modules if and only if Γ is abelian. One easily sees from Lemma 3.1.3 that

FΓ (M)ι = lim−→
U∈U

HomR
(

R[Γ/U ]ι, M
)

and

FΓ (M)ι = lim←−
U∈U

(
R[Γ/U ] ⊗R M

)
.

We also have the following description of FΓ (A), when A is an object of DR,G .

Lemma 5.1.4. If A is an object of DR,G , then FΓ (A) is an object of DΛ,G and

FΓ (A) ∼= HomR,cts(Λ, A).

Similarly, we have

FΓ (A)ι ∼= HomR,cts
(
Λι, A

)
.

If {Aα} is a direct system of objects in DR,G , then we have isomorphisms

FΓ (A) ∼= lim−→
α

FΓ (Aα)
(

resp., FΓ (A)ι ∼= lim−→
α

FΓ (Aα)ι
)

in DΛ,G (resp., in DΛ◦,G ).

Proof. By Lemma 3.1.4(3), for each U ∈ U , we have

HomR
(

R[Γ/U ], A
) = HomR,cts

(
R[Γ/U ], A

)
.

Therefore, the lemma will now follow from [12, Prop. 5.1.4]. �
We would like to have a description of FΓ (T ), when T is an object in CR,G . Before we can do

this, we shall recall the notion of a complete tensor product from [12]. Let M be an object in CΛ,G ,
and let N be an object in CR,G . The completed tensor product of M and N is taken to be
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M ⊗̂R N = lim←−
U ,V

M/U ⊗R N/V ,

where U (resp., V ) runs through the open Λ[G]-submodules of M (resp., open R[G]-submodules
of N).

Lemma 5.1.5. Let M be an object in CΛ,G and N be an object in CR,G . Then the completed tensor product
M ⊗̂R N is an object of CΛ,G , and coincides with the usual tensor product if N is a finitely generated R-module.
Moreover, as a functor, the completed tensor product is right exact (in both variables) and preserves inverse
limits.

Proof. It follows from [14, Lemma 7.7.2] that M ⊗̂R N is a compact Λ-module. By a similar argument
to that used in the proof of that lemma, we have that the G-action is continuous. �

We are now in position to describe FΓ (T ).

Lemma 5.1.6. If T is an object of CR,G , then FΓ (T ) is isomorphic to Λι ⊗̂R T and FΓ (T )ι is isomorphic to
Λ ⊗̂R T . If {Tα} is an inverse system of objects in CR,G such that T ∼= lim←−α

Tα , then we have isomorphisms

FΓ (T ) ∼= lim←−
α

FΓ (Tα)
(

resp., FΓ (T )ι ∼= lim←−
α

FΓ (Tα)ι
)

in CΛ,G (resp., in CΛ◦,G ).

Proof. We have

FΓ (T ) = lim←−
U

(
R[Γ/U ]ι ⊗R T

) = lim←−
U

(
R[Γ/U ]ι ⊗̂R T

) ∼=
(

lim←−
U

R[Γ/U ]ι
)

⊗̂R T ∼= Λι ⊗̂R T .

Suppose T ∼= lim←−α
Tα in CR,G . Then

FΓ (T ) ∼= Λι ⊗̂R T ∼= lim←−
α

Λι ⊗̂R Tα
∼= lim←−

α

FΓ (Tα). �

As a conclusion to the subsection, we record the following duality relation between the modules
we have defined.

Proposition 5.1.7. Let T be an object in CR,G . Then we have isomorphisms

FΓ (T )∨ ∼= FΓ

(
T ∨)ι (

resp.,
(
FΓ (T )ι

)∨ ∼= FΓ

(
T ∨))

in DΛ◦,G (resp., in DΛ,G ).

Proof. We will prove the first isomorphism, the second will follow from a similar argument. This
follows by the following calculations:

FΓ (T )∨ ∼= HomZp

(
Λι ⊗̂R T ,Qp/Zp

)
(by Lemma 5.1.6)

∼= HomR,cts
(
Λι,HomZp ,cts(T ,Qp/Zp)

) (
by [12, Prop. 5.5.4(c)]

)
∼= FΓ

(
T ∨)ι

(by Lemma 5.1.4). �
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5.2. Shapiro’s lemma

As before, R denotes a commutative pro-p ring. Let G be a profinite group. Fix a closed normal
subgroup H of G and write Γ = G/H . Let π : G −→ Γ be the canonical quotient map. We identify
U as the collection of open normal subgroups of G containing H . Therefore, in this context, for each
U ∈ U , and an R[G]-module M , we have

U M = HomR
(

R[G/U ], M
)
,

MU = R[G/U ]ι ⊗R M.

We will apply Shapiro’s lemma to see that the direct limits and inverse limits of cohomology groups
over every intermediate field Fα can be viewed as cohomology groups of certain Λ-modules. The
results in this section can be found in [9, 8.2.2, 8.3.3-5, 8.4.4.2].

Lemma 5.2.1. Let U be an open normal subgroup of G, and let N be a bounded below complex of objects of
DR,G . Then we have a quasi-isomorphism

C(G, U N)
∼−→ C(U , N)

of complexes of Λ-modules.

Proof. We first prove the lemma in the case that N is an object of DR,G . Then we may write N =
lim−→α

Nα , where Nα is a finite object of DR,G . The usual Shapiro’s lemma holds for such modules. Also,
we note that U N ∼= lim−→α

U (Nα). Hence, we have

C(G, U N) = C
(

G, lim−→
α

U (Nα)
) ∼= lim−→

α

C
(
G, U (Nα)

) sh−→ lim−→
α

C(U , Nα) = C(U , N)

which gives the required conclusion for the case that N is an object of DR,G . For the case that N is
a bounded below complex of objects of DR,G , one can prove this by a spectral sequence argument as
used in Lemma 3.2.10. �

Recall that if A is a complex in DR,G , then FΓ (A) = lim−→U∈U U A is a complex in DΛ,G by
Lemma 5.1.4. We then have the following proposition.

Proposition 5.2.2. Let A be a bounded below complex of objects of DR,G . Then the composite morphism

C
(
G, FΓ (A)

) ∼−→ lim−→
U∈U

C(G, U A)
sh−→ lim−→

U∈U

C(U , A)
res−→ C(H, A)

is a quasi-isomorphism of complexes of Λ-modules. In other words, we have an isomorphism

RΓ
(
G, FΓ (A)

) ∼−→ RΓ (H, A)

in D(ModΛ).

The next result will give a Shapiro-type relation for cohomology groups of objects (and complexes
of objects) in CR,G .
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Lemma 5.2.3. Let U be an open normal subgroup of G. Then for any bounded complex M in CR,G , we have a
quasi-isomorphism

C(G, MU )
∼−→ C(U , M)

of complexes of Λ-modules.

Proof. By the same argument as that in Lemma 5.2.1, it suffices to consider the case when M is an
object of CR,G . Then we have M = lim←−α

Mα , where Mα is a finite object in CR,G . Note that MU ∼=
lim←−α

(Mα)U . Then we have morphisms

C(G, MU ) ∼= lim←−
α

C
(
G, (Mα)U

) sh−→ lim←−
α

C(U , Mα) ∼= C(U , M)

which induce a morphism

lim←−(i)
α

H j(G, (Mα)U ) �⇒ Hi+ j(G, MU )

lim←−(i)
α

H j(U , Mα) �⇒ Hi+ j(U , M)

of convergent spectral sequences. Since Mα is finite, the usual Shapiro’s lemma implies that

H j(G, (Mα)U
) ∼= H j(U , Mα)

is an isomorphism. This in turn implies that

lim←−
α

(i)H j(G, (Mα)U
) ∼= lim←−

α

(i)H j(U , Mα).

By the convergence of the spectral sequences, we have isomorphisms

Hn(G, MU ) ∼= Hn(U , M),

as required. �
Since inverse limits are not necessarily exact, we cannot always view inverse limits of cohomol-

ogy groups over every intermediate field Fα as cohomology groups of certain Λ-modules in general.
However, we can say something if we impose an extra assumption on G .

Proposition 5.2.4. Let M be a bounded complex of objects in CR,G . Then we have the following isomorphism

C
(
G,FΓ (M)

) ∼−→ lim←−
U∈U

C(G, MU )

of complexes of Λ-modules. Furthermore, if Hm(G, N) is finite for all finite discrete Λ-modules N with a Λ-
linear continuous G-action and all m � 0, then we have

H j(G,FΓ (M)
) ∼= lim←−

U∈U

H j(U , M).
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Proof. As before, it suffices to consider the case when M is an object of CR,G . Write M = lim←−α
Mα ,

where each Mα is a finite object in CR,G . By Lemma 5.1.6, we have a continuous isomorphism

FΓ (M) ∼= lim←−
α

FΓ (Mα) ∼= lim←−
α,U

(Mα)U .

The second assertion now follows from Proposition 3.2.8 and Lemma 5.2.3. �
5.3. Iwasawa setting

We now apply the discussion in Section 5.2 to the arithmetic situation. Let F∞ be a Galois exten-
sion of F which is contained in F S . Write H = Gal(F S/F∞), and write Γ = Gal(F∞/F ). Let U denote
the collection of open normal subgroups of G F ,S containing H . For each U ∈ U , we let FU = (F S )

U ,
and define SU to be the set of primes in FU above S . As before, we write Λ = R �Γ �, where R is
a commutative pro-p ring. The following lemma is immediate from the discussion in the preceding
subsection.

Lemma 5.3.1. Let T be a bounded complex of objects in CR,G F ,S . Then we have the following isomorphisms

H j(G F ,S ,FΓ (T )
) ∼= lim←−

U

H j(G F ,S , TU ) ∼= lim←−
U

H j(G FU ,SU , T ),

H j(G F ,S , FΓ

(
T ∨)) ∼= lim−→

U

H j(G F ,S , U T ∨) ∼= lim−→
U

H j(G FU ,SU , T ∨) ∼= H j(Gal(F S/F∞), T ∨)
.

Let v ∈ S f . Fix an embedding F sep ↪→ F sep
v , which induces a continuous group monomorphism

α = αv : G v ↪→ G F ,

where G F = Gal(F sep/F ). Let X be a finite discrete R[G F ]-module. For a finite Galois extension F ′ of F ,
write U = Gal(F sep/F ′) and XU = R[G F /U ] ⊗R X . The embedding F sep ↪→ F sep

v determines a prime v ′
of F ′ above v such that F ′

v ′ is a finite Galois extension of F v and G v ′ := Gal(F sep
v /F ′

v ′ ) = α−1(U ).
Fix coset representatives σi ∈ G F of

G F /U =
⋃

i

σiα(G v/G v ′).

Then the set of distinct primes in F ′ above v is given by the (finite) collection {σi(v ′)}. Then by [9,
8.1.7.6, 8.5.3.1], we have a quasi-isomorphism

C(G v , XU )
∼−→

⊕
i

C(Gσi(v ′), X)

and isomorphisms

Hn(G v , XU ) ∼=
⊕

i

Hn(Gσi(v ′), X)

of cohomology groups for n � 0.
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Now suppose that p = 2 and F is a number field with at least one real prime. Let v ∈ SR . Let F ′
be a finite Galois extension of F , and retain the above notations. Then the primes in F ′ above v are
either all real or all complex. We first consider the case when all the primes above F ′ are all real.
Then G v acts trivially on XU , and we have

C(G v , XU ) = C(G v , X)|G F /U |

which is precisely
⊕

τ C(Gτ (v ′), X), where v ′ is a prime above v and τ runs through a set of coset rep-
resentatives for G F /U . If all the primes above F ′ are complex, it remains to show that Ĥ i(G v , XU ) = 0
for all i. Since G v is cyclic (of order 2), we are reduced to showing this for i = 1,2, which follows
from Shapiro’s lemma in the usual sense (since these are usual cohomology groups).

We shall apply the above discussion to finite discrete R[G F ,S ]-modules, which we view as R[G F ]-
modules via the canonical quotient map G F � G F ,S . By the compatibility of limits and the groups of
continuous cochains, we can apply the above results to objects in DR,G F ,S or CR,G F ,S .

Lemma 5.3.2. Let T be a bounded complex of objects in CR,G F ,S . Then for v ∈ S f , we have the following
isomorphisms

H j(G v ,FΓ (T )
) ∼= lim←−

U

H j(G v , TU ) ∼= lim←−
U

⊕
w|v

H j(G w , T ),

H j(G v , FΓ

(
T ∨)) ∼= lim−→

U

H j(G v , U T ∨) ∼= lim−→
U

⊕
w|v

H j(G w , T ∨)
.

The same conclusion holds for the case when p = 2 and v ∈ SR , if we replace the cohomology groups by the
completed cohomology groups as defined in Section 3.4.

We would like to derive an analogue of Shapiro’s lemma for compactly supported cohomology. Let
F ′ be a finite Galois extension of F which is contained in F S . Denote the set of primes of F ′ above S
by S ′ . Let X be a discrete R[G F ,S ]-module. We write U = Gal(F S/F ′) and XU = R[G F ,S/U ] ⊗R X . By
the discussion in the previous subsection and the above, we have the following diagram

C(G F ,S , XU )

sh

⊕
v∈S C(G v , XU )

∼ ⊕
v∈S

⊕
v ′|v C(G v , R[G v/G v ′ ] ⊗R X)

sh

C(G F ′,S ′ , X)
⊕

v ′∈S ′ C(G v ′ , X)

which commutes up to homotopy. By a similar argument to that in [9, 8.1.7.2.1, 8.5.3.2], this in turn
induces a quasi-isomorphism (functorial in X )

shc : Cc(G F ,S , XU ) −→ Cc(G F ′,S ′ , X)

which fits into the following commutative (up to homotopy) diagram with exact rows.
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0
⊕

v∈S C(G v , XU )[−1]
�

Cc(G F ,S , XU ) C(G F ,S , XU ) 0

0
⊕

v∈S

⊕
v ′|v C(G v , R[G v/G v ′ ] ⊗R X)[−1]

sh[−1]

Cc(G F ,S , XU )

shc

C(G F ,S , XU )

sh

0

0
⊕

v ′∈S ′ C(G v , X)[−1] Cc(G F ′,S ′ , X) C(G F ′,S ′ , X) 0

Suppose that F ′′ ⊆ F S is another finite Galois extension of F containing F ′ , and write S ′′ for the
set of primes of F ′′ above S and V = Gal(F S/F ′′). Again by similar arguments to that in [9, 8.5.3.4],
we have the following morphisms

resc : Cc(G F ′,S ′ , X) −→ Cc(G F ′′,S ′′ , X),

corc : Cc(G F ′′,S ′′ , X) −→ Cc(G F ′,S ′ , X),

which are functorial in X and fit in the following diagrams, which are commutative up to homotopy:

0
⊕

v ′∈S ′ C(G v ′ , X)[−1]
res[−1]

Cc(G F ′,S ′ , X)

resc

C(G F ′,S ′ , X)

res

0

0
⊕

v ′′∈S ′′ C(G v ′′ , X)[−1] Cc(G F ′′,S ′′ , X) C(G F ′′,S ′′ , X) 0

0
⊕

v ′′∈S ′′ C(G v ′′ , X)[−1]
cor[−1]

Cc(G F ′′,S ′′ , X)

corc

C(G F ′′,S ′′ , X)

cor

0

0
⊕

v ′∈S ′ C(G v ′ , X)[−1] Cc(G F ′,S ′ , X) C(G F ′,S ′ , X) 0

Cc(G F ,S , XU )

Tr∗

shc
Cc(G F ′,S ′ , X)

resc

Cc(G F ,S , XV )

pr∗

shc
Cc(G F ′′,S ′′ , X)

corc

Cc(G F ,S , XV )
shc

Cc(G F ′′,S ′′ , X) Cc(G F ,S , XU )
shc

Cc(G F ′,S ′ , X)

Since all the morphisms constructed above are functorial, they can be extended to complexes.
Hence, we may conclude the following.

Proposition 5.3.3. (a) For a bounded below complex A of objects in DR,G F ,S , the canonical morphism of
complexes

Cc
(
G F ,S , FΓ (A)

) ∼−→ lim−→
U ,Tr

Cc(G F ,S , U A)

is an isomorphism.
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(b) Let T be a bounded complex of objects in CR,G F ,S . Then the canonical morphism of complexes

Cc
(
G F ,S ,FΓ (T )

) ∼−→ lim←−
U ,pr

Cc(G F ,S , TU )

is an isomorphism and induces isomorphisms

H j
c
(
G F ,S ,FΓ (T )

) ∼= lim←−
U ,pr

H j
c (G F ,S , TU ) ∼= lim←−

U ,corc

H j
c (G FU ,SU , T )

of cohomology groups for j � 0.

5.4. Duality over extensions of a global/local field

We retain the notation introduced in the previous subsection. Let F∞ be a Galois extension of
F which is contained in F S . Write H = Gal(F S/F∞), and write Γ = Gal(F∞/F ). As before, we write
Λ = R �Γ �, where R is a commutative pro-p ring.

Applying Theorem 4.2.6 and Proposition 5.1.7, we obtain the following theorem. In the theorem,
we abuse notation and use RΓ (G v , M) to denote R̂Γ (G v , M) for v ∈ SR .

Theorem 5.4.1. Then, for a bounded complex T in CR,G F ,S , we have the following isomorphism of exact trian-
gles

⊕
v∈S RΓ (G v ,FΓ (T ))[−1] ∼ ⊕

v∈S RHomZp (RΓ (G v , FΓ (T ∨)ι(1)),Qp/Zp)[−3]

RΓc(G F ,S ,FΓ (T ))
∼

RHomZp (RΓ (G F ,S , FΓ (T ∨)ι(1)),Qp/Zp)[−3]

RΓ (G F ,S ,FΓ (T ))
∼

RHomZp (RΓc(G F ,S , FΓ (T ∨)ι(1)),Qp/Zp)[−3]

in D(ModΛ).

We end by saying something about the situation over non-Archimedean local fields. Let F be
a non-Archimedean local field of characteristic not equal to p. Let F∞ be a Galois extension of F
with Galois group Γ . Write G E = Gal(F sep/E) for every Galois extension E/F . Recall that by [10,
Thm. 7.1.8(i)], we have cdp(G F ) = 2.

Let T be a bounded complex of objects in CR,G F . By Proposition 5.2.2 and Proposition 5.2.4, we
have

C
(
G F , FΓ

(
T ∨)) ∼−→ lim−→ C

(
G Fα , T ∨)

,

Hi(G F , FΓ

(
T ∨)) ∼= lim−→ Hi(G Fα , T ∨) ∼= Hi(G F∞ , T ∨)

,

C
(
G F ,FΓ (T )

) ∼−→ lim←− C(G Fα , T ),

Hi(G F ,FΓ (T )
) ∼= lim Hi(G Fα , T ),
←−
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where Fα runs through all finite Galois extension of F∞/F . Applying Theorem 4.1.2 and Proposi-
tion 5.1.7, we obtain the following.

Theorem 5.4.2. Let T be a bounded complex of objects in CR,G F . Then we have the following isomorphism

RΓ
(
G F ,FΓ (T )

) ∼−→ RHomZp

(
RΓ

(
G F , FΓ

(
T ∨)ι

(1)
)
,Qp/Zp

)[−2]
in D(ModΛ).
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