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1. Introduction

The aim of this note is to provide a new upper bound for the square mean error in 
the classical prime geodesic theorem. For a brief introduction, let Γ := PSL2(Z) be the 
modular group, and let

ΨΓ(X) :=
∑

NP�X

Λ(P )

denote the usual Chebyshev-like counting function for the closed geodesics on the 
modular surface Γ\H. That is, logNP is the length of the closed geodesic P , and 
Λ(P ) = logNP0 is the length of the underlying prime closed geodesic P0. The closed 
geodesic P (resp. P0) is understood without orientation, hence it corresponds bijectively 
to an unordered pair of hyperbolic (resp. primitive hyperbolic) conjugacy classes in Γ
which are reciprocals of each other (cf. [Sa1,Sa2]). In a major breakthrough, Iwaniec [Iw1]
proved that

ΨΓ(X) = X + Oε(X35/48+ε)

for any ε > 0. The important point here is that 35/48 in the exponent is less than 3/4, 
which follows readily from the explicit formula (15) and Weyl’s law (3). The constant 
35/48 was subsequently lowered to 7/10 by Luo–Sarnak [LuSa], 71/102 by Cai [Ca], 
and 25/36 by Soundararajan–Young [SoYo]. For the last mentioned result, Balkanova–
Frolenkov [BaFr] provided a new proof very recently. It is conjectured that the exponent 
2/3 + ε or perhaps even 1/2 + ε is admissible (in which case it would be optimal). Our 
main result states that the exponent 7/12 + ε is valid in a square mean sense.

Theorem 1. Let A > 2. Then, for any ε > 0 we have

1
A

2A∫
A

|ΨΓ(X) −X|2 dX �ε A
7/6+ε.

This estimate improves on the result of Cherubini–Guerreiro [ChGu, Th. 1.4], where 
the right hand side was A5/4+ε. In fact our analysis is based on theirs, the new ingredient 
being the explicit integration in X of the relevant spectral weights (see (14) and the 
remark below it). Incidentally, the exponents 7/12 + ε and 5/8 + ε also occur in the 
recent works of Petridis–Risager [PeRi] and Biró [Bi] on the hyperbolic circle problem, 
although their averages are not fully analogous to ours.

Theorem 1 has the following simple consequence for short intervals. For 0 � η � 1 we 
have

1
A

2A∫
|ΨΓ(X) − ΨΓ(X − ηX) − ηX|2 dX �ε A

7/6+ε,
A
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that is, the approximation ΨΓ(X) −ΨΓ(X−ηX) ≈ ηX is valid with error term X7/12+ε

in a square mean sense. For η � A−1/6, this is the best we can say at the moment. 
However, for smaller η, we can obtain an improvement by tailoring our analysis to 
the present problem, with an average error term tending to X1/2+ε as η gets close 
to A−1/2.

Theorem 2. Let A > 2. Then, for any ε > 0 and A−1/2 log2 A � η < A−1/6 we have

1
A

2A∫
A

|ΨΓ(X) − ΨΓ(X − ηX) − ηX|2 dX �ε A
5/4+εη1/2.

Remark 1. Theorem 2 can be improved for very small η by employing [BaFr, Th. 8.3]. 
Specifically, on the right hand side of the bound, A1+ε is admissible for A−1/2 log2 A �
η < A−4/9, and A5/3+εη3/2 is admissible for A−4/9 � η < A−5/12. See also Remark 2
below Theorem 3.

The paper is structured as follows. The overall strategy is already present in 
Iwaniec’s seminal paper [Iw1], but we also rely crucially on the work of Cherubini–
Guerreiro [ChGu] and Luo–Sarnak [LuSa]. In Section 4, we reduce Theorems 1 and 2
to the estimation of a certain spectral exponential sum. This reduction ultimately fol-
lows from Selberg’s trace formula, although we do not invoke it explicitly. In Section 3, 
we prove Theorem 3, which contains the necessary bounds for the spectral exponential 
sum. This proof is ultimately an application of Kuznetsov’s trace formula, which again 
remains in the background. Section 2 prepares the scene, incorporating a key idea of 
Iwaniec [Iw1].

Acknowledgment. We thank the referee for a careful reading and several helpful sugges-
tions.

2. Reduction to Kuznetsov’s trace formula

Let {uj} be an orthonormal Hecke eigenbasis of the space of Maass cusp forms on 
Γ\H. Denoting by 1/4 + t2j the Laplace eigenvalue of uj with the sign convention tj > 0, 
we have the Fourier decomposition

uj(x + iy) = √
y
∑
n �=0

ρj(n)Kitj (2π|n|y)e(nx).

The Fourier coefficients ρj(n) are proportional to the Hecke eigenvalues λj(n),

ρj(n) = ρj(1)λj(n). (1)
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The Hecke eigenvalues are real, and they satisfy the multiplicativity relations

λj(m)λj(n) =
∑

d|gcd(m,n)

λj

(mn

d2

)
.

In particular, the symmetric square L-function of uj satisfies

L(s, sym2 uj) = ζ(2s)
∞∑

n=1

λj(n2)
ns

= ζ(2s)
ζ(s)

∞∑
n=1

λj(n)2

ns
, �s > 1, (2)

in the region of absolute convergence of both Dirichlet series.
Concerning the distribution of Laplace eigenvalues, we record Weyl’s law as (cf. [Iw2, 

(11.5)])

#{j : tj � T} = T 2

12 + O(T log T ). (3)

In fact a finer asymptotic expansion is available, see [He, Ch. 11, (2.12)] or [Ve, Th. 7.3].
With Kuznetsov’s trace formula in mind, we introduce the harmonic weights

αj := |ρj(1)|2
cosh(πtj)

= 2
L(1, sym2 uj)

, (4)

which by [Iw2, Th. 8.3] and [HoLo, Th. 0.2] satisfy the convenient bounds

t−ε
j �ε αj �ε t

ε
j . (5)

We borrow the following test function from [DeIw, Lemma 7]; see also [LuSa, p. 234] and 
[BaFr, Lemma 2.2]. For arbitrary X, T > 2, we define

ϕ(x) := sinh β

π
x exp(ix cosh β) with β := logX

2 + i

2T ,

whose Bessel transform

ϕ̂(t) := πi

2 sinh(πt)

∞∫
0

(
J2it(x) − J−2it(x)

)
ϕ(x)dx

x

satisfies

ϕ̂(t) = sinh(πt + 2βit)
sinh(πt) = Xite−t/T + O

(
e−πt

)
. (6)

Following [Iw1,LuSa], we consider the spectral-arithmetic average (cf. (2))

∑
j

αjϕ̂(tj)
∑
n

h(n)λj(n)2 =
∑
j

αjϕ̂(tj)
1

2πi

∫
h̃(s) ζ(s)

ζ(2s)L(s, sym2 uj) ds,

(2)
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where h : (0, ∞) → R is a smooth compactly supported function with holomorphic Mellin 
transform h̃ : C → C. We choose h such that it is supported in some dyadic interval 
[N, 2N ] for N > 1, and it satisfies h(j) �j N

−j and h̃(1) = N . Then also

h̃(s) = (−1)j

s(s + 1) . . . (s + j − 1)

∞∫
0

h(j)(x)xs+j dx

x
�σ,j

Nσ

(1 + |s|)j , �(s) = σ, (7)

where the implied constant depends continuously on σ. More precisely, the identity is 
meant for s outside {0, −1, −2, . . . }, but the inequality holds even at these exceptional 
points. Shifting the contour, we obtain by the residue theorem and (4),

∑
j

αjϕ̂(tj)
∑
n

h(n)λj(n)2

= 12N
π2

∑
j

ϕ̂(tj) +
∑
j

αjϕ̂(tj)
1

2πi

∫
(1/2)

h̃(s) ζ(s)
ζ(2s)L(s, sym2 uj) ds.

Using also the approximation (6), we obtain after some rearrangement,

∑
j

Xitje−tj/T = O(1) + π2

12N
∑
n

h(n)
∑
j

αjϕ̂(tj)λj(n)2

− π2

12N
1

2πi

∫
(1/2)

h̃(s) ζ(s)
ζ(2s)

∑
j

αjϕ̂(tj)L(s, sym2 uj) ds.
(8)

This formula is equivalent to [BaFr, (3.8)], and we have included the proof for the sake 
of completeness. We stress that the spectral weights ϕ̂(tj) depend on the parameters 
X, T > 2.

3. Spectral exponential sums in square mean

We shall estimate the spectral exponential sum (8), in square mean over A �
X � 2A, by combining (8) with the analysis of Cherubini–Guerreiro [ChGu] and Luo–
Sarnak [LuSa]. Specifically, on the right hand side of (8), the square mean of the first 
j-sum can be estimated via Kuznetsov’s formula and the Hardy–Littlewood–Pólya in-
equality (cf. [ChGu, Lemma 4.2]), while the square mean of the second j-sum can be 
estimated in terms of the spectral second moment of symmetric square L-functions (cf. 
[LuSa, (33)]). This way we obtain the following improvement of [ChGu, Prop. 4.5].
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Theorem 3. Let A > 2. Then, for any ε > 0 we have

1
A

2A∫
A

∣∣∣∣∣
∑
tj�T

Xitj

∣∣∣∣∣
2

dX �ε (AT )ε

⎧⎪⎪⎨
⎪⎪⎩
T 3, 0 < T � A1/6;
A1/4T 3/2, A1/6 < T � A1/2;
T 2, A1/2 < T.

(9)

In particular, the left hand side can always be bounded as �ε (AT )εA1/6T 2.

Remark 2. Theorem 3 can be refined in the medium range by employing [BaFr, Th. 8.3]. 
Specifically, A1/4T 3/2 can be improved to A1/2+θT 1/2 for A1/4+θ < T � A1/3+2θ/3, and 
to T 2 for A1/3+2θ/3 < T � A1/2. Note that for θ any value exceeding 1/6 is admissible 
by the celebrated work of Conrey–Iwaniec [CoIw, Cor. 1.5].

Following the proof of [ChGu, Prop. 4.5], which is based on [LuSa, pp. 235–236], we 
see that (9) can be deduced from the following smoothened variant, itself a strengthening 
of [ChGu, Lemma 4.4]:

1
A

2A∫
A

∣∣∣∣∣
∑
j

Xitje−tj/T

∣∣∣∣∣
2

dX �ε (AT )ε

⎧⎪⎪⎨
⎪⎪⎩
T 3, 0 < T � A1/6;
A1/4T 3/2, A1/6 < T � A1/2;
T 2, A1/2 < T.

(10)

We shall assume here that T > 2, since otherwise (10) is trivial. As a first step for the 
proof of (10), we change in (8) the second occurrence of ϕ̂(tj) to Xitje−tj/T , and we 
restrict the integration to |�(s)| � T ε. The error resulting from this change is Oε(1) by 
(5), (6), (7), a crude lower bound for |ζ(2s)| on the critical line such as [Ti, (3.6.3)], and 
the convexity bound for the Rankin–Selberg L-function (cf. proof of [Iw1, Lemma 7])

ζ(s)L(s, sym2 uj) = L(s, uj ⊗ uj).

Then, applying the Cauchy–Schwarz inequality multiple times and standard bounds for 
the Riemann zeta function such as [Ti, (3.6.3) & (5.1.5)], we arrive at

∣∣∣∣∣
∑
j

Xitje−tj/T

∣∣∣∣∣
2

�ε 1 + 1
N

∑
N�n�2N

∣∣∣∣∣
∑
j

αjϕ̂(tj)λj(n)2
∣∣∣∣∣
2

+ T ε

N

T ε∫
−T ε

∣∣∣∣∣
∑
j

αjX
itje−tj/TL(1/2 + iτ, sym2 uj)

∣∣∣∣∣
2

dτ.

We abbreviate

Lj(τ) := L(1/2 + iτ, sym2 uj),
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and we average over A � X � 2A. Applying [ChGu, Lemma 4.2]1 for the contribution 
of the n-sum on the right hand side, we obtain

1
A

2A∫
A

∣∣∣∣∣
∑
j

Xitje−tj/T

∣∣∣∣∣
2

dX �ε (NA1/2 + T 2)(ANT )ε

+ T ε

N

T ε∫
−T ε

1
A

2A∫
A

∣∣∣∣∣
∑
j

αjX
itje−tj/TLj(τ)

∣∣∣∣∣
2

dX dτ.

We apply the Cauchy–Schwarz inequality one more time to facilitate the upcoming 
analysis. Specifically, we distribute the spectral parameters tj on the right hand side into 
intervals of length T , and this way we get

∣∣∣∣∣
∑
j

αjX
itje−tj/TLj(τ)

∣∣∣∣∣
2

�
∞∑

m=1
m2

∣∣∣∣∣
∑

(m−1)T�tj<mT

αjX
itje−tj/TLj(τ)

∣∣∣∣∣
2

.

Therefore, with the notation

I(T,A,m, τ) := 1
A

2A∫
A

∣∣∣∣∣
∑

(m−1)T�tj<mT

αjX
itje−tj/TLj(τ)

∣∣∣∣∣
2

dX, (11)

we infer

1
A

2A∫
A

∣∣∣∣∣
∑
j

Xitje−tj/T

∣∣∣∣∣
2

dX �ε (NA1/2 + T 2)(ANT )ε + T ε

N
sup

|τ |�T ε

∞∑
m=1

m2 I(T,A,m, τ).

(12)

We bound I(T, A, m, τ) by squaring out the j-sum in (11), then integrating explicitly 
in X, and finally using (5) for αj :

I(T,A,m, τ) �ε T
εe−2m

∑
(m−1)T�tj ,tk<mT

|Lj(τ)Lk(τ)|
1 + |tj − tk|

� T εe−2m

2
∑

(m−1)T�tj ,tk<mT

|Lj(τ)|2 + |Lk(τ)|2

1 + |tj − tk|

= T εe−2m
∑

(m−1)T�tj<mT

|Lj(τ)|2
∑

(m−1)T�tk<mT

1
1 + |tj − tk|

.

1 The quantity |νj(n)|2 in [ChGu] agrees with our αjλj(n)2, thanks to (1) and (4), while the definition 
of φ̂(t) in [ChGu] is off by a minus sign. For precise versions of the relevant Kuznetsov formula, see [Ku, 
Th. 2] and [Iw2, Th. 9.5].
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By the Weyl law (3), the last k-sum is

∑
(m−1)T�tk<mT

1
1 + |tj − tk|

�
�T�∑
�=1

1
�

∑
(m−1)T�tk<mT
�−1�|tj−tk|<�

1 �ε (mT )1+ε

�T�∑
�=1

1
�

�ε (mT )1+2ε,

(13)

whence

I(T,A,m, τ) �ε (mT )1+ε e−2m
∑

(m−1)T�tj<mT

|Lj(τ)|2 .

For the last sum, we apply the spectral second moment bound of Luo–Sarnak [LuSa, 
(33)], obtaining

I(T,A,m, τ) �ε (mT )3+ε(1 + |τ |)5+ε e−2m.

In combination with (12), this yields

1
A

2A∫
A

∣∣∣∣∣
∑
j

Xitje−tj/T

∣∣∣∣∣
2

dX �ε (NA1/2 + T 2)(ANT )ε + T 3+ε

N
. (14)

The last bound improves on the display before [ChGu, Prop. 4.5] in that we have T 3+ε

in place of T 4+ε. We optimize by setting N := A−1/4T 3/2, which exceeds 1 if and only 
if T > A1/6. Assuming this, we obtain (10) readily. For T � A1/6 we estimate the left 
hand side of (10) more directly but along the same ideas. Specifically, let us distribute 
the spectral parameters tj into intervals of length T as before, apply the Cauchy–Schwarz 
inequality for the resulting m-sum, square out the various j-subsums, integrate explicitly 
in X, and then apply the Weyl law (3). We obtain (cf. (13))

1
A

2A∫
A

∣∣∣∣∣
∑
j

Xitje−tj/T

∣∣∣∣∣
2

dX �
∞∑

m=1
m2e−2m

∑
(m−1)T�tj ,tk<mT

1
1 + |tj − tk|

�ε

∞∑
m=1

m2e−2m(m1+εT 2)(mT )1+ε �ε T
3+ε,

which is equivalent to (10) for T � A1/6. The proof of Theorem 3 is complete.

4. Prime geodesic error terms in square mean

In this section, we deduce Theorems 1 and 2 from Theorem 3. For both theorems, we 
shall assume (without loss of generality) that A > 100.
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Our deduction of Theorem 1 follows almost verbatim the argument of Cherubini–
Guerreiro right after the proof of [ChGu, Prop. 4.5]. We reproduce this argument, because 
we shall use certain steps from it in the proof of Theorem 2. Our starting point is the 
explicit formula for ΨΓ(X) established by Iwaniec [Iw1, Lemma 1],

ΨΓ(X) = X +
∑

|tj |�T

X1/2+itj

1/2 + itj
+ O

(
X

T
log2 X

)
, 2 < T � X1/2

log2 X
. (15)

Here the notation |tj | � T means that the sum runs through the spectral parameters 
±tj with tj � T (recall our sign convention tj > 0). With the notation

R(X,T ) :=
∑
tj�T

Xitj ,

the spectral sum in the explicit formula can be expressed as twice the real part of

∑
tj�T

X1/2+itj

1/2 + itj
= X1/2 R(X,T )

1/2 + iT
+ iX1/2

T∫
1

R(X,U)
(1/2 + iU)2 dU.

We specify T := A1/2/ log2 A, and we note that T � X1/2/ log2 X holds for any X � A

by the assumption A > 100. Applying the Cauchy–Schwarz inequality several times, we 
get

1
A

2A∫
A

∣∣∣∣∣
∑
tj�T

X1/2+itj

1/2 + itj

∣∣∣∣∣
2

dX �
2A∫
A

∣∣∣∣ R(X,T )
1/2 + iT

∣∣∣∣
2

dX +
2A∫
A

∣∣∣∣∣∣
T∫

1

R(X,U)
(1/2 + iU)2 dU

∣∣∣∣∣∣
2

dX

� 1
T 2

2A∫
A

|R(X,T )|2dX + log T
T∫

1

⎛
⎝

2A∫
A

|R(X,U)|2dX

⎞
⎠ dU

U3 .

On the right hand side, the first term is Oε(A1+ε) and the second term is Oε(A7/6+ε) by 
Theorem 3. Noting also that the error term in (15) is Oε(A1/2+ε), we obtain the bound 
in Theorem 1.

Now we prove Theorem 2. We specify T := A1/2/ log2 A as before. The condition 
A−1/2 log2 A � η < A−1/6 then yields T−1 � η < 1/2. By the explicit formula (15),

ΨΓ(X) − ΨΓ(X − ηX) − ηX =
∑

|tj |�T

X1/2+itj
1 − (1 − η)1/2+itj

1/2 + itj
+ Oε(A1/2+ε),

and we need to estimate the square mean of this expression over A � X � 2A. It suffices 
to do this with the restriction tj > 0 on the right hand side, since the original sum over 
|tj | � T is twice the real part of the new sum over tj � T . The contribution of the 
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spectral parameters tj � 1/η can be rewritten and bounded by the Cauchy–Schwarz 
inequality as

1
A

2A∫
A

∣∣∣∣∣
1∫

1−η

(
X

ξ

)1/2

R(Xξ, 1/η) dξ

∣∣∣∣∣
2

dX �

⎛
⎝

1∫
1−η

dξ

ξ

⎞
⎠

⎛
⎝

1∫
1−η

2A∫
A

|R(Xξ, 1/η)|2 dX dξ

⎞
⎠ .

The X-integral is Oε(A5/4+εη−3/2) by Theorem 3, hence the right hand side is 
Oε(A5/4+εη1/2). The contribution of the spectral parameters 1/η < tj � T is bounded 
by

1
A

2A∫
A

∣∣∣∣∣
∑

1/η<tj�T

X1/2+itj

1/2 + itj

∣∣∣∣∣
2

dX + 1
B

2B∫
B

∣∣∣∣∣
∑

1/η<tj�T

X1/2+itj

1/2 + itj

∣∣∣∣∣
2

dX, (16)

where B abbreviates (1 −η)A. These integrals are very similar to the one we encountered 
in the proof of Theorem 1, so we can be brief. The first integral in (16) can be bounded 
by partial summation, the Cauchy–Schwarz inequality, and Theorem 3 as

� η2
2A∫
A

|R(X, 1/η)|2 dX + 1
T 2

2A∫
A

|R(X,T )|2 dX + log(ηT )
T∫

1/η

⎛
⎝

2A∫
A

|R(X,U)|2 dX

⎞
⎠ dU

U3

�ε A
5/4+εη1/2 + A1+ε + A5/4+ε

T∫
1/η

U−3/2 dU � A5/4+εη1/2.

Similarly, the second integral in (16) is Oε(B5/4+εη1/2), hence also Oε(A5/4+εη1/2). Fi-
nally, the contribution of the error term in (15) is Oε(A1+ε). The proof of Theorem 2 is 
complete.
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