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1. Introduction

Let Fq be a finite field with q elements and of characteristic p. Let A = Fq[T ] be the 
polynomial ring over Fq in an indeterminate T , and F = Fq(T ) be the field of fractions 
of A. In this paper we study the endomorphism rings of the reductions of a fixed Drinfeld 
module defined over F . We are interested in theoretical, as well as computational, aspects 
of the theory of these rings. To state the main results of the paper, we first need to 
introduce some notation and terminology.

1.1. Notation and terminology

The degree deg(a) of 0 �= a ∈ A is its degree as a polynomial in T . The degree 
function extends to a valuation of F ; the corresponding place of F is denoted by ∞. Let 
F∞ = Fq( (1/T ) ) be the completion of F at ∞. For a non-zero ideal n � A, by abuse of 
notation, we denote by the same symbol the unique monic polynomial in A generating n. 
We will call a non-zero prime ideal of A simply a prime of A. Given a prime p of A, 
we denote by Ap (resp. Fp) the completion of A at p (resp. the fraction field of Ap); we 
also denote Fp = A/p. Given a field L, we denote by Lalg (resp. Lsep) an algebraic (resp. 
separable) closure of L, and GL = Gal(Lsep/L).

Let K be a field extension of F of degree r ≥ 2. Let OK be the integral closure of A
in K. An A-order O in K is a subring of K such that

(i) A ⊂ O;
(ii) O is a finitely generated A-module (equiv. O is an A-subalgebra of OK);
(iii) O contains an F -basis of K (equiv. the quotient module OK/O has finite cardinal-

ity).

Since A is a PID, O is a free A-module of rank

rankAO = dimF (O ⊗A F ) = dimF K = r.

Let O ⊂ O′ be two A-orders in K. Since both modules O and O′ have the same rank 
over A, and both contain 1, we have

O′/O ∼= A/b1 ×A/b2 × · · · ×A/br−1, (1.1)

for uniquely determined non-zero ideals b1, . . . , br−1 � A such that

b1 | b2 | · · · | br−1.

We call
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χ(O′/O) =
r−1∏

i=1
bi

the index of O in O′, and (b1, . . . , br−1) the refined index. (Note that χ(O′/O) is the 
Fitting ideal of the A-module O′/O.) The conductor of O in O′ is

c = {c ∈ K | cO′ ⊂ O}.

This is the largest ideal in O′ which is also an ideal in O. The conductor is related to 
the refined index by c ∩A = br−1.

1.2. Drinfeld modules

Let L be a field provided with a structure γ : A → L of an A-algebra. Note that either 
γ is injective or γ factors through the quotient map A → Fp ↪→ L for some prime p. 
Let τ be the Frobenius endomorphism of L relative to Fq, that is, the map α �→ αq, and 
let L{τ} be the noncommutative ring of polynomials in τ with coefficients in L and the 
commutation rule τc = cqτ for any c ∈ L.

A Drinfeld A-module over L of rank r ≥ 1 is a ring homomorphism

φ : A −→ L{τ}

a �→ φa = γ(a) +
r·deg(a)∑

i=1
gi(a)τ i

uniquely determined through

φT = γ(T ) +
r∑

i=1
gi(T )τ i, gr(T ) �= 0.

A morphism from the Drinfeld module φ to the Drinfeld module ψ over L is some 
u ∈ L{τ} such that uφa = ψau for all a ∈ A (it suffices to require this for a = T ); u is 
an isomorphism if u ∈ L{τ}× = L×. With this definition, the endomorphism ring

EndL(φ) = {u ∈ L{τ} | uφT = φTu}

is the centralizer of φ(A) in L{τ}. It is clear that EndL(φ) contains in its center the 
subring φ(A) ∼= A, hence is an A-algebra. It can be shown that EndL(φ) is a free 
A-module of rank ≤ r2, and EndL(φ) ⊗A F∞ is a division algebra over F∞; see [7].

The Drinfeld module φ endows Lalg with an A-module structure, where a ∈ A acts 
by φa. The a-torsion φ[a] ⊂ Lalg of φ is the kernel of φa, that is, the set of zeros of the 
polynomial



JID:YJNTH AID:6229 /FLA [m1L; v1.256; Prn:3/04/2019; 15:49] P.4 (1-22)
4 S. Garai, M. Papikian / Journal of Number Theory ••• (••••) •••–•••
φa(x) = γ(a)x +
r·deg(a)∑

i=1
gi(a)xqi ∈ L[x]. (1.2)

It is clear that φ[a] has a natural structure of an A-module. If a is not divisible by 
ker(γ), then φ[a] ∼= (A/aA)⊕r and φ[a] ⊂ Lsep (since φ′

a(x) = γ(a) �= 0). For a prime 
l � A different from ker(γ), the l-adic Tate module of φ,

Tl(φ) = lim
←−

φ[ln] ∼= A⊕r
l

,

carries a continuous Galois representation

ρφ,l : GL → AutAl
(Tl(φ)) ∼= GLr(Al).

1.3. Main results

Let φ : A → F{τ} be a Drinfeld module of rank r over F defined by

φT = T + g1τ + · · · + grτ
r.

(We will always implicitly assume that γ : A → F is the canonical embedding of A into 
its field of fractions.) We say that a prime p � A is a prime of good reduction for φ if 
ordp(gi) ≥ 0 for 1 ≤ i ≤ r− 1, and ordp(gr) = 0. In that case, we can consider g1, . . . , gr
as elements of Ap; denote by g the image of g ∈ Ap under the canonical homomorphism 
Ap → Ap/p. The reduction of φ at p is the Drinfeld module φ ⊗ Fp over Fp given by

(φ⊗ Fp)T = T + g1τ + · · · + grτ
r.

Note that φ ⊗ Fp has rank r since gr �= 0. All but finitely many primes of A are primes 
of good reduction for a given Drinfeld module φ; we denote the set of these primes by 
P(φ).

Let p ∈ P(φ) and d = deg(p). Let Ep := EndFp
(φ ⊗Fp). It is easy to see that πp := τd

is in the center of Fp{τ}, hence πp ∈ Ep. Using the theory of Drinfeld modules over finite 
fields it is easy to show that A[πp] ⊂ Ep are A-orders in an imaginary field extension 
K := F (πp) of F of degree r (“imaginary” means that there is a unique place of K over 
∞); see Proposition 2.1. Denote by Op the integral closure of A in K. Thus, we have the 
inclusion of A-orders

A[πp] ⊂ Ep ⊂ Op.

The endomorphism rings (and algebras) of Drinfeld modules over finite fields have 
been extensively studied; cf. [8], [2], [11], [12], [22]. They play an important role in the 
theory of Drinfeld modules, as well as their applications to other areas, such as the theory 
of central simple algebras (cf. [10]) or the Langlands conjecture over function fields (cf. 
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[8], [15]). In this paper, we are primarily interested in the indices of Ep/A[πp] and Op/Ep
as p varies. We prove the following:

Theorem 1.1. Let φ be a Drinfeld A-module of rank r ≥ 2 over F . Let n and m be 
arbitrary non-zero elements of A.

(1) The subset of primes p ∈ P(φ) such that n divides χ(Ep/A[πp]) has positive density.
(2) If EndF alg(φ) = A, then the subset of primes p ∈ P(φ) such that n divides 

χ(Ep/A[πp]) and, simultaneously, m divides χ(Op/Ep) has positive density.

We prove (1) as Corollary 3.2, and the proof of (2) is given at the end of Section 4.2. In 
fact, we prove stronger results about the refined indices from which this theorem follows. 
Our proof is modeled on the proof of an analogous result for abelian varieties by Zarhin 
[23].

Next, let p ∈ P(φ) and (bp,1, . . . , bp,r−1) be the refined index of Ep/A[πp]. Let

Pp(X) = Xr + ap,1X
r−1 + · · · + ap,r−1X + ap,r ∈ A[X]

the minimal polynomial of πp over F . We show that bp,1 and ap,1 produce an interesting 
reciprocity law (see Section 3).

Theorem 1.2. Let φ be a Drinfeld A-module of rank r ≥ 2 over F . Let 0 �= n �A. Assume 
the characteristic p of F does not divide r and the prime p ∈ P(φ) does not divide n. 
Then p splits completely in the Galois extension F (φ[n]) of F if and only if

ap,1 + r ≡ 0 (mod n) and bp,1 ≡ 0 (mod n).

Theorem 1.2 for r = 2 was proved in [4]. Here we give a somewhat different and 
simpler proof which works for any r. The restriction on r being coprime to p can be 
removed if n is prime; see Remark 3.1. The primes which split completely in F (φ[n])
have been studied before, in particular in papers by Cojocaru and Shulman [5], [6], and 
Kuo and Liu [14]. We also note that the argument of the proof of Theorem 1.2 can be 
adapted to the setting of elliptic curves over Q to give a different (simpler) proof of [9, 
Cor. 2.2] which does not rely on Deuring’s Lifting Theorem.

In Section 5, we discuss how to compute in practice the endomorphism ring Ep and 
the indices χ(Ep/A[πp]) and χ(Op/Ep). The calculation of the characteristic polynomial 
of the Frobenius Pp(X) is fairly straightforward, and easier than Schoof’s algorithm [18]
for elliptic curves over Fp. We describe an algorithm for calculating Pp(X) in polyno-
mial time in d and r. Then, assuming the rank of φ is 2, we describe an algorithm for 
computing Ep. The algorithm actually computes all three rings A[πp] ⊂ Ep ⊂ Op, and 
the corresponding indices. In comparison to the known algorithms for computing the 
endomorphism rings of elliptic curves over finite fields, cf. [9], [3], our algorithm is quite 
different and more elementary. The difference stems from the fact that we crucially use 
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the fact that EndFp
(φ) is a subring of the larger ambient space Fp{τ}. We have imple-

mented our algorithms in Magma, and the examples presented in Section 5 are based on 
computer calculations.

2. Drinfeld modules over Fp

In this section we collect some facts about Drinfeld modules over finite fields that are 
used throughout the paper.

Let p �A be a prime of degree d. Let φ : A → Fp{τ} be a Drinfeld A-module over Fp

of rank r determined by

φT = γ(T ) + g1τ + · · · + gr−1τ
r−1 + grτ

r, gr �= 0,

where γ : A → Fp = A/p is the quotient map. It is easy to see that π := τd is in the 
center of Fp{τ}, hence π ∈ EndFp

(φ). Denote by P (X) ∈ A[X] the minimal polynomial 
of π over φ(A).

Proposition 2.1. Let K = F (π) ∼= F [X]/(P (X)).

(1) The field extension K/F is imaginary of degree r.
(2) EndFp

(φ) is an A-order in K.

Proof. Let r1 be the degree of P (X). By Theorem 2.9 in [11], r1 divides r. Let r2 = r/r1. 
Let P1(X) = P (X)r2 . By Lemma 3.3 and Theorem 5.1 (ii) in [11], we have (P1(0)) = p. 
Thus, if c = P (0) is the constant term of P (X), then cr2 , up to F×

q multiple, is equal to 
the irreducible monic polynomial p. This implies r2 = 1, or equivalently r = r1. By [11, 
(2.3)], K/F is imaginary. This proves (1).

By Theorem 2.9 in [11], EndFp
(φ) ⊗A F is a central division algebra over K of dimen-

sion r2
2 = 1. Thus, EndFp

(φ) ⊗A F = K. This proves (2). �
The previous proposition implies that P (X) has degree r. Write

P (X) = Xr + a1X
r−1 + · · · + ar.

Proposition 2.2. For 1 ≤ i ≤ r, we have

deg(ai) ≤
i · d
r

.

Proof. This follows from [22, Thm. 1 (f)]. �
Proposition 2.3. Let

ε(φ) := (−1)r(−1)d(r+1)NrFp/Fq
(gr)−1 ∈ F×

q .
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Then

ar = ε(φ)p.

Proof. This follows from [13, p. 268]. �
We can consider Fp as an A-module via φ; this module will be denoted φFp. Then

φFp
∼= A/d1 × · · · ×A/dr, (2.1)

for uniquely determined non-zero ideals d1, . . . , dr � A such that d1 | d2 | · · · | dr. 
There are at most r terms because φFp is a finite A-module so for some d � A we have 
φFp ⊂ φ[d] ∼= (A/d)r. Denote χ(φ) := d1 · · · dr. It is clear that degχ(φ) = deg p. It is 
also easy to see the following:

Lemma 2.4. d1 ∈ A is the monic polynomial of largest degree such that p does not divide 
d1 and all the roots of φd1(x) are in Fp.

Proposition 2.5. We have

χ(φ) = P (1)A = (1 + a1 + a2 + · · · + ar)A.

Proof. See [11, Thm. 5.1 (i)]. �
Proposition 2.6. Let Frobp ∈ GFp

be the Frobenius automorphism α �→ αqd . Let l �A be 
a prime different from p.

(1) The characteristic polynomial of ρφ,l(Frobp) is P (X); in particular, the characteris-
tic polynomial of ρφ,l(Frobp) has coefficients in A and does not depend on l.

(2) The natural map

EndFp
(φ) ⊗A Al → EndAl[GFp

](Tl(φ))

is an isomorphism.

Proof. See [11, §3] or [22, Thm. 2]. �
3. Reciprocity law: proof of Theorem 1.2

Let φ be a Drinfeld A-module over F of rank r ≥ 2. For n � A, let F (φ[n]) be 
the splitting field of the polynomial φn(x) in (1.2). This is a Galois extension whose 
Galois group is naturally a subgroup of GLr(A/n). A prime p � A is unramified in 
F (φ[n])/F if p ∈ P(φ) and p does not divide n; cf. [21]. Theorem 1.2 describes those 
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primes which split completely in F (φ[n]) in terms of congruences modulo n; such theorems 
are usually called “reciprocity laws”. Recall that the set of all but finitely many primes 
which split completely in a given Galois extension uniquely determines that extension. 
In the following proof we keep the notion introduced right before Theorem 1.2.

Proof of Theorem 1.2. To simplify the notation, denote φ = φ ⊗ Fp. The prime p is 
unramified in F (φ[n]). Reducing φn(x) modulo p we get a canonical isomorphism φ[n] ∼=
φ[n] of A-modules. The prime p splits completely in F (φ[n]) if and only if Frobp ∈ GFp

acts as the identity on φ[n]. On the other hand, the action of Frobp on φ[n] agrees with 
the action of πp as an endomorphism of φ. Thus, we need to show that πp acts as the 
identity on φ[n] if and only if the congruences of the theorem hold.

First, we prove that w ∈ Ep acts as 0 on φ[n] if and only if w ∈ nEp. If w ∈ nEp
then w = vφn for some v ∈ Ep, so it obviously acts as 0 on φ[n]. Conversely, suppose 
w acts as 0 on φ[n]. By the division algorithm in Fp{τ}, we can write w = vφn + u

for some v, u ∈ Fp{τ} with u = 0 or degτ (u) < degτ (φn). Since w and φn act as 0
on φ[n], so does u. On the other hand, the polynomial φn(x) is separable. This implies 
degτ (u) ≥ degτ (φn) or u = 0. Thus, u = 0 and w = vφn. We need to show that v ∈ Ep, 
i.e., v commutes with φ(A). Now wφb = vφnφb = vφbφn and wφb = φbw = φbvφn. Thus, 
(vφb−φbv)φn = 0. Since Fp{τ} has no zero-divisors and φn �= 0, we must have vφb = φbv

for all b ∈ A, so v ∈ Ep.
Suppose πp acts as a scalar on φ[n]. This means that there is c ∈ A such that πp − c

annihilates φ[n]. By the previous paragraph, this is equivalent to πp − c being in nEp; 
this is equivalent to A[πp] ⊂ A + nEp. We can choose an A-basis 1, e1, . . . , er−1 of Ep
such that A[πp] = A + bp,1e1 + · · · + bp,r−1er−1. Since bp,1 divides bp,2, . . . , bp,r−1, the 
inclusion A[πp] ⊂ A + nEp is equivalent to n | bp,1. Thus, πp acts as a scalar on φ[n] if 
and only if n divides bp,1.

Now note that πp acts as the identity on φ[n] if and only if πp acts as a scalar c on 
φ[n] and c ≡ 1 (mod n). If πp acts as a scalar then the characteristic polynomial of πp

satisfies Pp(X) ≡ (X − c)r (mod n). (This congruence is not sufficient for πp to act as a 
scalar on φ[n], if the action is not semi-simple.) We have

(X − c)r = Xr − rcXr−1 + · · · .

Since p does not divide r by assumption, we see that c ≡ 1 (mod n) if and only if 
rc ≡ r (mod n). Hence c ≡ 1 (mod n) if and only if ap,1 ≡ −rc ≡ −r (mod n). �
Remark 3.1. If n itself is prime, then in Theorem 1.2 one can dispose with the assumption 
that p � r as follows: Decompose r = psr′, s ≥ 0 with p � r′. Then p � n splits completely 
in F (φ[n]) if and only if

ap,ps + r′ ≡ 0 (mod n) and bp,1 ≡ 0 (mod n).
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The proof is essentially the same except at the end we have

(X − c)r = (Xps − cp
s

)r
′
= Xr − r′cp

s

Xps(r′−1) + · · · .

If n is prime, then the pth power map is an automorphism of (A/n)×. Thus, c ≡ 1 (mod n)
if and only if cps ≡ 1 (mod n); thus, c ≡ 1 (mod n) if and only if ap,ps ≡ −r′cp

s ≡
−r′ (mod n).

Corollary 3.2. Let φ be a Drinfeld A-module over F of rank r ≥ 2. For a given n ∈ A, 
the set of primes p ∈ P(φ) such that n divides bp,1 has positive density. In particular, for 
any n ∈ A there are infinitely many p ∈ P(φ) such that n divides the index χ(Ep/A[πp]).

Proof. From the proof of Theorem 1.2 we see that for any prime p for which πp acts as 
a scalar on (φ ⊗ Fp)[n] we have n | bp,1 (this part does not use the assumption that r is 
coprime to p). The set of primes that split completely in F (φ[n]) have this property and 
positive density 1/[F (φ[n]) : F ] by Chebotarev. �

Let p ∈ P(φ). As in Section 2, we can consider Fp as an A-module via φ ⊗ Fp. Let

φ⊗FpFp
∼= A/dp,1 × · · · ×A/dp,r

be the isomorphism of (2.1). (Keep in mind that φ in Section 2 is over Fp, whereas in 
this section φ is over F .)

Corollary 3.3. With notation and assumptions of Theorem 1.2, we have

dp,1 = gcd(bp,1, ap,1 + r).

Proof. From the proof of Theorem 1.2 we see that (φ ⊗Fp)[n] ⊂ Fp if and only if p splits 
completely in F (φ[n]). The claim then follows from Lemma 2.4 and Theorem 1.2. �

The previous corollary for r = 2 already appears in [4]. In the r = 2 case, from 
Corollary 3.3, Proposition 2.3 and Proposition 2.5 we also get that

1 + ap,1 + ε(φ⊗ Fp)p
gcd(bp,1, ap,1 + r) ∈ A,

and this polynomial generates dp,2.

4. Large indices: proof of Theorem 1.1

4.1. Preliminaries

Fix a prime l � A and denote K = Fl. Let V be a vector space of dimension r over 
K. For u ∈ EndK(V ), denote by Δ(u) the discriminant of the characteristic polynomial 
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of u. Note that the characteristic polynomial of u has no multiple roots over Kalg if and 
only if Δ(u) �= 0.

Denote by Z(u) the centralizer of u in EndK(V ). Assume Δ(u) �= 0. Obviously, 
K[u] ⊆ Z(u), but since K[u] is a maximal torus in EndK(V ) and Z(u) = Z(K[u]), we 
in fact have K[u] = Z(u). Denote

Z(u)◦ = {w ∈ Z(u) | Δ(w) �= 0}.

Since the complement of Z(u)◦ in Z(u) is the locus of vanishing of Δ, Z(u)◦ is open 
and everywhere dense in Z(u) with respect to the l-adic topology. It is clear that for any 
w ∈ Z(u)◦ we have Z(w) = Z(u).

Lemma 4.1. The map

Ψu : AutK(V ) × Z(u)◦ → AutK(V ), (g, w) �→ gwg−1

is an open map with respect to the l-adic topology, i.e., the image under Ψu of any open 
subset of AutK(V ) × Z(u)◦ is open in AutK(V ).

Proof. It is enough to prove that the induced map on tangent spaces of the corresponding 
l-adic manifolds is surjective; cf. [17, Cor. 4.5]. Since the map on tangent spaces is a 
homomorphism of vector spaces over K, the property of this map being surjective is 
invariant under base change. Thus, after possibly extending the base field K, we can 
assume that u has all its eigenvalues in K, so Z(u) is a split torus. Then, after fixing 
an appropriate basis of V , we identify AutK(V ) with GLr(K) and Z(u) with diagonal 
matrices in Mr(K). We show that for any (g, t) ∈ AutK(V ) × Z(u)◦, the derivative

dΨu

∣∣
(g,t) : Mr(K) × Z(u) → Mr(K)

is surjective.
A small calculation shows that dΨu

∣∣
(g,t)(M, N) = gNg−1 + Mtg−1 − gtg−1Mg−1. 

Substituting M ′ = g−1M , we can write dΨu

∣∣
(g,t)(M, N) = g(N + [M ′, t])g−1. Since we 

assumed u to be diagonal, t is also a diagonal matrix with distinct entries. It would be 
enough to show that for any X ∈ Mr(K), we can find M ′ and N , such that (N+[M ′, t]) =
g−1Xg =: X ′. Any X ′ ∈ Mr(K) can be written as X ′ = X1 + X2, where X1 is a 
diagonal matrix and X2 has zeros on the diagonal. We can solve for M ′ = (mij) such 
that [M ′, t] = (mij(ti − tj)) = X2 since ti �= tj for i �= j. Finally, if we take M = gM ′

and N = X1 then we get dΨu

∣∣
(g,t)(M, N) = gX ′g−1 = X. �

Let Λ be an Al-lattice in V of maximal rank r. Consider the intersection

Z(u) := Z(u)
⋂

EndAl
(Λ) ⊂ EndAl

(Λ) ⊂ EndK(V ).
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It is clear that Z(u) coincides with the centralizer of u in EndAl
(Λ) and is an Al-order 

in Z(u).

Proposition 4.2. Let G be an open compact subgroup of AutAl
(Λ). The set

U = {γ ∈ G | Z(γ) ∼= Z(u)}

is open in G.

Proof. Since G is an open compact subgroup of AutK(V ), the intersection

Z(u)◦G := G
⋂

Z(u)◦

is an open subset in Z(u)◦. (This subset is non-empty since its closure contains the 
identity.) Therefore, by Lemma 4.1, G′ := Ψu(G ×Z(u)◦G) is an open subset of AutK(V ). 
On the other hand, obviously, G′ ⊂ G.

Note that for any g ∈ G and w ∈ Z(u)◦, we have

Z(gwg−1) = gZ(w)g−1 = gZ(u)g−1.

Since G is a subgroup of AutAl
(Λ), this implies

Z(gwg−1) = gZ(w)g−1 = gZ(u)g−1.

In particular, Z(γ) ∼= Z(u) for γ = gwg−1. Since every element in G′ is of this form, we 
conclude that Z(γ) ∼= Z(u) for all γ ∈ G′. As G′ is open in G, this finishes the proof. �
4.2. Main theorem

Let φ be a Drinfeld A-module of rank r ≥ 2 over F . Let p ∈ P(φ) and Ep :=
EndFp

(φ ⊗ Fp). Let l � A be a prime different from p. By [21], the Tate module Tl(φ)
is unramified at p, i.e., for any place p̄ in F sep extending p, the inertia group of p̄
acts trivially on Tl(φ). There is a canonical isomorphism Tl(φ) ∼= Tl(φ ⊗ Fp) which is 
compatible with the action of a Frobenius element σp in the decomposition group of 
p̄ on Tl(φ) and the action of Frobp ∈ GFp

on Tl(φ ⊗ Fp); cf. [21, p. 479]. Hence using 
Proposition 2.6, we get

Ep ⊗A Al
∼= EndAl[GFp

](Tl(φ⊗ Fp))

∼= Centralizer of Frobp in EndAl
(Tl(φ⊗ Fp))

∼= Centralizer of σp in EndAl
(Tl(φ)).
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Now let Cl be a fixed commutative semi-simple Fl-algebra of dimension r and let Rl

be an Al-order in Cl. Fix an isomorphism of free Al-modules Rl
∼= Tl(φ) and extend it 

linearly to an isomorphism Rl ⊗Al
Fl = Cl

∼= Vl(φ) := Tl(φ) ⊗Al
Fl. Let

Cl
ι−→ EndFl

(Cl) ∼= EndFl
(Vl(φ))

be the embedding given by multiplication, i.e., ι(α)(x) = αx. We identify Cl with its 
image in EndFl

(Vl(φ)). Since Cl is a maximal torus, it coincides with its own centralizer 
Z(Cl) in EndFl

(Vl(φ)).

Lemma 4.3. We have:

(i) Rl = {u ∈ Cl | u(Tl(φ)) ⊂ Tl(φ)}.
(ii) Rl = {u ∈ EndAl

(Tl(φ)) | u ∈ Z(Cl)}.

Proof. (i) We clearly have the inclusion Rl ⊂ {u ∈ Cl | u(Tl(φ)) ⊂ Tl(φ)}. For the 
reverse inclusion, assume u ∈ Cl is such that u(Tl(φ)) ⊂ Tl(φ). Then u · 1 = u ∈ Rl. (ii) 
This follows from (i) since Z(Cl) = Cl. �

A simple finite-dimensional commutative algebra over Fl is just a field extension 
of Fl. Thus Cl =

∏h
i=1 Ki where each Ki is a finite algebraic field extension of Fl. We 

will assume from now on that each Ki/Fl is a separable extension. Then we have the 
Primitive Element Theorem, so can use Lemma 2.3 in [23] to prove that (use A instead 
of Z in the proof).

Lemma 4.4. There exists an invertible element u0 of Cl such that Cl = Fl[u0].

Note that the centralizer Z(u0) of u0 in EndFl
(Cl) is Z(Cl) = Cl. Hence by Lemma 4.3

the centralizer Z(u0) of u0 in EndAl
(Tl(φ)) is Rl. Let G be an open subgroup of 

AutAl
(Tl(φ)). By Proposition 4.2, the set

U = {u ∈ G | Z(u) ∼= Z(u0)}

is open in G.
We will need the following result of Pink [16]:

Theorem 4.5. If EndF alg(φ) = A, then for any finite set S of primes of A the image of 
the homomorphism

GF →
∏

l∈S

AutAl
(Tl(φ))

is open.
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Assume EndF alg(φ) = A. Let S = {l1, . . . , lm} be a set of distinct primes. Choose a 
commutative separable semi-simple Fl-algebra Cl of dimension r for each l ∈ S. Choose 
an Al-order Rl ⊂ Cl for each l ∈ S. Let

ρ : GF →
∏

l∈S

AutAl
(Tl(φ))

be the Galois representation arising from the action on Tl(φ). Let 
∏

l∈S Gl be the image 
of ρ. By Theorem 4.5, Gl is an open subgroup of AutAl

(Tl(φ)). Let Ul ⊂ Gl be the 
open subset provided by Proposition 4.2. Since by Chebotarev’s theorem the Frobenius 
elements are dense in GF , they are also dense in 

∏
l∈S Ul. In particular, there are infinitely 

many p such that the conjugacy class of σp lies in 
∏

l∈S Ul. Even stronger, the set of 
such primes has positive density by Corollary 2 (b) on page I-8 of [20]. Thus, we have 
proved the following:

Theorem 4.6. Assume EndF alg(φ) = A. The set of primes p ∈ P(φ) such that Ep⊗AAl
∼=

Rl for all l ∈ S has positive density.

Finally, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Part (1) of the theorem was already proved as Corollary 3.2. 
Moreover, it easy to see from the proof of Corollary 3.2 that to prove part (2) it is 
enough to show that for a subset of primes p ∈ P(φ) of positive density σp acts trivially 
on φ[n], simultaneously with the condition of Theorem 4.6.

Let n = q
s1
1 · · · qsdd be the prime decomposition of a given element n ∈ A. Let S′ =

{q1, . . . , qd}. Let 
∏

l∈S∪S′ Gl be the image of GF →
∏

l∈S∪S′ AutAl
(Tl(φ)) For q ∈ S′, 

let G′
q be the intersection of Gq with the principal congruence subgroup of GLr(Aq) of 

level qs consisting of matrices which are congruent to 1 modulo qs. Note that G′
q is still 

open in AutAq
(Tq(φ)). For l ∈ S \S′, let G′

l = Gl. Now to achieve our goal we can simply 
apply the argument in the proof of Theorem 4.6 to 

∏
l∈S∪S′ G′

l. �
5. Algorithms

In this section we describe algorithms for computing some of the invariants of Drinfeld 
modules over finite fields discussed in Section 2. We have implemented these algorithms 
in Magma. The examples presented in this section are based on computer calculations.

Throughout this section φ : A → Fp{τ} is a Drinfeld module of rank r, p � A is a 
prime of degree d, and γ : A → Fp = A/p is the reduction modulo p.

5.1. Characteristic polynomial of the Frobenius

Let

P (X) = Xr + a1X
r−1 + · · · + ar
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be the characteristic polynomial of Frobp acting on Tl(φ); cf. Proposition 2.6. From 
Proposition 2.2 we know that a1, . . . , ar ∈ A and deg(ai) ≤ i · d

r . In particular, 
a1, . . . , ar−1 are uniquely determined by their residues modulo p. We also know from 
Proposition 2.3 that ar = ε(φ)p. Now since P (X) is also the minimal polynomial of 
π = τd, we have

τdr + φa1τ
d(r−1) + · · · + φar−1τ

d + φar
= 0.

Denote

fi = φai
τd(r−i) + φai+1τ

d(r−i−1) + · · · + φar
∈ Fp{τ}

and

f†
i = τdr + φa1τ

d(r−1) + · · · + φai−1τ
d(r−i+1).

Note that degτ φaj
τd(r−j) ≥ d(r− j), so the coefficient of τd(r−i+1) in f†

i is the constant 
term of φai−1 , i.e., γ(ai−1). Therefore,

γ(ai−1) = −Coefficient of τd(r−i+1) in fi.

Since we know fr explicitly, we can compute all ai recursively, where we use 
ar, ar−1, . . . , ar−i to calculate ar−i−1.

Computing φa takes approximately r deg(a)2 operations (computing φTn recursively 
via φTφTn−1 takes ≈ nr operations, so computing φa takes r(deg(a) + (deg(a) − 1) +
· · · + 1 ≈ r deg(a)2 operations). We conclude that the amount of work involved in the 
calculation of P (X) is O(r2d2), so this is a “polynomial time” algorithm; cf. [18].

Example 5.1. Let q = 3, p = T 7 − T 2 + 1, and φT = T + (T 2 + 1)τ + Tτ2 + τ3. Then

P (X) = X3 + (−T + 1)X2 + (T 3 + T − 1)X − p.

Remark 5.2. For rank r = 2 there is a different recursive procedure for computing P (X)
based on the properties of Eisenstein series; see [12, Prop. 3.7]. In practice, Gekeler’s 
algorithm seems to have the same efficiency as what was presented above (the amount 
of computer time it took to execute both in Magma were almost identical in our tests).

5.2. Exponent of φFp

Let

φFp
∼= A/d1 × · · · ×A/dr,
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be the isomorphism of (2.1). We call dr the exponent of φFp, since the fact that d1 | · · · | dr
implies that dr is the smallest degree element of A such that φdr

annihilates Fp. The 
exponent was studied in prior papers by Cojocaru and Shulman [5], [6].

Denote θ = γ(T ). Then Fp = A/p is an Fq-vector space with basis 1, θ, θ2, . . . , θd−1. 
Put

d = x0 + x1T + · · · + xd−1T
d−1 + T d

for a hypothetical annihilator of φFp, i.e., φd acts as zero on Fp. Let k ∈ {0, . . . , d − 1}. 
Compute

φT i(θk) = αi,1 + αi,2θ + · · · + αi,dθ
d−1

for i = 1, 2, . . . , d, which can be easily done by repeated application of φT . Let Mk be the 
d × d matrix whose first row consists of zeros except at position k + 1 where it is 1, and 
the (i + 1)-th row is [αi,1, αi,2, . . . , αi,d] for 1 ≤ i ≤ d − 1. Let Nk = −[αd,1, . . . , αd,d]t. 
Then φd acting as 0 on A/p is equivalent to φd(θk) = 0 for all k = 0, . . . , d − 1, which 
itself is equivalent to

[x0, . . . , xd−1]Mk = Nk for all k = 0, . . . , d− 1.

This system of linear equations always has a solution (since φFp has exponent). Find a 
particular solution x and find a basis b1, . . . , bh for the intersection of null-spaces of all 
Mk, so that every other solution is of the form x+span(b1, . . . , bh). It is easy to see that 
the exponent of φFp is the gcd of fx, fx+b1 , . . . , fx+bh

, where fy := y0 + · · ·+yd−1T
d−1 +

T d for y = (y0, . . . , yd−1). This can be easily computed. Computing all φT i(θk) can be 
done in polynomial time in d, solving the system of linear equations also can be done in 
polynomial time in d. Hence we can find the exponent dr of φFp in polynomial time in d.

Example 5.3. Suppose we want to compute all d1, . . . , dr. The previous algorithm allows 
us to computed dr. Since d1 | d2 | · · · | dr, this already gives us only finitely many 
possibilities for these invariants. To further restrict the possibilities, one can compute 
P (x), which then allows to compute the product d1 · d2 · · · dr = P (1)A = χ(φ), thanks 
to Proposition 2.5. One can also uniquely determine d1 using Lemma 2.4. In practice, 
knowing d1, dr, and the product 

∏r
i=1 dr is usually sufficient to uniquely determine all 

di’s. (Obviously, this is always the case when r ≤ 3.) When this is not sufficient, one can 
determine these invariants by computing the dimension of the null space of possible φdi

by an argument used in the algorithm for computing dr.
In this example we take q = 3 and compute d1, d2, d3 for the Drinfeld A-module

φT = θ + θτ + τ3

over Fp for varying primes p, which are chosen specifically to demonstrate different 
possible situations.
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First, let p = T 7 + T 5 + T − 1. Then the exponent is d3 = T 3(T + 1)(T − 1). We also 
have P (X) = X3 −X2 − (T 3 − T + 1)X − p. Hence χ(φ) = T 3(T + 1)2(T − 1)2. This 
implies d2 = (T + 1)(T − 1) and d1 = 1.

Next, let p = T 8 + T 7 + T 6 + T 4 − T 3 − T 2 − 1. Then d3 = (T + 1)2(T − 1)3 and 
χ(φ) = (T + 1)3(T − 1)5. Hence either

d2 = (T + 1)(T − 1)2, d1 = 1,

or

d2 = (T + 1)(T − 1), d1 = (T − 1).

If d1 is not 1, then, by Lemma 2.4, φT−1(x) = (T − 1)x + Tx3 + x27 splits completely 
modulo p. This is easy to check on a computer to be false, hence d2 = (T + 1)(T − 1)2
and d1 = 1.

Finally, let p = T 14 + T 13 + T 12 + T 5 − T 2 + T + 1. Then

d3 = T (T + 1)(T − 1)(T 2 + 1)2(T 4 − T − 1).

and

χ(φ) = T 3(T + 1)2(T − 1)(T 2 + 1)2(T 4 − T − 1).

One checks that φ[T ] is rational over Fp. Hence we must have

d1 = T, d2 = T (T + 1).

5.3. Endomorphism ring

Now assume r = 2. Let

P (X) = X2 − aX + ε(φ)p,

be the characteristic polynomial of the Frobenius, so a is the trace of ρφ,l(Frobp). Let π
be a root of P (X). Then K = F (π) is an imaginary quadratic extension of F . Let OK

be the integral closure of A in K. Denote Eφ := EndFp
(φ). By Proposition 2.1, we have 

the inclusion of orders,

A[π] ⊂ Eφ ⊂ OK .

Let cπ (resp. cφ) be the index of A[π] (resp. Eφ) in OK . These are monic polynomials 
in A such that cφ divides cπ; note that b = cπ/cφ is the (refined) index of A[π] in Eφ
that appears in Theorem 1.2. Orders in quadratic extensions are uniquely determined 
by their indices:
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A[π] = A + cπOK , Eφ = A + cφOK ,

so to determine Eφ it is enough to determine cφ.
We have OK = A[α] for some α satisfying a monic quadratic polynomial f(X) ∈ A[X]. 

Note that A[cπα] = A[π], so cπα = m + nπ, where m ∈ A and n ∈ F×
q . Suppose we are 

able to do the following:

(i) Compute f(X).
(ii) Compute cπ.
(iii) Compute m, n such that cπα = m + nπ.

Then cφ can be computed using the following process: Initially, put c1 = cπ. Let c �= 1
run through monic divisors of c1. For a given c we look for x ∈ Fp{τ} such that

xφc = φm + nτd. (5.1)

If we write x = x0 + x1τ + · · · + xsτ
s, where s = degτ (nτd + φm) − 2 deg(c), then (5.1)

gives a system of linear equations in x0, . . . , xm, so can be easily solved. Of course, this 
system of linear equations might not have any solutions, but when it does, the solution 
x is unique. For such a solution we check whether xφT = φTx. If this condition holds 
(so x ∈ Eφ) then we replace c1 by c1/c and repeat the process. Eventually, we will either 
end up with c1 = 1 or will not find any x satisfying the necessary conditions. In that 
case, the process terminates and the index of Eφ is cφ = c1. Note that this process also 
computes a generator of Eφ over A. Indeed, it is easy to see that Eφ = A[x], where x is 
the solution of xφcπ/cφ = nτd + φm.

Now we address the question of how to carry out (i)-(iii). There are three cases, which 
need to be treated separately:

Case 1: q is odd. Let Δπ := a2 − 4ε(φ)p. Note that Δπ ∈ A has degree ≤ d. We 
can decompose any polynomial h(T ) ∈ A as h(T ) = c2e, where c is monic and e is 
square-free. Decompose Δπ in this manner

Δπ := c2 · Δmax.

Then f(X) = X2 − Δmax and cπ = c; this gives (i) and (ii). If we fix a root α of f(X), 
then (iii) follows from the quadratic formula: 2π = a + cπα.

Case 2: q is even and a = 0. This is equivalent to K/F being inseparable. Let g :=
ε(φ)p. Then K is defined by the equation X2 = g. The polynomial g decomposes 
(uniquely) as g = ge + go, where ge (resp. go) is a polynomial in T whose terms all 
have even degrees (resp. odd degrees). Then ge = s2 and go = Tc2 for uniquely deter-
mined s, c ∈ A. After a change of variables X �→ X + s, we see that A[√g] = A[c

√
T ]. 

Hence OK = A[
√
T ], f(X) = X2 + T , cπ = c, and π + s = cπ

√
T .
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Case 3: q is even and a �= 0. This is the most complicated case; it is equivalent to 
K/F being separable in characteristic 2. By [19, III.6, Cor. 1], we have an equality of 
ideals

(P ′(π)) = (a) = (DK · cπ),

where DK is the different of OK over A. Thus, to compute cπ we need to compute DK . 
To do this, we first recall some facts about Artin-Schreier extensions.

Any quadratic separable extension K/F is the splitting field of a polynomial

X2 + X = n/m

for some n, m ∈ A coprime to each other. Suppose m = q2em1, where e ≥ 1, q is a prime, 
and q � m1. After a change of variables, X �→ X + b/pe, b ∈ A, we get

X2 + X = n + b2m1 + qem1b

m
.

Since n and m1 are coprime to q, and squaring is an automorphism of A/q, we can choose 
b such that n +b2m1 +qem1b is divisible by q. Repeating this process finitely many times, 
we can assume that

m = q
2e1−1
1 · · · q2es−1

s , e1, . . . , es ≥ 1.

Then, by [1, Cor. 2.3],

DK = q
e1
1 · · · qess .

After a change of variables X �→ X/εDK , we can rewrite X2 +X = n/m = q1 · · · qsn/D2
K

as

X2 + εDKX = ε2q1 · · · qsn,

where ε ∈ F×
q is arbitrary.

Lemma 5.4. Let α be a root of f(X) = X2 + εDKX + ε2q1 · · · qsn. Then OK = A[α].

Proof. It is clear from the construction that K = F (α). Since f(X) ∈ A[X] is monic, 
we have A[α] ⊂ OK . On the other hand, f ′(X) = εDK , so A[α] = OK by [19, III.6, 
Cor. 2]. �

To compute the different of the extension defined by the characteristic polynomial of 
the Frobenius X2 + aX = ε(φ)p, we first make a change of variables X �→ aX, then 
divide both sides by a2, obtaining X2 + X = ε(φ)p/a2. Then we apply the process 
of the previous paragraph. Let ε be the leading coefficient of a as a polynomial in T . 
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We have computed the minimal polynomial f(X) = X2 + εDKX + b of an element α
generating OK . Then cπα is a root of X2 +aX+c2πb = 0. This implies that cπα = m +π, 
where m ∈ A is such that

m2 + am = c2πb + ε(φ)p.

If we write m = m0+m1T+· · · as a polynomial in T whose coefficients mi are unknowns, 
then the previous equality reduces to solving a system of quadratic equations over Fq, 
which can be done recursively starting with the constant term m0. In fact, the first 
non-zero coefficient mh of m is determined from a quadratic equation over Fq, while 
every other mi, i ≥ h, can be deduced from a linear equation in mi with coefficients 
involving mh, . . . , mi−1.

Example 5.5. Let q = 3 and φ be a Drinfeld A-module of rank 2 over F given by

φT = T + g1τ + g2τ
2.

Tables 1 and 2 list the invariants of φ ⊗ Fp for primes p of degree 6 in cases when 
A[πp] �= Eπ. The total number of primes of degree 6 in F3[T ] is 116, while the number of 
primes in Table 1 (resp. Table 2) is 24 (resp. 20).

Example 5.6. F4 is generated over F2 by w satisfying w2 + w + 1 = 0. Table 3 lists 
computational data for

φT = T + Tτ + τ2,

which involves Cases 2 and 3 of the algorithm computing Eφ.

Example 5.7. Let q = 3 and φT = T + τ +Tτ2. We know from Theorem 1.1 that for any 
fixed prime q there exist infinitely many p such that cφ⊗Fp

= χ(Op,K/Eφ⊗Fp
) is divisible 

by q. We compute that:

If q = T 2 − T − 1, then the smallest degree p is T 6 + T 5 + T 3 − 1.
If q = T 3 − T + 1, then the smallest degree p is T 6 + T 4 + T 3 + T 2 − T − 1.
If q = T 4 − T 3 − 1, then the smallest degree p is T 10 + T 9 − T 7 + T 5 − T + 1.

By the same corollary, we can also fix two primes q1 and q2 and find infinitely 
many p such that q1 divides cπp

/cφ⊗Fp
= χ(Eφ⊗Fp

/A[πp]) and q2 divides cφ⊗Fp
=

χ(Op,K/Eφ⊗Fp
). If q1 = T and q2 = T 2 − T − 1, then such a prime of smallest de-

gree is p = T 7 − T 5 − T 4 − 1. On the other hand, if q1 = T 2 − T − 1 and q2 = T , then 
the smallest degree p is T 9 + T 5 + T 4 + T 2 − T + 1.
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cφ Δmax

1 2T 3 + 2T 2 + 2T + 2
1 T 3 + T 2 + 2T
T + 1 T + 1
T + 2 2T + 2
1 T 3 + 2T 2 + 2
1 2T 3 + T 2 + 2T + 2
1 2T 3 + 2T + 2

1 T + 2 2T + 1
1 T 3 + T 2 + 2
1 2T 3 + T 2 + 2T + 2
1 T 3 + T + 2
T + 1 T

1 T 3 + 2T + 1
1 2T 2 + T

1 T 3 + 2T + 2
T + 2 T + 1
1 2T 3 + 2T 2 + T + 2
1 2T 3 + 2T
1 T 3 + 2T
1 2T 3 + 2T + 2
1 2T 2 + 2T
1 T 3 + 2T 2 + 1
1 2T 3 + 2T 2 + T

T 2T + 1
Table 1
q = 3, g1 = T , g2 = 1.

p a ε(φ) cπ

T 6 + 2T 5 + 2T 3 + T 2 + 2T + 2 2T 3 + T 2 + 2 1 T + 2
T 6 + T 5 + T 4 + 1 2T 3 + 2T 2 + 2T + 2 1 T + 2
T 6 + 2T 5 + 2T 4 + 2T 3 + 2T 2 + 2T + 2 2T 3 1 T 2 + 2
T 6 + T 5 + 2T 4 + 2T 2 + 2T + 2 2T 3 + T + 2 1 T 2 + 2
T 6 + T 5 + T 4 + T 3 + T + 2 2T 3 + 2T 2 + 1 1 T + 2
T 6 + T 5 + T 4 + 2T 2 + 2 2T 3 + T + 2 1 T + 2
T 6 + T 5 + T 3 + T 2 + T + 2 2T 3 + T + 2 1 T + 1
T 6 + T 5 + T 4 + T 3 + 2T 2 + 2T + 2 2T 3 1 T 2 + T +
T 6 + 2T 4 + T 2 + T + 2 2T 3 + T 2 + 2 1 T + 2
T 6 + T 5 + 2T 4 + 2T 3 + 2T 2 + 2 2T 3 + 2T + 1 1 T + 2
T 6 + T 4 + T 3 + 2T + 2 2T 3 + T 2 + T + 1 1 T + 2
T 6 + 2T 4 + 2T 3 + T + 1 2T 3 + T 2 + T + 1 1 T 2 + 2
T 6 + 2T 4 + T 3 + T 2 + 2 2T 3 + T 2 + 2T 1 T + 2
T 6 + T 3 + T 2 + 1 2T 3 + 2T + 1 1 T + 2
T 6 + 2T 3 + 2T + 2 2T 3 + T 2 + 2 1 T + 2
T 6 + T 3 + 2T 2 + 2T + 1 2T 3 + T 2 + T + 1 1 T 2 + 2T
T 6 + T 5 + 2T 4 + T 3 + T 2 + 2 2T 3 + 2T + 2 1 T + 1
T 6 + T 5 + 2T 3 + 1 2T 3 + 1 1 T

T 6 + 2T 3 + 2T 2 + T + 1 2T 3 + T 2 + 2 1 T + 2
T 6 + 2T 5 + T 4 + 2T + 1 2T 3 + T 2 + 2T 1 T + 2
T 6 + T 2 + 2T + 1 2T 3 + 2T + 2 1 T

T 6 + 2T 5 + 2T + 2 2T 3 1 T + 2
T 6 + 2T 5 + T 2 + 2T + 1 2T 3 + T 2 + 2 1 T + 2
T 6 + 2T 5 + 2T 4 + T 3 + 1 2T 3 + T 2 + 2 1 T 2 + T
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Table 2

cφ Δmax

T 2 + 2T + 1 2
1 T

1 2T 4 + T 2 + 2T + 2
1 2T 4 + T 2 + T + 2
1 2T 4 + T 2 + 2T + 2
1 2T 4 + 2T 3 + 2T
T 2 + 2 2
1 2T
1 2T 4 + 2T 3 + T 2 + 2T
1 2T 4 + T 2 + T + 2
1 2T 4 + T 3 + T

1 2T 4 + T 3 + 2T 2 + 2T
T 2
1 T 3 + 2T 2 + 2
T + 1 2T 2 + 2
T 2 + T + 1 2
1 2T 4 + 2T 3 + 2T 2 + T

1 2T 3 + 2T 2 + 2
1 2T 4 + T 3 + T 2 + T

T + 2 2T 2 + 2

cπ cφ DK

T + w 1 1
T 1 T + w2

T 2 + wT + w2 T + w2 1
T + w2 1 T 2 + T + 1
T 3 + T 2 T 2 √

T

T 2 + 1 T + 1 1
T 2 + w T + w + 1

√
T

T + 1 1 T 3 + T + 1
T + 1 1 T 4 + w2T + w2
q = 3, g1 = 1, g2 = T .

p a ε(φ) cπ

T 6 + 2T 5 + 2T 4 + T 3 + T 2 + T + 2 2T 3 + T + 1 2 T 3 + 2T 2 + T

T 6 + 2T 5 + 2T 4 + T 2 + T + 1 T 3 + T + 1 1 T 2 + 1
T 6 + T 5 + 2 2T 3 + 2T 2 + 2 2 T

T 6 + 2T 5 + 2 T 3 + 2T 2 + 2 2 T

T 6 + 2T 5 + T 4 + T 2 + T + 2 T 3 + T 2 T + 2
T 6 + 2T 5 + 2T 4 + 2T 3 + 2T + 2 T 3 + 2T 2 + 1 2 T + 1
T 6 + 2T 4 + 1 T 2 + 1 1 T 3 + 2T
T 6 + T 5 + 2T 4 + T 2 + 2T + 1 2T 3 + 2T + 1 1 T 2 + 1
T 6 + 2T 4 + T 2 + T + 2 T 3 + T 2 + 2T + 2 2 T

T 6 + T 5 + T 4 + T 2 + 2T + 2 2T 3 + 2T 2 T + 1
T 6 + T 5 + 2T 4 + T 3 + T + 2 2T 3 + 2T 2 + 1 2 T + 2
T 6 + T 3 + T 2 + 2T + 2 T 3 + 2T 2 + 2T + 1 2 T

T 6 + 2T 2 + 1 T 2 + 2 1 T 3 + T

T 6 + T 3 + 2T 2 + 2T + 1 T 3 + 2T 2 1 T + 1
T 6 + 2T 4 + 2T 3 + T 2 + 2T + 2 2T 3 + 2T 2 + 2T 2 T 2 + 2T + 1
T 6 + T 5 + 2T 4 + 2T 3 + T 2 + 2T + 2 T 3 + 2T + 1 2 T 3 + T 2 + T

T 6 + 2T 3 + T 2 + T + 2 2T 3 + 2T 2 + T + 1 2 T

T 6 + 2T 3 + 2T 2 + T + 1 2T 3 + 2T 2 1 T + 2
T 6 + 2T 4 + T 2 + 2T + 2 2T 3 + T 2 + T + 2 2 T

T 6 + 2T 4 + T 3 + T 2 + T + 2 T 3 + 2T 2 + T 2 T 2 + T + 1

Table 3
q = 4, g1 = T , g2 = 1.

p a ε(φ)
T 5 + wT 2 + w2T + w T + w 1
T 5 + wT 4 + w2T 3 + w2T 2 + wT + w2 wT 2 + T 1
T 6 + T 5 + w2T 4 + w2T 3 + T 2 + w2T + w2 w2T 2 + T + w 1
T 7 + T 6 + T 5 + wT 4 + wT + w T 3 + wT 2 + wT + w2 1
T 7 + T 5 + w2T 4 + w2T 2 + 1 0 1
T 7 + w2T 5 + T 4 + T 3 + wT 2 + w2T + w wT 2 + w 1
T 8 + T 6 + wT 5 + w2T 4 + wT 2 + T + w2 0 1
T 9 + T 8 + wT 5 + w2T 4 + wT 3 + w T 4 + T 3 + T 2 + 1 1
T 11 + wT 10 + w2T 9 + wT 8 + w2T 7 + wT 4 + wT 3 + wT 2 + T + w2 wT 5 + wT 4 + T 2 + 1 1
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