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We investigate a number of questions concerning representations of a set of
numbers as sums of subsets of some other set. In particular, we obtain several
results on the possible sizes of the second set when the first set consists of a
geometric sequence of integers, partially answering a generalisation of a question of
Gerry Myerson. � 2001 Academic Press
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1. INTRODUCTION

At the 1997 West Coast Number Theory Conference at Asilomar, Gerry
Myerson asked the following question in the problem session [2,
Problem 97:16, includes the history below]: Is there a set B of n numbers,
such that each power of 2 from 1 to 2n is the sum of the elements of some
subset of B?

Myerson pointed out that an easy induction argument shows that at
least one of the numbers must be negative and that straightforward check-
ing shows that n must be at least 4. Just after Myerson posed this problem,
Peter Montgomery answered in the affirmative by giving the set [&5, 1,
7, 9], representing 1, 2, 4, 8, 16, and he later found the additional example
[&3, 4, 5, 11]. After seeing Montgomery's solution, Myerson asked how
many fewer elements a set could have than a set of powers of 2 that it so
represented. The author then pointed out that one could use Montgomery's
solution to make this difference arbitrarily large by using the set

[&5 } 32i, 32i, 7 } 32i, 9 } 32i | 0�i�m&1].

This set has size 4m, and each of the 5m powers of 2 from 1 to 25m&1 is
the sum of the elements of one of its subsets. Upon hearing this, Myerson
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asked what one could say in general about how many numbers it takes to
represent the first n powers of 2.

We first generalise to powers of other integers and prove some simple
facts about such representations, including Myerson's observations above,
which he stated without proof. We then study subset-sum representations
of sets of powers of 2 and provide lower and upper bounds on the size of
a smallest representing set for powers of arbitrary natural numbers. We
also investigate representations of general sets, finding, for instance, bounds
on their number and on the size of their elements. Finally, we provide a
number of directions for further research.

2. DEFINITIONS AND PRELIMINARY RESULTS

Throughout this paper, we will use the word ``set'' to refer to a set of real
numbers, and such a set will be finite unless otherwise indicated. We let the
span of a set B, denoted by sp(B), be the set of all sums of subsets of B.
That is, we define

sp(B)={ :
b # A

b } A�B= .

Thus the span of B is the set of linear combinations of elements of B with
each coefficient equal either to 0 or to 1.

We say that a set B represents a set P when P is a subset of the span of
B, that is, when each element of P is the sum of the elements of some sub-
set of B. For any set P we let the rank of P, denoted by rk(P), be the
smallest size of a set representing P. Often when referring to the span or
rank of an explicit set, we leave out the curly brackets surrounding its
elements for ease of reading. We call any set representing P and having size
equal to the rank of P optimal. Notice that every set represents itself, so we
have the trivial bound rk(P)�|P|. We say that P is independent when we
have equality in this bound and dependent otherwise. We are interested in
whether a given set is independent or dependent and in how much smaller
its rank can be than its size.

We remark that allowing B to be a multiset in the above (so that some
of its elements may be repeated, that is, so that certain numbers are
allowed to be used more than once in representing elements of P) would
not change the rank of P. More precisely, we claim that the smallest size
of a multiset representing P is equal to the rank of P. For suppose a multi-
set B represents P and uses the number b twice. Then replacing one of the
occurrences of b by 2b gives a new multiset that represents everything B
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does, including, in particular, P. An easy induction now shows that after a
finite number of such replacements, we obtain a set (that is, a multiset with
no repeated elements) of the same size that still represents P. Thus if P is
representable by a multiset of a given size, then it must be representable by
a set of the same size. As the converse is clearly true, this proves our
assertion.

Recall that, given two sets P and Q, we can form their (elementwise, not
to be confused with direct!) product PQ=[ pq | p # P, q # Q]. When one of
the sets is a singleton, we suppress the curly brackets surrounding its
element. This definition clearly extends to arbitrary (finite) collections of
sets. In the proof of the following lemma, we will consider such a product
as a multiset, counting the multiplicity with which each number occurs as
a product, but elsewhere we will view products of sets simply as sets. We
begin by obtaining bounds on the ranks of unions and products of sets.

Lemma 1. The rank of the union of a collection of sets is at most the sum
of the ranks of the sets. The rank of the product of a collection of sets is at
most the product of the ranks of the sets.

Proof. Let the given sets be P1 , ..., Pk , and for 1�i�k, let Bi be a set
of size rk(Pi) representing Pi . Then it is easy to see that the set �k

i=1 Bi

and the multiset >k
i=1 Bi represent �k

i=1 Pi and >k
i=1 Pi , respectively. (In

the latter case, multiply out the representations of the factors of an element
of the product set >k

i=1 Pi to get a sum of elements of >k
i=1 Bi .) As the

set and the multiset have at most �k
i=1 rk(Pi) and exactly >k

i=1 rk(Pi)
elements, respectively, the above remark on multisets proves the lemma. K

In particular, this lemma shows that adjoining k elements to a set, which
cannot decrease the rank, will increase it by at most k.

Recall that we showed in the introduction that the difference between the
rank and the size of a set of powers of 2 can be arbitrarily large. In our
family of examples, however, the ratio of these two quantities was constant.
It is natural, therefore, to ask what can be said about the ratio of the rank
to the size of a set of powers of 2. More generally, we are interested in the
ratio of rk(P) to |P| when P is a finite geometric sequence.

By Lemma 1, for any real number r and any positive integers m and n,
we have

rk(1, r, ..., rm+n&1)

�rk(1, r, ..., rm&1)+rk(rm, rm+1, ..., rm+n&1)

�rk(1, r, ..., rm&1)+rk(1, r, ..., rn&1).
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Since these ranks are nonnegative, it follows from a standard real-analysis
argument that the limit

lim
n � �

rk(1, r, ..., rn&1)
n

exists and is equal to the infimum of the defining ratios. We define \(r) to
be this limit. Our trivial bound on the rank of a set gives \(r)�1 for any
real number r, and we will later prove that this inequality is always strict
when r is an integer. In fact, we will show that, for integral values of r, the
limit is never achieved by any of its defining ratios. Notice that we have
\(0)=\(1)=0 and that Montgomery's example gives \(2)�4�5.

Our next result, a generalisation of one of Myerson's observations, gives
a necessary condition on representations of certain sets of positive numbers
by smaller sets.

Proposition 1 (based on Myerson [2, Problem 97:16]). If P=[ p1 , ...,
pn] is a set of positive numbers satisfying

pk > :
i<k

pi

for 1�k�n, then any set of size less than n that represents P must contain
a negative number.

Proof. Let B be a set of nonnegative numbers representing P, and label
the elements of B in increasing order as b1 , b2 , ... . We must show that B
has at least n elements. To do this, we prove by induction on k that for
1�k�n, the set B has at least k elements, and bk is at most pk . Assume
that this holds for all smaller values of k. Then we have

pk> :
i<k

pi

� :
i<k

bi .

Since the numbers bi are all nonnegative, this inequality shows that pk

cannot equal the sum of any subset of the set [bi | i<k]. Thus when pk is
written as a sum of the terms bi for some set of values of i, this sum must
use some term bj with j�k. In particular, B must have at least k elements.
Again, by nonnegativity, the term bj must be at most pk , and by the order-
ing, it is at least as large as bk . Hence we have bk�pk , and our inductive
hypothesis is satisfied. Thus, by induction, B has at least n elements, which
proves the proposition. K
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3. SPECIFIC EXAMPLES FOR POWERS OF 2

Here we examine representing sets for sequences of consecutive powers
of 2, the sequences in which Myerson was originally interested. First we
show that the rank of the set of powers of 2 through 2n&1 is n for values
of n up through 4, and then we consider some larger values of n.

Proposition 2 (Myerson [2, Problem 97:16]). For n # [0, 1, 2, 3, 4],
the set [2 i | 0�i�n&1] is independent.

Proof. This is clear for n�2, so we consider the cases n=3 and n=4.
First suppose that [1, 2, 4] could be represented by two numbers, say a
and b. As the only nonzero sums of subsets of [a, b] are a, b, a+b, these
numbers would have to be the numbers 1, 2, 4 in some order. But then one
of 1, 2, 4 would have to be the sum of the other two, which is false. Hence
the case n=3 is proved.

So suppose that we have three numbers a, b, c that represent the set
P=[1, 2, 4, 8]. Notice that, by the uniqueness of binary representations,
no two different subsets of P have the same sum. Now each element of P
is equal to one of the following: a, b, c, a+b, a+c, b+c, a+b+c; and,
for instance, not all of a, b+c, a+b+c can be used, or some element of
P would be the sum of some of the others. It is straightforward to check
that, in order to prevent this phenomenon, we have, after interchanging
a, b, c if necessary, only four possible representations of P by a, b, c.
Namely, we can have

P=[a, b, a+c, b+c] or P=[a, a+b, a+c, b+c] or

P=[a, a+b, a+c, a+b+c] or P=[a+b, a+c, b+c, a+b+c].

But in the first and third cases, we would have two elements of P whose
sum is the same as the sum of the other two elements of P, which cannot
occur, and in the other two cases we would have the equalities

2(a)+(b+c)=(a+b)+(a+c)

and

(a+b)+(a+c)+(b+c)=2(a+b+c),

respectively. Each of these two equalities would also imply an impossible
equation among the elements of P. Thus all four cases are impossible, and
P cannot be so represented. This contradicts the existence of appropriate
a, b, c and proves the result. K
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Now we consider some larger sets of powers of 2. As we saw from
Montgomery's examples, [1, 2, 4, 8, 16] is representable by a set of size 4.
In fact, a search using the ideas from the proof of the previous proposition
shows that there are exactly 19 optimal representing sets of [1, 2, 4, 8, 16].
Ten of these are (listed without their curly brackets for clarity)

&5, 1, 7, 9 &5, 6, 7, 9 &5, &8, 7, 9

&5, &3, 7, 9 &5, &1, 7, 9 &6, 1, 7, 9

&5, 1, 7, 8 &5, 6, 7, 3 3, &8, 7, 9

&1, 2, 5, 9;

and each of the others can be obtained from one of the first nine above by
multiplying all elements by 4 and taking the absolutely least residues
modulo 31. (It is not immediately obvious why such relationships among
solutions should hold!) The orders chosen for the sets and for their
elements are intended to show the similarities among them.

Since the set of powers of 2 through 8 has rank 4, and the set of powers
of 2 through 16 does as well, we see that 4 is the smallest value of m such
that a set of size m can represent the first m+1 powers of 2. We might also
ask, for each natural number k, what the smallest value of m is such that
a set of size m can represent the first m+k powers of 2. Notice that this
is just a reformulation of the problem of finding the rank of the first n
powers of 2, but it focuses attention on the most interesting cases. For
instance, given optimal representing sets corresponding to these values of
m, we can obtain an optimal set for the first n powers of 2 for any natural
number n, simply by adjoining some powers of 2 to one of the given
optimal sets.

By checking all 19 of the sets representing [1, 2, 4, 8, 16] described
above, we can see that none of them also represent 32, so that no set of
four numbers represents the powers of 2 through 32. Hence for the choice
k=2 in the previous paragraph, the minimum possible value of m would
be 5.

It turns out that this minimum can indeed be achieved; in fact we found
by hand two (optimal) sets of size 5 representing [1, 2, 4, 8, 16, 32, 64],
namely [&20, &15, 17, 19, 28] and [&27, &5, 7, 28, 36], and we found
ten others later with a computer search. We suspect that these are the only
ones, but have not yet been able to prove this. As with the case of repre-
senting five powers of 2, these 12 sets come in pairs. Six of them are

&21, &5, 7, 27, 30 &27, &5, 7, 28, 36 &26, &3, 5, 30, 37

&29, &13, 14, 19, 31 &18, &11, 14, 19, 31 &17, &12, 13, 20, 31.
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Three additional optimal sets can be obtained by multiplying the elements
of the first three of these sets by 4 and taking the absolutely least residues
modulo 127, and three more result from multiplying the other three of the
above sets by 8 and taking the absolutely least residues modulo 127.

Notice that the four previous paragraphs and the remark immediately
following the proof of Lemma 1 show that rk(1, 2, 4, ..., 2n&1) is equal to 4
for n=5, to 5 for n=6, and to 5 for n=7. If we do, indeed, have all of the
optimal representing sets for n=7, then, since none of them represent 128,
it would follow that rk(1, 2, 4, ..., 128) is 6. In addition, we have run long
computer searches looking for six numbers representing [1, 2, 4, ..., 256],
but have been unsuccessful so far, so we suspect that rk(1, 2, 4, ..., 256)
is 7. This would imply further, by the following paragraph, that rk(1, 2,
4, ..., 512) also is 7 and that the value of m corresponding to k=3 above
is 7.

We can use the second set from the above list of representing sets for
[1, 2, 4, ..., 64] to obtain, for many values of m, sets of size 2m+1
representing the first 3m+1 powers of 2. The idea is that if we have a set
representing [1, 2, 4, ..., 2n&1] and also &2n&2, then we can adjoin the two
numbers 2n+2n&2 and 2n+1+2n&2 to get a new set that represents not
only 2n and 2n+1, but also 2n+2=2n&1+(2n+2n&2)+(2n+1+2n&2). For
instance, [&27, &5, 7, 28, 36, 160, 288] represents [1, 2, 4, ..., 512]. After
we do this, we can often modify the new set so that it also represents
&2n+1, and then we can repeat the process. Sometimes slight variations of
these procedures are needed.

For instance, in the representing set from the previous paragraph,
replace 7 by &281. Since in the original set, we never had to use 7 and 288
at the same time, we may now use both &281 and 288 where previously
we used 7, and we can still represent all the same powers of 2. Further-
more, we can adjoin 1310=210+281+5 and 2334=211+281+5 to
represent not only 210 and 211, but also 212=&27&5+36+160+288+
1310+2334. Continuing along these lines, we have found a set of 15
integers representing [1, 2, 4, ..., 221]. This gives the bound \(2)�15�22 on
the limit ratio \(2) defined in the previous section.

It seems that these constructions can be carried out indefinitely, which
would imply the following upper bound on \(2):

Conjecture 1. The limit \(2)=limn � � rk(1, 2, 4, ..., 2n&1)�n is at most
2�3.

We also record here the slightly stronger form indicated by the examples
discussed above:

Conjecture 2. For any integer m�2, we have rk(1, 2, 4, ..., 23m)�
2m+1.
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In fact, it seems that there is a lot of flexibility in constructing sets of
2m+1 integers representing the first 3m+1 powers of 2, and so we suspect
that perhaps \(2) is actually strictly less than 2�3.

4. GENERAL RESULTS FOR POWERS OF INTEGERS

Here we obtain both nontrivial lower and nontrivial upper bounds on
ranks of sets of consecutive powers of an arbitrary integer. First we show
that the rank of [1, r, ..., rn&1] is at least n�logr (rn&n), and then we show
that sufficiently long sequences of consecutive powers of any integer are
dependent. This latter result will allow us to conclude that for any integer
r, the limiting ratio \(r) of rank to length for sequences of powers of r can
never be achieved by any finite sequence. Of course, these results also all
apply to geometric sequences with common ratio r.

The best lower bound we can achieve for the rank of an arbitrary set of
size n is Wlog2 nX, obtained by counting subsets of the representing set (the
set of integers from 0 to n&1 shows that this bound is sharp). But we can
get a significantly better bound for geometric sequences by using the ideas
from the proof of Proposition 2.

Theorem 1. For any integers r�2 and n�2, we have

rk(1, r, ..., rn&1)�
n

logr (rn&n)
.

Proof. Let B=[b1 , ..., bd] be any set representing [1, r, ...., rn&1]; it
will be enough to show that d is at least n�logr (rn&n). For 0� j�n&1,
we can write

r j= :
d

i=1

bi cij ,

with each coefficient cij being either 0 or 1. We let b be the vector
[b1 } } } bd] and cj be the vector [c1j } } } cdj], so that the inner product of b
and cj is r j.

Suppose that two linear combinations �n&1
j=0 cjuj and �n&1

j=0 cjvj , with all
of the coefficients uj and vj being natural numbers less than r, are equal.
Taking inner products with b shows that the expressions �n&1

j=0 r juj and
�n&1

j=0 r jvj must be equal. But by the uniqueness of representations of
natural numbers in base r, this implies that each coefficient u j must equal
the corresponding coefficient vj . Thus, as the variables uj range independently
from 0 to r&1, the sums �n&1

j=0 cjuj must all be distinct.
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As there are r possible values for each of the n variables uj , the total
number of such linear combinations is rn. If we omit the one that has every
variable uj equal to r&1, then we have rn&1 left, each of which has
uj <r&1 for some value of j. On the other hand, since every vector cj is
a zero-one vector, each of these rn&1 linear combinations has d coor-
dinates, all of which must be natural numbers less than (r&1) n. Hence
there are at most (rn&n)d possibilities for these linear combinations.

Notice that if all of these vectors did occur, then, in particular, each
vector with a single entry equal to 1 and the rest equal to 0 would occur
and would have to equal some vector cj . This would mean that each power
r j would be equal to some representing element bi , giving d�n, which
would give the desired result, as rn&n is at least r. Thus we may assume
that not all of the possible vectors actually occur, so that there are at most
(rn&n)d&1 possible values for the rn&1 linear combinations. In order for
them to be distinct, we must have

(rn&n)d&1�rn&1

(rn&n)d�rn

d logr (rn&n)�n

d�
n

logr (rn&n)
,

and this proves the theorem. K

In particular, this gives us the bounds rk(1, 2, 4, ..., 2n&1)�n�log2 n and
rk(1, r, ..., rn&1)>n�(1+logr n). In the above proof, we achieved a slightly
better result than we would have otherwise by omitting one of the linear
combinations before counting and then arguing that not all vectors could
occur. (Without these steps, we would have had a shorter proof, but would
have only obtained the lower bound of n�logr (rn&n+1).) We can, in fact,
strengthen the bound a bit more by excluding more linear combinations.
For instance, for r=2 and odd n�3, we can omit half of them and get the
bound rk(1, 2, 4, ..., 2n&1)>(n&1)�(log2(n+1)&1). This, however, is a
minor improvement and still seems to be some distance from the truth.

We now show that sufficiently long sequences of consecutive powers of
an arbitrary integer are dependent. Note that even powers of a negative
number are also powers of its square, which is positive, and that adding
terms to a dependent set gives another dependent set. Hence in order to
prove the above assertion, it is sufficient to consider powers of a positive
integer. And by the examples from the previous section, we may restrict to
powers of numbers greater than 2. For these we have a uniform construction.
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Theorem 2. For any integer r�3, we have

rk(1, r, ...., r2r&1)�2r&1.

Proof. First write

s=r2r&2&r2r&5& :
r&2

i=0

r2i,

and then define

B=[&s, 1, r2, r4, ..., r2r&6, s+r, s+r3, ..., s+r2r&3, s+r2r&4].

Note that B has 2r&1 elements. Now all even powers of r through r2r&6

are in B, and all odd powers of r through r2r&3, as well as r2r&4, are the
sum of &s and another element of B. Hence, in order to show that B
represents [1, r, ..., r2r&1], which will prove the theorem, we just need to
verify that r2r&2 and r2r&1 are in the span of B. We have

r2r&2=s+r2r&5+ :
r&2

i=0

r2i

=(s+r2r&5)+(s+r2r&4)&s+ :
r&3

i=0

r2i

# sp(B)

r2r&1=rr2r&2

=rs+r2r&4+ :
r&2

i=0

r2i+1

=(s+r2r&4)+ :
r&2

i=0

(s+r2i+1)

# sp(B),

and this gives the result. K

For instance, taking r=3 in the above proof gives s=68, and we obtain
the set [&68, 1, 71, 95, 77] representing [1, 3, 9, 27, 81, 243].

Notice that this already shows that for any positive integer r�3, the
limiting ratio \(r) is at most (2r&1)�2r; in particular, it is less than 1. In
fact, since 1 is always an element of the set B in the proof of Theorem 2,
we can get a slightly better ratio of the size of a set of powers of r to its
rank.
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Corollary 1. For any integers r�3 and m�0, we have

rk(1, r, ..., rm(2r&1))�m(2r&2)+1.

Proof. This inequality will follow from the fact that, with B as in
the proof of Theorem 2, all powers of r through rm(2r&1) are in the span
of the set [1] _ [1, r2r&1, ..., r(m&1)(2r&1)](B"[1]). (Recall here our nota-
tion for set products.) To check this fact, we observe that all powers of r
in rk(2r&1)[1, r, ..., r2r&1] are represented by rk(2r&1)B as before, except
that when k is positive, instead of using the element rk(2r&1), which has
been removed, we use the numbers that summed to it in representing the
set r(k&1)(2r&1)[1, r, ..., r2r&1]. K

Taking the limit as m goes to infinity now gives us the better bound on
the ratio function \(r) to which we alluded above.

Corollary 2. For any integer r�3, we have \(r)�(2r&2)�(2r&1).

Our first conjecture at the end of the previous section asserts that this
result is also valid for r=2.

We also use the theorem to show that the optimal ratio indicated by \(r)
is never achieved.

Corollary 3. For any integers r and n�1, we have

rk(1, r, ..., rn&1)�n>\(r).

Proof. For simplicity, we restrict our attention to the case when r is at
least 3; slight variations of the proof will deal with the other values of r. By
Theorem 2, applied to rn, we have rk(1, rn, r2n, ..., rn(2rn&1))�2rn&1, so
that Lemma 1 gives us

rk(1, r, ..., r2nrn&1)=rk([1, rn, r2n, ..., rn(2rn&1)][1, r, ..., rn&1])

�rk(1, rn, r2n, ..., rn(2rn&1)) rk(1, r, ..., rn&1)

�(2rn&1) rk(1, r, ..., rn&1)

<2rn rk(1, r, ..., rn&1).

Using the fact that \(r) is the infimum of its defining ratios now allows us
to conclude

\(r)�rk(1, r, ..., r2nrn&1)�2nrn

<rk(1, r, ..., rn&1)�n,

proving the corollary. K
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For instance, this corollary and the discussion on ranks of sets of powers
of 2 give the strict inequality \(2)<15�22.

Finally, Corollary 3 and the definition of \(r) immediately produce the
additional result:

Corollary 4. Given integers r and n�1, for any sufficiently large
integer m, we have

rk(1, r, ..., rm&1)�m<rk(1, r, ..., rn&1)�n.

5. REPRESENTATIONS OF GENERAL SETS

Here we prove several results concerning the representations of arbitrary
sets. First we show that any finite set has only finitely many optimal
representing sets, and we obtain a bound on the size of the elements of
these optimal sets. Then we obtain some large independent sets.

Theorem 3. Any set of size n and rank d has at most

\n
d+\

2d&1
d +

optimal representing multisets.

Proof. Let P=[ p1 , ..., pn] be a finite set of rank d and B=[b1 , ..., bd]
be any multiset of size d representing P. Then we have a d_n zero-one
matrix C=[cij] with entries satisfying �d

i=1 bi cij= pj for 1� j�n. Fix a
particular such matrix C and consider all possible corresponding multisets
B. The system of linear equations �d

i=1 bi cij= p j , which gives possible
values for each variable bi , is consistent and so has either one solution or
infinitely many solutions.

If this system had infinitely many solutions, then we could find a solution
with some variable bi equal to 0. But this would give a set of size d contain-
ing 0 and representing P, and then leaving out 0 would produce a set of
size d&1 also representing P, contradicting the definition of rank. Hence
the system has a unique solution, and there is some subsystem of d of the
n equations that determines the d variables b1 , ..., bd uniquely. Let D be the
d_d matrix of coefficients of this subsystem (so D is a nonsingular
submatrix of C).

Now the elements of B are determined by the d elements of P that
appear in this subsystem and by the collection of vectors occurring as rows
of the matrix D (permuting these rows will only permute the elements of
B, not change them). There are ( n

d) choices for the subset of P used, and
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there are at most ( 2d&1
d ) choices for the rows of the matrix D, since it is a

d_d zero-one matrix with distinct nonzero rows. Hence the total number
of possible representing multisets B is at most ( n

d)( 2d&1
d ), which is what we

wanted to prove. K

This bound is far from sharp. For instance, if n equals 2d&1 and P does
not contain 0, then all nonzero zero-one vectors occur as columns of C, so
we may insist that D be a permutation matrix. This removes the second
factor from our calculations and gives the upper bound of ( n

d)=( 2d&1
d )

optimal representing multisets.

Corollary 5. Any finite set has only finitely many optimal representing
sets.

We can also use the proof of this theorem to get an upper bound on the
size of elements of an optimal representing set. Throughout the rest of this
section, we will use the notation 2k to denote the maximum determinant
of k_k zero-one matrices.

Corollary 6. For any set P of rank d, the absolute value of any
element of an optimal representing set for P is at most 2d&1 times the sum
of the d largest absolute values of the elements of P. If P consists of integers,
then any element of an optimal representing set of P is a rational number
with numerator at most the above bound in absolute value and with positive
denominator at most 2d .

Proof. Let B=[b1 , ..., bd] be such a representing set, and take the
numbers cij as in the proof of Theorem 3. That proof shows that we can
solve for the elements bi from a subset of d of the equations �d

i=1 bi cij= p j .
Using Cramer's rule now gives the bounds. K

Notice that, since the entries of any zero-one matrix have absolute
values at most 1, the Hadamard bound implies 2k�kk�2. In fact, it can be
shown, using this Hadamard bound, that any k_k matrix (for k�2) that
has all entries nonnegative and at most 1 has determinant at most
21&kkk�2(k&1) in absolute value. Hence this expression can be used for 2k

in applying Corollary 6 and elsewhere.

Finally, the proof of Theorem 3 provides a finite algorithm to determine
the rank of any finite set. Namely, to decide whether a set P of size n has
rank at most d, run through all possible d_n zero-one matrices C and, for
each one, determine whether the corresponding system of linear equations
from the proof of the theorem is consistent. The set P will have rank at
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most d if and only if one of these linear systems is consistent, and solving
such a consistent system will provide a representing set for P of size d.
Repeating this procedure for each value of d from 0 to n will yield the rank
of P.

Recall that a finite set of numbers with rank equal to its size is called
independent, and one with rank less than its size is called dependent. We
extend these definitions to infinite sets by calling an infinite set independent
if all of its finite subsets are independent and by calling it dependent
otherwise. At the 1997 conference, Seva Lev asked for ``reasonable'' condi-
tions for a (finite) set of integers to be independent [2, Problem 97:19].

It is natural to ask whether there are arbitrarily large independent sets
of integers. In Theorem 2, we showed that any sufficiently long geometric
sequence of integers is dependent (with the length needed depending on the
common ratio between successive terms), and there might conceivably be
some number n such that any geometric sequence of integers of length n is
dependent. In fact, we will show that there are arbitrarily long independent
geometric sequences, which, in particular, will answer the question above,
and we will give an infinite independent set of integers. The geometric
sequences are due to Seva Lev [1], while the existence of an infinite inde-
pendent set is due to the author via a different, but similar, method. The
examples and proofs given here are based on a hybrid of Lev's and the
author's methods.

First we need another characterisation of the rank of a set, which we get
by generalising an observation of Lev [1] (who gave the case d=n).

Lemma 2. The rank of a set P=[ p1 , ..., pn] is the smallest natural number
d such that the vector [ p1 } } } pn] is a linear combination of d zero-one
vectors.

Proof. As in the proof of Theorem 3, P is represented by a set B=
[b1 , ..., bd] of size d if and only if there is a d_n zero-one matrix C=[cij]
with entries satisfying �d

i=1 bi cij= p j . But this is the same as saying that
[ p1 } } } pn] is a linear combination of the d rows of C with the numbers bi

as coefficients. Thus the smallest value of d such that P is represented by
a set of size d is the same as the smallest value of d such that [ p1 } } } pn]
is a linear combination of d zero-one vectors, proving the lemma. K

In order to produce large independent sets, we use the following lemma,
which allows us to add elements to sets without destroying independence.
Recall the definition of 2k preceding Corollary 6 (and the discussion of it
following the proof of that corollary).
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Lemma 3. If P=[ p1 , ..., pn] is a set such that P"[ pn] is independent
and pn satisfies

| pn |>2n&1 :
n&1

i=1

| pi |,

then P is independent.

Proof. Let P=[ p1 , ..., pn] be a dependent set with pn satisfying the
inequality of the hypothesis; we will show that P"[ pn] is dependent.

By Lemma 2, the vector [ p1 } } } pn] is a linear combination of n&1
zero-one vectors. Thus we have an (n&1)_n zero-one matrix C=[cij]
with [ p1 } } } pn] a linear combination of the rows of C. This also means that
[ p1 } } } pn&1] is a linear combination of the rows of the matrix D obtained
by deleting the last column of C. The first linear dependence further gives
us the equation

}
c1, 1

b

cn&1, 1

p1

} } }
. . .
} } }
} } }

c1, n

b

cn&1, n

pn
}=0.

Expanding this determinant by minors in the last row gives

:
n

j=1

(&1)n+ j Cjpj=0,

where Cj is the determinant of the submatrix of C obtained by deleting the
jth column. Since this submatrix is an (n&1)_(n&1) zero-one matrix, its
determinant Cj has absolute value at most 2n&1 , and we get

|Cnpn |= } :
n&1

j=1

(&1) j Cjpj }
� :

n&1

j=1

|Cj | | p j |

� :
n&1

j=1

2n&1 | p j |

=2n&1 :
n&1

j=1

| pj |

<| pn |.
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This inequality forces Cn to have absolute value less than 1, and as Cn

is an integer, it must, therefore, equal 0. Thus the n&1 rows of the matrix
D, which has determinant Cn=0, are linearly dependent, and [ p1 } } } pn&1]
is a linear combination of n&2 of the rows of D. Now Lemma 2 shows
that P"pn is dependent. This proves the lemma. K

We now get the large independent sets to which we alluded above.

Theorem 4 (Lev [1]). For any natural number n�1 and any natural
number r>2n&1 , the set of the first n powers of r is independent.

Proof. For 1�k�n we have

rk&1>(r&1)
rk&1&1

r&1

�2n&1 :
k&2

i=0

ri

�2k&1 :
k&2

i=0

ri.

Now using Lemma 3 and induction on k shows that the geometric
sequence 1, r, ..., rn&1 is independent. K

We should point out that a straightforward calculation using Theorem 1
gives this independence result for r�nn&1. However, we need Lemma 3
anyway for the next theorem, and the result we have just proved is stronger
than the one we would have obtained using Theorem 1, given our earlier
remarks on the size of 2k .

Theorem 5. There is an infinite independent set of integers.

Proof. Use p1 , p2 , ..., pn , ..., with each term pn an integer larger than
2n&1 �n&1

i=1 pi , and apply Lemma 3. K

Finally, we note another consequence of Lemma 2, which says, in some
sense, that ``most'' finite sets of integers are independent.

Theorem 6 (Lev [1]). For every positive integer n, there is a positive
rational number cn such that the number of dependent sets of size n of
integers from the interval [&N, N] is cnN n&1(1+O(1�N )) as N � �.

Proof. By Lemma 2, a vector P of n integers is dependent if and only
if it is in a sublattice of Zn spanned by some collection of n&1 zero-one
vectors. Such a lattice, say having dimension d, grows like a rational con-
stant times Nd (1+O(1�N )). (By this, we mean that the number of points
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in it with all coordinates in the interval [&N, N] is some rational constant
times Nd (1+O(1�N )).) In fact, the intersection of any number of the
lattices, being a lattice itself, also grows like a rational constant times
Nd (1+O(1�N )) for appropriate d.

Since there are only finitely many n-dimensional zero-one vectors, there
are only finitely many sublattices of Zn spanned by n&1 such vectors. It
follows by the inclusion-exclusion principle that there is some rational
number cn such that the union of all such sublattices grows like
cnN n&1+O(Nn&2). And cn is positive, because this union contains the
lattice of all points with first coordinate 0. As the union of the sublattices
corresponds to the collection of dependent sets, the result follows. K

6. FURTHER QUESTIONS

Finally, we offer some questions for further research.

1. Is it true that \(2), the limit as n goes to infinity of the ratio of the
rank of the first n powers of 2 to n, is at most 2�3? Can some better bound
be proven? Can the upper bounds we give for \(r) for other integers r be
improved?

2. Is \(2) greater than 0? If so, can some explicit lower bound be
proved? If \(2) equals 0, can some explicit sub-linear upper bound be put
on the growth of the rank of the first n powers of 2? And can some better
lower bound than that from Theorem 1 be obtained? Again, the same
questions can be asked for other integers besides 2.

3. For any integer r, let +(r) be the smallest value of n such that the
set [1, r, ..., rn&1] is dependent. (This minimum exists by Theorem 2 and
the discussion preceding it.) What can we say about +(r)? Proposition 2
and Montgomery's example give +(2)=5, while for r�3, Theorems 4 and
2 give 2+(r)&1�r and +(r)�2r, respectively.

4. Are there any optimal representing sets of [1, 2, 4, ..., 64] besides
the ones we give?

5. Are the patterns we observe among the optimal representations of
[1, 2, 4, 8, 16] and among those of [1, 2, 4, ..., 64] special cases of some
more general phenomenon?

6. Continuing in the vein of the last three questions, what are the
ranks and optimal representing sets of particular small sets of powers of 2
(and of sets of powers of other small integers)?

7. Can independent sequences of integers be found that grow more
slowly than those given in the previous section? For instance, is the set of
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factorials independent? What is the smallest maximum of a set of n inde-
pendent natural numbers? What is the smallest natural number p with
[1, 2, 4, 8, p] independent? Montgomery's first example shows that this p
must be at least 18, and Myerson has checked that it must be at least 26.
More generally, if we define pn recursively to be the smallest natural
number with [ p1 , p2 , ..., pn] independent ( pn exists by Lemma 3), then
what can we say about the sequence p1 , p2 , ...? Since every natural number
k less than pn is in the span of some optimal representing set for [ p1 , p2 ,
..., pn&1], adjoining pn to this representing set gives an optimal representing
set for [ p1 , p2 , ..., pn] that also represents pn+k. Thus pn+1 must be at
least 2pn .

8. Is it true that for any rational number r, all sufficiently long sequences
of consecutive powers of r are dependent?

9. All of the examples of optimal representing sets given above are
sets of integers. But the set [&1�2, 3�2, 5�2] represents [1, 2, 4], and no
set of size 2 does, so [1, 2, 4] has a nonintegral optimal representing set.
It does, however, have many integral optimal representing sets. Is it true
that for any positive integers r and n, the set [1, r, ..., rn&1] must have an
optimal representing set consisting of integers? More generally, is there a
set of integers that does not have any integral optimal representing sets?
Notice that if [1, r, ..., rn&1] and [1, r, ..., rn] have the same rank (which,
for a given value of r, happens infinitely often by the inequality \(r)<1),
then dividing the elements of an optimal representing set for [1, r, ..., rn] by
r gives an optimal representing set for [1, r, ..., rn&1] that also represents
1�r and so cannot consist entirely of integers. Can something else be said
about when [1, r, ..., rn&1] has a nonintegral optimal representing set?
Corollary 6 gives a bound on the denominators of elements in an optimal
representing set for [1, r, ..., rn&1], but is it true that every such
denominator must divide r?

10. Corollary 6 gives a bound on the absolute values of elements in
an optimal representing set for a set P, but this bound is rather large. Can
a more reasonable bound be found? Notice that [&3, &1, 5] optimally
represents [1, 2, 4], so neither the maximum absolute value of elements of
P nor is the maximum difference of two elements is such a bound, even for
a geometric sequence. Is the sum of the absolute values of the elements of
P such a bound? (By Corollary 6 we can use, for instance, this sum times
2rk(P)&1 .) Does every set P have at least one optimal representation using
no numbers larger in absolute value than the largest absolute value of the
elements of P? Does this hold if we restrict to geometric sequences?

11. In a similar vein, can the bound from Theorem 3 on the number
of optimal generating sets of a set be improved? Can it be improved for
geometric sequences?
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12. What can be said about the proportion of negative numbers in
optimal representing sets for positive geometric sequences? The example
two paragraphs ago shows that there may be more negative than positive
numbers. What about the proportion of odd numbers in an optimal
representing set for powers of 2?

13. What can be said about the ranks of other sets? As the geometric
sequences that we study above satisfy first-order linear recurrences, it is
natural to turn to sequences satisfying higher-order recurrences. For example,
what bounds can be put on the rank of the set of the first n distinct non-
zero Fibonacci numbers (F1=F2=1 through Fn+1)? The m numbers F1 ,
F3 , ..., F2m&1 represent the 2m&1 nonzero Fibonacci numbers through
F2m . Hence the analogue of Myerson's original problem on powers of 2 is
whether there are m numbers representing the 2m nonzero Fibonacci
numbers through F2m+1 . Again, an easy check shows that m must be at
least 4, and a variation of Proposition 1 shows that at least one negative
representing number must be used.

14. Is there a polynomial-time algorithm for determining the ranks of
arbitrary sets of integers? Is finding the ranks of sets of integers NP-hard?

15. Finally, we have only considered forming linear combinations
with all coefficients taken from [0, 1]. What can be said when other
possible coefficients are allowed?
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