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Text. We prove congruences, modulo a power of a prime p,
for certain finite sums involving central binomial coefficients

(2k
k

)
,

partly motivated by analogies with the well-known power se-
ries for (arcsin z)2 and (arcsin z)4. The right-hand sides of those
congruences involve values of the finite polylogarithms £d(x) =∑p−1

k=1 xk/kd . Exploiting the available functional equations for the
latter we compute those values, modulo the required powers
of p, in terms of familiar quantities such as Fermat quotients and
Bernoulli numbers.

Video. For a video summary of this paper, please click here or
visit http://www.youtube.com/watch?v=W54Ad0YFr8A.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A well-known power series expansion of a familiar function where central binomial coefficients
appear in the denominators is

2
(
arcsin(z/2)

)2
=

∞∑
k=1

1

k2
(2k

k

) z2k,

which yields
∑∞

k=1 k−2
(2k

k

)−1
= π2/18 = ζ(2)/3 upon setting z = 1. By appropriate successive ap-

plications of differentiation one can derive explicit closed-form expressions for the power series∑∞
k=1 k−d

(2k
k

)−1
tk , for any integer d � 2, and corresponding specializations to interesting values
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of t . For d > 2 the sum of that power series appears not to be expressible in terms of the sim-
pler transcendental functions, but explicit evaluations at special values of t are still possible, such

as
∑∞

k=1(−1)kk−3
(2k

k

)−1
= −2ζ(3)/5 and

∑∞
k=1 k−4

(2k
k

)−1
= 17ζ(4)/36. The former played a role in

Apery’s celebrated proof of irrationality of ζ(3), see van der Poorten’s account of Apery’s proof [28]
for a discussion of both formulas and relevant references. Evaluation of the series for d up to 8 when
t = 1, and d up to 9 when t = −1, were found in [2], exploiting special values of polylogarithms
whose availability depends on polylogarithm ladders [10], and hence, ultimately, on functional equa-
tions satisfied by the classical polylogarithms Lid(z)=

∑∞
k=1 zk/kd .

In a different direction, the power series expansions for (arcsin z)m were determined in [3], extend-
ing on the known results for m = 1, . . . , 4 (see [1, pp. 262–263], for example). Besides certain types of
multiple harmonic sums, the coefficients involve a central binomial coefficient in the numerator for m
odd, and in the denominator for m even. Of special interest for us is the case m = 4, which reads

2

3

(
arcsin(z/2)

)4
=
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k=1

Hk−1(2)

k2
(2k

k

) z2k, (1)

where Hk−1(2) =
∑k−1

r=1 1/r2 . Again, differentiation produces similar closed-form expressions for the
sums of analogous power series with k or 1 in place of the factor k2 at the denominator (as in [4],
for example).

Finite modular versions of familiar power series play a role in various parts of algebra and num-
ber theory, where a power series is truncated at an appropriate place leaving a polynomial with
p-integral coefficients, which can then be evaluated modulo p. Part of the functional properties of
the sum of the infinite series may be preserved in that polynomial. A distinguished algebraic exam-
ple is the crucial role of the truncated exponential series

∑p−1
k=0 xk/k! in the theory of modular Lie

algebras, as a tool for toral switching [17, Chapter 1]: little is preserved of the functional equation
exp (x + y) = exp(y) exp(y), but just enough to make the algebraic application work, see [11] for an
extension of this point of view. As an example from number theory we mention the use of the par-
tial sum

∑p−1
k=1 xk/k of the logarithmic series − log(1 − x) made in [8]: there a polynomial argument

about the partial sum is strongly motivated by transcendence arguments for the logarithmic function.
Generally speaking, when an infinite power series with rational coefficients admits an explicit sum-
mation formula it is natural to seek for finite modular analogues, that is, for congruences modulo p
or a power of p for an appropriate truncated version of the series, and to see how far those resemble
the original function.

In this note we consider the sums of the first p − 1 terms of some of the series mentioned earlier,
where p is a prime, and evaluate them modulo certain powers of p. Specifically, we obtain congru-
ences for the polynomials

p
p−1∑
k=1

tk

kd
(2k

k

) (
mod p3) and p

p−1∑
k=1

Hk−1(2)

kd
(2k

k

) tk (mod p), (2)

where p is a prime and d = 0, 1, 2 (and possibly d = 3, 4 as well, as we discuss at the end of this
Introduction), which we then specialize to particular values of t . (Multiplication by p is needed to
make the resulting coefficients p-integral.) Special cases of the second type of sum above were con-
sidered by Z.W. Sun in [23] together with related sums, for certain values of t , and with attention to a
comparison with the corresponding infinite sums. As we explain in our Section 8, our results include
a few congruences first obtained in [23]. However, we produce many new ones in a systematic way,
and provide a framework to possibly obtain more. As a test of the validity of this approach we prove
several conjectures formulated by Z.W. Sun in [21].

A crucial observation is that, in analogy with the corresponding infinite sums, explicit evaluation
of the sums in Eq. (2) for specific values of t depends on the availability of special values of the finite
polylogarithms, defined as
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£d(x) =
p−1∑
k=1

xk

kd
,

where d is a positive integer. In turn, the possibility of computing those modulo small powers of p is
due to the existence of several known functional equations (in the form of congruences) satisfied by
the finite polylogarithms, which we collect in Section 2.

It is fair to assume that much of this material on finite polylogarithms was known to Mirimanoff at
the beginning of the twentieth century. In fact, two special functional equations (modulo p) relating
£1(x)2 and £1(x)3 to values of £2 and £3 , which were rediscovered in [7] and [5], were explicitly
mentioned by Mirimanoff in [13, p. 61]. Because Mirimanoff omitted the proofs, and the proofs by
algebraic manipulations given in [7] and [5] tend to hide how such equations might be discovered in
the first place, we devote Section 3 to presenting our own proofs of those polynomial congruences.
The crux of our argument is that while the initial coefficients of £1(x)2 and £1(x)3 are easy to obtain
as in the characteristic-zero case, invariance under a certain (rather illustrious) symmetry group of
order six allows one to recover all of the remaining coefficients.

For certain special values of x the available functional equations for finite polylogarithms taken
together provide enough information to determine £d(x) modulo p, for d = 1, 2, 3. We present these
evaluations in Section 4.

In Sections 5 and 6 we establish the necessary connection between the sums in Eq. (2) and values
of finite polylogarithms. This does require some work, which we split into two parts and outline here.
The first part, in Section 5, is to produce polynomial identities (that is, in characteristic zero) which
express our sums in Eq. (2) as more tractable sums involving Dickson polynomials. Because Dickson
polynomials satisfy second-order linear recurrence relations, certain sums in which they appear can
be expressed in terms of finite polylogarithms. However, bringing the sums of Section 5 to the re-
quired form requires passing from polynomial identities to suitable polynomial congruences, which
we do in Section 6.

We devote Section 7 to simpler-looking polynomials obtained from those in Eq. (2) by switching
the central binomial coefficients from the denominators to the numerators. Congruences for them
cannot, generally speaking, be inferred from the corresponding ones for the polynomials in Eq. (2),
but they can be obtained by similar methods, and also involve values of the finite polylogarithms.

Our final Section 8 brings together the two main streams of this paper, namely, the finite polyloga-
rithms studied in Sections 2, 3 and 4, and the polynomial congruences developed through Sections 5,
6 and 7. The polynomial congruences for the sums in Eq. (2) and their analogues with the central
binomial coefficients in the numerators can be evaluated at the special values of t for which we have
computed the relevant finite polylogarithmic values in Section 4. Many numerical congruences can be
obtained in this way, and we restrain ourselves to display a selection of the most interesting ones,
which include several conjectured by Z.W. Sun.

A few words are appropriate to comment on our restriction d � 2 for the polynomials in Eq. (2). In
principle, our polynomial identities in Section 5 can be extended to higher values of d, each case fol-
lowing from the previous one by appropriate integration. In fact, the third identity in our Theorem 5.2
is for d = 3, and then leads to the congruence in Theorem 6.2. In Section 8 we apply the correspond-
ing polynomial identity with d = 4 without actually stating it; one can find it quoted in [15]. However,
it does not appear feasible to obtain pleasant numerical congruences from those polynomial identities
for higher values of d.

The authors are grateful to the referee for his/her careful reading of the manuscript.

2. General congruences for £££d(x)

In this section we collect some functional equations modulo a prime p and other relations satisfied
by the finite polylogarithms, especially £1 , £2 and £3 , which we will use in the rest of the paper.
Some of them are related to functional equations satisfied by the classical polylogarithms (see [9]);
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a procedure for deducing them from the latter is described in [6]. The following most basic identities
actually hold for all finite polylogarithms £d:

• the inversion relation [6, Proposition 5.7(1)], and its extension modulo p2 [20, Lemma 4.3],

£d(x) ≡ (−1)dxp£d(1/x) (mod p), (3)

£d(x) ≡ (−1)dxp£d(1/x) − dp£d+1(x)
(
mod p2); (4)

• the distribution relation [6, Proposition 5.7(2)],

£d
(
xm) ≡ md−1

m−1∑
k=0

(
m−1∑
j=0

(
ωk

mx
)pj

)
£d

(
ωk

mx
)

(mod p), where ωm = e2π i/m; (5)

of course this congruence takes place in the ring of integers of the cyclotomic field Q(ω).

Next, there are several relations which are specific to £1 , £2 and £3 . Some of them involve the
quantities

qp(x) =
xp−1 − 1

p
and Q p(x) =

xp + (1 − x)p − 1

p
= xqp(x)+ (1 − x)qp(1 − x),

and some require p > 3, which we assume from now on for simplicity. They are as follows:

• the 3-term relation for £2 [6, Proposition 5.11], rediscovered in [7, Eq. (5)],

£2(x) ≡ £2(1 − x)+ xp£2(1 − 1/x) (mod p); (6)

• a congruence noted by Granville [7, Eq. (6)],

Q p(x) ≡ −£1(1 − x) − p£2(x)
(
mod p2); (7)

• another congruence rediscovered by Granville [7, Eq. (5)], but see [13, p. 61],

1

2
Q 2

p(x) ≡ −xp£2(x) − (
1 − xp)

£2(1 − x) (mod p); (8)

• a congruence rediscovered by Dilcher and Skula [5, Theorem 2], but see [13, p. 61],

1

6
Q 3

p(x) ≡ −xp£3(x) − (
1 − xp)

£3(1 − x) − x2p(
1 − xp)

£3(1 − 1/x)

− 2

3
xp(

1 − xp)
£3(−1) (mod p). (9)

We will also need a special case of the following congruence, obtained by the authors in [12,
Lemma 3.2]: for p > d + 1

∑
0<k <k <···<k <p

xkd

k1k2 · · ·kd
≡ (−1)d−1£d(1 − x) (mod p). (10)
1 2 d
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We mention for completeness that the easy congruence (4) can be extended as follows modulo
arbitrary powers of p,

(−1)dxp£d(1/x) =
∞∑

m=0

(
d +m − 1

m

)
pm£d+m(x), (11)

to be interpreted in the power series ring Zp[[x]].

Proof of Eq. (11). We have

(−1)dxp£d(1/x) = (−1)d
p−1∑
k=1

xp−k

kd
= (−1)d

p−1∑
k=1

xk

(p − k)d

=

p−1∑
k=1

xk

kd

(
1 − p

k

)−d

=

p−1∑
k=1

xk

kd

∞∑
m=0

(
d +m − 1

d

)
(p/k)m

=

∞∑
m=0

(
d +m − 1

m

)
pm£d+m(x),

as desired. �
3. New proofs of congruences (6), (8) and (9)

The proofs of Eqs. (6), (7) and (8) given in [7], and that of Eq. (9) in [5], were obtained by algebraic
manipulations after differentiation of both sides. An undesirable feature of such proofs is that one is
required to guess the desired congruence in the first place. We present proofs of Eqs. (6), (8) and (9)
which do not suffer from this imperfection.

Because of the congruence

Q p(x) ≡ −£1(x) (mod p), (12)

which plainly follows from the definition of Q (x) by expanding (1 − x)p and using the fact that(p
k

)
= p

k

(p−1
k−1

) ≡ (−1)k−1 p/k (mod p2) for 0 < k < p, Eqs. (8) and (9) are seen to be equivalent to the
second and third of the following set of three congruences:

£1(x) ≡ £1(1 − x) (mod p), (13)

£1(x)2/2 ≡ −xp£2(x) − (
1 − xp)

£2(1 − x) (mod p), (14)

£1(x)3/6 ≡ xp£3(x)+
(
1 − xp)

£3(1 − x)+ x2p(
1 − xp)

£3(1 − 1/x)

+ (2/3)xp(
1 − xp)

£3(−1) (mod p); (15)

the second congruence clearly requires p > 2, and the third one p > 3. The first of these three con-
gruences follows from Eq. (12) and the obvious invariance of Q p(x) under the substitution x �→ 1 − x.
The remaining two were already known to Mirimanoff [13, p. 61], as we pointed out in the Introduc-
tion. Note that the terms of degree less than p in the right-hand sides of the three congruences are
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given by £1(1 − x), −£2(1 − x) and £3(1 − x). It is easy to see that these terms match the corre-
sponding terms in the left-hand sides. In fact, this statement appropriately extends to powers £1(x)d

for arbitrary d, as we show in Lemma 3.2 below, including some extra terms as well. It follows that
congruences (14) and (15) are verified up to and including the term of degree p. Then we will recover
all the remaining terms in the right-hand sides of Eqs. (14) and (15), and thus complete their proofs,
by invariance under a group of transformations of order six, generated by the symmetry expressed by
Eq. (13) together with the other obvious symmetry £1(x) ≡ −xp£1(1/x) (mod p), which is a special
case of Eq. (3). In case of Eq. (14), where only about half the coefficients need to be recovered, the
argument yields a proof of Eq. (6) as a by-product. The group of transformations of order six has a
long history, being omnipresent in the investigations on Fermat’s last theorem, see [16], and it is a fair
guess that Mirimanoff’s own proofs of congruences (14) and (15) might have had much in common
with ours.

Because £1(x) ≡ − log(1 − x) (mod xp), we start the ball rolling by studying the coefficients in the
powers of the ordinary logarithmic series.

Lemma 3.1. For any nonnegative integers d,k, the coefficient of xk in the power series

logd(1 + x)/d! ∈ Q[[x]]

equals the coefficient of yd in the polynomial

(
y

k

)
= y(y − 1) · · · (y − k + 1)/k! ∈ Q[y].

Proof. The identity

exp
(

y log(1 + x)
)
= (1 + x)y

yields

∞∑
d=0

(
y log(1 + x)

)d
/d! =

∞∑
k=0

(
y

k

)
xk,

with both series converging for (x, y) in a suitable neighborhood of the origin in R2 (or C2). Hence
the latter identity holds in the ring of formal power series Q[[x, y]], and the conclusion follows. �

Our usage of polynomial congruences with respect to a double modulus (xm, p) will be to give
precedence to the modulus xm over the modulus p, in the sense that we interpret them as con-
gruences modulo p after all terms of degree m or higher have been discarded (regardless of their
coefficients).

Lemma 3.2. For 1 < d < p − 1 we have

£1(x)d/d! ≡ (−1)d−1£d(1 − x)+ (−1)d B p−d

d
xp (

mod
(
xp+1, p

))
,

where B p−d denotes a Bernoulli number.

Proof. The terms of degree less than p in the polynomial £1(x) coincide with the corresponding
terms of the power series − log(1 − x). Because there is no constant term, Lemma 3.1 implies that the
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coefficient of xk in the polynomial £1(x)d/d!, for k < p + d − 1, equals (−1)d+k times the coefficient
of yd in the polynomial

(y
k

) ∈Q[y]. In particular, this holds for k � p, which is all we need here.
As for the first term at the right-hand side of the congruence, we have

£d(1 − x) =
p−1∑
r=1

(1 − x)r

rd
=

p−1∑
r=1

1

rd

p−1∑
k=0

(
r

k

)
(−x)k =

p−1∑
k=0

( p−1∑
r=1

1

rd

(
r

k

))
(−x)k.

Because
∑p−1

r=1 rh ≡ −1 (mod p) if p − 1 | h, and ≡ 0 (mod p) otherwise, after expanding
(r

k

)
as a

polynomial in r we see that the sum

p−1∑
r=1

1

rd

(
r

k

)
=

p−1∑
r=1

1

rd

(
akrk + · · ·+ a1r + a0

)

is congruent, modulo p, to the opposite of the coefficient of yd in the polynomial
(y

k

) ∈ Q[y], for
k < p. This proves that the stated congruence holds modulo (xp , p).

We deal with the coefficient of xp noting that

(
y

p

)
=

y

p

p−1∏
j=1

(
1 − y

j

)
=

y

p

p−1∑
r=0

hr(−y)r ,

where

hr =
∑

0< j1< j2<···< jr<p

1

j1 j2 · · · jr
.

According to [31], for 1 � r � p − 3 we have

hr ≡ (−1)r−1

r + 1
pB p−r−1

(
mod p2),

which completes the proof. �
The congruence in Lemma 3.2 traces back to Mirimanoff. With little extra effort the above proof

extends it to a congruence modulo (xp+d−1, p) involving Stirling numbers of the first kind besides
Bernoulli numbers.

According to Lemma 3.2 the term of degree p in £d(x)d vanishes modulo p when d is even. An
alternative route to this conclusion is noting that the polynomial

(y
p

) − (yp − y)/p has p-integral

coefficients and that its reduction modulo p is an odd polynomial in Fp[y], which is easy to check by
evaluating it on y = 0, 1, . . . , p − 1.

Lemma 3.2 tells us that congruence (14) is correct as far as we look only at the terms of degree
up to p. To complete the proof we now use the available symmetries.

Proof of Eqs. (6) and (14). According to Eq. (3) we have £1(x)2 ≡ x2p£1(1/x)2 (mod p). This means
that the coefficients of xk and x2p−k in £1(x)2 are equivalent modulo p, for all k. But the values
modulo p of the lower half of the coefficients are given in Lemma 3.2, namely, £1(x)2/2 ≡ −£2(1−x)
(mod (xp+1, p)). Hence this determines the upper half of the coefficients as well, and so we have

£1(x)2/2 ≡ −£2(1 − x) − x2p£2(1 − 1/x) (mod p). (16)
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Because the left-hand side is invariant, modulo p, under the substitution x �→ 1 − x, so must be the
right-hand side, and hence

−£2(1 − x) − x2p£2(1 − 1/x) ≡ −£2(x) − (1 − x)2p£2
(
x/(x − 1)

)
(mod p).

Using £2(y) = yp£2(1/y) with y = x/(x − 1), and rearranging terms, we obtain Eq. (6). Substituting
it appropriately in Eq. (16) yields Eq. (14). �

We will follow a similar approach to prove Eq. (15). However, in this case Lemma 3.2 provides
us with just about one third of the values modulo p of the coefficients of £1(x)3 , and so we need a
more careful application of symmetries to recover the rest of the coefficients. For this reason we take
some time to discuss the group of symmetries in some detail, and the polynomials which it leaves
invariant.

If F is any field, the involutive transformations R : z �→ 1/z and S : z �→ 1 − z of the projective line
F ∪ {∞} generate a group

G = {1, R, S, R S, S R, R S R} (17)

of order six, which is isomorphic to the symmetric group on three objects (with 1 denoting the
identity map). Thus, writing composition of maps from right to left, the group also contains the
two elements R S : z �→ 1/(1 − z) and S R : z �→ 1 − 1/z, which have order three and are inverse of
each other, and a third involution R S R = S R S : z �→ z/(z − 1). As is well known, R2 = 1, S2 = 1 and
R S R = S R S are a set of defining relations for G as a group generated by R and S .

The group G plays a crucial role in virtually all of this paper. By considering the fixed points of the
various elements of G in the action it is easy to see that all orbits of G on F ∪ {∞} have length six,
with the only exceptions of the orbits {1, 0,∞} and {−1, 2, 1/2} of length three (but they coincide if
F has characteristic two, and the latter orbit has length one if F has characteristic three) and, possibly,
an orbit {ω6,ω−1

6 } of length two (or one if F has characteristic three). This last orbit exists when F
contains a root ω6 of the polynomial x2 − x + 1 (which for the finite field F = Fq is the case if and
only if q ≡ 0, 1 (mod 3)).

This action of G on the projective line F ∪ {∞} naturally induces an action on its function field
as an algebraic variety. A formal treatment would require dealing with homogeneous polynomials
and then rational functions in two indeterminates x0 and x1 , but to avoid losing sight of the main
argument we prefer to use the affine parameter x = x1/x0 for the projective line, at the expense of
adding some ad-hoc terminology concerning the point ∞. (A few comments on the more formal point
of view will be added in parentheses for the more algebraically-inclined reader.)

We define a linear representation of G on F [x]�m , the space of polynomials of degree not exceed-
ing m, by setting

(R f )(x) := (−x)m f (1/x) and (S f )(x) := f (1 − x),

for f ∈ Fp[x]�m . That this stipulation really defines a representation of G can be verified by checking
that R(R f )= f , S(S f )= f , and R(S(R f ))= S(R(S f )). One finds

(R S f )(x) = (−x)m f (1 − 1/x),

(S R f )(x) = (x − 1)m f
(
1/(1 − x)

)
,

(R S R f )(x) = (x − 1)m f
(
x/(x − 1)

)
= (S R S f )(x).

(In terms of homogeneous coordinates (x0, x1) with x = x1/x0 , we would obtain this representa-
tion of G on F [x0, x1] by letting G act on a linear form f (x0, x1) = x0 f (1, x1/x0) by (R f )(x0, x1) :=
f (−x1,−x0) and (S f )(x0, x1) := f (x0, x0 − x1).)
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Given a polynomial f ∈ F [x], we may assign to it a formal degree m, any integer no less than the
ordinary degree deg f , to indicate that we are viewing f as an element of F [x]�m and elements of the
group G should act on it as described above. (Thus, the same polynomial can be assigned different
formal degrees.) Then the action above is compatible with polynomial multiplication, in the sense
that if f1 and f2 are polynomials of formal degrees m1 and m2 , and we assign formal degree m1 +m2
to their product f1 f2 , then T ( f1 f2) = (T f1)(T f2) for any T ∈ G . (This artifice makes up for not using
homogeneous coordinates, and a polynomial of formal degree m really corresponds to a polynomial
function of degree m on the projective line.) If we agree to say that a polynomial f of formal degree
m has the point ∞ as a zero with multiplicity m − deg f , then the sum of the multiplicities of the
roots of f , including that of ∞, does not exceed its formal degree m, unless f is the zero polynomial.

If the field F has characteristic greater than 3, as we assume from now on, it is a basic fact that
the map f �→ (1/|G|)∑

T ∈G T f projects F [x]�m , the space of polynomials of formal degree m, onto
its subspace of G-invariant polynomials. (This is the projection operator used in the standard proof
of Maschke’s theorem in the basic representation theory of finite groups, for example.) Thus, any G-
invariant polynomial of formal degree m can be expressed as f + R f + S f + R S f + S R f + R S R f for
some f ∈ F [x]�m . More conveniently for us, any G-invariant polynomial of formal degree m can be
expressed as

( f + S f + R S f )(x) = f (x)+ f (1 − x)+ (−x)m f (1 − 1/x) (18)

for some f ∈ F [x]�m with the extra property that R f = f .
We are now getting close to a proof of congruence (15). The fact that most orbits of G on F ∪{∞}

have length six implies that, roughly speaking, all the coefficients of a G-invariant polynomial f of
formal degree m can be recovered from knowledge of only about m/6 coefficients, if carefully selected.
Of course we will need to specify a larger number of coefficients if our selection encodes redundant
information. The following lemma shows that the lower third of the coefficient list is a sufficiently
large selection to this purpose.

Lemma 3.3. Let f be a G-invariant polynomial of formal degree m. If f has no terms of degree � m/3, then f
is the zero polynomial.

Proof. By hypothesis 0 is a root of f with multiplicity strictly higher than m/3. Recall that the G-orbit
of 0 is {0, 1,∞}. Invariance under G implies that 1 and ∞ are also roots of f , each with multiplicity
exceeding m/3. It follows that f is the zero polynomial. �
Lemma 3.4. Let f be a polynomial with deg f < p, over a field of characteristic p > 3, satisfying f (x) =
−xp f (1/x). Then there is a unique G-invariant polynomial of formal degree 3p such that g(x) ≡ f (1 − x)
(mod xp+1), and is given by

g(x) = xp f (x)+
(
1 − xp)

f (1 − x)+ x2p(
1 − xp)

f (1 − 1/x).

Proof. That g is G-invariant follows by direct verification, or from a previous observation (namely, by
taking xp f (x) in place of f in Eq. (18)).

Our hypotheses on f imply that both 0 and 1 are roots of f (as well as ∞ if we assign f formal
degree p), and so f (x), f (1 − x) and xp f (1 − 1/x) are all polynomials of ordinary degree less than p
and without constant term. It follows that g(x) ≡ f (1 − x) (mod xp+1).

Finally, uniqueness of f follows from Lemma 3.3. �
Proof of Eq. (15). According to Lemma 3.2 and [27, Corollary 2.3] (with a = 3), the polynomial

g(x) =£1(x)3/6 − (2/3)xp(
1 − xp)

£3(−1)

satisfies the hypotheses of Lemma 3.4 with f (x)=£3(x). �
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4. Special values of £££d(x)

In this section we collect several known congruences for special values of the finite polylogarithms
£d(x), and use the identities for finite polylogarithms from Section 2 to prove some new ones.

Let Bn(x), Bn = Bn(0) and En denote the Bernoulli polynomials, and the Bernoulli and Euler num-
bers. Note that £d(1)= H p−1(d), where Hk(d)=

∑k
r=1 1/rd . For any prime p > d + 2 we have

£d(1) ≡
{−d(d+1)

2(d+2)
p2 B p−d−2 (mod p3) if d is odd,

d
d+1 pB p−d−1 (mod p2) if d is even.

In essence these were found by Glaisher in 1900 in his articles in Quart. J. Math., but see [18, Theo-
rem 5.1] for a sharper result.

To compute £d(−1) = −H p−1(d)+ 21−d H(p−1)/2(d), we combine the above congruences with the
evaluation of H(p−1)/2(d) given in [18, Theorem 5.2]. For d = 1 we find, for any prime p > 3, the
congruence

£1(−1) ≡ −2qp(2)+ pq2
p(2) − p2

(
2

3
q3

p(2)+
1

4
B p−3

) (
mod p3);

for d > 1, as soon as p > d + 1, we obtain (see [27, Corollary 2.3])

£d(−1) ≡
⎧⎨
⎩

− 2(1−21−d)
d B p−d (mod p) if d is odd,

d(1−2−d)
(d+1)

pB p−d−1 (mod p2) if d is even.

From [20, Theorem 4.1] and Eq. (4) we obtain congruences for £d(2) and £d(1/2), all valid for
p > 3:

£1(2) ≡ −2qp(2) − 7

12
p2 B p−3

(
mod p3),

£2(2) ≡ −q2
p(2)+ p

(
2

3
q3

p(2)+
7

6
B p−3

) (
mod p2),

£3(2) ≡ −1

3
q3

p(2) − 7

24
B p−3 (mod p),

£1(1/2) ≡ qp(2) − 1

2
pq2

p(2)+ p2
(

1

3
q3

p(2) − 7

48
B p−3

) (
mod p3),

£2(1/2) ≡ −1

2
q2

p(2)+ p

(
1

2
q3

p(2)+
7

24
B p−3

) (
mod p2),

£3(1/2) ≡ 1

6
q3

p(2)+
7

48
B p−3 (mod p).

The above evaluation of £3(2) appears also in [5].
Finally, according to [19, Corollary 2.1] combined with Fermat’s little theorem, for d � 1 and

m, r � 0 we have

∑
0<k<p

k≡r (mod m)

1

kd
≡ 1

dmd

(
B p−d

({
r

m

})
− B p−d

({
r − p

m

}))
(mod p),
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provided the prime p satisfies p > d + 3 and p � m, where {x} = x − 	x
 is the fractional part of x.
The above relation can be used to compute £d(x) modulo p where x is an m-th root of unity. In
particular, one finds that

£2(±i) ≡ 1

16

((−1

p

)
± i

)
B p−2(1/4) =

1

2

((−1

p

)
± i

)
E p−3 (mod p),

£3(±i) ≡ 1

32

(
−1 ±

(−1

p

)
i

)
B p−3 (mod p),

and

£2
(
ω±1

6

) ≡ 1

8

((
p

3

)
± i

√
3

3

)
B p−2(1/3), £2

(−ω±1
6

) ≡ 1

12

((
p

3

)
∓ i

√
3

)
B p−2(1/3),

£3
(
ω±1

6

) ≡ 1

18

(
1 ∓ i

√
3

(
p

3

))
B p−3, £3

(−ω±1
6

) ≡ 2

9

(
−1 ∓ i

√
3

3

(
p

3

))
B p−3,

all four congruences being modulo p.
After recalling these known evaluations, we put to good use the group of transformations G which

we introduced in Section 3, Eq. (17). Recall that its orbits on any field F have all length six, with the
only exceptions of {1, 0,∞}, {−1, 2, 1/2}, and possibly {ω6,ω−1

6 } if the field contains a root ω6 of the
polynomial x2 − x + 1. We now consider three particular orbits of length six, namely

{
i,−i, 1 + i, 1 − i, (1 + i)/2, (1 − i)/2

}
,{−ω6,−ω−1

6 , 1 +ω6, 1 +ω−1
6 , (1 +ω6)/3,

(
1 +ω−1

6

)
/3

}
,{

φ+,φ−,φ2
+,φ2−,−φ+,−φ−

}
,

where φ± = (1 ± √
5 )/2 are the roots of the polynomial x2 − x − 1. For each of these orbits the

congruences given in Eqs. (3)–(8) provide several linear relations among the values modulo p of
£2(α) with α ranging over the orbit. In the first two cases this will allow us to recover all those
values from just one which is available from the literature, and in the third case the relations alone
are sufficient to determine all those values. At this point we need the following lemma.

Lemma 4.1. Let p be an odd prime and let a be an integer not divisible by p. Then

(
a

p

)
a(p−1)/2 ≡

n−1∑
k=0

(
1/2

k

)(
pqp(a)

)k (
mod pn)

for any positive integer n.

Proof. The assertion, whose special case n = 1 is familiar, follows from the fact that

(
a

p

)
a(p−1)/2 =

∞∑
k=0

(
1/2

k

)(
pqp(a)

)k

in the ring of p-adic integers Zp . The latter is true because both sides are square roots of the integer
ap−1 = 1 + pqp(a) in Zp , and both are congruent to 1 modulo p. �
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Theorem 4.2. For any prime p > 3 we have

£2(1±i) ≡ −q2
p(2)

8

(
1 ± i

(−1

p

))
+

1

2

(−1

p

)
E p−3 (mod p),

£2
(
(1±i)/2

) ≡ −q2
p(2)

8
+

1

4

((−1

p

)
± i

)
E p−3 (mod p).

Proof. We first compute £2(1±i) = a ± ib, from which the remaining values can be obtained by
means of the inversion relation (3). According to [20, Theorem 3.2] we have

Re
(
£1(i)

)
=

	p/4
∑
k=1

1

4k
−

	p/4
∑
k=1

1

4k − 2
=

1

2

	p/4
∑
k=1

1

k
− 1

2

	p/2
∑
k=1

1

k

≡ −1

2
qp(2)+

1

4
pq2

p(2) − 1

2
p

(−1

p

)
E p−3

(
mod p2).

Because

(1 ± i)n = (−1)(n
2−1)/82(n−1)/2(1 ± (−1)(n−1)/2i

)
for n odd, Lemma 4.1 implies

Re
(

Q p(1 − i)
)
=

Re((1 − i)p) − 1

p
=

( 2
p )2(p−1)/2 − 1

p

≡ 1

2
qp(2) − 1

8
pq2

p(2)
(
mod p2).

Using Eq. (7) we find

Re
(

Q p(1 − i)
) ≡ −Re

(
£1(i)

) − pa
(
mod p2),

which allows us to determine a. Finally, Eq. (6) implies

1

2

(−1

p

)
E p−3 ≡ Re

(
£2(i)

) ≡ Re
(
a − ib + ip(a + ib)

) ≡ a −
(−1

p

)
b (mod p),

which yields b. �
Theorem 4.3. For any prime p > 3 we have

£2
(
1 +ω±1

6

) ≡ −q2
p(3)

16

(
3 ± i

√
3

(
p

3

))
+

1

36

(
3

(
p

3

)
∓ i

√
3

)
B p−2(1/3) (mod p),

£2
((

1 +ω±1
6

)
/3

) ≡ −q2
p(3)

8
+

1

36

((
p

3

)
± i

√
3

)
B p−2(1/3) (mod p).
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Proof. We compute £2(1 + ω±1
6 ) = a ± ib, and the other congruence will follow from the inversion

relation (3). From [20, Theorem 3.9] we have

Re
(
£1(−ω6)

)
=

3

2

	p/3
∑
k=1

1

3k
− 1

2

p−1∑
k=1

1

k

≡ −3

4
qp(3)+

3

8
pq2

p(3) − 1

12
p

(
p

3

)
B p−2(1/3)

(
mod p2).

Because

ω±n
6 =

(−1)n−1

2

(
1 ± i

√
3

(
n

3

))

if n is not a multiple of 3, Lemma 4.1 implies

Re
(

Q p(1 +ω6)
)
=

Re((
√

3iω−1
6 )p) − Re(ω

p
6 ) − 1

p
=

3

2

( 3
p )3(p−1)/2 − 1

p

≡ 3

4
qp(3) − 3

16
pq2

p(3)
(
mod p2).

Using Eq. (7) we find

Re
(

Q p(1 +ω6)
) ≡ −Re

(
£1(−ω6)

) − pa
(
mod p2),

from which we can determine a. Finally, Eq. (6) implies

1

12

(
p

3

)
B p−2(1/3) ≡ Re

(
£2(−ω6)

) ≡ Re
(
a + ib − ω

p
6 (a − ib)

)

≡ 1

2

(
a − √

3

(
p

3

)
b

)
(mod p),

which yields b. �
Theorem 4.4. For any prime p > 5 we have

£2(φ±) ≡ ∓
√

5

10

(
p

5

)
q2

L (mod p),

£2
(
φ2±

) ≡ −1

2

(
1 ±

√
5

5

(
p

5

))
q2

L (mod p),

£2(−φ±) ≡ −1

4

(
1 ±

√
5

5

(
p

5

))
q2

L (mod p),

where qL = Q p(φ±)= (L p − 1)/p is the Lucas quotient. Moreover, we have

£3
(
φ2±

) ≡ − 2

15

(
1 ± √

5

(
p

5

))(
1

2
q3

L + B p−3

)
(mod p).
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Proof. The distribution relation (5) with m = 2 and d = 2 yields

£2
(
φ2
+

) ≡ 2φ
2p
+ £2(φ+)+ 2φ

p
+£2(−φ+) (mod p).

Eq. (6) and the inversion relation (3) yield

£2
(
φ2
+

) −£2(−φ+) ≡ φ
2p
+ £2(−φ−) ≡ φ

p
+£2(φ+) (mod p).

Eq. (8) and the inversion relation (3) yield

1

2
q2

L + φ
p
+£2(φ+) ≡ −φ

p
−£2(φ−) ≡ −φ

2p
− £2(−φ+) (mod p).

Solving the linear system for £2(φ+), £2(φ
2
+) and £2(−φ+) given by the above three congruences,

and using

2φ
p
± ≡

(
1 ± √

5

(
p

5

))
and 2φ

2p
± ≡

(
3 ± √

5

(
p

5

))
(mod p),

one obtains the three stated congruences involving £2 .
In a similar way one evaluates £2 and £3 at φ2± . The distribution relation (5), with m = 2 and

d = 3, combined with the inversion relation (3), yields

£3
(
φ2
+

) − 4φ
2p
+ £3(φ+) ≡ −4£3(φ−) (mod p).

Also, congruence (9) yields

1

6
q3

L +
1

3
B p−3 ≡ −φ

p
−£3(φ−) − φ

p
+£3(φ+)+ φ

p
−£3

(
φ2
+

)
(mod p).

Solving for £3(φ
2
+) we find

£3
(
φ2
+

) ≡ −4φ
p
+

15

(
1

2
q3

L + B p−3

)
≡ − 2

15

(
1 +

√
5

(
p

5

))(
1

2
q3

L + B p−3

)
(mod p).

The analogous congruence for £3(φ
2−) is obtained by interchanging the subscripts + and − through-

out the proof. �
5. Polynomial identities

The main goal of this section, which we achieve in Theorem 5.2, is to obtain identities which

allow one to replace the two general partial sums
∑n

k=1 k−s
(2k

k

)−1
tk , with s = 1, 2, 3 (and also higher,

in principle), with more manageable sums. Those involve the familiar Lucas sequences {un(x)}n�0 and
{vn(x)}n�0 defined by the recurrence relations

u0(x) = 0, u1(x) = 1, and un(x) = xun−1(x) − un−2(x) for n > 1,

v0(x) = 2, v1(x) = x, and vn(x) = xvn−1(x) − vn−2(x) for n > 1.
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They have generating functions

U (z) =
∑
n�0

un(x)zn =
z

1 − xz + z2
and V (z) =

∑
n�0

vn(x)zn =
2 − xz

1 − xz + z2
,

where we have omitted the dependence of U (z) and V (z) on x in favor of a lighter notation. It is
convenient to view x as an indeterminate rather than a specific number. Thus, letting α be an element
of a quadratic field extension of the field Q(x) of rational functions with α2 − xα + 1 = 0, we have
un(x) = (αn − α−n)/(α − α−1) and vn(x) = αn + α−n . We anticipate that in Section 6 we will obtain
polynomial congruences, relative to a prime p, which involve sums of the form

∑p−1
k=1 uk(x)/kd =

(£d(α) −£d(α
−1))/(α − α−1) and

∑p−1
k=1 vk(x)/kd =£d(α)+£d(α

−1). Thus, specializations of those
polynomial congruences to numerical congruences will follow from knowledge of special values of
finite polylogarithms which we have obtained in Section 4, as we will illustrate in our final Section 8.

Note that un+1(x) and vn(x) are even polynomials if n is even, and odd polynomials otherwise.
Some readers of different backgrounds may recognize them as related to the classical Chebyshev
polynomials of the first and second kind Tn(x) and Un(x), or to their (renormalized) generalizations
known as Dickson polynomials Dn(x,α) and En(x,α). In fact,

un+1(x) = En(x, 1) = Un(x/2) and vn(x) = Dn(x, 1) = 2Tn(x/2).

The same readers may be aware that (d/dx)Tn(x)= nUn−1(x) for n > 0, which becomes (d/dx)vn(x) =
nun(x) here. Besides recalling this fact in an integral formulation which is more suitable for us, the
following preliminary result provides us with an expression for a primitive of the polynomial (vn(x)−
vn(−2))/(x + 2).

Lemma 5.1. For any n > 0 we have

t∫
0

un(τ − 2)dτ =
vn(t − 2) − 2(−1)n

n
, (19)

t∫
0

vn(τ − 2) − 2(−1)n

τ
dτ =

vn(t − 2) − 2(−1)n

n
+ 2

n−1∑
k=1

(−1)n−k vk(t − 2) − 2(−1)k

k
. (20)

Proof. Temporarily viewing x as a complex constant and working in the formal power series ring
C[[z]], write z2 − xz + 1 = (1 − αz)(1 − βz). Then V (z) = (1 − αz)−1 + (1 − βz)−1 , and so for n > 0
we have

[
zn] log

(
z2 − xz + 1

)
=

[
zn](log(1 − αz)+ log(1 − βz)

)
= −(

αn + βn)/n = −vn(x)/n.

Using this and setting x = τ − 2 we obtain

t∫
0

un(τ − 2)dτ =
[
zn] t∫

0

U (z)dτ

=
[
zn](− log

(
z2 − (t − 2)z + 1

)
+ 2 log(1 + z)

)
=

vn(t − 2) − 2(−1)n

n
.

Similarly, but with a slightly more complicated integrand, we obtain
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t∫
0

vn(τ − 2) − 2(−1)n

τ
dτ =

[
zn] t∫

0

(
V (z) − 2

1 + z

)
dτ

τ

=
[
zn]((− log

(
z2 − (t − 2)z + 1

)
+ 2 log(1 + z)

) · 1 − z

1 + z

)

=
vn(t − 2) − 2(−1)n

n
+ 2

n−1∑
k=1

(−1)n−k vk(t − 2) − 2(−1)k

k
,

where we have expanded (1 − z)/(1+ z)= 1 − 2z/(1+ z)= 1+ 2
∑

k>0(−z)k for the last passage. �
We are now ready to state the main result of this section, which expresses certain sums of the

form
∑n

k=1 k−s
(2k

k

)−1
tk in terms of other sums involving our Lucas sequences. The crucial case is

Eq. (21), where s = 1, from which the other equations will follow by integration using Lemma 5.1.
The case s = 0 excluded here may be obtained from Eq. (21) by differentiation, but we prefer to deal
with it differently in Theorem 5.3.

Theorem 5.2. For n � 1 we have the polynomial identities

(
2n

n

) n∑
k=1

tk−1

k
(2k

k

) =

n∑
k=1

(
2n

n − k

)
uk(t − 2)

k
, (21)

(
2n

n

) n∑
k=1

tk

k2
(2k

k

) =

n∑
k=1

(
2n

n − k

)
vk(t − 2)

k2
+

(
2n

n

) n∑
k=1

1

k2
, (22)

(
2n

n

) n∑
k=1

tk

k3
(2k

k

) =

n∑
k=1

(
2n

n − k

)
vk(t − 2)

k3

+ 2
∑

1� j<k�n

(
2n

n − k

)
(−1)k− j v j(t − 2)

jk2
+

(
2n

n

) n∑
k=1

1

k3
. (23)

Our proof of Eq. (21) involves a transformation of sequences given by

{
c(n)

}
n�1 → {

s(n)
}

n�0, where s(n) =

(
2n

n

) n∑
k=1

c(k)(2k
k

) ,

which we read as s(0)= 0 for n = 0. More generally, in the sequel we interpret a sum to vanish when
the upper summation limit is one less than the lower summation limit. The resulting sequence s(n)

is related to the original sequence c(n) by the recurrence

s(0) = 0, Δn
(
s(n)

) := (n + 1)s(n + 1) − 2(2n + 1)s(n) = (n + 1)c(n + 1). (24)

Proof of Theorem 5.2. We start with proving Eq. (21). Consider the sequence

ad(n) =

(
2n

n

) n∑ tk−1

kd
(2k) ,
k=1 k
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and the corresponding generating function Ad(z)=
∑

n�0 ad(n)zn . When d = 1 we have

(
A1(z)

√
1 − 4z

)′
=

∞∑
n=0

(
na1(n)zn−1

√
1 − 4z − 2a1(n)zn

√
1 − 4z

)

=
1√

1 − 4z

∞∑
n=0

(
na1(n)zn−1 − 4na1(n)zn − 2a1(n)zn)

=
1√

1 − 4z

( ∞∑
n=1

na1(n)zn−1 − 2
∞∑

n=0

(2n + 1)a1(n)zn

)

=
1√

1 − 4z

∞∑
n=0

(
(n + 1)a1(n + 1) − 2(2n + 1)a1(n)

)
zn.

According to Eq. (24) we have

Δn
(
a1(n)

)
= (n + 1)a1(n + 1) − 2(2n + 1)a1(n) = tn for n � 0,

and so

(
A1(z)

√
1 − 4z

)′
=

1√
1 − 4z

( ∞∑
n=0

(tz)n

)
=

1

(1 − tz)
√

1 − 4z
.

Now consider the sequence

b1(n) =

∞∑
k=1

(
2n

n + k

)
uk(t − 2)

k
.

Its generating function B1(z)=
∑

n�0 b1(n)zn is

B1(z) =
∞∑

k=1

uk(t − 2)

k

∑
n�1

(
2n

n + k

)
zn

=

∞∑
k=1

uk(t − 2)

k

(
4z

(1 +
√

1 − 4z )2

)k 1√
1 − 4z

=
1√

1 − 4z
U1

(
h(z)

)
,

where

h(z) =
4z

(1 +
√

1 − 4z )2
and Ud(z) =

∞∑
k=1

uk(t − 2)zk

kd
.

Because z(d/dz)U1 = U , we deduce that

(
B1(z)

√
1 − 4z

)′
=

d

dz
U1

(
h(z)

)
=

h′(z)

h(z)
U

(
h(z)

)
=

1

(1 − tz)
√

1 − 4z
.

Finally, A1(0)= B1(0) and (A1(z)
√

1 − 4z )′ = (B1(z)
√

1 − 4z )′ imply that A1(z)= B1(z), and we con-
clude that Eq. (21) holds.
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To prove Eq. (22), integrate Eq. (21) with respect to t and then use Eq. (19), to obtain

(
2n

n

) n∑
k=1

tk

k2
(2k

k

) =

n∑
k=1

(
2n

n − k

)
vk(t − 2) − 2(−1)k

k2

=

n∑
k=1

(
2n

n − k

)
vk(t − 2)

k2
+

(
2n

n

) n∑
k=1

1

k2
.

One can prove Eq. (23) in a similar way, by integrating Eq. (22) divided by t and then using
Eq. (20). �

Eq. (25) in the following result shows how the study of
∑n

k=1

(2k
k

)−1
tk can be reduced to the sums

considered in Theorem 5.2. Eq. (26) gives a similar formula for
∑n

k=1 Hk−1(s)
(2k

k

)−1
tk with s > 0. Note

that Eq. (26) would not specialize correctly to the case s = 0, where Hk−1(0) = k − 1, which instead
may be obtained from Eq. (22) by differentiation if one wishes.

Theorem 5.3. For any n, s � 1 we have the polynomial identities

(t − 4)

n∑
k=1

tk−1(2k
k

) + 2
n∑

k=1

tk−1

k
(2k

k

) =
tn(2n
n

) − 1, (25)

(t − 4)

n∑
k=1

tk−1 Hk−1(s)(2k
k

) + 2
n∑

k=1

tk−1 Hk−1(s)

k
(2k

k

) =
tn Hn(s)(2n

n

) −
n∑

k=1

tk

ks
(2k

k

) . (26)

Proof. With the same notation as in the proof of Theorem 5.2, Eq. (24) implies

Δn
(
(t − 4)a0(n)+ 2a1(n)

)
= (t − 4)(n + 1)tn + 2tn = Δn

(
tn) = Δn

(
tn −

(
2n

n

))
.

Because the two sequences agree on n = 0, Eq. (25) follows.
To prove Eq. (26), consider

a(s)
d (n) =

(
2n

n

) n∑
k=1

tk−1 Hk−1(s)

kd
(2k

k

) .

Eq. (24) yields, for n � 0,

Δn
(
a(s)

d (n)
)
=

tn Hn(s)

(n + 1)d−1
.

This implies

Δn
(
(t − 4)a(s)

0 (n)+ 2a(s)
1 (n)

)
= (t − 4)(n + 1)tn Hn(s)+ 2tn Hn(s)

= Δn
(
tn Hn(s)

) − tn+1

(n + 1)s−1

= Δn
(
tn Hn(s) − tas(n)

)
.

Because the two sequences agree on n = 0, Eq. (26) follows. �
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We point out that trigonometric versions of our Eqs. (21), (22) and (25), with 4 cos2 ϕ in place
of t , have recently appeared in [29, Eqs. (1.1), (5.1) and (1.3)]. The proofs given there are essentially
different from ours.

6. Polynomial congruences

In this section we specialize the two partial sums
∑n

k=1 k−s
(2k

k

)−1
tk , with s = 1, 2, considered

in Theorem 5.2, by setting n = p − 1, and study their values modulo p2 . (Note that the values of
those sums become p-integral only upon multiplication by p.) Theorem 6.1 also contains similar

but less sharp evaluations for the corresponding sums
∑n

k=1 k−s Hk−1(2)
(2k

k

)−1
tk . As we anticipated

in the first paragraph of Section 5, the possibility of specializing these polynomial congruences to
numerical congruences, exemplified in Section 8, depends on our knowledge of special values of finite
polylogarithms which we have developed in Section 4.

Theorem 6.1. For any prime p > 3 we have the polynomial congruences

p
p−1∑
k=1

tk

k
(2k

k

) ≡ tup(2 − t) − t p

2
+ p2t

p−1∑
k=1

uk(2 − t)

k2

(
mod p3), (27)

p
p−1∑
k=1

tk

k2
(2k

k

) ≡ 2 − v p(2 − t) − t p

2p
− p2

p−1∑
k=1

vk(2 − t)

k3

(
mod p3), (28)

and also

p
p−1∑
k=1

tk Hk−1(2)

k
(2k

k

) ≡ t
p−1∑
k=1

uk(2 − t)

k2
(mod p), (29)

p
p−1∑
k=1

tk Hk−1(2)

k2
(2k

k

) ≡ −
p−1∑
k=1

vk(2 − t)

k3
(mod p). (30)

Proof. Setting n = p in Eq. (21) and multiplying by pt we obtain

p

(
2p

p

) p−1∑
k=1

tk

k
(2k

k

) + t p = tup(t − 2)+ pt
p−1∑
k=1

(
2p

k

)
up−k(t − 2)

p − k
.

Now
(2p

k

)
= 2p

k

(2p−1
k−1

) ≡ 2(−1)k−1 p/k (mod p2) for k = 1, . . . , p − 1, and
(2p

p

) ≡ 2 − 4
3 p3 B p−3 (mod p4)

according to [30, Theorem 3.2]. Because uk(−x) = (−1)k−1uk(x), we deduce

2p
p−1∑
k=1

tk

k
(2k

k

) + t p ≡ tup(t − 2)+ 2p2t
p−1∑
k=1

(−1)k−1up−k(t − 2)

k(p − k)

≡ tup(2 − t)+ 2p2t
p−1∑
k=1

uk(2 − t)

k2

(
mod p3),

which is equivalent to the desired Eq. (27).
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To pass from this to Eq. (29) we need to relate the sums

p−1∑
k=1

tk

k
(2k

k

) and
p−1∑
k=1

tk Hk−1(2)

k
(2k

k

)
via an appropriate congruence. To this purpose we need the former of the following identities, valid
for n � 1, which were obtained by the second author in the course of the proof of [26, Theorem 3.1]:

n∑
k=1

(
n

k

)(
n + k − 1

k − 1

)
(−t)k−1(2k

k

) =
(−1)n−1un(t − 2)

2
, (31)

n∑
k=0

(
n

k

)(
n + k − 1

k

)
(−t)k(2k

k

) =
(−1)n vn(t − 2)

2
. (32)

The latter identity will be needed later to pass from Eq. (28) to Eq. (30). Note that the coefficient of
(−t)k−1 in the former formula, for example, may be more simply written as 1

2

(n+k−1
2k−1

)
, but here we

need the longer form, with the factor
(2k

k

)−1
in evidence.

Thus, setting n = p in Eq. (31) and separating the last summand we obtain

p−1∑
k=1

(
p

k

)(
p − 1 + k

k

)
(−t)k(2k

k

) = − tup(2 − t) − t p

2
.

One easily checks that for k = 1, . . . , p − 1 we have

k

p

(
p

k

)
=

(
p − 1

k − 1

)
≡ (−1)k−1(1 − pHk−1(1)+ p2 Hk−1(1, 1)

) (
mod p3),

(
p − 1 + k

k − 1

)
≡ 1 + pHk−1(1)+ p2 Hk−1(1, 1)

(
mod p3),

whence

(
p

k

)(
p − 1 + k

k − 1

)
≡ (−1)k−1 p

k

(
1 − p2(Hk−1(1)2 − 2Hk−1(1, 1)

))
≡ (−1)k−1 p

k

(
1 − p2 Hk−1(2)

) (
mod p4). (33)

Noting that
(2k

k

)
can be a multiple of p but not of p2 in the range considered, we obtain

p
p−1∑
k=1

tk

k
(2k

k

) − p3
p−1∑
k=1

tk Hk−1(2)

k
(2k

k

) ≡ tup(2 − t) − t p

2

(
mod p3).

Together with Eq. (27) this implies Eq. (29).
The proofs of Eqs. (28) and (30) are similar. Setting n = p in Eq. (22) and multiplying by p we

obtain
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p

(
2p

p

) p−1∑
k=1

tk

k2
(2k

k

) +
t p

p
=

v p(t − 2)

p
+ p

p−1∑
k=1

(
2p

k

)
v p−k(t − 2)

(p − k)2

+ p

(
2p

p

)
H p−1(2)+

1

p

(
2p

p

)
.

Because vk(−x)= (−1)k vk(x) and H p−1(2) ≡ 0 (mod p), we have

2p
p−1∑
k=1

tk

k2
(2k

k

) ≡ 2 − v p(t − 2) − t p

p
+ 2p2

p−1∑
k=1

(−1)k−1 v p−k(t − 2)

k(p − k)2

≡ 2 − v p(2 − t) − t p

p
− 2p2

p−1∑
k=1

vk(2 − t)

k3

(
mod p3),

and hence Eq. (28) holds.
Setting n = p in Eq. (32), dividing by p and separating the last summand we find

1

p

p−1∑
k=1

(
p

k

)(
p − 1 + k

k

)(
2k

k

)−1

(−t)k =
2 − v p(t − 2) − t p

2p
.

According to Eq. (33), in the range considered for k we have

1

p

(
p

k

)(
p − 1 + k

k

)
=

1

k

(
p

k

)(
p − 1 + k

k − 1

)
≡ (−1)k−1 p

k2

(
1 − p2 Hk−1(2)

) (
mod p4),

and because
(2k

k

)
is not a multiple of p2 we conclude

p
p−1∑
k=1

tk

k2
(2k

k

) − p3
p−1∑
k=1

tk Hk−1(2)

k2
(2k

k

) ≡ 2 − v p(t − 2) − t p

2p

(
mod p3).

Together with Eq. (28) this implies Eq. (30). �
Theorem 6.1 has exploited only the first two of the three polynomial congruences produced in

Theorem 5.2. The third congruence we can only use in a weakened form, obtaining the following
result.

Theorem 6.2. For any prime p > 3 we have the polynomial congruence

p
p−1∑
k=1

tk

k3
(2k

k

) ≡ 1 − (v p(2 − t)+ t p)
(2p

p

)−1

p2
− 1

p

p−1∑
k=1

vk(2 − t)

k

(
mod p2).

Proof. The proof runs along similar lines as that of Theorem 6.1, but starting from Eq. (23). �
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7. Congruences with
(2k

k

)
in the numerators

In this section we prove polynomial identities and congruences for sums similar to those consid-
ered in the previous sections, but involving the central binomial coefficients

(2k
k

)
in the numerators

rather than the denominators.
One can obtain polynomials identities analogous to those of Section 5 starting from the identity

n−1∑
k=0

(
2k

k

)
tn−1−k =

n∑
k=1

(
2n

n − k

)
uk(t − 2), (34)

which was proved in [25]. In fact, successive integration according to Lemma 5.1 produces the poly-
nomial identities

n−1∑
k=0

(2k
k

)
n − k

tn−k =

n∑
k=1

(
2n

n − k

)
vk(t − 2) − 2(−1)k

k
, (35)

n−1∑
k=0

(2k
k

)
(n − k)2

tn−k =

n∑
k=1

(
2n

n − k

)
vk(t − 2) − 2(−1)k

k2

+ 2
∑

1� j<k�n

(
2n

n − k

)
(−1)k− j(v j(t − 2) − 2(−1) j)

jk
, (36)

which are somehow analogous to the first two identities in Theorem 5.2. Eq. (35) will play a role in
deducing Eq. (42) from Eq. (41) in our proof of Theorem 7.1 below.

Passing now to polynomial congruences, a simple way of switching central binomial coefficients
from denominators to numerators of our sums is based on the congruence

2p

k
(2k

k

) ≡
(

2(p − k)

p − k

)
(mod p), for k = 1, . . . , p − 1.

Accordingly, Eqs. (29) and (30) of Theorem 6.1 have equivalent formulations

p−1∑
k=1

t p−k Hk(2)

(
2k

k

)
≡ −2t

p−1∑
k=1

uk(2 − t)

k2
(mod p), (37)

p−1∑
k=1

t p−k Hk(2)

k

(
2k

k

)
≡ −2

p−1∑
k=1

vk(2 − t)

k3
(mod p). (38)

However, because Eqs. (27) and (28) of Theorem 6.1 are congruences modulo p3 , this simple trick
is insufficient to turn them into equivalent congruences with the central binomial coefficients in the
numerators. To achieve that we need to work a bit harder, as in our next result.

Evaluations of
∑p−1

k=0

(2k
k

)
t p−1−k (mod p2) and

∑p−1
k=1

(2k
k

)
k−1t p−k (mod p) were obtained in [22,

Eq. (2.2)] and [25, Eq. (1.11)], respectively, starting from Eq. (34) above, and the further polynomial
identity

n−1∑ (2k
k

)
k

tn−k = −2
n−1∑ (−1)d

d

n−d−1∑ (
2n

k

)
vn−d−k(t − 2) − 4

n−1∑ (−1)d

d

(
2n − 1

n − d − 1

)
, (39)
k=1 d=1 k=0 d=1
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which was also proved in [25, Eqs. (2.2) and (4.1)]. The key to push those evaluations in [22,25] to
higher moduli lies in some of the functional equations for the finite polylogarithms which we have
recalled in Section 2. The resulting congruences involve the Lucas sequences

u0(x, y) = 0, u1(x, y) = 1, and un(x, y) = xun−1(x, y) − yun−2(x, y) for n > 1,

v0(x, y) = 2, v1(x, y) = x, and vn(x, y) = xvn−1(x, y) − yvn−2(x, y) for n > 1,

which generalize the Lucas sequences un(x) = un(x, 1) and vn(x) = vn(x, 1) introduced in Section 5.
Once again, letting α be an element of a quadratic field extension of the field Q(x, y) of rational
functions with α2 − xα + y = 0, we have un(x)= (αn − α−n)/(α − α−1) and vn(x) = αn + α−n .

Theorem 7.1. For any prime p > 3 we have the polynomial congruences

p−1∑
k=0

(
2k

k

)
t p−1−k ≡ 2up(t, t) − up(2 − t) − 2p2

p−1∑
k=1

uk(2 − t)+ uk(t, t)

k2

(
mod p3), (40)

p−1∑
k=1

(2k
k

)
k

t p−k ≡ 3t p + 2 − v p(2 − t) − 4v p(t, t)

p

(
mod p2), (41)

1

2

p−1∑
k=1

(2k
k

)
k2

t p−k ≡ v p(2 − t)+ 2v p(t, t) − t p − 2

p2
+

p−1∑
k=1

vk(2 − t)

k2
(mod p). (42)

Note that if α is an element of a quadratic field extension of the field Q(t) of rational functions
with α2 − (2 − t)α + 1 = 0, whence un(2 − t) = (αn − α−n)/(α − α−1) and vn(2 − t) = αn + α−n ,
then 1 − α satisfies (1 − α)2 − t(1 − α)+ t = 0, whence un(t, t) = ((1 − α)n − (1 − α−1)n)/(α−1 − α)

and vn(t, t) = (1 − α)n + (1 − α−1)n . Consequently, the sum in the right-hand side of Eq. (40) can be
expressed in terms of £2(α

±1) and £2(1 − α±1). Because the proof of Theorem 7.1 is very similar to
that of Theorem 6.1, we only outline the argument.

Sketch of proof. The general scheme of proof is to deduce the congruences (40) and (41) from the
identities (34) and (39) in a similar way as we deduced the congruences (27) and (28) of Theorem 6.1
from the identities (21) and (22) of Theorem 5.2. Thus, after taking n = p and separating one term
of the sum we apply standard congruences for binomial coefficients, but modulo a higher power of p
than those needed in the proof of Theorem 6.1, such as

(
2p

k

)
≡ (−1)k−1 2p

k

(
1 − 2pHk−1(1)

) (
mod p3), for k = 1, . . . , p − 1.

Because H p−k−1(1) ≡ Hk−1(1)+ 1/k (mod p), the effect of this higher precision is the appearance of

new terms, such as p2 ∑p−1
k=1 u(2 − t, 1)/k2 = p2(£2(α) − £2(α

−1))/(α − α−1), in contrast with the
proof of Theorem 6.1, which only involved £1(α) and £1(α

−1), albeit implicitly. It is at this place
that several congruences from Section 2 for £1 and £2 can be brought into play, at the expense of
the appearance of £2(1 − α) and £2(1 − α−1) as observed above.

Finally, Eq. (42) can be easily deduced from Eq. (41) using Eq. (19) with n = p. �
8. Numerical congruences

In this final section we illustrate how the special values of the finite polylogarithms investigated
in Section 4 allow one to evaluate the polynomial congruences in Sections 6 and 7 at certain special
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values of t , thus producing explicit numerical congruences, some of which were proved or conjectured
in the literature.

For a given algebraic number t �= 0, let α and α−1 be the two complex roots of the polynomial
x2 − (2 − t)x + 1, whence t = 2 − α − α−1 . Then for k � 0 we have

uk(2 − t) =

{
αk−α−k

α−α−1 if t �= 4,

(−1)kk if t = 4,
and vk(2 − t) = αk + α−k.

Consequently, for d � 1 we have

p−1∑
k=1

uk(2 − t)

kd
=

{
£d(α)−£d(α−1)

α−α−1 if t �= 4,

£d−1(−1) if t = 4,
and

p−1∑
k=1

vk(2 − t)

kd
=£d(α)+£d

(
α−1).

Using the special values of £d(x) established in Section 3, Theorem 6.1 allows one to compute the
explicit values of the sums in Eq. (2) (modulo p3 or p as stated), for d = 1, 2 and various values of t .
Theorem 5.3 then allows one to obtain analogous formulas for the case d = 0.

Values of t for which we have quoted or proved congruences for the corresponding £d(α) in
Section 4 are the following, grouped together according to G-orbits of α:

4; 1; −1/2; 2, (1 ± i)/2; 3, (1 ± i
√

3)/3; −1, 2 ± √
5 = ±φ3.

To illustrate the kind of congruences that one obtains, we give full details of the case t = −1,
where α = φ2

+ and α−1 = φ2− . In this case un = F2n and vn = L2n , where Fk and Lk are respectively
the k-th Fibonacci number and the k-th Lucas number. The evaluations modulo p of £2(φ

2±) and
£3(φ

2±) which we obtained in Theorem 4.4 yield the following list of congruences. For comparison,
to the right of each congruence we give the sum of the corresponding infinite series, which can be
computed by using Eq. (1) and its derivatives at z = i. For reasons of space we omit the moduli from
the congruences and specify them in the text.

For any prime p > 5, Eqs. (29), (30) and (26) yield the following three congruences modulo p:

p
p−1∑
k=1

(−1)k Hk−1(2)

k
(2k

k

) ≡ 1

5

(
p

5

)
q2

L ,
∞∑

k=1

(−1)k Hk−1(2)

k
(2k

k

) =
4
√

5

15
log3(φ+),

p
p−1∑
k=1

(−1)k Hk−1(2)

k2
(2k

k

) ≡ 4

15

(
1

2
q3

L + B p−3

)
,

∞∑
k=1

(−1)k Hk−1(2)

k2
(2k

k

) =
2

3
log4(φ+),

p
p−1∑
k=1

(−1)k Hk−1(2)(2k
k

) ≡ 1

5
qL +

2

25

(
p

5

)
q2

L ,

∞∑
k=1

(−1)k Hk−1(2)(2k
k

) =
2

5
log2(φ+)+

8
√

5

75
log3(φ+).

Eqs. (27), (28) and (25) yield the following three congruences modulo p3:

p
p−1∑ (−1)k

k
(2k) ≡ 1 − Lp F p

2
+

p2

5

(
p

5

)
q2

L ,
∞∑ (−1)k

k
(2k) = −2

√
5 log(φ+)

5
,

k=1 k k=1 k
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p
p−1∑
k=1

(−1)k

k2
(2k

k

) ≡ 1 − L2
p

2p
+

4p2

15

(
1

2
q3

L + B p−3

)
,

∞∑
k=1

(−1)k

k2
(2k

k

) = −2 log2(φ+),

p
p−1∑
k=1

(−1)k(2k
k

) ≡ p − Lp F p

5
+

2p2

25

(
p

5

)
q2

L ,
∞∑

k=1

(−1)k(2k
k

) = −1

5
− 4

√
5

25
log(φ+).

We refrain from listing all of the congruences produced by our results for the remaining values of t
listed earlier, but we point out that, to our knowledge, three of them were already known, and several
were conjectured. The known ones were proved by Z.W. Sun in [23, Theorems 1.2 and 1.3], namely,
[23, Eq. (1.6)] follows from our Eq. (30) with t = 2, while [23, Eqs. (1.12) and (1.13)] follow from our
Eqs. (30) and (37) with t = 4. Furthermore, our congruences confirm some of the conjectures stated
by Z.W. Sun in [21, A31], for p > 3:

p
p−1∑
k=1

2k

k
(2k

k

) ≡
(−1

p

)
− 1 − pqp(2)+ p2 E p−3

(
mod p3),

p
p−1∑
k=1

2k

k2
(2k

k

) ≡ −qp(2)+
p2

16
B p−3

(
mod p3),

p
p−1∑
k=1

4k

k2
(2k

k

) ≡ −4qp(2) − 2pq2
p(2)+ p2 B p−3

(
mod p3).

Some congruences for the case d = 3 can be obtained from Theorem 6.2, such as the following,
for p > 3:

p
p−1∑
k=1

4k

k3
(2k

k

) ≡ −4qp(2)2 + p

(
4

3
qp(2)3 − 1

6
B p−3

) (
mod p2).

In this case, values of t different from 4 are not as easy to deal with. One further integration using
Lemma 5.1 allows one to obtain congruences with d = 4 as well. Although we have not stated a
corresponding result analogous to Theorem 6.2, we mention that one can derive the congruence, for
p > 3,

p
p−1∑
k=1

4k

k4
(2k

k

) ≡ −4

3

(
2qp(2)3 + B p−3

)
(mod p).

Together with the special values of the finite dilogarithm computed in Section 4, Eq. (40) of The-
orem 7.1 allows us to evaluate the sum

∑p−1
k=0

(2k
k

)
t−k (mod p3) for the values of t mentioned earlier.

Aside from the case t = 4, which is trivial here because of the identity
∑n

k=0

(2k
k

)
4−k = (2n+1)

(2n
n

)
4−n ,

two more of these evaluations were already known: the case t =−1 is [14, Theorem 1.3], and the case
t = 2 is [24, Theorem 1.1]. Our new contributions due to Eq. (40), for p > 3, are

p−1∑(
2k

k

)
≡

(
p

3

)
− p2

3
B p−2(1/3)

(
mod p3),
k=0
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p−1∑
k=0

(2k
k

)
3k

≡
(

p

3

)
− 2p2

9
B p−2(1/3)

(
mod p3),

p−1∑
k=1

(−2)k
(

2k

k

)
≡ −4p

3
qp(2)

(
mod p3).

In a similar way, specializing Eqs. (41) and (42) produces several numerical congruences. Among those
we mention

p−1∑
k=1

(−1)k

k

(
2k

k

)
≡ −2qL − pq2

L

(
mod p2),

p−1∑
k=1

(2k
k

)
k2

≡ 1

2

(
p

3

)
B p−2

(
1

3

)
(mod p),

which hold for any prime p > 3.
Even the irrational values of t in our list give rise to nice congruences with rational terms after

combining the algebraic conjugates together. As an example, because t = 2 ∓ √
5 = φ3∓ corresponds to

α =±φ+ , and because 2φn± = Ln ± √
5Fn , Eqs. (41) and (42) yield, for p > 5,

p−1∑
k=1

(
2k

k

) (−1)k F3k−(
p
5 )

k
≡ 1

5
pq2

L

(
mod p2),

p−1∑
k=1

(
2k

k

) (−1)k L3k−(
p
5 )

k2
≡ 0 (mod p).

Supplementary material

The online version of this article contains additional supplementary material. Please visit
http://dx.doi.org/10.1016/j.jnt.2012.05.036.
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