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1. Introduction

For any real number x ∈ (0, 1] and n ≥ 1, we define

x = x1, dn := dn(x) =
⌊

1
xn

⌋
and xn+1 = 1 − xndn, (1.1)

where �x� denotes the greatest integer not exceeding x. Then for every x ∈ (0, 1], the 
algorithm (1.1) uniquely generates a finite or infinite series. That is,
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x = 1
d1

− 1
d1d2

+ · · · + (−1)n−1 1
d1d2 · · · dn

+ · · · , (1.2)

where dn ≥ 1 are positive integers with dn+1 ≥ dn + 1 for all n ≥ 1. The represen-
tation (1.2) is said to be the alternating Engel expansion (or, Pierce expansion) of x
and dn(x), n ≥ 1 are called the digits of the alternating Engel expansion of x. We 
sometimes write the form (1.2) as x = ((d1, d2, · · · , dn, · · ·)). This expansion was first 
considered by Pierce [10] in 1929. Furthermore, some arithmetic and statistical proper-
ties of the alternating Engel expansion, such as the representation of rational numbers, 
law of large numbers, central limit theorem and law of the iterated logarithm were stud-
ied by Remez [11], Shallit [12] and Valēēv and Zlēbov [15]. Later, Shallit [13] applied this 
expansion to proposing a very nice method for determining leap years which generalizes 
those existent in 1994. For more details about the alternating Engel expansion, we refer 
the reader to [3,4,6,17] and the references therein.

Now we turn to introducing the large and moderate deviation principles. Let {Xn :
n ≥ 1} be a sequence of real-valued random variables defined on some probability space 
(Ω, F , P). A function I : R → [0, ∞] is called a good rate function if it is lower semi-
continuous and has compact level sets. Let {λn : n ≥ 1} be a sequence of positive real 
numbers with lim

n→∞
λn = ∞. We say that the sequence {Xn : n ≥ 1} satisfies a large 

deviation principle (LDP for short) with speed λn and good rate function I under P, if 
for any Borel set Γ,

− inf
x∈Γ◦

I(x) ≤ lim inf
n→∞

1
λn

log P(Xn ∈ Γ) ≤ lim sup
n→∞

1
λn

log P(Xn ∈ Γ) ≤ − sup
x∈Γ

I(x),

where Γ◦ and Γ denotes the interior and the closure of Γ respectively. Formally, there 
is no distinction between the large deviation principle and the moderate deviation prin-
ciple (MDP for short). Usually LDP characterizes the convergence speed of the law 
of large numbers, while MDP describes the speed of convergence between the law of 
large numbers and the central limit theorem. For an introduction to the theory of 
large and moderate deviation principles, we refer the reader to Dembo and Zeitouni [1], 
Touchette [14] and Varadhan [16].

We here denote by (Ω, F , P) a probability space, where Ω = (0, 1], F is the Borel 
σ-algebra on (0, 1] and P denotes the Lebesgue measure on (0, 1]. In [12], Shallit es-
tablished a relation between Stirling numbers of the first kind (see Jordan [7]) and the 
distribution of the digit dn occurring in the alternating Engel expansion to estimate 
the expectation and variance of quantities connected with dn. Using these estimates, 
Shallit showed a strong law of large numbers for the digit sequence {dn : n ≥ 1}, i.e., for 
P-almost all x ∈ (0, 1],

lim 1 log dn(x) = 1.

n→∞ n
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And he also proved the central limit theorem holds for the digit sequence {dn : n ≥ 1}. 
That is, for every y ∈ R,

lim
n→∞

P
{

log dn − n√
n

≤ y

}
= 1√

2π

y∫
−∞

e−t2/2dt.

A natural question is to consider the probability of the event that log dn

n deviates 
away from its ergodic mean 1. These probabilities are exponentially small and follow a 
large deviation principle in general. This leads to the study of large deviations for the 
alternating Engel expansion.

Theorem 1.1. Let {dn : n ≥ 1} be the digit sequence of the alternating Engel expansion. 
Then 

{
log dn−n

n : n ≥ 1
}

satisfies a LDP with speed n and good rate function

I(x) =
{
x− log(x + 1), if x > −1;
+∞, otherwise,

(1.3)

under P.

Remark 1. As we have seen in Theorem 1.1, the rate function I(x) coincides completely 
with the rate function (see [1, Exercise 2.2.23]) for the empirical mean of independent 
and identically distributed (i.i.d.) exponential random variables with mean 1. However, 
Theorem 1.2 of Zhu [18] has showed that the rate function of LDP for the Engel expansion 
(i.e., the alternating Engel expansion with all positive terms) does not consist with the 
rate function for the empirical mean of these i.i.d. exponential random variables with 
mean 1. This is a difference between Engel expansion and the alternating Engel expansion 
in the context of large deviations.

As a complement of Theorem 1.1, we give the following MDP result for the alternating 
Engel expansion.

Theorem 1.2. Let {dn : n ≥ 1} be the digit sequence of the alternating Engel expansion 
and {an : n ≥ 1} be a positive sequence satisfying

an → ∞,
an√
n log n

→ ∞ and an
n

→ 0. (1.4)

Then 
{

log dn−n
an

: n ≥ 1
}

satisfies an MDP with speed n−1a2
n and good rate function 

I(x) = x2/2 under P.

Remark 2. We may obtain the result if the second condition of an in (1.4) is replaced by 
an/

√
n → ∞ as n → ∞. However, we need the condition an√ → ∞ to avoid some 
n log n
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technical difficulties. The main reason is that we cannot obtain the finer estimates when 
we make use of the Gärtner–Ellis theorem (see [1, Theorem 2.3.6]).

As an application of Theorem 1.2, we immediately get the following corollary.

Corollary 1. Let {dn : n ≥ 1} be the digit sequence of the alternating Engel expansion 

and an = np with p ∈ (1/2, 1). Then 
{

log dn−n
np : n ≥ 1

}
satisfies an MDP with speed 

n2p−1 and good rate function I(x) = x2/2 under P.

Recently, some authors began to consider the large and moderate deviations related 
to number theory. For example, Mehrdad and Zhu [9] established the large and moder-
ate deviations for Erdős–Kac theorem, which is a celebrated result about the number 
of distinct prime factors of a uniformly chosen random integer in number theory. Later, 
Zhu [18] and Hu [5] studied, respectively, the large deviations and moderate deviations 
for Engel, Sylvester and Cantor product expansions considered by Erdős et al. [2], which 
are the classical representations of real numbers in number theory. Although Engel ex-
pansion and alternating Engel expansion have some similar properties (see [2,3,12,17]), 
our Remark 1 still indicates that there is a difference between these two expansions in 
the context of large deviations. Moreover, we emphasize that the proofs of Zhu [18] and 
Hu [5] follow from an explicit computation of the Mellin transform of the digit occurring 
in the Engel expansion and its asymptotic analysis. However, there are no such proper-
ties of dn in the case of the alternating Engel expansion. Fortunately, we overcome these 
difficulties by observing that the digit sequence {dn : n ≥ 1} of the alternating Engel 
expansion is strictly increasing. Therefore, we complete the proofs of our theorems and 
make them more clear by using the key Lemmas 3.1 and 3.3 in Section 3.

2. Preliminary

In this section, we recall some definitions and several arithmetic and metric properties 
of the alternating Engel expansion, see [3,4,6,12,13,15,17] for details. We use the notation 
E(ξ) to denote the expectation of a random variable ξ with respect to the probability 
measure P.

Recall that the alternating Engel expansion of x ∈ (0, 1],

x = 1
d1

− 1
d1d2

+ · · · + (−1)n−1 1
d1d2 · · · dn

+ · · · , (2.5)

where dn ≥ 1 are defined as (1.1) and dn+1 ≥ dn + 1 for all n ≥ 1. We sometimes 
write the representation (2.5) as x = ((d1, d2, · · · , dn, · · ·)). We first give an elementary 
arithmetic property of the alternating Engel expansion in representing of real numbers, 
which was obtained by Remez [11].
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Proposition 2.1. (See [11].) Any real number x ∈ (0, 1] can be represented in the 
form (2.5). Moreover, if x is irrational then the alternating Engel expansion of x is 
unique and infinite; If x is a rational number then it can be expanded into a finite alter-
nating Engel expansion (i.e., xn = 0 for some n ≥ 1) in the following different ways:

x = ((d1, d2, · · · , dn−1, dn, dn + 1)) = ((d1, d2, · · · , dn−1, dn + 1)).

For any irrational x ∈ (0, 1] and n ≥ 1, the truncated alternating Engel expansion

Pn(x)
Qn(x) = 1

d1
− 1

d1d2
+ · · · + (−1)n−1

d1d2 · · · dn

is called the n-th convergent of the alternating Engel expansion of x. With the con-
ventions P0 = 0 and Q0 = 1, the quantities Pn and Qn satisfy the following recursive 
formula:

Pn = dnPn−1 + (−1)n−1 and Qn = dnQn−1 = d1d2 · · · dn.

Clearly these convergents are rational numbers and Pn(x)/Qn(x) → x as n → ∞ for all 
irrational x ∈ (0, 1]. More precisely,

∣∣∣∣x− Pn(x)
Qn(x)

∣∣∣∣ ≤ 1
Qn+1(x) ≤ 1

(n + 1)!

since dn+1 ≥ dn + 1 with d1 ≥ 1 for all n ≥ 1. That is to say, the approximation of 
irrational number x by alternating Engel expansion is much faster than the usually used 
approximations by continued fraction expansion (see [8, Theorems 9, 12]).

It is worth pointing out that not all positive integer sequences can occur in the al-
ternating Engel expansion. Next we give the following definition, which describes the 
positive real sequences occurring in the alternating Engel expansion.

Definition 2.1. An n-block (d1, d2, · · · , dn) is said to be admissible for alternating Engel 
expansions if there exists x ∈ (0, 1] such that dj(x) = dj for all 1 ≤ j ≤ n. An in-
finite sequence (d1, d2, · · · , dn, · · ·) is called an admissible sequence if (d1, d2, · · · , dn) is 
admissible for all n ≥ 1.

The following proposition gives a characterization of all admissible sequences for the 
alternating Engel expansion.

Proposition 2.2. A sequence of positive integers (d1, d2, · · · , dn, · · ·) is admissible for al-
ternating Engel expansions if and only if for all n ≥ 1,

dn+1 ≥ dn + 1.
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Proof. The necessity is obvious by the definition of xn and the algorithm (1.1). In fact, 
by the algorithm (1.1), we get

xn+1 < 1 − 1
dn + 1dn = 1

dn + 1

and hence that for all n ≥ 1,

dn+1 ≥ dn + 1.

To prove the sufficiency, for all n ≥ 1, we take

x = x1 = 1
d1

− 1
d1d2

+ · · · + (−1)n−1 1
d1d2 · · · dn

.

Since dn+1 ≥ dn + 1 for all n ≥ 1, we have

x1 >
1
d1

− 1
d1d2

≥ 1
d1

− 1
d1(d1 + 1) = 1

d1 + 1 .

Therefore,

1
d1 + 1 < x1 <

1
d1

.

And hence by the algorithm (1.1), d1(x) = d1 and

x2 = 1
d2

− 1
d2d3

+ · · · + (−1)n−1 1
d1d2 · · · dn

.

Repeating the above procedure, we can get di(x) = di for all 1 ≤ i ≤ n. Thus, we get 
the desired result. �
Definition 2.2. Let (d1, d2, · · · , dn) be an admissible sequence. We call

B(d1, d2, · · · , dn) = {x ∈ (0, 1) : d1(x) = d1, d2(x) = d2, · · · , dn(x) = dn},

the n-th order cylinder. In other words, it is the set of points beginning with (d1, · · · , dn)
in their alternating Engel expansions.

The following proposition is about the structure and the length of the cylinder.

Proposition 2.3. Let (d1, d2, · · · , dn) be an admissible sequence. Then B(d1, d2, · · · , dn) is 
an interval with two endpoints

((d1, d2, · · · , dn−1, dn)) and ((d1, d2, · · · , dn−1, dn + 1)).
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Consequently, for all n ≥ 1,

P(B(d1, d2, · · · , dn)) = 1
d1d2 · · · dn−1dn(dn + 1) . (2.6)

Proof. Let

An = ((d1, d2, · · · , dn−1, dn)) and Bn = ((d1, d2, · · · , dn−1, dn + 1)).

Clearly, B(d1, d2, · · · , dn) is an interval with two endpoints An and Bn. More precisely, 
B(d1, d2, · · · , dn) = [An, Bn) when n is even and B(d1, d2, · · · , dn) = (Bn, An] as n is 
odd. Therefore, (2.6) holds for all n ≥ 1. �

A further result was obtained by Shallit [12]; it states that the digit sequence {dn :
n ≥ 1} occurring in the alternating Engel expansion forms a homogeneous Markov chain.

Proposition 2.4. (See [12, Theorem 2].) The sequence {dn : n ≥ 1} forms a homogeneous 
Markov chain with initial distribution

P(d1 = j) = 1
j(j + 1) for all j ≥ 1 (2.7)

and transition probabilities

P(dn+1 = k | dn = j) = j + 1
k(k + 1) for all k ≥ j + 1 and j ≥ 1. (2.8)

At the end of this section, we introduce a useful theorem called Gärtner–Ellis theorem 
(see [1, Theorem 2.3.6]) in the theory of large deviations. Let {Xn : n ≥ 1} be a sequence 
of the real-valued random variables defined on some probability space (Ω, F , P). For any 
λ ∈ R and n ≥ 1, we define the logarithmic moment generating function of Xn,

Λn(λ) := log E(eλXn).

Proposition 2.5 (Gärtner–Ellis theorem). Assume that Λ(λ) := lim
n→∞

(1/n)Λn(nλ) exists 
over the domain DΛ := {λ ∈ R : Λ(λ) < ∞}. If the following hold:

1. The interior of DΛ contains the origin.
2. Λ(·) is a lower semicontinuous function.
3. Λ(·) is differentiable throughout the interior of DΛ.
4. lim

n→∞
|Λ′(λn)| = ∞ whenever {λn : n ≥ 1} is a sequence in the interior of DΛ

converging to a boundary point of interior of DΛ.
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Then the sequence {Xn : n ≥ 1} satisfies a LDP with speed n and good rate function

I(x) = sup
λ∈R

{λx− Λ(λ)}, ∀x ∈ R.

Remark 3. When 1/n is replaced by a positive real number sequence an with an → 0 as 
n → ∞ and the function Λ(·) is properly modified, the results of Gärtner–Ellis theorem 
are also valid.

3. The proofs of the theorems

In this section, we will give the proofs of Theorems 1.1 and 1.2. The following 
Lemma 3.1 is the key lemma in the proofs of our theorems.

Lemma 3.1. Let θ < 1. Then for all j ≥ 1, we have

(
1 + 1

j

)θ−1

· 1
1 − θ

≤
∞∑

k=j+1

j + 1
k(k + 1)

(
k

j

)θ

≤
(

1 + 1
j

)
· 1
1 − θ

.

Proof. Let θ < 1. Notice that for any j ≥ 1,

∞∫
j

1
x2−θ

dx = 1
1 − θ

· jθ−1 (3.9)

and

∞∑
k=j+1

kθ

k(k + 1) ≤
∞∑

k=j+1

1
k2−θ

≤
∞∫
j

1
x2−θ

dx, (3.10)

by (3.9) and (3.10), we have that

∞∑
k=j+1

j + 1
k(k + 1)

(
k

j

)θ

= j + 1
jθ

∞∑
k=j+1

kθ

k(k + 1) ≤
(

1 + 1
j

)
· 1
1 − θ

.

On the other hand, for any j ≥ 1, we obtain that

∞∑
k=j+1

1
k2−θ

≥
∞∫

j+1

1
x2−θ

dx = 1
1 − θ

· (j + 1)θ−1 (3.11)

and
∞∑ j + 1

k(k + 1)

(
k

j

)θ

= j + 1
jθ

∞∑ kθ

k(k + 1) = j + 1
jθ

∞∑ 1
k2−θ

· k

k + 1 . (3.12)

k=j+1 k=j+1 k=j+1
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Since k/(k + 1) ≥ j/(j + 1) for all k ≥ j, in view of (3.11) and (3.12), we deduce that

∞∑
k=j+1

j + 1
k(k + 1)

(
k

j

)θ

≥ j + 1
jθ

∞∑
k=j+1

1
k2−θ

· j

j + 1 ≥ 1
1 − θ

·
(

1 + 1
j

)θ−1

. �

3.1. Proof of Theorem 1.1

To prove Theorem 1.1, we also need the following Lemma 3.2.

Lemma 3.2. Let {dn : n ≥ 1} be the digit sequence of the alternating Engel expansion. 
Then

lim
n→∞

1
n

log E(dθn) =
{

log( 1
1−θ ), if θ < 1;

+∞, if θ ≥ 1.

Proof. Let θ ≥ 1. Notice that dn+1 > dn with d1 ≥ 1 for all n ≥ 1, the initial distribution 
(2.7) yields that for any n ≥ 1,

E(dθn) ≥ E(dθ1) =
∞∑
k=1

P(d1 = k) · kθ =
∞∑
k=1

kθ

k(k + 1) = +∞.

Therefore, lim
n→∞

1
n logE(dθn) = +∞.

Let θ < 1. Since dn+1 ≥ dn + 1 with d1 ≥ 1, we have that dn ≥ n for all n ≥ 1. By 
the definition of expectation, we deduce that

E(dθn) =
∞∑

k=n

P(dn = k) · kθ

=
∞∑

k=n

k−1∑
j=n−1

P(dn = k | dn−1 = j) · P(dn−1 = j) · kθ

=
∞∑

j=n−1
P(dn−1 = j) · jθ ·

∞∑
k=j+1

j + 1
k(k + 1)

(
k

j

)θ

, (3.13)

where the second equality is from the conditional probability and the last equality follows 
from the transition probabilities (2.8). By Lemma 3.1, we have

(
1 + 1

j

)θ−1

· 1
1 − θ

≤
∞∑

k=j+1

j + 1
k(k + 1)

(
k

j

)θ

≤
(

1 + 1
j

)
· 1
1 − θ

. (3.14)

Therefore, in view of (3.13) and the first inequality of (3.14), we obtain that
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E(dθn) =
∞∑

j=n−1
P(dn−1 = j) · jθ ·

∞∑
k=j+1

j + 1
k(k + 1)

(
k

j

)θ

≥
∞∑

j=n−1
P(dn−1 = j) · jθ · 1

1 − θ
·
(

j

j + 1

)1−θ

≥
∞∑

j=n−1
P(dn−1 = j) · jθ · 1

1 − θ
·
(
n− 1
n

)1−θ

≥ · · · · · ·

≥
∞∑
j=1

P(d1 = j) · jθ ·
(

1
1 − θ

)n−1

·
(

1
2 · 2

3 · · · · · n− 2
n− 1 · n− 1

n

)1−θ

, (3.15)

where the second inequality follows from the fact j/(j + 1) ≥ i/(i + 1) for all j ≥ i. In 
view of (3.15), we deduce that

E(dθn) ≥ Mnθ−1
(

1
1 − θ

)n−1

, (3.16)

where M =
∑∞

j=1
jθ

j(j+1) is a positive constant. Thus, we complete the lower bounded 

estimate of E(dθn).
Next, we will give the upper bounded estimate of E(dθn). By (3.13) and the second 

inequality of (3.14), we obtain that

E(dθn) =
∞∑

j=n−1
P(dn−1 = j) · jθ ·

∞∑
k=j+1

j + 1
k(k + 1)

(
k

j

)θ

≤
∞∑

j=n−1
P(dn−1 = j) · jθ · 1

1 − θ
·
(

1 + 1
j

)

≤
∞∑

j=n−1
P(dn−1 = j) · jθ · 1

1 − θ
·
(

n

n− 1

)

≤ · · · · · ·

≤
∞∑
j=1

P(d1 = j) · jθ ·
(

1
1 − θ

)n−1

·
(

2
1 · 3

2 · · · · · n− 1
n− 2 · n

n− 1

)
, (3.17)

where the second inequality follows from the fact 1 + 1/j ≤ 1 + 1/i for all j ≥ i. Thus, 
by (3.17), we have that

E(dθn) ≤ nM

(
1

1 − θ

)n−1

, (3.18)

where M =
∑∞

j=1
jθ is a positive constant.
j(j+1)
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By (3.16) and (3.18), we have that

lim inf
n→∞

1
n

log E(dθn) ≥ lim inf
n→∞

{
logM
n

+ (θ − 1) logn
n

+ n− 1
n

log
(

1
1 − θ

)}

= log
(

1
1 − θ

)

and

lim sup
n→∞

1
n

log E(dθn) ≤ lim sup
n→∞

{
logM
n

+ log n
n

+ n− 1
n

log
(

1
1 − θ

)}

= log
(

1
1 − θ

)
.

That is, for θ < 1,

lim
n→∞

1
n

logE(dθn) = log
(

1
1 − θ

)
. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.2, we know that

Λ(θ) = −θ + lim
n→∞

1
n

log E(dθn) =
{−θ − log(1 − θ), if θ < 1;

+∞, if θ ≥ 1.

It is not difficult to check that Λ(·) satisfies all the conditions of Proposition 2.5. By 

Gärtner–Ellis theorem, we obtain that the sequence 
{

log dn−n
n : n ≥ 1

}
satisfies a LDP 

with speed n and good rate function

I(x) = sup
θ∈R

{θx− Λ(θ)} = sup
θ<1

{θx + θ + log(1 − θ)}

=
{
x− log(1 + x), if x > −1;
+∞, if x ≤ −1.

�

3.2. Proof of Theorem 1.2

As an application of Lemma 3.1, we obtain the following lemma.

Lemma 3.3. Let θ ∈ (−1, 1). Then for any j ≥ 1, we have

1
1 − θ

·
(

j

j + 1

)2

≤
∞∑

k=j+1

j + 1
k(k + 1)

(
k

j

)θ

≤ 1
1 − θ

·
(
j + 1
j

)
. (3.19)
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Now we are going to give the proof of Theorem 1.2.

Proof of Theorem 1.2. For any λ ∈ R, we consider the logarithmic moment generating 
function of log dn−n

an
,

Λn(λ) = log E
(

exp
(
λ · log dn − n

an

))
.

From the Gärtner–Ellis theorem, in order to obtaining the desired result, it suffices to 
show that for any λ ∈ R,

Λ(λ) = lim
n→∞

n

a2
n

Λn

(
a2
n

n
λ

)
= λ2

2 .

That is,

lim
n→∞

n

a2
n

logE
(
exp

{an
n

(log dn − n)λ
})

= λ2

2 . (3.20)

For any λ ∈ R and n ≥ 1, let

θn := θn(λ) = an
n
λ and Υn(λ) = E(exp{θn(log dn − n)}).

In view of (1.4), it is clear that θn → 0 as n → ∞ and Υn(λ) can be rewritten as

Υn(λ) = e−nθnE(dθnn ). (3.21)

To get (3.20), we only need to estimate the expectation E(dθnn ). Since θn → 0 as n → ∞, 
there exists N > 0 such that n ≥ N , we have θn ∈ (−1

2 , 
1
2 ). Now we give the lower 

and upper bounded estimates of E(dθnn ). By (3.13) and the first inequality of (3.19), we 
deduce that for all n ≥ N ,

E(dθnn ) =
∞∑

j=n−1
P(dn−1 = j) · jθn ·

∞∑
k=j+1

j + 1
k(k + 1)

(
k

j

)θn

≥
∞∑

j=n−1
P(dn−1 = j) · jθn ·

(
n− 1
n

)2

· 1
1 − θn

≥ · · · · · ·

≥
∞∑
j=1

P(d1 = j) · jθn ·
(

1
2 · 2

3 · · · · · n− 2
n− 1 · n− 1

n

)2 ( 1
1 − θn

)n−1

.
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Let M = 1
2
∑∞

j=1
1

j3/2(j+1) , then M is a positive constant. Since θn ∈ (−1
2 , 

1
2 ), we deduce 

that

E(dθnn ) ≥ M

n2

(
1

1 − θn

)n

. (3.22)

On the other hand, in view of (3.13) and the second inequality of (3.19), we have that 
for all n ≥ N ,

E(dθnn ) =
∞∑

j=n−1
P(dn−1 = j) · jθn ·

∞∑
k=j+1

j + 1
k(k + 1)

(
k

j

)θn

≤
∞∑

j=n−1
P(dn−1 = j) · jθn ·

(
n

n− 1

)
· 1
1 − θn

≤ · · · · · ·

≤
∞∑
j=1

P(d1 = j) · jθn ·
(

2
1 · 3

2 · · · · · n− 1
n− 2 · n

n− 1

)(
1

1 − θn

)n−1

.

Let M ′ = 3
2
∑∞

j=1
1

j1/2(j+1) , then M ′ is a positive constant. Notice that θn ∈ (−1
2 , 

1
2 ), we 

obtain that

E(dθnn ) ≤ nM ′
(

1
1 − θn

)n

. (3.23)

Combining (1.4), (3.21), (3.22) and (3.23), we deduce that by Taylor expansion

lim inf
n→∞

n

a2
n

log Υn(λ) = lim inf
n→∞

{
n2

a2
n

(−θn) + n

a2
n

logE(dθnn )
}

≥ lim inf
n→∞

{
n

a2
n

(−θn) + n

a2
n

logM − 2n log n
a2
n

− n2

a2
n

log(1 − θn)
}

= λ2

2 (3.24)

and

lim sup
n→∞

n

a2
n

log Υn(λ) = lim sup
n→∞

{
n2

a2
n

(−θn) + n

a2
n

logE(dθnn )
}

≤ lim sup
n→∞

{
n2

a2
n

(−θn) + n

a2
n

logM ′ + n log n
a2
n

− n

a2
n

log(1 − θn)
}

= λ2
. (3.25)
2
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By (3.24) and (3.25), the equation (3.20) is established. From the Gärtner–Ellis the-
orem, we know that the sequence { log dn−n

an
: n ≥ 1} satisfies an MDP with speed n−1a2

n

and good rate function

I(x) = sup
λ∈R

{λx− Λ(λ)} = x2

2 , ∀ x ∈ R. �
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27 (1975) 64–69.
[16] S.R.S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984.
[17] P. Viader, L. Bibiloni, J. Paradís, On a problem of Alfréd Rényi, Acta Arith. 91 (1999) 107–115.
[18] L. Zhu, On the large deviations for Engel’s, Sylvester’s series and Cantor’s products, Electron. 

Commun. Probab. 19 (2014) 1–9.

http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573442E5A31393938s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573442E5A31393938s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573452E522E533538s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573452E522E533538s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573452E533931s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573452E533931s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573472E4B2E4C3033s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573472E4B2E4C3033s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573487532303134s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573487532303134s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573492E4B2E4B3932s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573492E4B2E4B3932s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C65734A6F723635s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C65734B68693634s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C65734D2E5A3134s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C65735069653239s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C65735069653239s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C657352656D3531s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C657352656D3531s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C65735368613836s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C65735368613934s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C65735368613934s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573546F753039s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573565A3735s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573565A3735s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C657356617231393834s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C6573562E422E503939s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C65735A687532303134s1
http://refhub.elsevier.com/S0022-314X(15)00154-7/bib6C65735A687532303134s1

	Large and moderate deviation principles for alternating Engel expansions
	1 Introduction
	2 Preliminary
	3 The proofs of the theorems
	3.1 Proof of Theorem 1.1
	3.2 Proof of Theorem 1.2

	Acknowledgments
	References


