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1. Introduction

Finding perfect powers that are sums of terms in an arithmetic progression has re-
ceived much interest; recent contributions can be found in [1], [2], [3], [4], [5], [9], [10], 
[14], [15], [16], [17], [19], [21], [22] and [23].

We are interested in solutions (x, y, r) where x, y and r are coprime.
In this paper, we prove the following:

Theorem 1.1. Let p ≥ 5 be a prime. The equation

(x− 2r)3 + (x− r)3 + x3 + (x + r)3 + (x + 2r)3 = yp x, r, y, p ∈ Z, gcd(x, r) = 1, (1)

with 0 < r ≤ 106 only has solutions which satisfy xy = 0.

The restriction gcd(x, r) = 1 is natural one, for otherwise it is easy to construct 
artificial solutions by scaling. We use a combination of techniques in the resolution 
of (1), the main ones being; a result of Mignotte based on linear form in logarithms 
([8, Chapter 12, p. 423]); the method of Chabauty ([18,20,11]), the theorem due to 
Bilu, Hanrot and Voutier on primitive divisors ([6]), as well as some various elementary 
techniques.

2. Background

Here, we record some essential Theorems and Lemmas which are necessary for the 
computations in Section 4.

Theorem 2.1. (Mignotte) Assume that the exponential Diophantine inequality

| axn − byn |≤ c, with a, b, c ∈ Z≥0 and a �= b

has a solution in strictly positive integers x and y with max{x, y} > 1. Let A =
max{a, b, 3}. Then

n ≤ max
{

3 log(1.5 | c/b |), 7400 logA
log (1 + logA/ log(| a/b |))

}
.

2.1. Criteria for eliminating equations of signature (p, 2p, 2)

We first apply a descent to equation (1) in Section 3. We are left with equations of 
the form:

awp
2 − bw2p

1 = cr2 (2)

where p is an odd prime and a, b, c are positive integers satisfying gcd(a, b, c) = 1.
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The criteria to follow in order to determine whether (2) has solutions was previously 
presented in [13,4,1]. We start with the following lemma that gives us a criterion for the 
nonexistence of solutions.

Lemma 2.2. Let p ≥ 3 be a prime. Let a, b and c be positive integers such that 
gcd(a, b, c) = 1. Let q = 2kp + 1 be a prime that does not divide a. Define

μ(p, q) = {η2p : η ∈ Fq} = {0} ∪ {ζ ∈ F∗
q : ζk = 1} (3)

and

B(p, q) =
{
ζ ∈ μ(p, q) : ((bζ + c)/a)2k ∈ {0, 1}

}
.

If B(p, q) = ∅, then equation (2) does not have integral solutions.

2.2. Local solubility

After reducing the number of equations using Lemma 2.2, we give the next step and 
use classical local solubility methods to conclude nonexistence of solutions for many 
tuples (a, b, c, p) in equation (2).

These methods work as follows: let g = Rad(gcd(a, c)) and suppose that g > 1. Recall 
the condition gcd(a, b, c) = 1. Then g | w1, and we can write w1 = gw′

1. Thus

awp
2 − bg2pw′

1
2p = c.

Removing a factor of g from the coefficients, we obtain

a′w2
p − b′w′

1
2p = c′,

where a′ = a/c and c′ = c/g < c. Similarly, if h = gcd(b, c) > 1, we obtain

a′w′
2
p − b′w1

2p = c′,

where c′ = c/h < c. Applying these operations repeatedly, we arrive at an equation of 
the form

Aρp −Bσ2p = C (4)

where A, B, C are now pairwise coprime. A necessary condition for the existence of 
solutions is that for any odd prime q | A, the residue −BC modulo q is a square. Besides 
this basic test, we also check for local solubility at the primes dividing A, B, C, and all 
primes q ≤ 19.
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2.3. A descent

If local techniques previously presented failed to rule out solutions to equation (2) for 
particular coefficients and exponent (a, b, c, p) then we may perform a further descent to 
rule out solutions. With A, B, C as in (4) we let

B′ =
∏

ordq(B) is odd

q.

Thus BB′ = v2. Write AB′ = u and CB′ = mn2 with m squarefree. Rewrite (4) as

(vσp + n
√
−m)(vσp − n

√
−m) = uρp.

Let K = Q(
√
−m) and O be its ring of integers. Let S contain the prime ideals of O

that divide u or 2n
√
−m. Clearly (vσp + n

√
−m)K∗p belongs to the “p-Selmer group”

K(S, p) = {ε ∈ K∗/K∗p : ordP(ε) ≡ 0 mod p for all P /∈ S}.

This is an Fp-vector space of finite dimension can be computed by Magma using the 
command pSelmerGroup. Let

E = {ε ∈ K(S, p) : Norm(ε)/u ∈ Q∗p}.

It follows that

vσp + n
√
−m = εηp, (5)

where η ∈ K∗ and ε ∈ E .
We end up with the last criteria.

Lemma 2.3. Let q be a prime ideal of K. Suppose one of the following holds:

(i) ordq(v), ordq(n
√
−m), ordq(ε) are pairwise distinct modulo p;

(ii) ordq(2v), ordq(ε), ordq(ε) are pairwise distinct modulo p;
(iii) ordq(2n

√
−m), ordq(ε), ordq(ε) are pairwise distinct modulo p.

Then there is no σ ∈ Z and η ∈ K satisfying (5).

Lemma 2.4. Let q = 2kp + 1 be a prime. Suppose qO = q1q2 where q1, q2 are distinct, 
and such that ordqj

(ε) = 0 for j = 1, 2. Let

χ(p, q) = {ηp : η ∈ Fq}.

Let



JID:YJNTH AID:6235 /FLA [m1L; v1.256; Prn:5/04/2019; 9:14] P.5 (1-13)
A. Argáez-García / Journal of Number Theory ••• (••••) •••–••• 5
C(p, q) = {ζ ∈ χ(p, q) : ((vζ + n
√
−m)/ε)2k ≡ 0 or 1 mod qj for j = 1, 2}.

Suppose C(p, q) = ∅. Then there is no σ ∈ Z and η ∈ K satisfying (5).

2.4. Thue equations

Finally for the remaining equations that couldn’t be ruled out, they can be considered 
Thue equations by letting σ = w2 and τ = w2

1

aσp − bτp = c

where the exponent is a prime p. We use Magma’s Thue solver [7] and PARI/GP’s thueinit, 
thue commands [12] as the final test to determine whether the equations have solutions.

2.5. Prime divisors of Lehmer sequences

A Lehmer pair is a pair α, β of algebraic integers such that (α + β)2 and αβ are 
nonzero coprime rational integers and α/β is not a root of unity. The Lehmer sequence
associated to the Lehmer pair (α, β) is

ũn = ũn(α, β) =

⎧⎪⎪⎨
⎪⎪⎩

αn − βn

α− β
n is odd

αn − βn

α2 − β2 n is even
(6)

A prime p is called a primitive divisor of ũn if it divides ũn but does not divide 
(α2 − β2) · ũ1 · · · ũn−1. We now state the following celebrated theorem due to Bilu, 
Hanrot and Voutier [6].

Theorem 2.5. Let α, β be a Lehmer pair. Then ũn(α, β) has a primitive root for all 
n > 30 and for all prime n > 13.

It will be necessary to use Lehmer pairs to prove for certain values of r that (1) has 
no solutions.

3. Descent to eight cases

Equation (1) can be rewritten as: 5x(x2 + 6r2) = yp. Letting y = 5w, we can rewrite 
as:

x(x2 + 6r2) = 5p−1wp. (7)

Note that gcd(x, x2+6r2) ∈ {1, 2, 3, 6} depending on whether 2, 3 divides x or not. Thus, 
we are now able to divide into eight cases.
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Case Conditions on x Descent equations Equation of signature (p, p, 2)

1 5 | x and 6 � x
x = 5p−1wp

1
x2 + 6r2 = wp

2
wp

2 − 52p−2w2p
1 = 6r2

2 5 | x and 2 | x and 3 � x
x = 2p−15p−1wp

1
x2 + 6r2 = 2wp

2
wp

2 − 22p−352p−2w2p
1 = 3r2

3 5 | x and 3 | x and 2 � x
x = 3p−15p−1wp

1
x2 + 6r2 = 3wp

2
wp

2 − 32p−352p−2w2p
1 = 2r2

4 5 | x and 6 | x x = 6p−15p−1wp
1

x2 + 6r2 = 6wp
2

wp
2 − 62p−352p−2w2p

1 = r2

5 5 � x and 6 � x
x = wp

1
x2 + 6r2 = 5p−1wp

2
5p−1wp

2 − w2p
1 = 6r2

6 5 � x and 2 | x and 3 � x
x = 2p−1wp

1
x2 + 6r2 = 2 · 5p−1wp

2
5p−1wp

2 − 22p−3w2p
1 = 3r2

7 5 � x and 3 | x and 2 � x
x = 3p−1wp

1
x2 + 6r2 = 3 · 5p−1wp

2
5p−1wp

2 − 32p−3w2p
1 = 2r2

8 5 � x and 6 | x x = 6p−1wp
1

x2 + 6r2 = 6 · 5p−1wp
2

5p−1wp
2 − 62p−3w2p

1 = r2

4. Tables of computations

In this section, we apply the Theorems and Lemmas of Section 2 in order to fully 
resolve equation (1) and prove Theorem 1.1.

4.1. Case 1

We first apply Theorem 2.1 to obtain the bound p ≤ 34365 when |r| ≤ 1.7 × 102486. 
Thus, when we focus on 5 ≤ p ≤ 34365 and 1 ≤ r ≤ 106 we have the following table 
containing the obtained information after computational calculations.

Exponent p Number of eqns
surviving
Lemma 2.2

Number of eqns
surviving local
solubility tests

Number of eqns
surviving
further descent

Thue eqns
not solved
by Magma

5 258519 33667 52 0
7 102711 46794 5 0
11 2690 1364 1 0
13 5855 3044 1 0
17 752 415 0 0
19 1644 858 0 0
23 10 6 0 0
29 23 9 0 0
31 61 32 0 0
37 1 1 0 0
41 2 1 0 0
43 ≤ p ≤ 34365 0 0 0 0

4.2. Case 2

For p = 5 we have w5
2 − 27 · 58w10

1 = 3r2. Letting X = w2/w
2
1 and Y = 3r/w5

1 we 
obtain the hyperelliptic curve

Y 2 = 3X5 − 3 · 27 · 58
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whose Jacobian has rank 1. We can show, using Magma, that C(Q) = {∞} which implies 
the curve only has trivial solutions.

Using Theorem 2.1 we bound p ≤ 56565 for |r| ≤ 6.8 × 104092. Thus, when we focus 
on 7 ≤ p ≤ 56565 and 1 ≤ r ≤ 106 we have the following table.

Exponent p Number of eqns
surviving
Lemma 2.2

Number of eqns
surviving local
solubility tests

Number of eqns
surviving
further descent

Thue eqns
not solved
by Magma

7 60261 21654 2 0
11 895 347 1 0
13 783 401 1 0
17 126 69 1 1
19 656 296 1 1
23 3 1 1 1
31 4 3 0 0
37 ≤ p ≤ 56565 0 0 0 0

The Thue equations that could not be solved by Magma, were solved by PARI/GP
p r Thue equation Solution

17 38 w17
2 − 231 · 532w34

1 = 317 (3, 0)
19 39 w19

2 − 235 · 536w38
1 = 319 (3, 0)

23 311 w23
2 − 243 · 544w46

1 = 323 (3, 0)

using the commands thueinit and thue. Observe that the solutions found contradict the 
condition w1 · w2 �= 0. Moreover, observe that all the equations that were solved are of 
signature (p, 2p, p).

4.3. Case 3

For p = 5 we have w5
2 − 37 · 58w10

1 = 2r2. Choosing the change of variable X = w2/w
2
1

and Y = 2r/w5
1 we obtain the hyperelliptic curve

Y 2 = 2X5 − 2 · 37 · 58

whose Jacobian has rank 1. We can show, using Magma, that C(Q) = {∞} which implies 
the curve only has trivial solutions.

Using Theorem 2.1 we bound p ≤ 69551 for |r| ≤ 3.8 × 105881. Thus, when we focus 
on 7 ≤ p ≤ 69551 and 1 ≤ r ≤ 106 we have the following table.

Exponent p Number of eqns
surviving
Lemma 2.2

Number of eqns
surviving local
solubility tests

Number of eqns
surviving
further descent

Thue eqns
not solved
by Magma

7 18911 8045 3 0
11 1639 690 2 0
13 4059 3314 2 0
17 137 76 1 1
19 271 141 1 1
23 11 5 1 1
29 5 2 1 1
31 9 6 1 1
37 1 1 1 1
41 ≤ p ≤ 69551 0 0 0 0
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The Thue equations that could not be solved by Magma, were solved by PARI/GP

p r Thue equation Solution

17 28 w17
2 − 331 · 532w34

1 = 217 (2, 0)
19 29 w19

2 − 335 · 536w38
1 = 219 (2, 0)

23 211 w23
2 − 343 · 544w38

1 = 223 (2, 0)
29 214 w29

2 − 355 · 556w38
1 = 229 (2, 0)

31 215 w31
2 − 359 · 560w38

1 = 231 (2, 0)
37 218 w37

2 − 371 · 572w38
1 = 237 (2, 0)

using the commands thueinit and thue. Observe that the solutions found contradict the 
condition w1 · w2 �= 0. Moreover, observe that all the equations that were solved are of 
signature (p, 2p, p).

4.4. Case 4

For p = 5 we have w5
2 − 67 · 58w10

1 = r2. Choosing the change of variable X = w2/w
2
1

and Y = r/w5
1 we obtain the hyperelliptic curve

Y 2 = X5 − 67 · 58

whose Jacobian has rank 1. We can show, using Magma, that C(Q) = {∞} which implies 
the curve only has trivial solutions.

Using Theorem 2.1 we bound p ≤ 91751 for |r| ≤ 1.9 × 106639. Thus, when we focus 
on 7 ≤ p ≤ 91751 and 2 ≤ r ≤ 106 we have the following table.

Exponent p Number of eqns
surviving
Lemma 2.2

Number of eqns
surviving local
solubility tests

Number of eqns
surviving
further descent

Thue eqns
not solved
by Magma

7 22887 12311 1 0
11 1469 588 0 0
13 237 97 0 0
17 205 118 0 0
19 2480 1273 0 0
23 2 2 0 0
29 2 2 0 0
31 9 4 0 0
37 2 1 0 0
41 ≤ p ≤ 91751 0 0 0 0

We noticed a remarkable behaviour when r = 1 and 7 ≤ p ≤ 91751.
We observed that application of Lemma 2.2 and the local solubility tests were always 

failing for every p. Due to this situation, we decided to use Lehmer pairs to solve it.
Let K = Q(

√
−6) and write OK for its ring of integers. This has class group isomorphic 

to Z/2Z. We consider the equation x2 + 6 = 6wp
2 where x = 30p−1wp

1 and w1, w2 as 
before. Take

6wp
2 = x2 + 6

= (x +
√
−6)(x−

√
−6).
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It follows that

(x +
√
−6)OK = p2p3ζ

p

where p2 = (2, 
√
−6), p3 = (3, 

√
−6) are the primes above 2, 3 and ζ is an ideal in OK . 

We write

(x +
√
−6)OK = 2(1−p)/23(1−p)/2(p2p3ζ)p

and q = p2p3. It follows that qζ = (γ) ∈ OK is principal and γ = u + v
√
−6 ∈ OK with 

u, v ∈ Z. After a possible change of sign we obtain

x +
√
−6 = γp

6(p−1)/2

Subtracting and conjugating we obtain

γp

6(p−1)/2 − γp

6(p−1)/2 = 2
√
−6 (8)

or equivalently

γp

6p/2
− γp

6p/2
= 2i.

Let L = Q(
√
−1, 

√
6). Taking α = γ/

√
6 and β = γ/

√
6.

Lemma 4.1. Let α and β as above. Then α and β are algebraic integers. Moreover (α+β)2
and αβ are nonzero coprime rational integers and α/β is not a unit.

Proof. Let qOL =
√

6OL. By definition q|γ, γ which implies that α and β are algebraic 
integers. Now we compute (α + β)2 = 4u2/3.

Since p3|
√
−6 we conclude that p3|u and so 3|u. So (α + β)2 is a rational integer, 

i.e., (α + β)2 ∈ Z. If (α + β)2 = 0 then u = 0, however this will imply that 30pwp
1 = 0

contradicting w1 ·w2 �= 0. Thus (α+β)2 is a nonzero ration integer. Moreover αβ = γγ/6
is a nonzero rational integer since 3|u and p2|γ, γ.

We now check that (α+β)2 and αβ are coprime. Suppose they are not coprime. Then 
there exists a prime p of OL which divides both. Then p divides α and β and from the 
equation above p divides (w2)OL and 2

√
−6. We contradicted our assumption of (w1, w2)

being a nontrivial coprime solution.
Finally, α/β = γ/γ ∈ OK is not a root of unity because the only roots of unity in 

K are ±1 which implies γ = ±γ implying either u = 0 or v = 0 which is a contradic-
tion. �
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From Lemma 4.1 we have that the pair (α, β) is Lehmer pair and we denote by ũk

the associate Lehmer sequence. Substituting we see that

(
α− β

2i

)(
αp − βp

α− β

)
= 1.

Hence, we get

(
αp − βp

α− β

)
= 1,

thus v = ±1. By Theorem 2.5, we immediately deduce that p ∈ {5, 7, 11, 13}. For a given 
prime p, using equation (8), we see that u is a root of the polynomial:

1

2 ·
√
−6 ·

√
6(p−1)/2 ((u + v

√
−6)p − (u− v

√
−6)p) − 1.

Computing the roots of these polynomials, we find that there are no solutions.

4.5. Case 5

For p = 5 we have 54w5
2 − w10

1 = 6r2. Choosing the change of variable X = w2/w
2
1

and Y = 6r/w5
1 we obtain the hyperelliptic curve

Y 2 = 6 · 54X5 − 6

whose Jacobian has rank 0. We can show, using Magma, that C(Q) = {∞} which implies 
the curve only has trivial solutions.

Using Theorem 2.1 we bound p ≤ 17183 for |r| ≤ 8.3 × 101242. Thus, when we focus 
on 7 ≤ p ≤ 17183 and 1 ≤ r ≤ 106 we have the following table.

Exponent p Number of eqns
surviving
Lemma 2.2

Number of eqns
surviving local
solubility tests

Number of eqns
surviving
further descent

Thue eqns
not solved
by Magma

7 99944 55754 71 0
11 3345 1417 0 0
13 871 446 0 0
17 1042 552 0 0
19 892 487 0 0
23 20 9 0 0
29 2 2 0 0
31 23 11 0 0
37 1 1 0 0
41 ≤ p ≤ 17183 0 0 0 0
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4.6. Case 6

Using Theorem 2.1 we bound p ≤ 9101 for |r| ≤ 9.4 × 10657. Thus, when we focus on 
5 ≤ p ≤ 9101 and 1 ≤ r ≤ 106 we have the following table.

Exponent p Number of eqns
surviving
Lemma 2.2

Number of eqns
surviving local
solubility tests

Number of eqns
surviving
further descent

Thue eqns
not solved
by Magma

5 94300 10723 35 0
7 28798 22060 0 0
11 757 388 0 0
13 7923 4238 0 0
17 95 47 0 0
19 686 310 0 0
23 1 1 0 0
29 5 4 0 0
31 14 7 0 0
37 2 2 0 0
41 ≤ p ≤ 9101 0 0 0 0

4.7. Case 7

Using Theorem 2.1 we bound p ≤ 22515 for |r| ≤ 5.4 × 101628. Thus, when we focus 
on 5 ≤ p ≤ 22515 and 1 ≤ r ≤ 106 we have the following table.

Exponent p Number of eqns
surviving
Lemma 2.2

Number of eqns
surviving local
solubility tests

Number of eqns
surviving
further descent

Thue eqns
not solved
by Magma

5 36897 5233 94 0
7 26109 12665 16 0
11 4079 1637 0 0
13 1649 854 0 0
17 945 606 0 0
19 686 459 0 0
23 12 5 0 0
29 5 3 0 0
31 35 21 0 0
37 1 0 0 0
41 1 0 0 0
43 ≤ p ≤ 22515 0 0 0 0

4.8. Case 8

For p = 5 we have 54w5
2 − 67w10

1 = r2. Choosing the change of variable X = w2/w
2
1

and Y = r/w5
1 we obtain the hyperelliptic curve

Y 2 = 54X5 − 67

whose Jacobian has rank 0. We can show, using Magma, that C(Q) = {∞} which implies 
the curve only has trivial solutions.

Using Theorem 2.1 we bound p ≤ 44855 for |r| ≤ 2.8 × 103245. Thus, when we focus 
on 7 ≤ p ≤ 44855 and 1 ≤ r ≤ 106 we have the following table.
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Exponent p Number of eqns
surviving
Lemma 2.2

Number of eqns
surviving local
solubility tests

Number of eqns
surviving
further descent

Thue eqns
not solved
by Magma

7 18672 6518 0 0
11 904 381 0 0
13 561 225 0 0
17 122 89 0 0
19 620 375 0 0
23 2 1 0 0
29 1 0 0 0
31 20 11 0 0
41 1 0 0 0
43 ≤ p ≤ 44855 0 0 0 0

This completes the proof of Theorem 1.1.
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