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Abstract

Suppose that λ1 and λ2 are positive real numbers such that λ1/λ2 is irrational
and algebraic. Let V be a well-spaced sequence and δ > 0. Denote by
E(V , X, δ) the number of v ∈ V with v ≤ X such that the inequality |λ1p1 +
λ2p2−v| < v−δ has no solution in primes p1, p2. We prove that for all X ≥ 1,
E(V , X, δ) � Xf(δ)+ε for any ε > 0 with f(δ) = max(5/9 + 2δ, 2/3 + 4δ/3),
which improves the earlier result.
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1. Introduction

Davenport and Heilbronn first considered the Diophantine inequalities.
Given k ≥ 1 and s nonzero real numbers λ1, · · · , λs (not all in rational ratio,
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not all negative), we write

F (p) =
s∑

j=1

λjp
k
j ,

where p = (p1, · · · , ps) with each pj a prime. Various authors have considered
the distribution of values of such forms, for example, see [11, 12]. Here
we continue in the direction started by Brüdern, Cook and Perelli [1] and
followed by Cook and Harman [4], Cai [3] and Wang [13]. We call a set of
positive reals V a well–spaced set if there is a c > 0 such that

u, v ∈ V , u �= v ⇒ |u− v| > c.

We further assume that

|{v ∈ V : 0 ≤ v ≤ X}| � X1−ε.

In this paper, suppose that λ1 and λ2 are positive real numbers such that
λ1/λ2 is irrational and algebraic. We consider the distribution of the values
of a given binary linear form

λ1p1 + λ2p2.

This problem can be considered as real analogous of binary linear Goldbach
problem.

Let V be a well–spaced sequence, and let E(V , X, δ) denote the number
of v ∈ V with v ≤ X such that the inequality

|λ1p1 + λ2p2 − v| < v−δ (1.1)

has no solution in primes p1, p2.
In [1], Brüdern, Cook and Perelli first considered this problem and showed

that for any ε > 0,

E(V , X, δ) � X2/3+2δ+ε. (1.2)

Furthermore, they showed that 2/3+2δ can be replaced by 1/2+2δ under the
assumption of generalized Riemann hypothesis (GRH). Subsequently, Cook
and Harman [4] and Cai [3], respectively, proved that min(2/3 + 2δ, 4/5 + δ)
is admissible. Recently, Wang [13] established that max(3/5+2δ, 2/3+4δ/3)
is also admissible.

Using the vector sieve of [8], we prove the following result.
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Theorem 1.1. Suppose that λ1 and λ2 are positive real numbers such that
λ1/λ2 is irrational and algebraic. Let V be a well–spaced sequence. Let δ > 0.
Then for all X ≥ 1, we have

E(V , X, δ) � Xf(δ)+ε, (1.3)

for any ε > 0 with

f(δ) = max(5/9 + 2δ, 2/3 + 4δ/3). (1.4)

Note that the bound in Theorem 1.1 is non-trivial for δ < 2/9 and con-
tributes an improvement for 1/6 ≤ δ < 2/9. Our improvement comes from
using Matomäki’s combination of the vector sieve, the Harman sieve, some re-
sults on averages of bilinear exponential sums and some extra technical work
which result in enlarging the major arc. It would be worth emphasizing that
Matomäki’s result can be deduced from Theorem 1.1. This reinforces that
Theorem 1.1 is in fact a generalisation of Matomäki’s theorem.

Notation. Throughout the paper, the letter η denotes a sufficiently small,
fixed positive number. The letter ε denotes a sufficiently small positive real
number. Any statement in which ε occurs holds for each fixed ε > 0. The
letter p, with or without subscript, denotes a prime number. Constants, both
explicit and implicit, in Vinogradov symbols may depend on λ1, λ2. We write
e(x) = exp(2πix).

2. Outline of the method

We follow the modification of the Hardy–Littlewood method which first
stated by Davenport and Heilbronn. Now let 0 < τ < 1(indeed, we take
τ = X−δ), X be some (large) positive quantity. We define

K(α) =

(
sin πτα

πα

)2

, A(x) =

∫
R

K(α)e(αx)dα. (2.1)

Then, by [11], It is easy to show that

K(α) � min(τ 2, |α|−2), A(x) = max(0, τ − |x|). (2.2)

We use the vector sieve. We need lower and upper bounds ρ−(n) and ρ+(n)
for the characteristic function ρ(n) of primes. Assuming ρ−(n) ≤ ρ(n) ≤
ρ+(n), we have a simple inequality

ρ(m)ρ(n) ≥ ρ+(m)ρ−(n) + ρ−(m)ρ+(n)− ρ+(m)ρ+(n) (2.3)
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given in Brüdern and Fouvry [2] (also see Lemma 10.1 in Harman [6]).
We write for j = 1, 2

S±
j (α) =

∑
ηX<n≤X

ρ±(n)e(nλjα); I(α) =

∫ X

ηX

e(αx)

log x
dx; (2.4)

U(α) =
∑

ηX<n≤X

e(nα), (2.5)

where η is a sufficiently small, fixed positive number.
We define further

F (α) := S+
1 (α)S

−
2 (α) + S−

1 (α)S
+
2 (α)− S+

1 (α)S
+
2 (α). (2.6)

For any measurable subset X of R, we define

Jv(X) :=

∫
X

F (α)K(α)e(−αv)dα. (2.7)

Then by (2.1), (2.3),

Jv(R)

=
∑

n1,n2≤X

(ρ+(n1)ρ
−(n2) + ρ−(n1)ρ

+(n2)− ρ+(n1)ρ
+(n2))A(λ1n1 + λ2n2 − v)

≤
∑

p1,p2≤X

A(λ1p1 + λ2p2 − v)

and

Jv(R) ≤ τψ(v), (2.8)

where ψ(v) counts the number of the solutions to the inequality (1.1).
We shall restrict our attention to those v satisfying X/2 ≤ v ≤ X. In

general, one can consider X2−j ≤ v ≤ X21−j, j = 1, 2, . . . , and obtain a
satisfactory bound for the exceptional set.

To estimate the integral in (2.7), we divide the real line into three parts:
the major arc M, the minor arc m and the trivial arc t which are defined by

M = {α : |α| ≤ φ}, m = {α : φ < |α| ≤ ξ}, t = {α : |α| > ξ},
where φ = X− 5

9
−3ε, ξ = τ−2X1+ε.

For the contribution from the trivial arc, by (15) of [1], we know that

|Jv(t)| � τ 2X1−ε. (2.9)
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3. The vector sieve

We use the lower and upper bounds ρ−(n) and ρ+(n) given by [8], they
can be written as sums of coefficients an that are either of the form

an =
∑
mk=n
m∼M

bm (Type I sums)

with M � X7/9 or such that, for any Q ∈ [X1/3, X4/9], there exists M ∈
[Q,QX1/9] such that

an =
∑
lm=n
m∼M

bmcl. (Type II sums)

Here m ∼ M means that M ≤ m < 2M . an, bm and cl are divisor–bounded.
This means, for example, that an � τ(n)C for some constant C.

Lemma 3.1. ([8], Lemma 7) Suppose that α is a real number, and there
exist a ∈ Z and q ∈ N with

(a, q) = 1, |qα− a| < q−1.

Then for any complex sequence bm, cl � 1, we have∑
lm∼X
m∼M

bmcle(mlα) � (
Xq−1/2 + (Xq)1/2 +XM−1/2 + (XM)1/2

)
(logX)2

and ∑
lm∼X
m∼M

bme(mlα) � (M +Xq−1 + q)(log(2qX)).

Lemma 3.2. ([8], Lemma 10) Suppose that α is a real number, and there
exist a ∈ Z and q ∈ N with

(a, q) = 1, |qα− a| < q−1.

Let A and Q be positive integers with AQ � qC and let Q be a set of distinct
integers q1 with q1 ∼ Q. Then for every ε > 0 and θ < 1/2 the number of
solutions to

‖q1nα‖ < θ with q1 ∈ Q, 1 ≤ n ≤ A (3.1)

is
� |Q|Aθ + qε(Q+ AQq−1 + qθ),

where the implied constant depends only on α, C and ε.
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4. The major arc

In this paper, we need a larger major arc than that in [8]. This brings
additional difficulties.

Lemma 4.1. There are positive real numbers u− and u+ with 2u− > u+ such
that for any ϑ ∈ [ 1

6φX
, 6
φX

] and A ≥ 0, we have

∫ X

ηX

( ∑
y≤n<y+yϑ

(
ρ±(n)− u±

log n

))2

dy � X

φ2
(logX)−A. (4.1)

Proof. Let ϑ′ = exp(−3(logX)1/3). We write A = [y, y + yϑ) and B =
[y, y + yϑ′]. We will first show that

∫ X

ηX

(∑
n∈A

ρ±(n)− ϑ

ϑ′
∑
n∈B

ρ±(n)

)2

dy � X

φ2
(logX)−A. (4.2)

Clearly, it is enough to show that this holds when ρ± are replaced by our
type I and type II sums.

Case 1: We have a type II sums
∑

ml∈A
m∼M

bmcl with M ∈ [X4/9, X5/9]. We

use the method of Heath–Brown [7] (also see Lemmas 7.2 and 9.3 of [6]). Let
T = ϑ−1X2ε and s = 1

2
+ it. Let

F (s) =
∑

ηX≤ml<2X
m∼M

bmcl(ml)−s. (4.3)

Obviously, |F (s)| � X1/2(logX)B for some positive number B, since bm and
cl are divisor–bounded. Using Perron’s formula (see page 1371 of [7]), for
ϑ∗ = ϑ or ϑ′, we have

∑
y≤ml<y+yϑ∗

m∼M

bmcl =
1

2πi

∫ 1
2
+iT

1
2
−iT

F (s)
(y + yϑ∗)s − ys

s
ds+O

(
Xε

(
1 +

X

T

))
.

(4.4)

Let T0 = exp((logX)1/3). While for s = 1
2
+ it, we have

(y + yϑ)s − ys

s
=

{
ysϑ+O(y1/2|s|ϑ2), if t ≤ T0;
O(y1/2ϑ), if t > T0.

(4.5)
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Thus we have∑
y≤ml<y+yϑ∗

m∼M

bmcl

=
ϑ∗

2πi

∫ 1
2
+iT0

1
2
−iT0

F (s)ysds+ E(ϑ∗) +O
(
y(log y)B(ϑ∗)2T 2

0

)
+O

(
X1−εϑ

)
,

(4.6)

where

E(ϑ∗) =
1

2πi

(∫ 1
2
+iT

1
2
+iT0

+

∫ 1
2
−iT0

1
2
−iT

)
F (s)

(1 + ϑ∗)s − 1

s
ysds. (4.7)

Then we have∑
ml∈A
m∼M

bmcl − ϑ

ϑ′
∑
ml∈B
m∼M

bmcl = E(ϑ) +
ϑ

ϑ′E(ϑ′) +O
(
Xϑ exp(−0.5(logX)1/3)

)
.

(4.8)

Hence we get

∫ X

ηX

⎛
⎜⎝∑

ml∈A
m∼M

bmcl − ϑ

ϑ′
∑
ml∈B
m∼M

bmcl

⎞
⎟⎠

2

dy

�
∫ X

ηX

|E(ϑ)|2dy + ϑ2

ϑ′2

∫ X

ηX

|E(ϑ′)|2dy + X

φ2
exp(−(logX)1/3). (4.9)

By Lemma 9.1 of [6], for ϑ∗ = ϑ or ϑ′, we have

∫ X

ηX

|E(ϑ∗)|2dy � X2 log T

∫ 1
2
+iT

1
2
+iT0

∣∣∣∣F (s)
(1 + ϑ∗)s − 1

s

∣∣∣∣
2

|ds|

� X2(ϑ∗)2 log T
∫ 1

2
+iT

1
2
+iT0

|F (s)|2|ds|. (4.10)
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Thus we have

∫ X

ηX

⎛
⎜⎝∑

ml∈A
m∼M

bmcl − ϑ

ϑ′
∑
ml∈B
m∼M

bmcl

⎞
⎟⎠

2

dy

� X2ϑ2 log T

∫ T

T0

|F (1/2 + it)|2dt+ X

φ2
exp(−(logX)1/3). (4.11)

By Lemma 5.2 of [6], we have

∫ T

T0

|F (1/2 + it)|2dt �
∫ T

T0

∣∣∣∣∣
∑
m∼M

bmm
−1/2−it

∣∣∣∣∣
2
∣∣∣∣∣∣
∑

l∼X/M

cll
−1/2−it

∣∣∣∣∣∣
2

dt

� max
t∈[T0,T ]

∣∣∣∣∣
∑
m∼M

bmm
−1/2−it

∣∣∣∣∣
2

(X/M + T ) logC X

� X(logX)−A, (4.12)

since T = ϑ−1X2ε � X4/9 � y/M and |∑m∼M bmm
−1/2−it| � M1/2(logX)−A−C ,

which holds in interesting cases since the coefficients arise from the charac-
teristic function of primes. For example, one can refer to the explanation of
(7.2.3) in Harman [6]. Hence we have

∫ X

ηX

⎛
⎜⎝∑

ml∈A
m∼M

bmcl − ϑ

ϑ′
∑
ml∈B
m∼M

bmcl

⎞
⎟⎠

2

dy � X

φ2
(logX)−A. (4.13)

Case 2: We have a type I sums with M ≤ X7/9.
Case 2a: If M ≤ X1−εϑ, we have∣∣∣∣∣∣∣

∑
mk∈A
m∼M

bm − ϑ

ϑ′
∑
mk∈B
m∼M

bm

∣∣∣∣∣∣∣ =
∣∣∣∣∣
∑
m∼M

bm

([
yϑ

m

]
− ϑ

ϑ′

[
yϑ′

m

])∣∣∣∣∣
≤

∑
m∼M

|bm| � MXε/2 � X1− ε
2ϑ.
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Then

∫ X

ηX

⎛
⎜⎝ ∑

mk∈A
m∼M

bm − ϑ

ϑ′
∑
mk∈B
m∼M

bm

⎞
⎟⎠

2

dy � X3−εϑ2 � X1−ε

φ2
.

Case 2b: If X1−εϑ < M ≤ X7/9, we let

G(s) =
∑

ηX≤ml<2X
m∼M

bm(ml)−s. (4.14)

Then similar to the case 1, we have

∫ X

ηX

⎛
⎜⎝ ∑

mk∈A
m∼M

bm − ϑ

ϑ′
∑
mk∈B
m∼M

bm

⎞
⎟⎠

2

dy

� X2ϑ2 log T

∫ T

T0

|G(1/2 + it)|2dt+ X

φ2
exp(−(logX)1/3). (4.15)

Here we have

∫ T

T0

|G(1/2 + it)|2dt � max
ηX≤Y≤X

∫ T

T0

∣∣∣∣∣
∑
m∼M

bmm
−1/2−it

∑
k∼K

k−1/2−it

∣∣∣∣∣
2

dt,

(4.16)

where K = Y/M . Using the approximate functional equation for the Rie-
mann zeta-function (see (4.12.4) of [9]), which with Re s = 1/2 gives

ζ(s) =
∑
k≤K

k−s + χ(s)
∑
l≤L

ls−1 +O(K−1/2 + L−1/2),

where 2πKL = t, s = 1/2 + it, |χ(s)| = 1. Thus when t > K, we have

∑
k∼K

k−1/2−it = χ(s)
∑

t
4πK

≤l≤ t
2πK

l−1/2+it +O

(
K−1/2 +

(
t

K

)−1/2
)

= O((t/K)1/2). (4.17)
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On the other hand, for T0 ≤ t ≤ K, by Theorem 4.11 of [9], we have∑
k∼K

k−1/2−it =
(2K)1/2−it − (K)1/2−it

1/2− it
+O(K−1/2) = O(K1/2/t). (4.18)

Combining (4.15)–(4.18), by Lemma 5.2 of [6], we have

∫ X

ηX

⎛
⎜⎝ ∑

mk∈A
m∼M

bm − ϑ

ϑ′
∑
mk∈B
m∼M

bm

⎞
⎟⎠

2

dy

� X2ϑ2(logX)(
MT

X
+

X

MT 2
0

)

∫ T

T0

∣∣∣∣∣
∑
m∼M

bmm
−1/2−it

∣∣∣∣∣
2

dt

+
X

φ2
exp(−(logX)1/3)

� X2ϑ2(logX)(
MT

X
+

X

MT 2
0

)(M + T )(logX)C +
X

φ2
exp(−(logX)1/3)

� X

φ2
(logX)−A, (4.19)

since we assume X1−εϑ < M ≤ X7/9 in this case. This completes the proof
of (4.2).

By the section 7 of [8], we have∑
n∈B

ρ±(n) =
u±ϑ′

ϑ

∑
n∈A

1

log n
+O(X exp(−3(logX)1/3)), (4.20)

where u− > 0.60 and u+ < 1.19. Thus 2u− − u+ > 0.
Then (4.1) follows from (4.2) and (4.20).

Lemma 4.2. For j = 1, 2, we have∫ φ

−φ

|S±
j (α)− u±I(λjα)|2dα � X(logX)−A. (4.21)

Proof. Obviously, we have∫ φ

−φ

|S±
j (α)− u±I(λjα)|2dα

≤
∫ φ

−φ

|S±
j (α)− u±U(λjα)|2dα +

∫ φ

−φ

|u±U(λjα)− u±I(λjα)|2dα. (4.22)
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First, by the Euler–Maclaurin summation formula, we have

|U(λjα)− I(λjα)| � 1 + |α|X. (4.23)

Thus∫ φ

−φ

|u±U(λjα)− u±I(λjα)|2dα �
∫
|α|≤X−1

dα +

∫
X−1<|α|≤φ

X2α2dα

� X−1 +X2φ3 � X(logX)−A. (4.24)

Next, by Gallagher’s lemma (Lemma 1 of [5]) and Lemma 4.1, we have

∫ φ

−φ

|S±
j (α)− u±U(λjα)|2dα

=

∫ φ

−φ

∣∣∣∣∣
∑

ηX<n≤X

(
ρ±(n)− u±

log n

)
e(nα)

∣∣∣∣∣
2

dα

� φ2

(∫ X

ηX

+

∫ ηX

ηX− 1
2φ

)∣∣∣∣∣∣
y+ 1

2φ∑
n=y

(ρ±(n)− u±

log n
)

∣∣∣∣∣∣
2

dy

� X(logX)−A + φ−1X2ε � X(logX)−A. (4.25)

Here, we have used the trivial bound∣∣∣∣∣∣
y+ 1

2φ∑
n=y

(ρ±(n)− u±

log n
)

∣∣∣∣∣∣ � φ−1Xε.

Thus (4.21) follows from (4.22), (4.24) and (4.25).

Lemma 4.3. We have

Jv(M) :=

∫
M

F (α)K(α)e(−αv)dα � τ 2
X

(logX)2
. (4.26)

Proof. This follows from Lemma 4.2 (the proof follows as Lemma 5 of [1]).
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5. The minor arc

By the definition of F (α), we have∫
m

|F (α)|2K(α)dα �
∫
m

|S+
1 (α)S

−
2 (α)|2K(α)dα +

∫
m

|S−
1 (α)S

+
2 (α)|2K(α)dα

+

∫
m

|S+
1 (α)S

+
2 (α)|2K(α)dα. (5.1)

We write for i = 1, 2,

Si(α) =
∑

ηX<n≤X

ane(nλiα), (5.2)

where an is of one of the types I and II, which are defined in section 3.
Without loss of generality we need only to prove that∫

m

|S1(α)S2(α)|2K(α)dα � τX1+2g(δ)+ε, (5.3)

where

g(δ) =

{
7/9, 1/6 ≤ δ < 2/9;
5/6− δ/3, 0 < δ < 1/6.

(5.4)

Let m′ = m1 ∪m2, m̂ = m \m′, where

m1 = {α ∈ m : |S1(α)| ≤ Xg(δ)+2ε}, m2 = {α ∈ m : |S2(α)| ≤ Xg(δ)+2ε}.
(5.5)

Then it is easy to see∫
m′
|S1(α)S2(α)|2K(α)dα � τX1+2g(δ)+5ε. (5.6)

It remains to discuss the set m̂. We use the method first by Brüdern, Cook
and Perelli [1] and followed by Matomäki [8], Wang [13]

Lemma 5.1. We have∫
m̂

|S1(α)S2(α)|2K(α)dα � τX1+2g(δ)+ε. (5.7)
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Proof. We consider first the case that both S1(α) and S2(α) are type II sums.
Let A(Z1, Z2) be the subset of m̂ satisfying Sj(α) ∼ Zj for j = 1, 2.

Without loss the generality, we can assume that

Z1 ≥ Z2 ≥ Xg(δ)+2ε. (5.8)

Then by Lemma 3.1 and Dirichlet’s theorem, for each α ∈ A(Z1, Z2), there
exist integers a1, q1, a2, q2 such that

∣∣qjλjα− aj
∣∣ � X1+ε

Z2
j

, (aj, qj) = 1, aj �= 0 (5.9)

and

qj � X2+ε

Z2
j

. (5.10)

Then for any α ∈ A(Z1, Z2), we have

∣∣∣aj
α

∣∣∣ � qj +
X1+ε

Z2
j

|α|−1 � qj. (5.11)

Let A′ = A(Z1, Z2, Q1, Q2, k) be the subset of A(Z1, Z2) for which qj ∼
Qj and aj � kQj. To prove Lemma 5.1, we need to show that for every
combination of Z1, Z2, Q1, Q1 and k,

Z2
1Z

2
2μ(A′)min(τ 2, k−2) � τX1+2g(δ)+ε, (5.12)

where μ(A′) is the Lebesgue measure of A′. First, we notice that for each
α ∈ A′ we have∣∣∣∣a2q1λ1

λ2

− a1q2

∣∣∣∣ =
∣∣∣∣a2(q1λ1α− a1) + a1(a2 − q2λ2α)

λ2α

∣∣∣∣
� X1+ε max

(
Q1

Z2
2

,
Q2

Z2
1

)
:= θ. (5.13)

Case 1: Z1Z2 � X5/2−g(δ)+2ε. In this case, by (5.8), (5.11) and (5.11)∣∣∣∣a2q1λ1

λ2

− a1q2

∣∣∣∣ � X3+2ε

Z2
1Z

2
2

� 1

X2−2g(δ)+2ε
. (5.14)

13



Since λ1/λ2 is irrational and algebraic, there exist a convergent a/q to λ1/λ2

with

X2−2g(δ) � q � X2−2g(δ)+ε. (5.15)

Thus we have ∥∥∥∥a2q1λ1

λ2

∥∥∥∥ ≤ 1

4q
, q1 ∼ Q1, a2 � kQ2, (5.16)

since X is sufficiently large. Then by the pigeon–hole principle and the
Legendre’s law of best approximation for continued fractions, the above in-
equality (5.16) have � kQ1Q2

q
solutions of |a2q1|. Clearly, each value of |a2q1|

corresponds to � Xε values of a1, a2, q1, q2 by the well–known bound on the
divisor function. Hence, we conclude that

μ(A′) � XεkQ1Q2

q
min

(
X1+ε

Z2
1Q1

,
X1+ε

Z2
2Q2

)
� kX1+2εQ

1/2
1 Q

1/2
2

qZ1Z2

. (5.17)

Then by (5.10), (5.15) and (5.17), the left–hand side of (5.12) is

� Z2
1Z

2
2τk

−1kX
1+2εQ

1/2
1 Q

1/2
2

qZ1Z2

� τ
X3+3ε

q
� τX1+2g(δ)+3ε. (5.18)

Case 2: Z1Z2 � X5/2−g(δ)+2ε. Let Q1 be the set of q1 such that |S1(α)| ∼
Z1. By Lemma 3.2, the inequality∥∥∥∥a2q1λ1

λ2

∥∥∥∥ ≤ θ, q1 ∈ Q1, a2 � kQ2

has

H � |Q1|kQ2θ + (Q1 + kQ1Q2q
−1 + qθ)qε (5.19)

solutions, where q is defined by (5.15). Then A′ consists of � HXε intervals
of at most length

min

(
X1+ε

Z2
1Q1

,
X1+ε

Z2
2Q2

)
:= γ.
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Note that

θγ =
X2+2ε

Z2
1Z

2
2

. (5.20)

We split into cases according to which term dominates in (5.19).
Case 2a: H � (kQ1Q2q

−1 + qθ)qε. In this case, the left–hand side of
(5.12) is

� Z2
1Z

2
2 min(τ 2, k−2)(kQ1Q2q

−1 + qθ)qεXεγ

� τ
X2εZ2

1Z
2
2Q1Q2γ

q
+ τ 2Z2

1Z
2
2X

2εqθγ

� τ
X1+3εZ1Z2Q

1/2
1 Q

1/2
2

q
+ τ 2X2+4εq

� τX3+4εq−1 + τ 2X2+4εq � τX1+2g(δ)+4ε.

Case 2b: H � Q1q
ε. The left–hand side of (5.12) is

� τ 2Z2
1Z

2
2X

1+3εQ1 min

(
1

Z2
1Q1

,
1

Z2
2Q2

)
� τ 2X1+3εZ2

2 � τ 2X1+3εZ1Z2

� τX1+5/2−g(δ)−δ+5ε � τX1+2g(δ)+5ε

by our assumption Z1 ≥ Z2 and Z1Z2 � X5/2−g(δ)+2ε.
Case 2c: H � |Q1|kQ2θ. We follow the method of Matomäki in [8] (one

can see page 101 of [8]).
If Z1 > X8/9. Then by (5.10), Q1 � X2/9+ε. If Q1Q2 ≤ X2g(δ)−1, then

by the trivial bound |Q1| ≤ Q1, we have that the left–hand side of (5.12) is

� Z2
1Z

2
2 min(τ 2, k−2)HXεγ � τX2+3ε|Q1|Q2 � τX1+2g(δ)+3ε.

Thus we can assume that Q1 � X2g(δ)−1/Q2. By Lemma 15 of [8], we have

|Q1| � X2+ε

Q1Z2
1

+
X13/9+εQ1

Z2
1

. (5.21)

Thus, the left–hand side of (5.12) is

� τX2+3εQ2

(
X2+ε

Q1Z2
1

+
X13/9+εQ1

Z2
1

)
� τX29/9−2g(δ)+4εQ2

2 + τX5/3+4εQ1Q2 (5.22)

� τX65/9−6g(δ)+ε + τX17/3−4g(δ)+ε � τX1+2g(δ)+ε

15



by (5.8) and (5.10).
If max(Z1, Z2) ≤ X8/9. We can argue as in the beginning of the proof

with roles of q1 and q2 swapped to conclude that we can assume that

H � kθmin(|Q1|Q2, |Q2|Q1).

We renumber such that Q1 ≥ Q2 (we do not anymore assume that Z1 ≥ Z2).
For Q2 ≤ Q1 ≤ X1/3, by (5.21), then the left–hand side of (5.12) is

� τX2+3εQ2

(
X2+ε

Q1Z2
1

+
X13/9+εQ1

Z2
1

)

� τ
X4+4ε

Z2
1

+ τ
X31/9+4εQ2

1

Z2
1

� τX4−2g(δ)+ε + τX37/9−2g(δ)+ε � τX1+2g(δ)+ε.

For Q1 ≥ X1/3, by Lemma 14 of [8], we have

|Q1| � X4+ε

Z4
1Q

2
1

.

Thus the left–hand side of (5.12) is

� τX2+3εQ2
X4+ε

Z4
1Q

2
1

� τ
X6+4ε

Z4
1Q1

� τX17/3−4g(δ)+ε � τX1+2g(δ)+ε.

Thus we have proved Lemma for type II sums.
If one or both of S1(α) and S2(α), say S2(α), is a type I sum, We use

Lemma 3.1 and Dirichlet’s theorem in Diophantine approximation. There
exist integers a2, q2 depending on α such that

|q2λ2α− a2| � Xε/Z2, (a2, q2) = 1, a2 �= 0

and

q2 � X1+ε/Z2

Then we have adopting the notion above that

θ = max

(
XεQ1

Z2

,
X1+εQ2

Z2
1

)
, γ = min

(
Xε

Z2Q2

,
X1+ε

Z2
1Q1

)
.
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Thus we have

γθ =
X1+2ε

Z2
1Z2

.

By the discussion in the beginning of proof, we only need to consider the
case H � Q1Q2kθ. In this case, the left–hand side of (5.12) is

� Z2
1Z

2
2 min(τ 2, k−2)HXεγ � τXεZ2

1Z
2
2Q1Q2θγ � τ

X4+5ε

Z2
1

� τX1+2g(δ)+ε.

This completes the proof of Lemma 5.1.

Combining (5.1)–(5.7), we get the following lemma.

Lemma 5.2. ∫
m

|F (α)|2K(α)dα � τX1+2g(δ)+ε. (5.23)

6. The proof of Theorem 1.1

We take τ = X−δ. Let V be a well-spaced set. Then by the definition of
ψ(v) in section 2, we have ψ(v) = 0 for every v ∈ E(V , X, δ), where E(V , X, δ)
is the set of v ∈ V with v ≤ X such that the inequality (1.1) has no solution
in primes p1, p2. Thus by (2.8), we have∑

v∈E(V,X,δ)

(Jv(M) + Jv(m) + Jv(t)) ≤ 0 (6.1)

By (2.9) and Lemma 4.3, we get∑
v∈E(V,X,δ)

(Jv(M) + Jv(t)) � E(V , X, δ)τ 2X/(logX)2. (6.2)

Thus we have ∣∣∣∣∣∣
∑

v∈E(V,X,δ)

(Jv(m))

∣∣∣∣∣∣ � E(V , X, δ)τ 2X/(logX)3. (6.3)
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By Cauchy’s inequality, we have∣∣∣∣∣∣
∑

v∈E(V,X,δ)

(Jv(m))

∣∣∣∣∣∣
�

⎛
⎝∫ +∞

−∞

∣∣∣∣∣∣
∑

v∈E(V,X,δ)

e(−vα)

∣∣∣∣∣∣
2

K(α)dα

⎞
⎠

1/2(∫
m

|F (α)|2K(α)dα

)1/2

=

⎛
⎝ ∑

v1,v2∈E(V,X,δ)

∫ +∞

−∞
e((v1 − v2)α)K(α)dα

⎞
⎠

1/2(∫
m

|F (α)|2K(α)dα

)1/2

� τ 1/2(E(V , X, δ))1/2
(∫

m

|F (α)|2K(α)dα

)1/2

. (6.4)

Here we have used that for every v1, v2 ∈ E(V , X, δ) ⊂ V , if v1 �= v2, then
there is a constant c such that |v1 − v2| > c, since V is a well-spaced set.
Combining (5.23), (6.3) and (6.4), we have

E(V , X, δ) � τ−3X−2(logX)6
∫
m

|F (α)|2K(α)dα � X2g(δ)−1+2δ+ε � Xf(δ)+ε.
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[8] K. Matomäki, Diophantine approximation by primes, Glasg. Math. J.
52 (1) (2010), 87–106.

[9] E. C. Titchmarsh, The theory of the Riemann zeta–function, 2nd edn.,
Oxford University Press, Oxford, 1986.

[10] R. C. Vaughan, The Hardy–Littlewood method, 2nd edn. Cambridge
University Press, Cambridge, 1997.

[11] Vaughan R C. Diophantine approximation by prime numbers (I), Proc.
London Math. Soc. (3) 28 (1974), 373–384.

[12] R. C. Vaughan, Diophantine approximation by prime numbers (II),
Proc. London Math. Soc. (3) 28 (1974), 385–401.

[13] Y. C. Wang, Values of binary linear forms at prime arguments, Front.
Math. China 10 (6) (2015), 1449–1459.

19


