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The characteristic polynomials of abelian varieties over the fi-
nite field Fq with q = pn elements have a lot of arithmetic and 
geometric information. They have been explicitly described 
for abelian varieties up to dimension 4, but little is known 
in higher dimension. In this paper, among other things, we 
obtain the following three results on the characteristic poly-
nomial of abelian varieties. First, we prove a relation between 
n and e, where e is a certain multiplicity associated with a 
simple abelian variety of arbitrary dimension over Fq . Sec-
ond, we explicitly describe the characteristic polynomials of 
simple abelian varieties of arbitrary dimension g, when e = g. 
Finally, we explicitly describe the coefficients of characteristic 
polynomials of abelian varieties of dimension 5 over Fq.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

An abelian variety over a field k is a complete group variety over k. It has various 
extremely good properties. In particular, abelian varieties over finite fields can be used 
to approach various practical issues, e.g. cryptography. Since the characteristic poly-
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nomial has a lot of information on abelian varieties, it is important to investigate the 
characteristic polynomials of abelian varieties in detail.

Let Fq be a finite field with q = pn elements and X an abelian variety of dimension 
g over Fq. Fix a prime l �= p and let Tl(X) be the l-adic Tate module of X. The q-th 
power Frobenius endomorphism πX : X → X induces a homomorphism as Zl-modules

Tl(πX) : Tl(X) −→ Tl(X).

The characteristic polynomial fX(t) of πX is defined by

fX(t) = det(t− Tl(πX)),

which is known to have coefficients in Z independent of l. In this paper, we call fX(t)
the characteristic polynomial of X or the characteristic polynomial for short instead of 
the characteristic polynomial of the Frobenius endomorphism of X. The characteristic 
polynomial fX(t) is of the form

fX(t) = t2g + a1t
2g−1 + · · · + ag−1t

g−1 + agt
g + ag−1qt

g−1 + · · · + a1q
g−1t + qg,

where a1, · · · , ag ∈ Z. The set of roots in C of fX(t) is in the form {w1, w1, · · · , wg, wg}, 
where wi is a Weil number for i = 1, · · · , g. A (q-)Weil number w is an algebraic integer 
such that for any embedding σ : Q(w) ↪→ C, |σ(w)| = √

q. A monic polynomial with 
integer coefficients whose roots are (q-)Weil numbers is called a (q-)Weil polynomial. 
Thus the characteristic polynomial of the Frobenius endomorphism is a Weil polynomial, 
but the converse is not necessarily true.

Let X, Y be abelian varieties defined over Fq and fX(t), fY (t) the characteristic poly-
nomials of X and Y respectively. Then, by Tate’s theorem, X is (Fq-)isogenous to Y if 
and only if fX(t) = fY (t). It is known that any abelian variety X over Fq is isogenous 
to

Xr1
1 × · · · ×Xrm

m ,

where Xi is a simple abelian variety over Fq, Xi is not isogenous to Xj for i �= j and 
ri ≥ 1 is an integer. If fXi

(t) is the characteristic polynomial of Xi, then

fX(t) = fX1(t)r1 · · · fXm
(t)rm .

Therefore to determine characteristic polynomials of abelian varieties of dimension g
over finite fields, it is sufficient to determine characteristic polynomials of simple abelian 
varieties of dimension ≤ g. Moreover, if X is (Fq-)simple, then fX(t) = mX(t)e, where 
mX(t) is an irreducible polynomial and e ≥ 1 is an integer, which we call the multiplicity 
of X. From this equality, it is obvious that e divides 2dim(X).

In this paper, we show three main results on characteristic polynomials of abelian 
varieties. First, we give a new condition on e as follows.
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Theorem 1.1. With the above notation, e divides n except for the case where fX(t) has 
a real root.

Many studies so far of characteristic polynomials of simple abelian varieties over Fq

are done with n fixed, where the possibility of e is examined only by using the divisibility 
condition e | 2dim(X) unrelated to the value of n. On the other hand, Theorem 1.1 gives 
rise to another direction of study depending on the value of n. For example, assume 
q = p, then n = 1, hence e = 1 by Theorem 1.1. Thus we conclude that the characteristic 
polynomial of a simple abelian variety over Fp must be irreducible, unless it has a real 
root.

The second main result is the following theorem generalizing the known results [9, 
Propositions 2, 3] for dimensions 3 and 4 to arbitrary dimension.

Theorem 1.2. Let a, b ∈ Z and 2 < g ∈ Z. Set f(t) = (t2 + at + b)g ∈ Z[t]. Then the 
polynomial f(t) is the characteristic polynomial of a simple abelian variety of dimension 
g over Fq with q = pn elements if and only if g divides n, b = q, |a| < 2√q and a = kqs/g, 
where k, s are integers satisfying (k, p) = 1, (s, g) = 1 and 1 ≤ s < g/2.

This theorem was known for dimension g less than or equal to 4 (cf. Remark 3.4).
The third main result is the following theorem, which explicitly describes the char-

acteristic polynomials of simple abelian varieties of dimension 5 over Fq. (See the end 
of section 2 for the known results in dimension ≤ 4.) Let vp denote the p-adic additive 
valuation normalized as vp(p) = 1.

Theorem 1.3. Let f(t) = t10 +a1t
9 +a2t

8 +a3t
7 +a4t

6 +a5t
5 +a4qt

4 +a3q
2t3 +a2q

3t2 +
a1q

4t + q5 be a Weil polynomial. Then f(t) is the characteristic polynomial of a simple 
abelian variety of dimension 5 over Fq if and only if one of the following conditions 
holds:

(I) The polynomial f(t) is of the form f(t) = (t2 + at + q)5, where a ∈ Z, |a| < 2√q

and the following condition holds:
(1) 5 divides n and a = kqs/5, where k is an integer, (k, p) = 1 and s is 1 or 2.

(II) The polynomial f(t) is irreducible and one of the following conditions holds:
(2) vp(a1) = 0, vp(a2) ≥ n/2, vp(a3) ≥ n, vp(a4) ≥ 3n/2, vp(a5) ≥ 2n and f(t)

has no root of valuation n/2 nor a factor of degree 3 in Qp,
(3) vp(a1) = 0, vp(a2) ≥ n/3, vp(a3) ≥ 2n/3, vp(a4) = n, vp(a5) ≥ 3n/2 and f(t)

has no root of valuation n/3, n/2 or 2n/3 in Qp,
(4) vp(a1) = 0, vp(a2) ≥ n/4, vp(a3) ≥ n/2, vp(a4) ≥ 3n/4, vp(a5) = n and f(t)

has no root of valuation n/4 or 3n/4 nor an irreducible factor of degree 2 in 
Qp,

(5) vp(a2) = 0, vp(a3) ≥ n/2, vp(a4) ≥ n, vp(a5) ≥ 3n/2 and f(t) has no root of 
valuation n/2 nor an irreducible factor of degree 3 in Qp,
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(6) vp(a2) = 0, vp(a3) ≥ n/3, vp(a4) ≥ 2n/3, vp(a5) = n and f(t) has no root of 
valuation n/3 or 2n/3 in Qp,

(7) vp(a3) = 0, vp(a4) ≥ n/2, vp(a5) ≥ n and f(t) has no root of valuation n/2 in 
Qp,

(8) vp(a1) ≥ n/3, vp(a2) ≥ 2n/3, vp(a3) = n, vp(a4) ≥ 3n/2, vp(a5) ≥ 2n and 
f(t) has no root of valuation n/3, n/2 or 2n/3 in Qp,

(9) vp(a4) = 0, vp(a5) ≥ n/2 and f(t) has no root of valuation n/2 in Qp,
(10) vp(a1) ≥ n/4, vp(a2) ≥ n/2, vp(a3) ≥ 3n/4, vp(a4) = n, vp(a5) ≥ 3n/2 and 

f(t) has no root of valuation n/4, n/2 or 3n/4 and has two irreducible factors 
of degree 4 in Qp,

(11) vp(a5) = 0,
(12) vp(a1) ≥ n/5, vp(a2) ≥ 2n/5, vp(a3) ≥ 3n/5, vp(a4) ≥ 4n/5, vp(a5) = n and 

f(t) has two irreducible factors of degree 5 in Qp,
(13) vp(a1) ≥ 2n/5, vp(a2) ≥ 4n/5, vp(a3) ≥ 6n/5, vp(a4) ≥ 8n/5, vp(a5) = 2n

and f(t) has two irreducible factors of degree 5 in Qp,
(14) vp(a1) ≥ n/2, vp(a2) ≥ n, vp(a3) ≥ 3n/2, vp(a4) ≥ 2n, vp(a5) ≥ 5n/2 and 

f(t) has no root of valuation n/2 nor a factor of degree 3 or 5 in Qp.

2. Preliminaries and problem settings

Now we briefly review the Honda–Tate theory (cf. [8,1]) which is a powerful classifi-
cation theory of (simple) abelian varieties over finite fields.

We denote the set of q-Weil numbers by W (q) and define the following equivalence 
relation on W (q): We say that π, π′ ∈ W (q) are conjugate (and write π ∼ π′) if π and 
π′ have the same minimal polynomial over Q.

Theorem 2.1 (cf. [1, Theorem 9]). There is a bijection X 	−→ πX from the set of 
Fq-isogeny classes of simple abelian varieties over Fq to the set of conjugacy classes 
of W (q).

In other words, this theorem claims that there is a one-to-one correspondence between 
two seemingly unrelated objects — abelian varieties and algebraic integers.

Let X be a simple abelian variety over Fq and πX the q-th power Frobenius endo-
morphism of X. Let E := End0

Fq
(X) = EndFq

(X) ⊗Z Q and F := Q[πX ] ⊆ E. Then E
is a division algebra whose center is F . The dimension of X in Theorem 2.1 satisfies the 
following property.

Proposition 2.2 (cf. [1, Theorem 8]). With notation as above, the dimension of the abelian 
variety X satisfies

2dim(X) =
√

[E : F ] · [F : Q].



JID:YJNTH AID:6129 /FLA [m1L; v1.246; Prn:17/10/2018; 11:30] P.5 (1-18)
D. Hayashida / Journal of Number Theory ••• (••••) •••–••• 5
Let v be a place of F , Fv the completion of F at v and Br(Fv) the Brauer group of 
Fv. Then we have the following formula for the invariant invv(E) := invFv

(E ⊗F Fv) ∈
Br(Fv) ⊂ Q/Z.

Proposition 2.3 (cf. [1, Theorem 8]). We have

• invv(E) = 1/2 if v is a real place,
• invv(E) = 0 if v is a finite place not dividing p or v is a complex place,

• invv(E) = vp(πX)
vp(q)

· [Fv : Qp] mod Z if v is a place dividing p.

The following useful lemma shows that an abelian variety corresponding to a real Weil 
number must be of dimension less than or equal to 2.

Lemma 2.4. Let X be a simple abelian variety over Fq with q = pn elements and fX(t)
the characteristic polynomial. Suppose that fX(t) has a real root. Then we have

• if n is even, then dim(X) = 1,
• if n is odd, then dim(X) = 2.

Proof. (cf. [1, 5.1]) Let � be a real root of fX(t). Then F = Q(πX) is identified with 
Q(�), and since F has a real embedding σ : F = Q(�) ↪→ R ⊂ C and � is a Weil 
number, σ(�2) = σ(�) · σ(�) = q = pn. So �2 = pn.

First assume n is even. Then � = ±pn/2 ∈ Q, hence F = Q. Let E = End0
Fq

(X). 
From Proposition 2.3, invv(E) = 1/2 for the unique real place v and

invv(E) = vp(πX)
vp(q)

· [Fv : Qp] = vp(�)
vp(q)

· [Fv : Qp] = 1/2

for the unique place dividing p. Thus the order of [E] in Br(F ) has 2, so 
√

[E : F ] = 2
(cf. [1, Theorem 3.6]). From Proposition 2.2, we obtain

dim(X) = (1/2)
√

[E : F ] · [F : Q] = 1.

Next assume n is odd. Then F = Q(�) = Q(√p), and there are two real places. From 
Proposition 2.3, the invariant of E at these two places is 1/2. Since there exists only one 
place v dividing p, this implies that the invariant of E at v dividing p must be 0 ∈ Q/Z. 
So 

√
[E : F ] = 2. From Proposition 2.2, we also obtain

dim(X) = (1/2)
√

[E : F ] · [F : Q] = 2. �
Remark 2.5. (i) Let f(t) be an irreducible Weil polynomial and suppose that f(t) has a 
real root �. Then the proof of Lemma 2.4 shows � = ±√

q, hence f(t) = t ±√
q (resp. 

t2 − q) for n even (resp. odd). Thus the degree of f(t) is at most 2.
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(ii) It is known that an abelian variety corresponding to a real Weil number is super-
singular. See [1, 5.1] for details.

The following lemma plays an important role in a specific situation.

Lemma 2.6. [4, Proposition 2.5] Let Fq be a finite field with q = pn elements. Let X be a 
simple abelian variety over Fq with characteristic polynomial fX(t) = (t2 +at +q)dim(X), 
where a ∈ Z such that |a| < 2√q. Let m = vp(a) and d = a2 − 4q. Then

dim(X) =

⎧⎪⎪⎨
⎪⎪⎩

n
(m,n) if m < n

2

2 if m ≥ n
2 and d ∈ Q×2

p

1 if m ≥ n
2 and d /∈ Q×2

p

Let X be a simple abelian variety of dimension g over Fq and fX(t) the characteristic 
polynomial. First, note that fX(t) is a Weil polynomial of degree 2g. Thus we must 
consider the following problems to determine explicitly the characteristic polynomials.

Problem 1. Find a necessary and sufficient condition for a polynomial f(t) = t2g +
a1t

2g−1 + · · ·+ ag−1t
g+1 + agt

g + ag−1qt
g−1 + · · ·+ a1q

g−1t + qg with integer coefficients 
to be a Weil polynomial.

In general, this problem is very difficult and has only been solved up to dimension 5 
at present.

Second, we recall that since X is simple, fX(t) = mX(t)e, where mX(t) is an irre-
ducible polynomial and e ≥ 1 is an integer (the multiplicity of X).

Problem 2. With notation as above, determine all possible multiplicities e.

Lemma 2.4 plays an important role in dealing with Problem 2. As another approach 
to Problem 2, Theorem 1.1 is also important. Finally, for each e examined in Problem 2, 
we consider the following problem.

Problem 3. Find a necessary and sufficient condition for a Weil polynomial f(t) =
t2g +a1t

2g−1 + · · ·+ag−1t
g+1 +agt

g +ag−1qt
g−1 + · · ·+a1q

g−1t +qg to be the character-
istic polynomial of a simple abelian variety of dimension g over Fq. Namely, for a Weil 
polynomial f(t), find a condition on the coefficients of f(t) under which there exists a 
simple abelian variety over Fq whose characteristic polynomial coincides with f(t).

Here we briefly review the known results concerning the above problems. Problems 
1, 2 and 3 are solved in [7, Theorem 4.1] for dimension 1; in [4] and [5] for dimension 
2; in [2] and [9, Proposition 1, 2] for dimension 3; and in [3] and [9, Theorem 2] for 
dimension 4. Problem 1 is solved in [6] for dimension 5.
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3. Main results

Let X be a simple abelian variety of dimension g over Fq with q = pn elements, πX

the q-th power Frobenius endomorphism of X and fX(t) the characteristic polynomial 
of X. We have fX(t) = mX(t)e, where mX(t) is an irreducible polynomial and e ≥ 1 is 
an integer. Let E := End0

Fq
(X) and F := Q(πX) ⊂ E.

Lemma 3.1. The least common denominator of invv(E) for all places of F is equal to e.

Proof. The polynomial mX(t) is the minimal polynomial of πX over Q and the degree is 
2g/e. Hence [F : Q] = 2g/e. From Proposition 2.2, we have 

√
[E : F ] = e. Since 

√
[E : F ]

coincides with the order of [E] in Br(F ) (cf. [1, Theorem 3.6]), which is equal to the least 
common denominator of all invariants of E, we obtain the desired conclusion. �
Corollary 3.2. An irreducible Weil polynomial f(t) of degree 2g is the characteristic poly-
nomial of a simple abelian variety of dimension g over Fq (i.e. e = 1) if and only if f(t)
has no real root and the following condition (**) holds.

(∗∗)

⎧⎨
⎩

vp(fi(0))
n

∈ Z,

where fi(t) runs through all monic irreducible factors of f(t) in Qp[t].

Proof. Since F ∼= Q[t]/(f(t)), we have F ⊗Q Qp
∼= Qp[t]/(f(t)) ∼=

∏
i Qp[t]/(fi(t)). 

Thus, the set of places of F dividing p is in one-to-one correspondence with {fi(t)}i. 
First, assume that an irreducible Weil polynomial f(t) of degree 2g is the character-
istic polynomial of a simple abelian variety X of dimension g over Fq. Then the least 
common denominator of invv(E) is 1 by Lemma 3.1. Thus f(t) has no real root from 
Proposition 2.3 (otherwise, F admits a real place), and we have vp(fi(0))/n ∈ Z from 
Proposition 2.3, where fi(t) runs through all irreducible factors of f(t) in Qp[t]. Indeed, 
if fi(t) = (t − α1) · · · (t − αdeg(fi(t))), then we have fi(0) = ±α1 · · ·αdeg(fi(t)). Since 
fi(t) is irreducible over Qp, we obtain vp(α1) = · · · = vp(αdegfi(t))(= vp(πX)). Hence 
vp(fi(0)) = vp(πX)deg(fi(t)) = vp(πX)[Fv : Qp]. Conversely, assume vp(fi(0))/n ∈ Z for 
all irreducible factors fi(t) in Qp[t] of an irreducible Weil polynomial f(t) of degree 2g. 
Let X ′ be a simple abelian variety of dimension g′ corresponding to a root of f(t) in 
Theorem 2.1 and E′ = End0(X ′). Then fX′(t) = f(t)e, so 2g′ = 2ge. Since fX′(t) has 
no real root and we have

invv(E′) = vp(fi(0))
n

∈ Z

for the place v corresponding to fi(t), the least common denominator of invv(E′) is 1. 
Thus we obtain e = 1 by Lemma 3.1. �
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In the known approach to Problem 2, the possibility of e is examined by determining 
whether fX(t) has a real root or not and using the fact that e divides 2g. Here, as another 
approach, we propose to use a relation between n and e given by Theorem 1.1.

Proof of Theorem 1.1. As mX(t) is the minimal polynomial of πX over Q, F ∼=
Q[t]/(mX(t)). Considering the decomposition of mX(t) in Qp[t], we have

F ⊗Qp = Qp[t]/(mX(t)) =
r∏

i=1
Qp[t]/(mi(t)),

where mi(t) ∈ Qp[t] (i = 1, · · · , r) is an irreducible monic polynomial such that mX(t) =
m1(t) · · ·mr(t).

For each i, Qp[t]/(mi(t)) = Fv, where Fv is the completion at the place v above p
corresponding to the embedding F ↪→ Qp[t]/(mi(t)). Hence [Fv : Qp] = deg(mi(t)). 
Let vp denote the p-adic additive valuation normalized as vp(p) = 1. Since mi(t) is an 
irreducible polynomial over Qp, vp(α) has the same value for all roots α of mi(t). Thus

vp(mi(0)) = deg(mi(t)) · vp(α)

and from Proposition 2.3, we have

invv(E) = vp(πX)
vp(q)

· [Fv : Qp] = vp(mi(0))
n

for a place v dividing p. Since there is no real place by assumption, the invariants of E
at the other places are equal to 0 by Proposition 2.3.

Since vp(mi(0)) ∈ Z, e divides n from Lemma 3.1. �
Remark 3.3. When fX(t) has a real root, the assertion of Theorem 1.1 does not hold 
in general. Indeed, assume that n is odd and let X be a simple abelian variety over Fq

corresponding to the Weil number √q. As t2 − q is irreducible over Q, we may write 
fX(t) = (t2 − q)e. Now, by Lemma 2.4, we have dim(X) = 2, hence e = 2. Thus, e does 
not divide n.

In general, it is difficult to describe the characteristic polynomials for all e dividing 
2g. On the other hand, in the case of e = g, i.e. in the case that mX(t) is an irreducible 
polynomial of degree 2, we have Theorem 1.2, which describes explicitly the characteristic 
polynomials for arbitrary g. (This was only known for g ≤ 4, cf. Remark 3.4 below.)

Notation. We write lcd(a1, · · · , am) for the least common denominator of a1, · · · , am ∈
Q/Z and d(a) for the denominator of a ∈ Q/Z.

Proof of Theorem 1.2. Assume first that g divides n, b = q, |a| < 2√q and a = kqs/g, 
where k, s are integers satisfying (k, p) = 1, (s, g) = 1 and 1 ≤ s < g/2. Since f(t) is a 
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Weil polynomial, there exists a simple abelian variety X corresponding to a root of f(t)
in Theorem 2.1. Then we have fX(t) = (t2 + at + q)dim(X). Since

m := vp(a) = vp(kqs/g)

= vp(pns/g) since (k, p) = 1,

= ns/g < n/2,

we obtain dim(X) = g from Lemma 2.6.
Conversely, we assume that the polynomial f(t) = (t2 + at + b)g is the characteristic 

polynomial of a simple abelian variety X of dimension g over Fq. Since f(t) is a Weil 
polynomial, we get |a| ≤ 2√q and |b| = q.

First, suppose b = −q, then a = 0. This implies that f(t) has a real root, which 
contradicts g > 2 from Lemma 2.4.

Second, suppose b = q and |a| = 2√q. Then f(t) has a real root again. Similarly, 
this contradicts g > 2. Hence we obtain b = q and |a| < 2√q. Moreover, g divides n by 
Theorem 1.1. From Lemma 3.1,

the least common denominator of all invariants of E = End0(X) is g. (*)

We consider the Newton polygon for t2 + at + q. This has 3 possible vertices 
(0, n), (1, vp(a)) and (2, 0).

Suppose the Newton polygon is a line, i.e. vp(a) ≥ n/2 or a = 0. Then we can 
decompose t2 + at + q as (t − α1)(t − α2) in Qp[t] so that vp(α1) = vp(α2) = n/2. We 
have

lcd
(
vp(α1)

n
[Qp(α1) : Qp],

vp(α2)
n

[Qp(α2) : Qp]
)

= lcd
(

1
2 [Qp(α1) : Qp],

1
2 [Qp(α2) : Qp]

)
,

which is 1 or 2 by using Proposition 2.3. This contradicts the fact (*) since g > 2.
Hence the point (1, vp(a)) must be a vertex of the Newton polygon. In other words, 

we have vp(a) < n/2 and a �= 0. Then we can decompose t2 + at + q as (t − α1)(t − α2)
so that t − α1, t − α2 ∈ Qp[t], vp(α1) = n − vp(a) and vp(α2) = vp(a). We have

lcd
(
vp(α1)

n
[Qp(α1) : Qp],

vp(α2)
n

[Qp(α2) : Qp]
)

= lcd
(

1 − vp(a)
n

,
vp(a)
n

)

= d
(
vp(a)
n

)
= g
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if and only if vp(a) = ns/g with an integer s satisfying (s, g) = 1. Further, since vp(a) <
n/2, we have s < g/2. This implies that (g divides n and) a = kqs/g, where k, s are 
integers satisfying (k, p) = 1, (s, g) = 1 and 1 ≤ s < g/2. �
Remark 3.4. Theorem 1.2 for the case of g = 1, 2, 3 and 4 is in [7, Theorem 4.1], [4, The-
orem 2.9], [9, Proposition 2] and [9, Proposition 3] respectively. (Note that the condition 
(ii) in [9, Proposition 2] is unnecessary.)

The following proposition gives an answer to Problem 2 in the case of odd prime 
dimension.

Proposition 3.5. Let l be an odd prime. Consider the characteristic polynomial of a simple 
abelian variety of dimension l over Fq. Then e = 1 or e = l.

Proof. Since e divides 2l and l is a prime, we have either e = 1, 2, l or 2l. Suppose e = 2
or e = 2l. Then mX(t) is an irreducible polynomial of odd degree. Hence the polynomial 
mX(t) has a real root. This contradicts l ≥ 3 by Lemma 2.4. �

In general, it is very difficult to explicitly describe the characteristic polynomial of 
an abelian variety of high dimension in the case of e = 1. On the other hand, we know 
the characteristic polynomial in the case of e = l by Theorem 1.2. Hence we “almost” 
complete describing the characteristic polynomial of a simple abelian variety of prime 
dimension over Fq by Proposition 3.5.

Finally, we give the main result concerning the characteristic polynomial of a simple 
abelian variety of dimension 5.

Problem 1 in dimension 5 is solved by G.Y. Sohn [6, Theorem 2.1]. Problem 2 in 
dimension 5 has been done in Proposition 3.5. Problem 3 in dimension 5 corresponds to 
Theorem 1.3 and we give the proof as follows.

Proof of Theorem 1.3. Assume first f(t) is not irreducible, i.e. e = 5 by Proposition 3.5. 
This case has been done in Theorem 1.2. Next, an irreducible Weil polynomial f(t) of 
degree 10 is the characteristic polynomial of a simple abelian variety X of dimension 5 
over Fq if and only if the condition (**) in Corollary 3.2 holds. (Note that f(t) has no 
real root from Remark 2.5 (i).)

Let NP(f) denote the Newton polygon of f(t). Then NP(f) has 10 possible ver-
tices (0, 5n), (1, 4n + vp(a1)), (2, 3n + vp(a2)), (3, 2n + vp(a3)), (4, n + vp(a4)), (5, vp(a5)), 
(6, vp(a4)), (7, vp(a3)), (8, vp(a2)), (9, vp(a1)) and (10, 0). Note that if some of these points 
is a vertex, then the point must be a lattice point belonging to Z × nZ. (cf. [3, p. 64].) 
By symmetry of NP(f), it is sufficient to classify cases according to whether either 
(1, 4n + vp(a1)), (2, 3n + vp(a2)), (3, 2n + vp(a3)), (4, n + vp(a4)) or (5, vp(a5)) is a vertex 
or not.
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Fig. 1. (1, 4n + vp(a1)) is a vertex.

Case 1. (1, 4n + vp(a1)) is a sole vertex: In this case, NP(f) is as in Fig. 1. This occurs 
if and only if vp(a1) = 0, vp(a2) ≥ n/2, vp(a3) ≥ n, vp(a4) ≥ 3n/2 and vp(a5) ≥ 2n. Then 
we can decompose f(t) as 

∏10
i=1(t − αi) in Qp[t] so that

t− α1, t− α10,

9∏
i=2

(t− αi) ∈ Qp[t],

vp(α1) = n, vp(α10) = 0, vp(αi) = n/2 for i = 2, · · · , 9.

The condition (**) holds if and only if f(t) has no root of valuation n/2 nor a factor of 
degree 3 in Qp.

Case 2. (1, 4n + vp(a1)) and (4, n + vp(a4)) are vertices:
In this case, NP(f) is as in Fig. 2. This occurs if and only if vp(a1) = 0, vp(a2) ≥

n/3, vp(a3) ≥ 2n/3, vp(a4) = n and vp(a5) ≥ 3n/2. Then we can decompose f(t) as 
10∏
i=1

(t − αi) in Qp[t] so that

t− α1, t− α10 ∈ Qp[t],

(t− α2)(t− α3)(t− α4), (t− α7)(t− α8)(t− α9) ∈ Qp[t],

(t− α5)(t− α6) ∈ Qp[t],

vp(α1) = n, vp(α10) = 0,

vp(α2) = vp(α3) = vp(α4) = 2n/3,

vp(α7) = vp(α8) = vp(α9) = n/3,

vp(α5) = vp(α6) = n/2.

It is obvious that vp(α1)/n, vp(α10)/n ∈ Z. The condition (**) holds if and only if f(t)
has no root of valuation n/3, n/2 or 2n/3 in Qp.
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Fig. 2. (1, 4n + vp(a1)) and (4, n + vp(a4)) are vertices.

Fig. 3. (1, 4n + vp(a1)) and (5, vp(a5)) are vertices.

Case 3. (1, 4n + vp(a1)) and (5, vp(a5)) are vertices:
In this case, NP(f) is as in Fig. 3. This occurs if and only if vp(a1) = 0, vp(a2) ≥

n/4, vp(a3) ≥ n/2, vp(a4) ≥ 3n/4 and vp(a5) = n. Then we can decompose f(t) as 
10∏
i=1

(t − αi) in Qp[t] so that

t− α1, t− α10 ∈ Qp[t],

(t− α2)(t− α3)(t− α4)(t− α5), (t− α6)(t− α7)(t− α8)(t− α9) ∈ Qp[t]

vp(α1) = n, vp(α10) = 0,

vp(α2) = vp(α3) = vp(α4) = vp(α5) = 3n/4,

vp(α6) = vp(α7) = vp(α8) = vp(α9) = n/4.

It is obvious that vp(α1)/n, vp(α10)/n ∈ Z. The condition (**) holds if and only if f(t)
has no root of valuation n/4 or 3n/4 nor an irreducible factor of degree 2 in Qp.
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Fig. 4. (2, 3n + vp(a2)) is a vertex.

Case 4. (2, 3n + vp(a2)) is a sole vertex:
In this case, NP(f) is as in Fig. 4. This occurs if and only if vp(a1) ≥ 0, vp(a2) =

0, vp(a3) ≥ n/2, vp(a4) ≥ n and vp(a5) ≥ 3n/2. Note that vp(a1) ≥ 0 is a trivial condi-

tion. Then we can decompose f(t) as 
10∏
i=1

(t − αi) in Qp[t] so that

(t− α1)(t− α2), (t− α9)(t− α10) ∈ Qp[t],

(t− α3)(t− α4)(t− α5)(t− α6)(t− α7)(t− α8) ∈ Qp[t],

vp(α1) = vp(α2) = n, vp(α9) = vp(α10) = 0,

vp(α3) = vp(α4) = vp(α5) = vp(α6) = vp(α7) = vp(α8) = n/2.

Since vp(α1)/n, vp(α2)/n, vp(α9)/n, vp(α10)/n are integers, the condition (**) holds if 
and only if f(t) has no root of valuation n/2 nor an irreducible factor of degree 3 in Qp.

Case 5. (2, 3n + vp(a2)) and (5, vp(a5)) are vertices:
In this case, NP(f) is as in Fig. 5. This occurs if and only if vp(a1) ≥ 0, vp(a2) =

0, vp(a3) ≥ n/3, vp(a4) ≥ 2n/3 and vp(a5) = n. Note that vp(a1) ≥ 0 is a trivial condi-

tion. Then we can decompose f(t) as 
10∏
i=1

(t − αi) ∈ Qp[t] so that

(t− α1)(t− α2), (t− α9)(t− α10) ∈ Qp[t],

(t− α3)(t− α4)(t− α5), (t− α6)(t− α7)(t− α8) ∈ Qp[t],

vp(α1) = vp(α2) = n, vp(α9) = vp(α10) = 0,

vp(α3) = vp(α4) = vp(α5) = 2n/3, vp(α6) = vp(α7) = vp(α8) = n/3.

Thus the condition (**) holds if and only if f(t) has no root of valuation n/3 or 2n/3 in 
Qp.
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Fig. 5. (2, 3n + vp(a2)) and (5, vp(a5)) are vertices.

Fig. 6. (3, 2n + vp(a3)) is a vertex.

Case 6. (3, 2n + vp(a3)) is a vertex:
In this case, there are two possible Newton polygons as in Fig. 6. First we consider 

the lower polygon in Fig. 6. This is NP(f) if and only if vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) =
0, vp(a4) ≥ n/2 and vp(a5) ≥ n. Note that vp(a1) ≥ 0, vp(a2) ≥ 0 are trivial conditions. 

Then we can decompose f(t) as 
10∏
i=1

(t − αi) in Qp[t] so that

(t− α1)(t− α2)(t− α3), (t− α8)(t− α9)(t− α10) ∈ Qp[t],

(t− α4)(t− α5)(t− α6)(t− α7) ∈ Qp[t],

vp(α1) = vp(α2) = vp(α3) = n, vp(α8) = vp(α9) = vp(α10) = 0,

vp(α4) = vp(α5) = vp(α6) = vp(α7) = n/2.

Thus the condition (**) holds if and only if f(t) has no root of valuation n/2 in Qp.
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Fig. 7. (4, n + vp(a4)) is a vertex.

Second we consider the upper polygon in Fig. 6. This is NP(f) if and only if vp(a1) ≥
n/3, vp(a2) ≥ 2n/3, vp(a3) = n, vp(a4) ≥ 3n/2 and vp(a5) ≥ 2n. Then we can decompose 

f(t) as 
10∏
i=1

(t − αi) in Qp[t] so that

(t− α1)(t− α2)(t− α3), (t− α8)(t− α9)(t− α10) ∈ Qp[t],

(t− α4)(t− α5)(t− α6)(t− α7) ∈ Qp[t],

vp(α1) = vp(α2) = vp(α3) = 2n/3, vp(α8) = vp(α9) = vp(α10) = n/3,

vp(α4) = vp(α5) = vp(α6) = vp(α7) = n/2.

Thus the condition (**) holds if and only if f(t) has no root of valuation n/3, n/2 or 
2n/3 in Qp.

Case 7. (4, n + vp(a4)) is a vertex:
In this case, there are two possible Newton polygons as in Fig. 7. First we consider 

the lower polygon in Fig. 7. This is NP(f) if and only if vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) ≥
0, vp(a4) = 0 and vp(a5) ≥ n/2. Note that vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) ≥ 0 are trivial 

conditions. Then we can decompose f(t) as 
10∏
i=1

(t − αi) in Qp[t] so that

(t− α1) · · · (t− α4), (t− α7) · · · (t− α10) ∈ Qp[t],

(t− α5)(t− α6) ∈ Qp[t],

vp(α1) = · · · = vp(α4) = n, vp(α7) = · · · = vp(α10) = 0,

vp(α5) = vp(α6) = n/2.

Thus the condition (**) holds if and only if f(t) has no root of valuation n/2 in Qp.
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Fig. 8. (5, vp(a5)) is a vertex.

Second we consider the upper polygon in Fig. 7. This is NP(f) if and only if 
vp(a1) ≥ n/4, vp(a2) ≥ n/2, vp(a3) ≥ 3n/4, vp(a4) = n and vp(a5) ≥ 3n/2. Then we 

can decompose f(t) as 
10∏
i=1

(t − αi) in Qp[t] so that

(t− α1) · · · (t− α4), (t− α7) · · · (t− α10) ∈ Qp[t],

(t− α5)(t− α6) ∈ Qp[t],

vp(α1) = · · · = vp(α4) = 3n/4, vp(α7) = · · · = vp(α10) = n/4,

vp(α5) = vp(α6) = n/2.

Thus the condition (**) holds if and only if f(t) has no root of valuation n/4, n/2 or 
3n/4 and has two irreducible factors of degree 4 in Qp.

Case 8. (5, vp(a5)) is a vertex:
In this case, there are three possible Newton polygons as in Fig. 8. First we consider the 

bottom polygon in Fig. 8. This is NP(f) if and only if vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) ≥
0, vp(a4) ≥ 0 and vp(a5) = 0. Note that vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) ≥ 0, vp(a4) ≥ 0

are trivial conditions. Then we can decompose f(t) as 
10∏
i=1

(t − αi) in Qp[t] so that

(t− α1) · · · (t− α5), (t− α6) · · · (t− α10) ∈ Qp[t],

vp(α1) = · · · = vp(α5) = n, vp(α7) = · · · = vp(α10) = 0.

The condition (**) always holds.
Second we consider the middle polygon in Fig. 8. This is NP(f) if and only if 

vp(a1) ≥ n/5, vp(a2) ≥ 2n/5, vp(a3) ≥ 3n/5, vp(a4) ≥ 4n/5 and vp(a5) = n. Then 

we can decompose f(t) as 
10∏

(t − αi) in Qp[t] so that

i=1
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Fig. 9. NP(f) is a line.

(t− α1) · · · (t− α5), (t− α6) · · · (t− α10) ∈ Qp[t],

vp(α1) = · · · = vp(α5) = 4n/5, vp(α6) = · · · = vp(α10) = n/5.

Thus the condition (**) holds if and only if f(t) has two irreducible factors of degree 5
in Qp.

Third we consider the top polygon in Fig. 8. This is NP(f) if and only if vp(a1) ≥
2n/5, vp(a2) ≥ 4n/5, vp(a3) ≥ 6n/5, vp(a4) ≥ 8n/5 and vp(a5) = 2n. Then we can 

decompose f(t) as 
10∏
i=1

(t − αi) in Qp[t] so that

(t− α1) · · · (t− α5), (t− α6) · · · (t− α10) ∈ Qp[t],

vp(α1) = · · · = vp(α5) = 3n/5, vp(α6) = · · · = vp(α10) = 2n/5.

Thus the condition (**) holds if and only if f(t) has two irreducible factors of degree 5
in Qp.

Case 9. NP(f) is a line:
In this case, NP(f) is as in Fig. 9. This occurs if and only if vp(a1) ≥ n/2, vp(a2) ≥

n, vp(a3) ≥ 3n/2, vp(a4) ≥ 2n and vp(a5) ≥ 5n/2. Then we can decompose f(t) as 
10∏
i=1

(t − αi) in Qp[t] so that

(t− α1) · · · (t− α10) ∈ Qp[t],

vp(α1) = · · · = vp(α10) = n/2.

Thus the condition (**) holds if and only if f(t) has no root of valuation n/2 nor a factor 
of degree 3 or 5 in Qp.

This completes the proof of Theorem 1.3. �
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