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1. Introduction

Let Γ+
0 (p) be the group generated by the Hecke group Γ0(p) and the Fricke involution 

Wp =
(

0 −1/√p√
p 0

)
. Throughout the paper we assume that p is a prime number for which 

the genus of Γ+
0 (p) is zero, that is, p belongs to the set

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.

Let Mk(p) (resp. Sk(p)) be the vector space of holomorphic modular forms (resp. 
cusp forms) of weight k for Γ0(p), and let M+

k (p) (resp. S+
k (p)) be the space of weight 

k modular forms (resp. cusp forms) on Γ+
0 (p). More precisely, the space M+

k (p) (resp. 
S+
k (p)) is a subspace of Mk(p) (resp. Sk(p)) consisting of all modular forms (resp. cusp 

forms) f which are invariant under Wp, i.e.,

M+
k (p) := {f ∈ Mk(p) : f |k Wp = f} and S+

k (p) := {f ∈ Sk(p) : f |k Wp = f}.

Similarly we define the other subspaces of Mk(p) (resp. Sk(p)) as:

M−
k (p) := {f ∈ Mk(p) : f |k Wp = −f}, S−

k (p) := {f ∈ Sk(p) : f |k Wp = −f}.

We call these the minus spaces of holomorphic modular forms, and cusp forms respec-
tively.

Let M !
k(p) be the space of weakly holomorphic modular forms (that is, meromorphic 

with poles only at the cusps) of weight k for Γ0(p), and let M !+
k (p) be the space of weakly 

holomorphic modular forms of weight k for Γ+
0 (p). The minus space M !−

k (p) is defined 
to be the subspace of M !

k(p) consisting of all eigenforms of Wp with eigenvalue −1.
For f ∈ M !

k(p), it can be easily seen that f = f+f |kWp

2 + f−f |kWp

2 , with f+f |kWp

2 ∈
M !+

k (p), f−f |kWp

2 ∈ M !−
k (p). Hence we have the following proposition.

Proposition 1.1. Let M !
k(p), M

!+
k (p) and M !−

k (p) be the spaces defined above. The space 
M !

k(p) is decomposed into the direct sum of the subspaces M !+
k (p) and M !−

k (p), that is,

M !
k(p) = M !+

k (p) ⊕M !−
k (p).

Choi and Kim [CK13] found a canonical basis for M !+
k (p) for any even integer k. 

Accordingly, Proposition 1.1 tells us that if we find a basis for the minus space M !−
k (p), 

we can construct a basis for the space M !
k(p). In this paper we address the question of 

finding a canonical basis for the space M !−
k (p), and investigate its arithmetic properties. 

In fact, the canonical basis we construct in this paper consists of the form f−
k,m whose 

Fourier expansion is given by

f−
k,m = q−m +

∑
−

a−k (m,n)qn (q = e2πiz)

n>mk
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for every integer m ≥ −m−
k , where m−

k is the maximal vanishing order at the cusp ∞ for 
a nonzero f ∈ M !−

k (p). The basis of the minus space M !−
k (p) has many properties similar 

to those of the space M !+
k (p). For example, the coefficients a−k (m, n) of basis element f−

k,m

for M !−
k (p) are also integral and satisfy the duality relation a−k (n, m) = −a−2−k(m, n) as 

in the case of the space M !+
k (p).

In the theory of modular forms the classical j-invariant is of particular interest. The 
coefficients of the j-function have special arithmetic properties: for example, they appear 
as dimensions of a special graded representation of the Monster group. Let c(n) be the 
n-th Fourier coefficient of j such that

j(z) = 1
q

+
∑
n≥0

c(n)qn.

In 1949 Lehner showed [Leh43,Leh49a,Leh49b] that for any positive integers a, b, c, n and 
a nonnegative integer d,

c(2a3b5c7d11n) ≡ 0 (mod 23a+832b+35c+17d11).

Similar results to above congruences have recently been proven in higher level cases. 
Let M �

k(p) be the subspace of M !
k(p) with poles allowed only at the cusp at ∞ (see

[AJ13,JT15]). Andersen and Jenkins [AJ13] extended Lehner’s theorem for all elements 
of a canonical basis for M �

0(p) for p ∈ {2, 3, 5, 7}.

Theorem. [AJ13, Theorem 2] Let p ∈ {2, 3, 5, 7}, and let

f
(p),�
0,m (z) = q−m +

∞∑
n=0

a
(p),�
0 (m,n)qn

be an element of the canonical basis of M �
0(p), with m = pαm′, n = pβn′, (m′, p) = 1, 

and (n′, p) = 1. Then for β > α,

a
(2),�
0 (2αm′, 2βn′) ≡ 0 (mod 23(β−α)+8),

a
(3),�
0 (3αm′, 3βn′) ≡ 0 (mod 32(β−α)+3),

a
(5),�
0 (5αm′, 5βn′) ≡ 0 (mod 5(β−α)+1),

a
(7),�
0 (7αm′, 7βn′) ≡ 0 (mod 7(β−α)).

For the other coefficients of f (p),�
0,m , Jenkins and D.J. Thornton [JT15] showed that 

similar congruences hold.

Theorem. [JT15, Theorem 1] Let p ∈ {2, 3, 5, 7, 13} and let f (p),�
0,m = q−m +

∑
n≥1 a

(p),�
0 ×

(m, n)qn be a weakly holomorphic modular form in M �
0(p). Let m = pαm′ and n = pβn′
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with m′, n′ not divisible by p. Then for α > β, we have

a
(2),�
0 (2αm′, 2βn′) ≡ 0 (mod 24(α−β)+8),

a
(3),�
0 (3αm′, 3βn′) ≡ 0 (mod 33(α−β)+3),

a
(5),�
0 (5αm′, 5βn′) ≡ 0 (mod 52(α−β)+1),

a
(7),�
0 (7αm′, 7βn′) ≡ 0 (mod 72(α−β)),

a
(13),�
0 (13αm′, 13βn′) ≡ 0 (mod 13(α−β)).

Note that a basis for the space M !
k(p) is the union of the basis for M !−

k (p) which is built 
in this paper and the basis for M !+

k (p) found in [CK13]. Hence using these canonical bases 
for M !+

k (p) and M !−
k (p), we can extend the results of Andersen, Jenkins and Thornton 

[AJ13,JT15] to forms on M !
0(p). (See Theorem 5.1, Theorem 5.3, and Remark 5.4.)

Additionally, let Γ∗
0(N) be the group generated by Γ0(N) and all Atkin–Lehner invo-

lutions We =
(

a
√
e b/

√
e

cN/
√
e d

√
e

)
of N where a, b, c, d ∈ Z, e||N , and detWe = 1. We extend 

[CK13] to weakly holomorphic modular forms for Γ∗
0(N) in the case of square-free integer 

level N for which the genus of Γ∗
0(N) is zero. Indeed the following results of [CK13] will 

be extended in Section 6: the construction of a canonical basis, duality, and integrality 
of Fourier coefficients of basis elements.

This paper is organized as follows. A canonical basis for the space M !−
k (p) is con-

structed in Section 2 (see Theorem 2.5) and integrality is proved by giving the explicit 
recipe of construction for the basis elements in Section 3. We derive the duality relation 
in Section 4 and the divisibility properties in Section 5. Finally we generalize the results 
of [CK13] to the cases of square-free integer levels in Section 6.

2. Basis for the space M !−
k (p)

In this section we construct a basis for the space M !−
k (p).

Lemma 2.1.

(1) Let k > 2 be an even integer. Then we have

dimS−
k (2) =

{⌊
k
4
⌋
−

⌊
k
8
⌋
, k ≡ 2 (mod 8),⌊

k
4
⌋
−

⌊
k
8
⌋
− 1, k �≡ 2 (mod 8),

dimS−
k (3) =

{⌊
k
3
⌋
−

⌊
k
6
⌋
, k ≡ 2, 6 (mod 12),⌊

k
3
⌋
−

⌊
k
6
⌋
− 1, k �≡ 2, 6 (mod 12),

and for p > 3
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dimS−
k (p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(k − 1)
(
p−13
12

)
−

(
p−7
6

) ⌊
k
4
⌋

+
⌊
k
3
⌋

+ k
2 − 1, p ≡ 1 (mod 12),

(k − 1)
(
p−5
12

)
−
(
p+1
6

) ⌊
k
4
⌋

+ k
2 − 1, p ≡ 5 (mod 12),

(k − 1)
(
p−7
12

)
−
(
p+5
6

) ⌊
k
4
⌋

+
⌊
k
3
⌋

+ k
2 − 1, p ≡ 7 (mod 12),

(k − 1)
(
p+1
12

)
−

(
p+13

6
) ⌊

k
4
⌋

+ k
2 − 1, p ≡ 11 (mod 12).

(2) When k = 2,

dimS−
2 (p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p−13
12 , p ≡ 1 (mod 12),

p−5
12 , p ≡ 5 (mod 12),
p−7
12 , p ≡ 7 (mod 12),
p+1
12 , p ≡ 11 (mod 12).

Proof.

(1) By Proposition 1.1, dimS−
k (p) can be found directly from dimSk(p) and dimS+

k (p). 
The dimension formula for S+

k (p) is presented in [CK13, Lemma 2.2]. Let νm =
νm(Γ0(p)) be the number of Γ0(p)-inequivalent elliptic points of order m, and let 
g = g(Γ0(p)) be the genus of Γ0(p). The dimension formula [DS05, Theorem 3.5.1]
gives

dimSk(p) = (k − 1)(g − 1) +
⌊
k

4

⌋
ν2 +

⌊
k

3

⌋
ν3 + (k − 2).

In the cases p ∈ {2, 3} it is not difficult to verify the assertion. For the case p > 3, 
using the formula [CK13, Lemma 2.1] for the genus g for each p, and data for the 
dimension formulas [DS05, Figure 3.3], we have the dimension of Sk(p) as follows:

dimSk(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(k − 1)
(
p−13
12

)
+ 2

⌊
k
4
⌋

+ 2
⌊
k
3
⌋
− 1, p ≡ 1 (mod 12),

(k − 1)
(
p−5
12

)
+ 2

⌊
k
4
⌋
− 1, p ≡ 5 (mod 12),

(k − 1)
(
p−7
12

)
+ 2

⌊
k
3
⌋
− 1, p ≡ 7 (mod 12),

(k − 1)
(
p+1
12

)
− 1, p ≡ 11 (mod 12).

Now we get the assertion.
(2) By [DS05, Theorem 3.5.1], dimS2(Γ) is equal to the genus of Γ. Thus we easily get 

the assertion using [CK13, Lemma 2.1]. �
Proposition 2.2 (Miller basis). Let k be a positive even integer. Suppose d =
dimS−

k (p) ≥ 1. Then there are f1, . . . , fd ∈ S−
k (p) such that {f1, . . . , fd} is a basis 

for S−
k (p) with fi = qi + Q(qd+1) for i = 1, . . . , d.

Proof. Let t := max{ord∞f | 0 �= f ∈ S−
k (p)} and denote by ft the unique cusp form 

having Fourier expansion of the form qt + O(qt+1). Multiplying ft by the Hauptmodul 
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j+
p for Γ+

0 (p), we obtain the set B = {ft, ftj+
p , . . . , ft(j+

p )t−1}. It is clear that the set B is 
a basis for S−

k (p), and we are forced to have t = d. By an appropriate linear combination 
of elements in B, we have a basis consisting of elements fi with the Fourier expansion of 
the form fi = qi + O(qd+1) for each i = 1, . . . , d. �
Remark 2.3. Suppose that d = dimS−

k (p) ≥ 1. By Lemma 2.2 there exists a unique cusp 
form fd with a q-expansion of the form

fd = qd + O(qd+1).

We denote Δ−
p,k(z) by the unique cusp form fd of S−

k (p). Let

Ek(z) = 1 − 2kB−1
k

∑
n≥1

σk−1(n)qn, E−
p,k(z) = 1

1 − pk/2
(Ek(z) − pk/2Ek(pz))

where Bk is the k-th Bernoulli number and σk−1 stands for the usual divisor sum. When 
d = 0, we set Δ−

p,k(z) = E−
p,k(z) = 1 + O(q).

For further discussion, we need to review the previous results [CK13] related to a 
canonical basis for the space M !+

k (p):

Lemma 2.4. [CK13]

(1) The space S+
k (p) has a Miller basis which contains Δ+

p,k, where Δ+
p,k is the cusp 

form of maximal vanishing order at infinity in the space S+
k (p) − {0}. Note that 

max{ord∞f | f �= 0 ∈ S+
k (p)} = dimS+

k (p).
(2) Put

δ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8, if p = 2,
12, if p = 3,
12, if p ≡ 1, 7 (mod 12),
4, if p ≡ 5, 11 (mod 12).

Then δ is the smallest positive weight k such that there exists a cusp form f ∈ S+
k (p)

with

dimS+
k (p) = ord∞f = p + 1

24 k.

Furthermore if we let Δ+
p (z) = (η(z)η(pz))δ, then Δ+

p is the unique normalized cusp 
form in S+

δ (p) such that ord∞Δ+
p = p+1δ.
24
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(3) Let m+
p,k = max{ord∞f | 0 �= f ∈ M !+

k (p)}. For integer m such that −m ≤ m+
p,k, 

there is a unique weakly holomorphic modular form f+
k,m with q-expansion of the 

form

f+
k,m = 1

qm
+ O(qm

+
p,k+1),

and the set of these f+
k,m forms a basis for the space M !+

k (p). In particular, if k = 0, 
then m+

p,k = 0 and f+
0,m can be expressed as

f+
0,m = 1

qm
+ O(q) = Fm(j+

p ),

where Fm(x) is a monic polynomial of degree m in x.

Unless otherwise noted, δ, m+
p,k, Δ+

p , and Δ+
p,k are the same as given in Lemma 2.4. 

Now we are ready to find a canonical basis for the minus space M !−
k (p) of weakly holo-

morphic modular forms.

Theorem 2.5. Let k ∈ 2Z. We write k = δlk + rk where rk ∈ {2, 4, 6, . . . , δ}. Then

(1) For any non-zero f ∈ M !−
k (p),

ord∞f ≤ p + 1
24 δlk + dimS−

rk
(p).

(2) We put m−
k = m−

p,k = p+1
24 δlk + dimS−

rk
(p). For each m ∈ Z, such that −m ≤

m−
k , there exists a unique weakly holomorphic modular form f−

k,m ∈ M !−
k (p) with a 

q-expansion of the form

f−
k,m = q−m + O(qm

−
k +1).

Proof.

(1) Suppose that ord∞f > p+1
24 δlk + dimS−

rk
(p). We set g = f/(Δ+

p )lk . Observing

ord∞g = ord∞f − (ord∞Δ+
p )lk

= ord∞f − p + 1
24 δlk > dimS−

rk
(p) ≥ 0,

we see that g ∈ S−
r (p). This contradicts Proposition 2.2.

k
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(2) We observe that

(Δ+
p )lkΔ−

p,rk
(j+

p )m+m−
k = q−m + · · · ,

(Δ+
p )lkΔ−

p,rk
(j+

p )m+m−
k −1 = q−m+1 + · · · ,

...

(Δ+
p )lkΔ−

p,rk
= qm

−
k + · · · .

Now f−
k,m is constructed by taking a suitable linear combination of the above 

forms. �
Corollary 2.6. Let k ∈ 2N. Then we have

dimS−
k (p) = p + 1

24 δlk + dimS−
rk

(p).

3. Explicit construction of f−
k,m and their integrality

In this section, we investigate the recipe of the explicit construction of the basis 
element f−

k,m, and through it we prove that every fk,m has integral Fourier coefficients. 
Note that the set of these f−

k,m given in Theorem 2.5 forms a basis for the space M !−
k (p). 

We observe that f−
k,−m−

k

= (Δ+
p )lkΔ−

p,rk
. Now for each positive integer n, we obtain 

f−
k,n−m−

k

by multiplying f−
k,n−1−m−

k

by j+
p and then subtracting off multiples of f−

k,d−m−
k

to successively kill the coefficients of q−d+m−
k for 0 ≤ d ≤ n −1. This construction shows 

that

f−
k,m = (Δ+

p )lkΔ−
p,rk

Fk,m+m−
k
(j+

p ),

where Fk,D(x) is a monic polynomial of degree D in x.
It is well known [CY96, p. 265] that the Hauptmodul j+

p has integral Fourier coeffi-
cients. Being an eta-product, Δ+

p (z) also has integral Fourier coefficients. Thus for the 
explicit construction and the integrality question of the basis element fk,m, we have 
only to consider Δ−

p,rk
(z). Moreover it then follows from the integrality of the Fourier 

coefficients of such forms that the polynomial Fk,D(x) has integral coefficients.
Recall from Remark 2.3 that Δ−

p,rk
is the unique cusp form in S−

rk
(p) whose vanishing 

order at infinity is the same as the dimension of the space S−
rk

(p). We present dimensions 
of S−

rk
(p) obtained from Lemma 2.1 for each p, δ, and rk in Table 1. Note that 2 ≤ rk ≤ δ, 

and hence we don’t need to consider the case of rk > δ. Accordingly, in the Table 1 below, 
when rk > δ, we leave the corresponding place blank.

Now we divide (p, rk) into five cases:
Case (1) dimS−

rk
(p) = 0: In this case, according to Table 1, we only consider (p, rk)

in a set
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Table 1
Dimensions of S−

rk
(p) for each case.

p δ dimS−
rk

(p)
rk = 2 rk = 4 rk = 6 rk = 8 rk = 10 rk = 12

2 8 0 0 0 0
3 12 0 0 1 0 1 1
5 4 0 0
7 12 0 0 2 1 3 3
11 4 1 0
13 12 0 1 3 3 5 6
17 4 1 1
19 12 1 1 5 4 8 8
23 4 2 1
29 4 2 2
31 12 2 2 8 7 13 13
41 4 3 3
47 4 4 3
59 4 5 4
71 4 6 5

S={(2, 2), (2, 4), (2, 6), (2, 8), (3, 2), (3, 4), (3, 8), (5, 2), (5, 4), (7, 2), (7, 4), (11, 4), (13, 2)}.

Note that we already set

Δ−
p,rk

= E−
p,rk

(z) = 1
1 − prk/2

(Erk(z) − prk/2Erk(pz))

in Remark 2.3 when dimS−
rk

(p) = 0. Recall that the Fourier expansion of Ek is given 
by Ek(z) = 1 − 2kB−1

k

∑
n≥1 σk−1(n)qn. Since B−1

2 = 6, B−1
4 = −30, B−1

6 = 42, and 
B−1

8 = −30, we have

1 − prk/2 | 2rkB−1
rk

,

for all (p, rk) ∈ S. Thus E−
p,rk

(z) ∈ Z[[q]].
Case (2) dimS−

rk
(p) > 0 and p = 3 or p ≡ 7 (mod 12): For p ∈ {3, 7, 19, 31}, we 

consider the function f = η(z)6η(pz)6. Then by [Ono04, Theorem 1.64], f ∈ M6(Γ0(p)). 
Moreover since the Dedekind eta function satisfies ([Ono04, Theorem 1.61])

η

(
−1
z

)
= (−iz)1/2η(z),

we have

η(z)6η(pz)6 |6 Wp = (√pz)−6η

(
− 1
pz

)6

η

(
−1
z

)6

= −η(z)6η(pz)6.

This means f ∈ S−
6 (p) with ord∞f = p+1

4 = dimS−
6 (p). Therefore f = η(z)6η(pz)6 is 

the cusp form Δ−
p,6 we desired, and has integral Fourier coefficients. For the cases of the 

other weights, it follows from Table 1 and definition of Δ+
p,k in [CK13] that
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dimS−
6 (p) − 1 = dimS−

8 (p), (1)

and

Δ+
p,14 = Δ−

p,2 × Δ−
p,12 = Δ−

p,4 × Δ−
p,10 = Δ−

p,6 × Δ−
p,8. (2)

The observation (1) yields that Δ−
p,8 = Δ−

p,6 × (−D(j+
p )), where D is the differential op-

erator defined by D = q d
dq , and it implies that Δ−

p,8 also has integral Fourier coefficients.
And the observation (2) implies that it suffices to consider Δp,rk for the case rk ∈ {2, 4}

or rk ∈ {10, 12}. Since the case when (p, rk) ∈ {(3, 2), (3, 4), (7, 2), (7, 4)} is included in 
the Case (1) above, now the only remaining case is when p is 19 or 31. We also observe 
that

Δ−
p,10 = Δ+

p,4 × Δ−
p,6, Δ−

p,12 = Δ+
p,6 × Δ−

p,6,

for p ∈ {19, 31}. Using these identities, now we obtain the Δ−
p,rk

for all cases, and clearly 
Δ−

p,10 and Δ−
p,12 have integral coefficients. Accordingly, Δ−

p,2 and Δ−
p,4 also have integral 

Fourier coefficients.
Case (3) dimS−

rk
(p) > 0 and p ≡ 1 (mod 12): In this case, the only p is 13. First we 

consider the eta-quotient η(z)2η(13z)−2. Then by [Ono04, Theorem 1.64] η(z)2η(13z)−2

is Γ0(13)-invariant, and satisfies

η(z)2

η(13z)2

∣∣∣∣
0
W13 = 13η(13z)2

η(z)2 .

Let η13(z) be the form

η13(z) := η(z)2

η(13z)2 − 13η(13z)2

η(z)2 .

Then η13(z) is not only a modular function on Γ0(13) but also an eigenform of the Fricke 
involution W13 with eigenvalue −1. Moreover its order of vanishing at ∞ is −1. Thus 
the function

Δ+
13(z)η13(z) = η(z)14η(13z)10 − 13η(z)10η(13z)14

lies in the space S−
12(13), and has vanishing order ord∞f13 = 6. By the uniqueness of the 

cusp form with maximal order, we conclude that

Δ−
13,12 = Δ+

13η13,

and clearly Δ−
13,12 has integral Fourier coefficients. In a similar way, it is not difficult to 

find

Δ−
13,8 = Δ+

13,8η13.
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From Table 1 and definition of Δ+
p,k in [CK13], we observe that

Δ−
13,10 = Δ−

13,6 × Δ+
13,4, Δ−

13,8 = Δ−
13,4 × Δ+

13,4

and

Δ+
13,14 = Δ−

13,2 × Δ−
13,12 = Δ−

13,4 × Δ−
13,10 = Δ−

13,6 × Δ−
13,8.

Since we have Δ−
13,12 and Δ−

13,8, we can get Δ−
13,k for each k, using these identities. Note 

that every Δ13,rk obtained above also has integer coefficients.
Case (4) dimS−

rk
(p) > 0 and p ≡ 11 (mod 12): This case occurs when p belongs to 

{11, 23, 47, 59, 71}. From Table 1, we observe that

Δ−
p,4 = Δ−

p,2 × (−D(j+
p )).

That means we need only to construct Δ−
p,2 for this case. It is not difficult to find

Δ−
p,2 = η(z)2η(pz)2,

and Δ−
p,2 and Δ−

p,4 have integral Fourier coefficients.
Case (5) dimS−

rk
(p) > 0 and p ≡ 5 (mod 12): In this case, the only p are those in the 

set {5, 17, 29, 41}. For p = 5, we have dimS−
2 (5) = dimS−

4 (5) = 0, and hence this case 
is included in Case (1) described above. In addition, from Table 1, we have that

Δ−
p,4 × Δ−

p,2 = Δ+
p,6.

Hence we only need to consider either Δ−
p,2 or Δ−

p,4, for each p. Thus we concentrate the 
cases when (p, rk) belongs to the set {(17, 2), (29, 2), (41, 2)}.

Note that M−
2 (p) = C(E−

p,2(z)) ⊕S−,new
2 (p), where S−,new

2 (p) is the subspace of S−
2 (p)

consisting of newforms. (See [Kri95, Theorem 1].) It means S−
2 (p) = S−,new

2 (p). It follows 
from the well-known theory [Zag89, p. 263] that S−

2 (p) = S−,new
2 (p) splits as sum of sub-

spaces of some dimensions d1, . . . , dr ≥ 1, each of which is spanned by some normalized 
Hecke eigenform with integral Fourier coefficients in a totally real number field Ki of de-
gree di over Q, and the algebraic conjugates of this form. It means that we can obtain the 
forms by considering the various real embeddings of Ki. More precisely, let f =

∑
anq

n

be a normalized Hecke eigenform in S−,new
2 (p), and let Kf be a number field which 

is extended by coefficients of f . Let [Kf : Q] = d. Then S−,new
2 (p) has a d-dimensional 

splitting factor Sf which is spanned by fσ1 , fσ2 , . . . , fσd , where σ1, σ2, . . . , σd are embed-
dings of Kf . Indeed, let α1, α2, . . . , αd form an integral basis of Kf . Then the coefficients 
an =

∑d
j=1 an,jαj where an,j ∈ Z, and hence

f =
∑

anq
n =

d∑
fjαj ,
j=1
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where fj is a q-expansion with rational integer coefficients an,j. For some conjugate of f , 
if we write

fσi = ασi
1 fσi

1 + · · · + ασi

d fσi

d = ασi
1 f1 + · · · + ασi

d fd,

we have a system of linear equations of the matrix form

⎛
⎝fσ1

...
fσd

⎞
⎠ =

⎛
⎝ασ1

1 ασ1
2 · · · ασ1

d
...

...
. . .

...
ασ2

1 ασd
2 · · · ασd

d

⎞
⎠

⎛
⎝f1

...
fd

⎞
⎠ .

Furthermore we also have fσi = (−f |2 Wp)σi , since f ∈ S−,new
2 (p). Accordingly for any 

conjugate fσi , we obtain

fσi = (−f |2 Wp)σi

=

⎛
⎝−

d∑
j=1

(fj | Wp)αj

⎞
⎠

σi

= −
d∑

j=1
(fj | Wp)σiασi

j = −
d∑

j=1
(fj | Wp)ασi

j ,

which can be expressed as another system of linear equations of the matrix form

⎛
⎝fσ1

...
fσd

⎞
⎠ =

⎛
⎝ασ1

1 ασ1
2 · · · ασ1

d
...

...
. . .

...
ασ2

1 ασd
2 · · · ασd

d

⎞
⎠

⎛
⎝−f1 | Wp

...
−fd | Wp

⎞
⎠ .

Since det(ασi
j )2 �= 0, which is the discriminant of the number field Kf , the linear 

system above is invertible. This means that each fi belongs to S−
2 (p), and f1, f2, . . . , fd

span the splitting factor Sf . Taking union of such fj’s in each subspace Sf , we can get 
a basis for S−

2 (p) consisting of the form with rational integer coefficients. Denote these 
basis elements by g1, g2, . . . , gt where dimS−

2 (p) = t. Then we can obtain a Miller basis 
which contains Δ−

p,2 by proper Q-linear combination of the cusp forms

Δ−
p,2 = n1

d1
g1 + · · · + nt

dt
gt,

where ni, di ∈ Z for each i. Letting D = lcm(d1, d2, . . . , dt), we see that DΔ−
p,2 has 

integral Fourier coefficients. However, we cannot be sure that Δ−
p,2 also has integral

Fourier coefficients. To investigate the integrality of Δ−
p,2, the following lemma is required.

Lemma 3.1 (Sturm’s bound for the minus space). Let K be a fixed number field, OK be 
the ring of integers in K, and l be a prime ideal of OK . For f =

∑∞
n=1 anq

n ∈ M−
k (p)
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with an ∈ OK , define ordlf := inf{n ∈ Z≥0 | an ≡ 0 (mod l)}, with the convention 
ordlf = ∞ if l | an for all n. If

ordlf >
p + 1
24 k,

then ordlf = ∞.

Proof. Let f ∈ M−
k (p), with ordlf > p+1

24 k. Then we have ordlf
δ > p+1

24 kδ. We know 
that Δ+

p has a Fourier expansion

Δ+
p (z) = q

p+1
24 δ + O(q

p+1
24 δ+1),

and hence we have

f(z)δ
(
Δ+

p (z)
)−k =

∞∑
n=− p+1

24 kδ

c(n)qn,

where the coefficients c(n) are in OK . On the other hand, since δ is even, fδ
(
Δ+

p

)−k is a 
weakly holomorphic modular form of weight 0 on Γ+

0 (p). As we have seen in Lemma 2.4, 
the space M !+

0 (p) has a canonical basis consisting of

f0,m = 1
qm

+ O(q).

Therefore fδ
(
Δ+

p

)−k can be expressed as

fδ(Δ+
p )−k =

(p+1)kδ/24∑
m=0

c(−m)f0,m.

Furthermore since f0,m is a monic polynomial in j+
p , we have

fδ(Δ+
p )−k =

(p+1)kδ/24∑
m=0

c(−m)f0,m ∈ OK [j+
p ].

Since ordlf
δ > p+1

24 δk, we have c(t) ≡ 0 (mod l) for −p+1
24 δk ≤ t ≤ 0. That is, 

fδ(Δ+
p )−k ∈ lOK [j+

p ], and hence fδ ∈ l · OK [j+
p ](Δ+

p )k which implies ordlf
δ = ∞. 

Consequently we see that ordlf = ∞. �
It follows from Lemma 2.1 that dimS−

2 (p) = p−5
12 . Thus by definition of Δ−

p,2, DΔ−
p,2

has q-expansion of the form

Dq
p−5
12 + O(q

p+7
12 ).
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Let l be any prime such that l | D. Then we have

ordl(DΔ−
p,2) ≥

p + 7
12 >

p + 1
12 .

It follows from Lemma 3.1 that ordl(DΔ−
p,2) = ∞, that is DΔ−

p,2 ≡ 0 (mod l). Hence 
D
l Δ−

p,2 also has rational integer coefficients. Repeating this argument, we see that Δ−
p,2

has integral Fourier coefficients.

Example 3.1. Using the data for list of newforms [The13a], we can compute the Fourier 
expansion of Δ−

p,rk
explicitly. For instance, when p = 29, the space S−

2 (29) is two-
dimensional. From [The13a], we find a Hecke eigenform f in S2(29) whose Fourier 
expansion of the form

f = q + αq2 − αq3 + (−2α− 1)q4 − q5 + (2α− 1)q6 + · · ·

where α is a root of the polynomial x2 + 2x − 1. Let α = −1 +
√

2. Clearly its coefficient 
field is Q(

√
2) which is a number field of degree 2 over Q. That is, the space S2(29) =

S−
2 (29) = S−,new

2 (29) is spanned by f and its conjugate fσ. Letting α1 = 1, α2 =
√

2
form an integral basis for Q(

√
2), we have the following linear equation given in a matrix 

form
(

f
fσ

)
=

(
1

√
2

1 −
√

2

)(
f1
f2

)
,

where f1, f2 are q-series with integral Fourier coefficients of the form

f1 = q − q2 + q3 + q4 − q5 − 3q6 + · · · ,

f2 = q2 − q3 − 2q4 + 2q6 + · · · .

Since det
(

1
√

2
1 −

√
2

)
�= 0, we know that f1, f2 also span the space S−

2 (29), and Δ−
29,2 is 

none other than f2 by uniqueness of cusp form with a maximal order.

4. Duality

In this section we show that the basis elements f−
k,n have a generating function and 

as its application we obtain the beautiful duality of Fourier coefficients. Let f−
k,m be the 

weakly holomorphic modular form defined in Theorem 2.5, and let Fk(z) be the function 
f−
k,−m−

k

(z), that is,

F−
k (z) := f−

k,−m−
k

(z) = (Δ+
p (z))lkΔ−

p,rk
(z) = qm

−
k +

∞∑
−

aF−
k

(l)ql.

l=mk +1
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We write

1
F−
k (z)

=
∞∑

l=−m−
k

a1/F−
k

(l)ql.

Lemma 4.1. For each even integer k, we have that

f−
k,n = F−

k

∑
r+s=n

a1/F−
k

(r)f+
0,s.

Proof. We have

F−
k (z)

∑
r+s=n

a1/F−
k

(r)f+
0,s(z)

=

⎛
⎝ ∞∑

l=m−
k

aF−
k

(l)ql
⎞
⎠(

a1/F−
k

(−m−
k )f+

0,m−
k +n

(z) + a1/F−
k

(−m−
k + 1)f+

0,m−
k +n−1(z) + · · ·

+ a1/F−
k

(n− 1)f+
0,1(z) + a1/F−

k
(n)f+

0,0(z)
)

=
2m−

k +n∑
l=m−

k

aF−
k

(l)a1/F−
k

(−m−
k )ql−m−

k −n

+
2m−

k +n−1∑
l=m−

k

aF−
k

(l)a1/F−
k

(−m−
k + 1)ql−m−

k −n+1 + · · ·

+
m−

k +1∑
l=m−

k

aF−
k

(l)a1/F−
k

(n− 1)ql−1 + aF−
k

(m−
k )a1/F−

k
(n)qm

−
k + O(qm

−
k +1)

=
m−

k +n∑
r=0

∑
s+t=r

aF−
k

(m−
k + s)a1/F−

k
(−m−

k + t)q−n+r + O(qm
−
k +1).

On the other hand, since F−
k (z)(1/F−

k (z)) = 1, we have

∑
s+t=r

aF−
k

(m−
k + s)a1/F−

k
(−m−

k + t) = 0,

for each positive r, and for r = 0,

∑
aF−

k
(m−

k + s)a1/F−
k

(−m−
k + t) = aF−

k
(m−

k )a1/F−
k

(−m−
k ) = 1.
s+t=0
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It means that

F−
k

∑
r+s=n

a1/F−
k

(r)f−
0,s = q−n + O(qm

−
k +1).

By the uniqueness of f−
k,n, we obtain the assertion. �

Let f+
k,m be the unique weakly holomorphic modular form defined in Lemma 2.4. Then 

for τ ∈ H, the function

Ψp(z, τ) = 1 +
∞∑

n=1
eτf0.n(τ)qn

is a meromorphic modular form of weight 2 for Γ+
0 (p), where 1/eτ is the cardinality of 

Γ+
0 (p)τ/{±1}. See [CK13, Theorem 3.1], and [Cho06, Theorem 3.2]. Then we have the 

following theorem:

Theorem 4.2.

f+
2,1(z)F

−
k (τ)

(f+
0,1(z) − f+

0,1(τ))F−
k (z)

=
∞∑

n=m−
k

f−
k,n(τ)qn.

Proof. By definition of Ψp, we have

F−
k (τ)

F−
k (z)

Ψp(z, τ) =
F−
k (τ)

F−
k (z)

(
1 − eτ +

∞∑
n=0

eτf0,n(τ)qn
)

=
F−
k (τ)

F−
k (z)

(1 − eτ ) + F−
k (τ)

⎛
⎝ ∞∑

r=−m−
k

a1/F−
k

(r)qr
⎞
⎠( ∞∑

s=0
eτf0,s(τ)qs

)

=
F−
k (τ)

F−
k (z)

(1 − eτ ) + eτ

∞∑
n=−m−

k

(
F−
k (τ)

∑
r+s=n

a1/F−
k

(r)f0,s(τ)
)
qn.

And by Lemma 4.1, it is equal to

F−
k (τ)

F−
k (z)

(1 − eτ ) + eτ

∞∑
n=−m−

k

f−
k,nq

n.

On the other hand, using the fact [CK13, Theorem 3.2]

Ψp(z, τ) =
eτf

+
2,1(z)

f+ (z) − f+ (τ)
− eτ + 1,
0,1 0,1
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we have that

F−
k (τ)

F−
k (z)

Ψp(z, τ) =
F−
k (τ)

F−
k (z)

(1 − eτ ) +
eτf

+
2,1(z)F

−
k (τ)

(f+
0,1(z) − f+

0,1(τ))F−
k (z)

.

Now the assertion is immediate. �
Consider the function F−

2−k(z) which is equal to (Δ+
p )l2−kΔ−

p,r2−k
. Since we have 2 −k =

2 −δlk−rk = δ(−lk−1) +(δ−rk+2), we have l2−k = −lk−1 and r2−k = δ−rk+2. Moreover 
by uniqueness of cusp form with maximal order, we obtain that Δ−

p,rk
Δ−

p,r2−k
= Δ+

p,δ+2. 
From these facts, we have

F−
2−k = (Δ+

p )l2−kΔ−
p,r2−k

= (Δ+
p )−lk−1 Δ+

p,δ+2

Δ−
p,rk

=
Δ+

p,δ+2

(Δ+
p )lk · Δ+

p · Δ−
p,rk

= 1
F−
k

·
Δ+

p,δ+2

Δ+
p

.

Noting that f+
2,1 = Δ+

p,δ+2/Δ+
p , we have the following relation

F−
2−k =

f+
2,1

F−
k

.

From this relation, we get the following theorem:

Theorem 4.3. For each even integer k, we have that

∞∑
n=−m−

k

f−
k,n(τ)qn =

∞∑
m=−m−

2−k

−f−
2−k,m(z)e2πimτ .

Proof. As we already have shown,

F−
2−k =

f+
2,1

F−
k

.

It follows from Theorem 4.2 that

∞∑
n=−m−

k

f−
k,n(τ)qn =

f+
2,1(z)F

−
k (τ)

(f−
0,1(z) − f−

0,1(τ))F−
k (z)

=
f+
2,1(τ)F−

2−k(z)
(f−

0,1(z) − f−
0,1(τ))F−

2−k(τ)

= −
∞∑

m=−m−

f−
2−k,m(z)e2πimτ . �
2−k



JID:YJNTH AID:6121 /FLA [m1L; v1.246; Prn:19/10/2018; 10:51] P.18 (1-34)
18 S.Y. Choi et al. / Journal of Number Theory ••• (••••) •••–•••
Let a−k (n, m) be the m-th coefficient of f−
k,n, i.e.,

f−
k,n(z) = q−n +

∑
m>m−

k

a−k (n,m)qm.

Then as a corollary the following duality of Fourier coefficients holds.

Corollary 4.4. For any even integer k and any integers m, n the equality

a−k (n,m) = −a−2−k(m,n)

holds for the Fourier coefficients of the weakly holomorphic modular forms f−
k,n and 

f−
2−k,m.

Example 4.1. Recall that m−
5,0 = 5+1

24 · 4 · (−1) +dimS−
4 (5) = −1 and m−

5,2 = 5+1
24 · 4 · 0 +

dimS−
2 (5) = 0. Hence for each integer m ≥ 1, we get the form (Δ+

5 )−1Δ−
5,4(j

+
5 )m−1 =

q−m + · · · ∈ M !−
0 (5), and for each m ≥ 0, we get the form Δ−

5,2(j
+
5 )m = q−m + · · · ∈

M !−
2 (5). Thus, as we have seen in Theorem 2.5, by taking a suitable linear combination 

of the forms (Δ+
5 )−1Δ−

5,4(j
+
5 )t−1 with 1 ≤ t ≤ m, the canonical basis f−

0,m = q−m +O(1)
are constructed. Similarly by taking a suitable linear combination of the forms Δ−

5,2(j
+
5 )t

with 0 ≤ t ≤ m, f−
2,m = q−m + O(q) are constructed.

The first four basis elements for M !−
0 (5) and the first five basis elements for M !−

2 (5)
are given below.

f−
0,1 = 1

q
− 6 − 116q − 740q2 − 3405q3 − 12244q4 + · · · ,

f−
0,2 = 1

q2 − 18 − 1480q − 24604q2 − 227808q3 − 1553740q4 + · · · ,

f−
0,3 = 1

q3 − 24 − 10215q − 341712q2 − 5601356q3 − 61459920q4 + · · · ,

f−
0,4 = 1

q4 − 42 − 48976q − 3107480q2 − 81946560q3 − 1345808364q4 + · · · ,

f−
2,0 = 1 + 6q + 18q2 + 24q3 + 42q4 + · · · ,

f−
2,1 = 1

q
+ 116q + 1480q2 + 10215q3 + 48976q4 + · · · ,

f−
2,2 = 1

q2 + 740q + 24604q2 + 341712q3 + 3107480q4 + · · · ,

f−
2,3 = 1

q3 + 3405q + 227808q2 + 5601356q3 + 81946560q4 + · · · ,

f−
2,4 = 1

q4 + 12244q + 1553740q2 + 61459920q3 + 1345808364q4 + · · · .
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By comparing rows of coefficients in weight 0 to columns of coefficients in weight 2, 
the duality relation a−0 (n, m) = −a−2 (m, n) is clear.

5. Divisibility properties

In this section we show that the basis elements for M !
k(p) have divisibility properties 

when p ∈ {2, 3, 5, 7, 11}. To emphasize the level of the space and to describe both the 
case of the spaces M !+

k (p) and the space M !−
k (p), we need to rearrange the notation. 

Note that the space M !+
k (p) and M !−

k (p) can be expressed using character. Let χ be a 
character on Γ+

0 (p) satisfying

χ |Γ0(p)≡ 1, χ(Wp) = ε ∈ {−1, 1}.

Then M !
k(Γ

+
0 (p), χ) stands for the space

M !
k(Γ+

0 (p), χ) =
{
M !+

k (p) if ε = 1,
M !−

k (p) if ε = −1.

Throughout this section, we denote by f (p),+
k,m a basis element of M !+

k (p) defined in 

Lemma 2.4, and denote by f
(p),−
k,m a basis element of M !−

k (p). Let a(p),+
k (m, n) and 

a
(p),−
k (m, n) be the n-th Fourier coefficient of f (p),+

k,m and f (p),−
k,m respectively, which means

f
(p),+
k,m (z) = q−m +

∑
n>m+

p,k

a
(p),+
k (m,n)qn,

f
(p),−
k,m (z) = q−m +

∑
n>m−

p,k

a
(p),−
k (m,n)qn.

Let us use the character notation to express the cases of M !+
k (p) and M !−

k (p) at once. 
In other words if ε = 1, f (p),ε

k,m is an element of the basis f (p),+
k,m , otherwise f (p),ε

k,m stands 
for f (p),−

k,m . Similarly a(p),ε
k (m, n) means the n-th coefficient of f (p),ε

k,m , and mε
p,k denotes 

the maximal vanishing order at ∞ for a nonzero f ∈ M !,ε
k (p). Here we note that the 

coefficients a(p),ε
k (m, n) are integral.

For p ∈ {2, 3, 5, 7, 11}, these basis elements have divisibility properties which bear a 
remarkable resemblance to the divisibility properties of j(z) as follows.

Theorem 5.1. Let a(p),ε
0 (m, n) be the n-th coefficient of f (p),ε

0,m with m = pαm′, n = pβn′, 
(m′, p) = (n′, p) = 1. Then for all nonnegative integers α and β with β > α we have that

a
(2),ε
0 (2αm′, 2βn′) ≡ 0 (mod 23(β−α)+8),

a
(3),ε
0 (3αm′, 3βn′) ≡ 0 (mod 32(β−α)+3),
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a
(5),ε
0 (5αm′, 5βn′) ≡ 0 (mod 5(β−α)+1),

a
(7),ε
0 (7αm′, 7βn′) ≡ 0 (mod 7(β−α)),

and for all positive integer β with α = 0 or for all positive integers α, β with β > 1 we 
have that

a
(11),ε
0 (11αm′, 11βn′) ≡ 0 (mod 11).

Example 5.1. Let p = 5. Then the Hauptmodul t = f
(5),+
0,1 for Γ+

0 (5) is given by

(
η(z)
η(5z)

)6

+ 6 + 53
(
η(5z)
η(z)

)6

= q−1 +
∑
n>0

a
(5),+
0 (1, n)qn,

from which we find that

a
(5),+
0 (1, 5) = 39350 = 2 · 52 · 787,

a
(5),+
0 (1, 10) = 4298600 = 23 · 52 · 21493,

a
(5),+
0 (1, 15) = 172859325 = 3 · 52 · 2304791,

a
(5),+
0 (1, 20) = 4049168800 = 25 · 52 · 17 · 173 · 1721,

a
(5),+
0 (1, 25) = 66640520250 = 2 · 32 · 53 · 29618009,

as desired from Theorem 5.1. Moreover, we observe that

f
(5),+
0,2 = t2 − 268,

f
(5),+
0,3 = t3 − 402t− 2280,

f
(5),+
0,4 = t4 − 536t2 − 3040t + 22532,

f
(5),+
0,5 = t5 − 670t3 − 3800t2 + 73055t + 447920,

which enable us to compute

a
(5),+
0 (5, 25) = 121883284330422776995471850 = 2 · 52 · 719239 · 3389229013733203483,

as expected from Theorem 5.1.

Remark 5.2.

(1) We emphasize that our result covers the case p = 11. As far as we know, the known 
literatures, for example, [AJ13,DJ10] do not cover the case p = 11, except for the 
Lehner’s classical result.
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(2) By the duality a(p),ε
0 (n, m) = −a

(p),ε
2 (m, n) (see [CK13] and Corollary 4.4), Theo-

rem 5.1 also gives the corresponding results for a(p),ε
2 (m, n).

From uniqueness of the form f (p),ε
k,m , it is not difficult to check that

D(f (p),ε
0,m ) = −mf

(p),ε
2,m ,

which implies

na
(p),ε
0 (m,n) = −ma

(p),ε
2 (m,n).

It follows from Remark 5.2(2) that

a
(p),ε
0 (m,n) = −a

(p),ε
2 (n,m) = m

n
a
(p),ε
0 (n,m). (3)

Let m = pαm′, n = pβn′ with p � m′, p � n′. Assume that α > β. Then by (3), we find 
the relation

a
(p),ε
0 (m,n) = pα−βm

′

n′ a
(p),ε
0 (n,m).

Applying this relation to Theorem 5.1, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

23(α−β)+8 | 2(β−α) · n′

m′ · a(2),ε
0 (m,n)

32(α−β)+3 | 3(β−α) · n′

m′ · a(3),ε
0 (m,n)

5(α−β)+1 | 5(β−α) · n′

m′ · a(5),ε
0 (m,n)

7(α−β) | 7(β−α) · n′

m′ · a(7),ε
0 (m,n)

11 | 11(β−α) · n′

m′ · a(11),ε
0 (m,n).

In addition, it is clear that

1 | 13β−α · n′

m′ · a
(13),ε
0 (m,n).

Now we obtain the following theorem:

Theorem 5.3. Let a(p),ε
0 be the n-th Fourier coefficient of f (p),ε

0,m with m = pαm′, n = pβn′, 
(m′, p) = (n′, p) = 1, Then for any α > β, we have

a
(2),ε
0 (2αm′, 2βn′) ≡ 0 (mod 24(α−β)+8),

a
(3),ε
0 (3αm′, 3βn′) ≡ 0 (mod 33(α−β)+3),

a
(5),ε
0 (5αm′, 5βn′) ≡ 0 (mod 52(α−β)+1),

a
(7),ε
0 (7αm′, 7βn′) ≡ 0 (mod 72(α−β)),
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a
(11),ε
0 (11αm′, 11βn′) ≡ 0 (mod 11(α−β)+1),

a
(13),ε
0 (13αm′, 13βn′) ≡ 0 (mod 13(α−β)).

Remark 5.4. For p ∈ {2, 3, 5, 7, 13}, recall that m+
p,0 = 0 and m−

p,0 = −1. Hence for any 

m ≥ 0, there is a unique form f (p),+
0,m = 1

qm + O(q) ∈ M !+
0 (p), and for any m ≥ 1, there 

exists a unique form f (p),−
0,m = q−m + O(1) ∈ M !−

0 (p). Note that m = 0 implies that 
f

(p),�
0,m = f

(p),+
0,m = 1. For m ≥ 1, observing that

f
(p),+
0,m + f

(p),−
0,m

2

∣∣∣∣∣Wp =
f

(p),+
0,m − f

(p),−
0,m

2 = O(1),

and

f
(p),+
0,m + f

(p),−
0,m

2 = q−m + O(1),

we have

f
(p),�
0,m = q−m + O(q) = 1

2(f (p),+
0,m + f

(p),−
0,m − a

(p),−
0 (m, 0))

from uniqueness of f (p),�
0,m . Therefore our results for M !+

0 (p) and M !−
0 (p) can be applied 

to prove the results of Andersen, Jenkins and Thornton [AJ13,JT15] for p ∈ {3, 5, 7, 13}.

Now all that remains is to prove Theorem 5.1. To prove it, we follow the main idea in 
[Cho12] that combines the idea of Doud and Jenkins [DJ10] with that of Lehner [Leh43,
Leh49a,Leh49b]. To get a relation among the Fourier coefficients of weakly holomorphic 
modular forms which plays a crucial role in finding p-divisible properties of Fourier 
coefficients Doud and Jenkins [DJ10, Corollary 3.2] used Hecke operators Tp. In this 
paper we find an analogy (see Lemma 5.6) of [DJ10, Corollary 3.2] by making use of 
Up-operator instead of Tp and the fact that f(z) + f(−1/(pz)) is a weakly holomorphic 
modular function for Γ+

0 (p) if f is a weakly holomorphic modular function for Γ0(p).
The concluding remarks of Lehner’s last paper [Leh49b] say that the coefficients of 

certain level p modular functions having a pole of order less than p at the cusp ∞ have 
the same p-divisible properties as the coefficients c(n) of j(z) (for a precise statement, 
see [AJ13, Theorem 1]). A necessary condition in the statement of Lehner’s theorem is 
that the order of the pole at the cusp ∞ must be less than p. In this paper by using 
Lemma 5.6 we remove this restriction on the order of the pole to show that all functions 
f

(p),ε
0,m in our basis have p-divisible properties as stated in Theorem 5.1.

For f ∈ M !,ε
0 (p), we introduce the linear operator

Upf(z) = 1
p

p−1∑
f(z + λ

p
).
λ=0
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It is well known from [Apo90, Theorem 4.5] and [Ono04, Proposition 2.22] that Upf is a 
weakly holomorphic modular function for Γ0(p) and if f(z) =

∑
n≥s anq

n, then

fp := Upf =
∑

n≥s/p

apnq
n.

For each positive integer a we denote Up(Ua
p f) by Ua+1

p f , where U1
pf = Upf .

Lemma 5.5. Let f be a weakly holomorphic modular function in the space M !,ε
0 (p). Then

pfp(−1/(pz)) = −f(z) + pfp(pz) + εf(pz).

Further, pfp(−1/(pz)) is a weakly holomorphic modular function for Γ0(p).

Proof. The proof of this lemma is in fact identical to the proof of [DJ10, Lemma 4.1]
and [Apo90, Theorem 4.6]. However, here we will prove again considering the change 
due to the difference of an eigenvalue for Fricke involution Wp of f .

By the definition of fp, it is easily seen that

pfp(−1/z) = f

(
−1
pz

)
+

p−1∑
λ=1

f

(
λz − 1
pz

)
. (4)

Since f ∈ M !,ε
0 (p), the transformation law f(−1/pz) = εf(z) holds. Hence the right hand 

side of equation (4) is equal to

εf(z) +
p−1∑
λ=1

f
((

λ −1
p 0

)
z
)
.

For an integer λ with 1 ≤ λ ≤ p −1, let λ′ be the unique integer with −(p −1) ≤ λ′ ≤ −1
such that λλ′ ≡ 1 (mod p), and let bλ = (λλ′ − 1)/p. Then we have

(
λ −1
p 0

)
=

(
λ bλ
p λ′

)(
1 −λ′

0 p

)
,

and hence the right hand side of equation (4) can be written as

p−1∑
λ=1

f
((

λ bλ
p λ′

)(
1 −λ′

0 p

)
z
)

+ εf(z).

Noticing that 
(

λ bλ
p λ′

)
∈ Γ0(p), we get

f
((

λ bλ
p λ′

)(
1 −λ′

0 p

)
z
)

= f

(
z − λ′)

.

p
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Therefore we obtain

pfp(−1/z) =
p−1∑
λ=1

f

(
z − λ′

p

)
+ εf(z) =

p−1∑
λ=1

f

(
z + λ

p

)
+ εf(z)

= −f(z/p) +
p−1∑
λ=0

f

(
z + λ

p

)
+ εf(z)

= −f(z/p) + pfp(z) + εf(z).

By replacing z by pz, we easily get the assertion. �
Lemma 5.6. Let m′ and n′ be any positive integers with (m′, p) = (n′, p) = 1. Then we 
have that

(1) a
(p),ε
0 (pm′, pβn′) = a

(p),ε
0 (m′, pβ−1n′) +εpa

(p),ε
0 (m′, pβn′) +pa

(p),ε
0 (m′, pβ+1n′) for all 

positive integer β.
(2) a

(p),ε
0 (pα+1m′, pβn′) = a

(p),ε
0 (pαm′, pβ−1n′) +pa

(p),ε
0 (pαm′, pβ+1n′) −pa

(p),ε
0 (pα−1m′,

pβn′) for all positive integers α, β.

Proof. Let f(z) be a basis element f (p),ε
0,m of M !,ε

0 (p), and let fp := f | Up. Then we know 
pfp(z) is a weakly holomorphic modular function for Γ0(p) and hence pfp(−1/(pz)) +
εpfp(z) is a weakly holomorphic modular function in M !,ε

k (p). Noticing that a weakly 
holomorphic modular function pfp(−1/(pz)) + εpfp(z) = −f(z) + pfp(pz) + εf(pz) +
εpfp(z) has a Fourier expansion of the form

− f(z) + pfp(pz) + εf(pz) + εpfp(z)

=
{
εq−pm − q−m + O(qm

ε
p,0+1), if p � m,

εq−pm + (p− 1)q−m + εpq−m/p + O(qm
ε
p,0+1), if p | m,

we have that

− f
(p),ε
0,m + pfp(pz) + εf

(p),ε
0,m (pz) + εpfp(z)

=

⎧⎨
⎩−f

(p),ε
0,m + εf

(p),ε
0,pm, if p � m,

εpf
(p),ε
0,m/p + (p− 1)f (p),ε

0,m + εf
(p),ε
0,pm, if p | m.

(5)

We now obtain the assertion by comparing the Fourier coefficients of weakly holomorphic 
modular functions in both sides of (5). �

Note that for each p ∈ {2, 3, 5, 7, 13}, the genus of Γ0(p) is zero. Hence we may take 
a univalent function Φ(z) [Leh49a,Leh49b] as follows:
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Φ(z) = Φp(z) = (η(pz)
η(z) )r = q + · · · ,

with

r(p− 1) = 24.

Let jp(z) = 1/Φp(z). We then have that jp is holomorphic on the upper half plane H, 
has a simple pole at the cusp ∞ and

jp(−1/(pz)) = pr/2Φp(z). (6)

For (6), see [Leh43, (8.83)]. In fact, by using the transformation law of η we can show (6). 
We know from the definitions that jp and Φ have integral Fourier coefficients.

In what follows, for each positive integer m with m = pαm′ and (m′, p) = 1, we write

f(z) = f
(p),ε
0,m (z) = 1

qm
+ O(qm

ε
p,0+1).

If α = 0, that is, m = m′, then fp is holomorphic on H and at the cusp ∞. Moreover it 
follows from Lemma 5.5 that

pfp(−1/(pz)) = −f(z) + pfp(pz) + εf(pz)

is a weakly holomorphic modular function for Γ0(p), which is holomorphic at the cusp 0
and meromorphic at the cusp ∞ and has integral Fourier coefficients in the q-expansion 
at ∞. Hence for each p ∈ {2, 3, 5, 7, 13}, we have

pfp(−1/(pz)) =
∑
t≥0

At,pjp(z)t

for some integers At,p. Under the same notation as above, replacing z by −1/(pz), we 
have the following theorem.

Theorem 5.7. Assume that α = 0. Then for each p ∈ {2, 3, 5, 7, 13}, we obtain

fp(z) = D0,p +
∑
t≥1

Dt,pp
rt/2−1Φ(z)t

for some integers Dt,p.

Following a main idea in [Cho12] we now prove Theorem 5.1. We use similar notations 
to [Cho12]. We will use induction on α. Assume that α = 0. We can rewrite fp in 
Theorem 5.7 as
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fp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B0 + 211 ∑
t≥1 Bt28(t−1)Φt = B0 + 211R, if p = 2,

C0 + 35 ∑
t≥1 Ct34(t−1)Φt = C0 + 35T, if p = 3,

D0 +
∑

t≥1 Dt53t−1Φt = D0 + 52Q5, if p = 5,
E0 +

∑
t≥1 Et72t−1Φt = E0 + Q7, if p = 7,

(7)

for some integers Bt, Ct, Dt, Et. Here R is a polynomial of the form R =∑
t≥1 bt28(t−1)Φt, T is a polynomial of the form T =

∑
t≥1 ct34(t−1)Φt, Q5 is a poly-

nomial of the form Q5 = d1Φ +
∑

t≥2 dt5tΦt, and Q7 is a polynomial of the form 
Q7 = e1Φ +

∑
t≥2 et7tΦt for some integers bt, ct, dt, et. Also R, T, Q5 and Q7 will denote 

polynomials of these types, not necessarily the same one at each appearance.

Proposition 5.8. For each positive integer h, we have that

28(h−1)U2Φh = 23R,

34(h−1)U3Φh = 32T,

U5Φ = 5Q5, 5h+1U5Φh+1 = 5Q5,

U7Φ = 7Q7, 7h+1U7Φh+1 = 7Q7.

Proof. See [Leh49b, (3.4), (3.24)] and [Leh49a, (5.13), (5.14), Section 6]. �
Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. For each positive integer β, applying the operator Uβ
p to both 

sides in (7) we obtain from Proposition 5.8 that

Uβ
p f =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B′
0 + 21123(β−1)R ≡ B′

0 (mod 23β+8), if p = 2,
C ′

0 + 32β+3T ≡ C ′
0 (mod 32β+3), if p = 3,

D′
0 + 5β+1Q ≡ D′

0 (mod 5β+1), if p = 5,
E′

0 + 7βQ ≡ E′
0 (mod 7β), if p = 7.

(8)

Proposition 5.8 gives

a
(2),ε
0 (m′, 2βn′) ≡ 0 (mod 23β+8), (9)

a
(3),ε
0 (m′, 3βn′) ≡ 0 (mod 32β+3), (10)

a
(5),ε
0 (m′, 5βn′) ≡ 0 (mod 5β+1), (11)

a
(7),ε
0 (m′, 7βn′) ≡ 0 (mod 7β). (12)

Thus the assertion holds for all β > 0 when α = 0. Now consider p = 2. We then obtain 
from (9) and Lemma 5.6(1) that

a
(2),ε
0 (2m′, 2βn′) ≡ 0 (mod 23(β−1)+8)
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for all β > 1. Thus the assertion holds when α = 1. Let α be some positive integer 
and assume that a(2),ε

0 (2im′, 2βn′) ≡ 0 (mod 23(β−i)+8) for all positive integer i with 
0 < i ≤ α and for each β > i. Then Lemma 5.6(2) implies that the assertion holds when 
m = 2α+1m′ and for each positive integer β with β > α + 1. Consequently by induction 
we obtain the assertion when p = 2. By the same argument as the case of p = 2 we 
obtain the assertion for other primes p = 3, 5, 7.

In the case p = 11, we notice that the genus of Γ0(11) is not zero, so we need a 
new approach. In fact, by adopting an argument similar to [Cho12] we can obtain the 
assertion. For the convenience of readers we provide a proof. Following the notation in 
[Leh43] we have modular functions for Γ0(11) which are holomorphic on H and have 
integral Fourier coefficients [Leh43, (4.51), (6.44), (6.46) and Lemma 3] as follows:

A(z) = A( −1
11z ) = 1

q
+ 6 + 17q + 46q2 + · · · ,

C(z) = q + 5q2 + · · · ,

112C( −1
11z ) = 1

q2 + 2
q

+ · · · .

Letting

α(z) = 112C( −1
11z ) = 1

q2 + · · · ,

β(z) = 112C( −1
11z )A(z) = 1

q3 + · · · ,

we obtain

11f11(
−1
11z ) =

∑
a≥0,b≥0

Dabα(z)aβ(z)b

for some integers Dab because the genus of Γ0(11) is not zero. Now replacing z by −1/11z
we obtain that

11f11(z) =
∑

a≥0,b≥0

Dabα( −1
11z )aβ( −1

11z )b =
∑

a≥0,b≥0

Dab112(a+b)C(z)a+bA(z)b,

which implies that f11(z) ≡ A0 (mod 11) for some integer A0 and hence a(11)
0 (m′, 11βn) ≡

0 (mod 11) for all positive integers β. Thus Lemma 5.6 implies the assertion when 
p = 11. �
6. Square-free level cases

Until now we only considered weakly holomorphic modular forms of prime levels. 
As another extension of [CK13], we will consider square-free level cases. We recall that 
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Γ∗
0(N) is the group generated by Γ0(N) and all Atkin–Lehner involutions of N . Note 

that if N is prime, then Γ∗
0(N) is the same as Γ+

0 (N) which we have discussed so far. 
Throughout this section, we assume that N is a square-free composite integer for which 
the genus of Γ∗

0(N) is zero, that is, N belongs to the set

S0 = {6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 62, 66, 69, 70, 78, 87,

94, 95, 105, 110, 119}.

Let M∗
k (N) (resp. S∗

k(N)) be the space of holomorphic modular forms (resp. cusp 
forms) of weight k for Γ∗

0(N), and let M !∗
k (N) be the space of weakly holomorphic 

modular forms for Γ∗
0(N). In this section we will generalize the results of [CK13] to the 

space M !∗
k (N) of weakly holomorphic modular forms in the cases of square-free levels. For 

a square-free integer N , it is well known from [JST16,JST17] that Γ∗
0(N) has only one 

inequivalent cusp, and hence we can generalize the results of [CK13] without difficulty.
Let k > 2 be an even integer. Then dimS∗

k(N) is finite, and it follows from [Miy06, 
Theorem 2.5.2] that

dimS∗
k(N) = ν2

⌊
k

4

⌋
+ ν3

⌊
k

3

⌋
+ ν4

⌊
3k
8

⌋
+ ν6

⌊
5k
12

⌋
− k

2 ,

where νi denotes the number of inequivalent elliptic points of order i of Γ∗
0(N). Using 

[CL04, Table 4], one can compute dimS∗
k(N) for each N ∈ S0.

Remark 6.1. By finite-dimensionality and existence of the Hauptmodul j∗N of Γ∗
0(N), one 

can show that the space S∗
k(N) also has a Miller basis by adopting the same arguments 

as in Lemma 2.2. Furthermore, for d = dimS∗
k(N) ≥ 1, there exists a unique cusp form 

Δ∗
N,k with q-expansion of the form

Δ∗
N,k(z) = qd + O(qd+1),

and for d = 0, we define Δ∗
N,k(z) = E∗

N,k := 1
σk/2(N)

∑
d|N dk/2Ek(dz) where we set 

E∗
N,0 = 1.

Next step to find the canonical basis of M !∗
k (N) is, as in prime level cases, to define 

δN and Δ∗
N for each N . In fact, it was done by [JST16,JST17].

Lemma 6.2. (See [JST16, Theorem 16] and [JST17, Proposition 4 and Corollary 5].) Let 
N be a square-free integer with r distinct prime factors.

(1) Put

δ = δN = lcm
(

4, 2r−1 24
)
,
gcd(24, σ(N))
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where σ(N) is a divisor sum. Then δ is the smallest weight k such that there exists 
a cusp form f ∈ S∗

k(N) vanishing only at the cusps.
(2) There exists a unique normalized cusp form Δ∗

N ∈ S∗
δ (N) such that ord∞Δ∗

N =
σ(N)

24·2r−1 k. More explicitly,

Δ∗
N (z) =

⎛
⎝∏

d|N
η(dz)

⎞
⎠

�N

where �N = 21−rδN .

Theorem 6.3. Let k ∈ 2Z and δ be the integer given in Lemma 6.2. We have unique lk
and rk such that

k = δlk + rk where rk =
{
δ + 2 if k ≡ 2 (mod δ),
k −

⌊
k
δ

⌋
δ otherwise.

(1) For f ∈ M !∗
k (N),

ord∞f ≤ σ(N)
24 · 2r−1 δlk + dimS∗

rk
(N).

(2) We put m∗
N,k = σ(N)

24·2r−1 δlk + dimS∗
rk

(N). For each m ∈ Z, such that −m ≤ m∗
N,k, 

there exists a unique weakly holomorphic modular form f∗
k,m ∈ M !∗

k (N) with

f∗
k,m = q−m + O(qm

∗
N,k+1).

Proof. Same as the proof of Theorem 2.5.

Note that for each integer m ≥ −m∗
N,k, the canonical basis f∗

k,m for M !∗
k (N) is given 

by

f∗
k,m = (Δ∗

N )lkΔ∗
N,rk

Fk,m+m∗
N,k

(j∗N ),

where Fk,D(x) is a monic polynomial in x of degree D and j∗N is the Hauptmodul for 
Γ∗

0(N). Since Δ∗
N is an eta product, Δ∗

N has integer Fourier coefficients. Integrality of the 
coefficients in the q-expansion of j∗N is proved in [JST16, Section 3]. Thus for integrality of 
the coefficients of the canonical basis we have only to consider Δ∗

N,rk
, which is the unique 

cusp form in S∗
rk

(N) whose vanishing order at infinity is the same as the dimension of 
the space S∗

rk
(N). In Table 2 we list the dimensions of S∗

rk
(N) for each case.

Remark 6.4. From the Table 2, we observe that dimS∗
rk

(N) + dimS∗
δ+2−rk

(N) =
dimS∗

δ+2(N), and dimS∗
δ (N) = dimS∗

δ+2(N) + 1. In other words, the relation
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Table 2
Dimensions of S∗

rk
(N).

N δ dimS∗
rk

(N)
rk = 4 rk = 6 rk = 8 rk = 10 rk = 12 rk = 14

6 4 1 0
10 8 1 1 3 2
14 4 2 1
15 4 2 1
21 12 2 2 5 5 8 7
22 4 3 2
26 8 3 3 7 6
30 4 3 2
33 4 4 3
34 8 4 4 9 8
35 4 4 3
38 4 5 4
39 12 4 4 9 9 14 13
42 4 4 3
46 4 6 5
51 4 6 5
55 4 6 5
62 4 8 7
66 4 6 5
69 4 8 7
70 4 6 5
78 4 7 6
87 4 10 9
94 4 12 11
95 4 10 9
105 4 8 7
110 4 9 8
119 4 12 11

dimS∗
rk

(N) + dimS∗
δ+2−rk

(N) = σ(N)�N
24 − 1

holds for every N ∈ S0, having similarities with [CK13, Lemma 3.7].

Corollary 6.5. The duality relation

a∗k(n,m) = −a∗2−k(m,n)

also holds for the weakly holomorphic modular forms f∗
k,n = q−n +

∑
a∗k(n, m)qm and 

f∗
2−k,m = q−m +

∑
a∗2−k(m, n)qn.

Proof. The assertion immediately follows by combining the arguments in [CK13, Re-
mark 3.8] with Remark 6.4. �

It follows from Remark 6.4 that Δ∗
N,δ = Δ∗

N , and Δ∗
N,δ+2 = Δ∗

N × (−D(j∗N )). Ac-
cordingly, when δ = 4, we can construct Δ∗

N,rk
explicitly for every pair (N, rk). The 

remaining cases of N are N ∈ {10, 21, 26, 34, 39}. Before we look at each case, recall that 
WeWf ≡ WfWe ≡ Wg (mod Γ0(N)) where g = ef/ gcd(e, f)2.

Case (1) N = 10: Since we have Δ∗
10,4 × Δ∗

10,6 = Δ∗
10,10, we have only to consider 

Δ∗
10,4. First we consider the function f = Δ+

5 +Δ+
5 | W2. Then it is not difficult to check 
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that f is a modular form of weight 4 for Γ0(10) and invariant under all Atkin–Lehner 
involutions of 10. Further, since Δ+

5 (z) | W2 = 4 · Δ+
5 (2z), we get the q-expansion of f

as follows:

Δ+
5 + Δ+

5 | W2 = q − 4q2 + 2q3 + 8q4 − 5q5 − 8q6 + · · · + 4(q2 − 4q4 + 2q6 + · · · )

= q + 2q3 − 8q4 − 5q5 + · · · .

Consequently, f = Δ+
5 +Δ+

5 | W2 is the unique cusp form Δ∗
10,4, and has rational integer 

Fourier coefficients.
Case (2) N = 21: In this case, we need to find Δ∗

21,4 and Δ∗
21,6. Using [The13b], we 

can find a newform f1 of weight 4 on Γ0(21) with integral Fourier coefficients, which 
is invariant under all Atkin–Lehner involutions of 21. On the other hand, we have an-
other holomorphic cusp form f2 = Δ+

7,4 + Δ+
7,4 | W3, and f2 is also invariant under all 

Atkin–Lehner involutions of 21. In addition, f1 and f2 have q-expansions of the form

f1 = q + 4q2 − 3q3 + 8q4 − 4q5 − 12q6 − 7q7 + 9q9 + · · · ,

f2 = q − q2 + 7q3 − 7q4 + 16q5 − 7q6 − 7q7 + 15q8 − 41q9 + · · · .

Then we have

f1 − f2 = 5q2 − 10q3 + 15q4 − 20q5 − 5q6 − 15q8 + 50q9 + · · · ≡ 0 (mod 5),

using classical Sturm bound for modular forms in M4(21). Therefore, Δ∗
21,4 = (f1−f2)/5.

We can also obtain Δ∗
21,6 with similar arguments. From [The13f], the function g1 ∈

Z[[q]] with q-expansion

g1 = q + q2 − 9q3 − 31q4 − 34q5 − 9q6 − 49q7 − 63q8 + 81q9 + · · ·

is a newform of weight 6 on Γ0(21), and its eigenvalues of all Atkin–Lehner involutions 
are equal to 1. Thus g1 lies in the space S∗

6(21). There is another holomorphic cusp form 
in S∗

6 (21). Consider the holomorphic cusp form g2 in S6(21) given by

g2 = Δ+
7,6 + Δ+

7,6 | W3 = Δ+
7,6 + 27Δ7,6(3z).

Then g2 is also invariant under all Atkin–Lehner involutions of 21, that is, g2 ∈ S∗
6 (21). 

The Fourier expansion of g2 has the form

g2 = q − 10q2 + 13q3 + 68q4 − 56q5 − 130q6 − 49q7 − 360q8 − 425q9 + · · · .

Then we have

g1 − g2 = 11q2 − 22q3 − 99q4 + 22q5 + 121q6 + 297q8 + 506q9 + · · · ≡ 0 (mod 11)
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by classical Sturm bound for modular forms in M6(21). Therefore we have Δ∗
21,6 =

(g1 − g2)/11.
Case (3) N = 26: For this case, it suffices to find Δ∗

26,4. Let f1 be the newform from 
[The13c], and let f2, f3 be defined by

f2 = Δ+
13,4 + Δ+

13,4 | W2,

f3 = (Δ+
13,4 · j+

13) + (Δ+
13,4 · j+

13) | W2.

Then it is not difficult to check that f1, f2, and f3 are holomorphic cusp forms in M∗
4 (26)

with integral Fourier coefficients. Moreover the q-expansions of these functions are given 
by

f1 = q − 2q2 + 3q3 + 4q4 + 11q5 − 6q6 + 19q7 − 8q8 − 18q9 + · · · ,
f2 = q2 − 3q3 + 5q4 + q5 − 11q6 + 11q7 − 7q8 − 15q9 + · · · ,
f3 = q + q2 + 13q3 − 19q4 − 5q5 + 37q6 − 43q7 + 9q8 + 70q9 + · · · .

Since dimS∗
4 (26) = 3, the space S∗

4 (26) is spanned by f1, f2, and f3. Hence Δ∗
26,4 =

(−f1 − 3f2 + f3)/19, and it has integral Fourier coefficients.
Case (4) N = 34: In this case, we only need to construct Δ∗

34,4. Recall that the 
vanishing order of Δ+

17 at ∞ is 3. Thus we have three different holomorphic cusp forms 
on Γ∗

0(34) as follows:

f1 = Δ+
17 + Δ+

17 | W2,

f2 = (Δ+
17 · j+

17) + (Δ+
17 · j+

17) | W2,

f3 =
(
Δ+

17 · (j+
17)2

)
+
(
Δ+

17 · (j+
17)2

)
| W2.

Additionally, let f4 be the newform from [The13d] which is also a holomorphic cusp form 
on Γ∗

0(34). Then the cusp forms

f1 = q3 − 4q4 + 2q5 + 12q6 − 5q7 − 20q8 − 10q9 + · · · ,
f2 = q2 − 4q3 + 13q4 − 6q5 − 34q6 + 14q7 + 53q8 + 22q9 + · · · ,
f3 = q + 16q3 − 36q4 + 18q5 + 96q6 − 40q7 − 156q8 − 49q9 + · · · ,
f4 = q − 2q2 − 2q3 + 4q4 + 16q5 + 4q6 + 24q7 − 8q8 − 23q9 + · · ·

span the space S∗
4 (34). Therefore Δ∗

34,4 = −(26f1 + 2f2 + f4 − f3)/38 and it has integral 
Fourier coefficients.

Case (5) N = 39: For this case, we need to find Δ∗
39,4 and Δ∗

39,6. Applying similar 
arguments to Example 3.1 to the data [The13e], we get two holomorphic cusp forms f1
and f2 in S∗

4 (39) with integral Fourier coefficients, and f1, f2 have q-expansions of the 
form
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f1 = q − 3q3 + 5q4 + 14q5 + 2q7 + 26q8 + · · · ,
f2 = q2 + 2q4 − 2q5 − 3q6 − 2q7 + q8 + · · · .

Let f3 = Δ+
13,4 + Δ+

13,4 | W3 and let f4 = (Δ+
13,4 · j+

13) + (Δ+
13,4 · j+

13) | W3. Then f3 and 
f4 have q-expansions of the form

f3 = q2 − 3q3 + q4 + q5 + 10q6 + 11q7 − 11q8 + · · · ,
f4 = q − 3q2 + 22q3 − 7q4 − 5q5 − 42q6 − 43q7 + 37q8 + · · · .

Taking a suitable linear combination of f1, f2, f3 and f4, we obtain

Δ∗
39,4 = q4 − 4q6 − 4q7 + 6q8 + · · · ∈ Z[[q]].

Similarly, from the data [The13g], we get two holomorphic cusp forms in S∗
6(39) with 

integral Fourier coefficients. Let g1 and g2 be two cusp forms coming from [The13g], and 
let g3 = Δ+

13,6 + Δ+
13,6 | W3 and g4 = (Δ+

13,6 · j+
13) + (Δ+

13,6 · j+
13) | W3. Then g1, g2, g3

and g4 have q-expansions of the form

g1 = q − 9q3 + 20q4 − 34q5 + 14q7 + · · · ,
g2 = q2 − 4q4 − 5q5 − 9q6 − 11q7 + · · · ,
g3 = q2 − 6q3 − 5q4 + 40q5 + 28q6 − 70q7 + · · · ,
g4 = q − 6q2 + 34q3 − 4q4 − 161q5 − 156q6 + 227q7 + · · · .

By a suitable linear combination, we have Δ∗
39,6 = q4 − 3q5 − q6 + 5q7 + · · · ∈ Z[[q]].
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