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1. Introduction

Let K be an imaginary quadratic field, F a finite abelian extension of K, and let 
A be an elliptic curve defined over F with complex multiplication by the full ring of 
integers of K. By the classical theory of complex multiplication, F contains the Hilbert 
class field H of K. We assume that A has the additional property that the field obtained 
by adjoining to F the coordinates of all torsion points on A is an abelian extension of 

E-mail address: jhchoi.math@gmail.com.
https://doi.org/10.1016/j.jnt.2019.04.011
0022-314X/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jnt.2019.04.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:jhchoi.math@gmail.com
https://doi.org/10.1016/j.jnt.2019.04.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2019.04.011&domain=pdf


406 J. Choi / Journal of Number Theory 204 (2019) 405–422
K. For each square-free positive integer D, we write A(D) for the twist of A by the 
quadratic extension F (

√
D)/F . Let L(A(D)/F, s) denote the complex L-series for A(D)

over F . If L(A(D)/F, s) does not vanish at s = 1, it is well-known that the Mordell-Weil 
group A(D)(F ) and the Tate-Shafarevich group X(A(D)/F ) are both finite. However, 
no one unfortunately has found a general criterion for deciding when L(A(D)/F, 1) �= 0. 
Moreover, the conjectural exact Birch and Swinnerton-Dyer formula for the order of 
X(A(D)/F ) when L(A(D)/F, 1) �= 0 is only proven at present for a few families of such 
curves in the special case when K = F and K has class number 1.

For the elliptic curve A = X0(32) : y2 = x3−x, we have K = Q(i) and take K = F . In 
this case, Zhao [15], [16], [17] and Tian, Yuan and Zhang [12] have developed techniques 
which prove the existence of explicit infinite families of D such that L(A(D)/F, 1) �= 0 and 
the 2-part of the Birch and Swinnerton-Dyer conjecture is valid for A(D). In a similar 
manner, using Zhao’s method, Tian and his collaborators [6] have proven analogous 
results for the quadratic twists of the elliptic curve A = X0(49) : y2+xy = x3−x2−2x −1, 
where K = F = Q(

√
−7). In both cases, by using additional arguments from Iwasawa 

theory [11], the Birch and Swinnerton-Dyer exact formula for the order of X(A(D)/F ) is 
then valid. For more general elliptic curves, analogous results on the 2-part of the Birch 
and Swinnerton-Dyer conjecture have been made recently due to Cai, Li and Zhai [2].

A remarkable feature of Zhao’s method, which is more fully discussed in [5], is that 
it is rather elementary, using only classical expressions for the L-values as finite sums 
of Eisenstein series, and no arguments from Iwasawa theory. The aim of the present 
paper is to use a generalization of his method (see §3) to establish some analytic results 
about the 2-part of the Birch and Swinnerton-Dyer conjecture for an infinite family of 
Q-curves E in the sense of Gross [9]. More precisely, we will obtain in §4 a lower bound 
on the 2-adic valuation of the algebraic part of the L-value at s = 1 for the Q-curves 
E/H. We recall that a Q-curve is defined to be an elliptic curve over the Hilbert class 
field H of an imaginary quadratic field K with complex multiplication by the full ring of 
integers of K, which is isogenous over H to all of its conjugates under the Galois group 
of H over Q. We will briefly discuss the theory of Q-curves in §2. In the rest of the 
paper, using 2-descent, we will find an explicit infinite family of Q-curves E for which 
the Mordell-Weil group E(H) is finite (see §5).

2. Gross curves and QQQ-curves

We begin with a brief review of the general theory [9] of Q-curves. Let K be an 
imaginary quadratic field, viewed as a subfield of C. We denote by O its ring of integers 
and h its class number. By the classical theory of complex multiplication, the Hilbert 
class field of K is given by H = K(j(O)) where j is the classical modular function of 
weight zero. If we write G for the Galois group of H over K, the Artin map of global 
class field theory gives an isomorphism G � Cl(K).
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We define the field J = Q(j(O)). In fact, the value j(O) is a real number which 
satisfies an irreducible equation of degree h over Q. Hence J is embedded in R, and we 
have the tower of fields

H

G

〈τ〉

J

h
K

2
Q

where τ is the complex conjugation acting on G � Cl(K) by inversion. The Galois group 
of H over Q is the semi-direct product Cl(K) � 〈τ〉.

Let E be an elliptic curve defined over H with j-invariant j(E) = j(O). By the 
theory of complex multiplication, it has complex multiplication by O. We say that E is 
a Q-curve if E is H-isogenous to all of its conjugates Eσ with σ ∈ Gal(H/Q). In terms 
of Grössencharacters, this definition is equivalent to saying that

ψE = ψσ
E for all σ ∈ Gal(H/Q) (2.1)

where ψE : IH → K× is the Grössencharacter determined by the isogeny class of E
over H. Here IH denotes the group of idèles of H. Furthermore, the condition ψE = ψτ

E

describes that E can be descended to the field J . Hence there exists an elliptic curve 
defined over J isomorphic to E over H.

We shall now restrict our attention to the case where K = Q(
√−q), with q > 3 a 

prime congruent to 3 modulo 4. We have O× = {±1}, and by the genus theory the class 
number h is odd. Gross [9] proved that there exists a unique Q-curve A(q), called a 
Gross curve, with the property that it is defined over J and has minimal discriminant 
ideal equal to (−q3). It is given by the following explicit equation defined over J

y2 = x3 + mq

243x− nq2

2533 (2.2)

where m3 = j(O) and −qn2 = j(O) − 1728. Here the sign of n is determined by the 
Legendre symbol (2/q). On the other hand, Gross also proved in [10] that A(q) has 
always a global minimal Weierstrass equation over the field J , but these equations are 
only known explicitly for q = 11 and 23. For example, when q = 23, A(23) has a global 
minimal equation over J = Q(α) given by (see §24 in [9])

y2 + α3xy + (α + 2)y = x3 + 2x2 − (12α2 + 27α + 16)x− (73α2 + 99α + 62), (2.3)

where α is a root of the cubic equation x3 − x − 1 = 0.



408 J. Choi / Journal of Number Theory 204 (2019) 405–422
We assume from now on that the prime q is congruent to 7 modulo 8. This additional 
condition guarantees that the prime 2 splits in K into two distinct primes which we 
denote by p and p∗. The theory of complex multiplication then shows that A(q) has 
good ordinary reduction at the primes of J above 2. This fact is very crucial for our 
main arguments. We fix once and for all one of the primes p of K dividing 2. In what 
follows, we will only consider twists of A(q) by quadratic extensions J(

√
D)/J , where D

is a square-free positive integer which is congruent to 1 modulo 4. Clearly, such twists 
are again Q-curves having good ordinary reduction at the primes of J above 2.

We end this section by recalling, without proof, two properties of arbitrary Q-curves 
E proven in [9], which we will use later.

Theorem 2.1 (Theorem 14.2.1 in [9]). Assume that q ≡ 7 mod 8 is a prime. If E is any 
Q-curve defined over J , then we have

E(J)tor = Z/2Z and E(H)tor = O/2O.

The next theorem determines the structure of E(H)/2E(H). Let B = ResH/K(E) be 
the abelian variety over K which is the restriction of scalars from H to K of E. Let 
R = EndK(B) and T = R ⊗Z Q. It is easily seen (see §15 in [9]) that R is a projective 
O-module of rank h, and T is a CM field of degree 2h over Q. Since E(H) = B(K) is 
a module for R, E(H) ⊗Q = B(K) ⊗Q is a module for the field T . Hence, if we write 
nH(E) for the rank of E(H) over Z, then nH(E) ≡ 0 mod 2h. We can therefore define 
the Q-rank of E by

n(E) = nH(E)/2h. (2.4)

Theorem 2.2 (Theorem 16.2.5 in [9]). Assume that q ≡ 7 mod 8 is a prime. Let E be 
any Q-curve defined over J . Then the algebra R/2R = R ⊗O O/2O is isomorphic to 
O/2O[G]. Furthermore, the module E(H)/2E(H) � E(H) ⊗O O/2O is isomorphic to 
the direct sum of E(H)2 � O/2O with n(E) copies of the regular representations R/2R.

3. Averaging lemma

Let K = Q(
√−q) where q is a prime congruent to 7 modulo 8, and let E be any 

Q-curve defined over J . It is well-known (cf. §9 in [9]) that the condition (2.1) is equiv-
alent to

ψE = ϕE ◦ NH/K and ϕE = ϕ̄E , (3.1)

where ϕE is a Grössencharacter of K and NH/K denotes the norm map from the group 
of idèles IH of H to the group of idèles IK of K. Indeed, this ϕE is the Grössencharacter 
attached to the abelian variety B = ResJ/Q(E) viewed over K, and it takes values in 
the group T×, where, as earlier, T = R ⊗Z Q. We then have
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L(ψ̄E , s) =
∏
χ∈Ĝ

L(ϕ̄Eχ, s), (3.2)

where Ĝ denotes the group of characters of G.
Let f be the conductor of ϕE, and let g be any integral multiple of f. Let S denote 

the set of prime ideals of K dividing g. We define the imprimitive Hecke L-functions 
associated to ϕ̄Eχ by

LS(ϕ̄Eχ, s) =
∑

(a,g)=1

χ(σa)ϕ̄E(a)
(Na)s ,

where a runs over all integral ideals of K prime to g and σa denotes the Artin symbol 
of a in G. Moreover, for each element σ ∈ G, if we define the partial L-series for ϕ̄E

relative to σ by

LS(ϕ̄E , σ, s) =
∑

(a,g)=1, σa=σ

ϕ̄E(a)
(Na)s ,

we have

LS(ϕ̄Eχ, s) =
∑
σ∈G

χ(σ)LS(ϕ̄E , σ, s). (3.3)

Writing LS(ψ̄E , s) for the imprimitive L-series obtained by removing the Euler factors 
at the primes above S from L(ψ̄E , s), we then have

LS(ψ̄E , s) =
∏
χ∈Ĝ

∑
σ∈G

χ(σ)LS(ϕ̄E , σ, s). (3.4)

In this section, we will give an expression for each summand LS(ϕ̄E , σ, s) in terms of 
Kronecker-Eisenstein series, and then prove Theorem 3.2, called the averaging lemma, 
using similar arguments to [5].

Before stating the averaging lemma, we first recall the relation between the various 
period lattices involved. Note that Gross [10] proved that E admits a global minimal 
Weierstrass equation over H. Hence we can denote by ωE the Néron differential attached 
to a global minimal equation for E. Let a be an integral ideal of K prime to g. Applying 
σa to the coefficients of this equation, we obtain a global minimal equation for Eσa over 
H, and we write ωEσa for the Néron differential attached to this equation. As is explained 
in [9], we can then interpret ϕE(a) as an isogeny

ϕE(a) : E → Eσa . (3.5)

Thanks to this isogeny, we may define Λ(a) ∈ H× by the pullback equation
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ϕE(a)∗(ωEσa ) = Λ(a)ωE . (3.6)

Moreover, as j(O)σa = j(a−1), it follows easily (cf. Proposition 4.10 in [8]) that the 
period lattice for Eσa is given by

LEσa = Λ(a)ΩEa
−1, (3.7)

where ΩE is a complex number such that LE = ΩEO.
Secondly, we recall the expression of the partial L-series LS(ϕ̄E , σ, s) in terms of 

Kronecker-Eisenstein series, which are defined as follows. Let z and s be complex vari-
ables. For any lattice L in C, we define the Kronecker-Eisenstein series by

H1(z, s, L) =
∑
w∈L

z̄ + w̄

|z + w|2s ,

where the sum is taken over all w ∈ L, except −z if z ∈ L. It defines a holomorphic 
function of s in the half plane Re(s) > 3/2, and it has an analytic continuation to 
the whole s-plane. For the following proposition, we assume for the moment that g is 
principal, say g = gO with g ∈ O. Let H(Eg) denote the field obtained by adjoining to 
H the g-division points on E.

Proposition 3.1. Let g be any non-zero principal ideal, say g = gO with g ∈ O, which 
is a multiple of the conductor f of ϕE, and let a be an integral ideal of K prime to g. 
Let B denote any set of integral ideals b of K prime to g, whose Artin symbols σb give 
precisely the Galois group of H(Eg) over H. For Re(s) > 3/2, we have

LS(ϕ̄E , σa, s) = |Λ(a)ΩE/g|2s

(Λ(a)ΩE/g)
· (Na)1−s

ϕE(a) ·
∑
b∈B

H1

(
ϕE(b)Λ(a)ΩE

g
, s,LEσa

)
.

Proof. The proposition is the special case of Proposition 5.5 in [8] where ρ = ΩE/g, 
h = 1 and k = 1. �

For any lattice L in C, the non-holomorphic Eisenstein series E∗
1 (z, L) is defined by

E∗
1 (z, L) = H1(z, 1, L).

It is well-known (cf. Théorème 6.2 in [8]) that E∗
1 (Λ(a)Ω∞/g, LEσa ) belongs to the field 

H(Eg), and satisfies

E∗
1

(
ϕE(b)Λ(a)ΩE

g
,LEσa

)
= E∗

1

(
Λ(a)ΩE

g
,LEσa

)σb

. (3.8)

Hence Proposition 3.1 immediately implies that
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LS(ϕ̄E , σa, 1) = Λ(a)ΩE

ϕE(a)g
· TrH(Eg)/H

(
E∗
1

(
Λ(a)ΩE

g
,LEσa

))
, (3.9)

where TrH(Eg)/H denotes the trace map from H(Eg) to H.
In what follows, we now take A = A(q) to be the Gross curve over J as defined in 

Section 2. Let M denote the set of all square-free positive integers M having the property 
that all prime factors of M are congruent to 1 modulo 4, and inert in K. For each M in 
M , let

E = A(M)

be the twist of A by the quadratic extension J(
√
M)/J . We simply write ϕM for the 

Grössencharacter ϕE, ψM for the Grössencharacter ψE, LM for the lattice LE , and LM,a

for the lattice LEσa . In the special case where E = A, we simply write them as ϕ, 
ψ, L and La, respectively. Since ϕM = ϕηM , where ηM is the character of K defining 
the quadratic extension K(

√
M)/K, it is easily seen that ϕM has conductor M

√−qO. 
Moreover, we fix a global minimal Weierstrass equation for E/H by

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where the ai lie in the ring of integers of H. If ℘(z, LM ) = x + (a2
1 + 4a2)/12 and 

℘′(z, LM ) = 2y + a1x + a3, then E has the associated Weierstrass equation

℘′(z,LM )2 = 4℘(z,LM )3 − g2(LM )℘(z,LM ) − g3(LM ),

where g2(LM ) and g3(LM ) are given explicitly by

g2(LM ) = −qmM2

263 , g3(LM ) = q2nM3

243 .

Here m and n are defined as in (2.2). Hence writing L = Ω∞O for some fixed Ω∞ ∈ C×, 
the period lattice for E over C is given by

LM = Ω∞√
M

O. (3.10)

Moreover, by (3.7), the period lattice for Eσa over C is then given by

LM,a = Λ(a) Ω∞√
M

a−1. (3.11)

We now suppose that r ≥ 0 is an integer, and that p1, · · · , pr are distinct primes 
which are congruent to 1 modulo 4, and inert in K. We define

Mr = p1 · · · pr, gr = Mr

√
−q
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and gr = grO. Of course, Mr belongs to M . For each 1 ≤ i ≤ r, the quadratic extension 
K(√pi)/K has conductor piO, so that it is certainly contained in the ray class field of 
K modulo gr, which we denote by Rr. By the classical theory of complex multiplication, 
Rr is contained in the field H(Egr

). Moreover, since gr is equal to the least common 
multiple of the conductor O of H over K and the conductor of the Grössencharacter 
ϕMr

, it is well-known (cf. Lemma 3 in [4]) that in fact we have Rr = H(Egr
). Hence the 

fields

Jr = H(√p1, · · · ,
√
pr)

are always contained in Rr. Finally, let Sr denote the set of prime ideals of K dividing 
gr and let Dr denote the set of all positive integers dividing Mr.

Theorem 3.2 (Averaging lemma). Assume that r ≥ 0, and let a be an integral ideal of K
prime to gr. Then

∑
M∈Dr

LSr
(ϕ̄M , σa, 1)

Ω∞
= 2r · Λ(a)

ϕ(a) · TrRr/Jr

(
g−1
r E∗

1

(
Λ(a)Ω∞

gr
,La

))
(3.12)

provided that ηM (a) = 1 for all M ∈ Dr.

Proof. The proof of the lemma is essentially the same as that of Theorem 2.4 in [5]. 
By our hypothesis, we have ϕM (a) = ϕ(a). Applying (3.9) to the curve E = A(M) with 
S = Sr and g = gr, we have

LSr
(ϕ̄M , σa, 1) = Λ(a)

ϕ(a) · Ω∞

gr
√
M

· TrRr/H

(
E∗
1

(
Λ(a) Ω∞

gr
√
M

,LM,a

))
.

It is well-known that E∗
1 (z, LM,a) = λE∗

1 (λz, λLM,a) for any nonzero complex number λ. 
Putting λ =

√
M , we conclude that

LSr
(ϕ̄M , σa, 1)

Ω∞
=

∑
σ∈Gr

(
√
M)σ−1 Λ(a)

ϕ(a) · g−1
r E∗

1

(
Λ(a)Ω∞

gr
,La

)σ

(3.13)

where Gr denotes the Galois group of Rr over H. Finally, Lemma 2.5 in [5] shows that 
for each σ ∈ Gr

∑
M∈Dr

(
√
M)σ−1 =

{
2r if σ fixes Jr,
0 otherwise.

(3.14)

This completes the proof of the theorem. �
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For the induction argument in the next section, it is important to have a parallel 
statement of Theorem 3.2 in terms of L-functions, rather than partial L-functions. Define 
AMr

to be any set of integral ideals a of K, which are prime to 2(
√−q), whose Artin 

symbols give precisely the Galois group G = Gal(H/K), and which, in addition, are 
such that ηM (a) = 1 for all M ∈ Dr. Such a set AMr

exists because plainly H ∩
K(√p1, . . .

√
pr) = K. In the remainder of the paper, we will always assume that a

belongs to AMr
.

Corollary 3.3. For all r ≥ 0 and for all characters χ of G = Gal(H/K), we have

∑
M∈Dr

LSr
(ϕ̄Mχ, 1)
Ω∞

= 2r
∑

a∈AMr

χ(σa)
Λ(a)
ϕ(a)TrRr/Jr

(
g−1
r E∗

1

(
Λ(a)Ω∞

gr
,La

))
.

4. Integrality at 2 and the induction argument

We now use an induction argument to establish our main analytic results for the curves 
E = A(M) for M ∈ M . We fix once and for all a place P of the algebraic closure of Q
above 2, and write ord2 for the valuation at P, always normalized so that ord2(2) = 1. 
We have (cf. Exercise II.1.5 in [7] and Lemme 4.9(ii) in [8])

Λ(a)OH = aOH and ϕ(a)OT = aOT , (4.1)

where OH (resp. OT ) denote the ring of integers of H (resp. the ring of integers of T ). 
This implies that the element Λ(a)/ϕ(a) ∈ Q is a P-unit.

Proposition 4.1. For each r ≥ 0, we define

Ψa,r = TrRr/Jr

(
g−1
r E∗

1

(
Λ(a)Ω∞

gr
,La

))
.

Then the element 2Ψa,r in Jr is integral at all places of Jr above 2.

Proof. We can apply the proof of Proposition 4.1 in [6] to our case. Let L be any lattice 
in C and let ω be a complex number such that ω + L has exact finite order m ≥ 3 in 
C/L. Then we have the identity

mE∗
1 (ω,L) =

m−2∑
k=1

(℘ ((k + 1)ω,L) + ℘(kω, L) + ℘(ω,L))1/2 (4.2)

for an appropriate choice of the square root in each case.
We can take L = La and ω = ϕ(b)Λ(a)Ω∞/gr, where b is any integral ideal of K

prime to gr. Since E∗
1 (ω, La) is one of the conjugates of E∗

1 (Λ(a)Ω∞/gr, La) over H, it 
suffices to show that 2E∗

1 (ω, La) is integral at all places of Rr above 2. Let P be the 
point on Aσa corresponding to ω. We then have m = p1 · · · prq, which is odd. Now
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℘(kω,La) = x(kP ) +
a2
1,σa

+ 4a2,σa

12 , k = 1, 2, · · · ,m− 1.

Here a1,σa
, a2,σa

are the respective images of a1, a2 under σa, where a1, a2 are the usual 
coefficients of a global minimal Weierstrass equation for Aσa/H. However, x(kP ) is 
integral at all places of Rr above 2. Indeed, if x(kP ) is not integral at a place v above 2, 
the point kP would necessarily lie on the formal group of Aσa at v since Aσa has good 
reduction at v. But this is impossible because kP has odd order. Hence by (4.2), this 
completes the proof. �

For each M ∈ M and χ ∈ Ĝ, we now define

L(alg)(ϕ̄Mχ, 1) = L(ϕ̄Mχ, 1)
Ω∞/

√
M

, L(alg)(ψ̄M , 1) = L(ψ̄M , 1)
(Ω∞/

√
M)h

( ∏
a∈AM

Λ(a)
)−1

.

Note that the latter L-value belongs to K (cf. Théorème 7.1 in [8]). Now Proposition 4.1
and Theorem 3.2 for r = 0 give

ord2 (LS0(ϕ̄, σa, 1)/Ω∞) ≥ −1, (4.3)

whence, by (3.3) with s = 1,

ord2

(
L(alg)(ϕ̄χ, 1)

)
≥ −1 (4.4)

for all χ ∈ Ĝ. More generally, we have the following result.

Theorem 4.2. Assume that M ∈ M has r ≥ 0 prime factors. Then we have

ord2

(
L(alg) (ϕ̄Mχ, 1)

)
≥ r − 1, (4.5)

for all χ ∈ Ĝ.

Proof. We prove the theorem by induction on r, noting that it is true for r = 0 by (4.4). 
Now suppose that r ≥ 1, and assume by induction that (4.5) is valid for all M ∈ M

with strictly fewer than r prime factors. Suppose that M ′ is any element of M with r
prime factors. Let p be any prime dividing M ′, and let M be any positive divisor of M ′

which is not divisible by p. Since p is inert in K, the ideal (p) = pO splits completely in 
H, whence χ(σ(p)) = 1, where, as usual, σ(p) denotes the Artin symbol of (p) in G. We 
claim that we then always have

ϕM ((p)) = −p. (4.6)

We first note that necessarily ηM ((p)) = 1. Indeed, the prime p is unramified in the 
extension K(

√
M)/Q, and it is inert in K, whence it must then split in K(

√
M)/K
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because K(
√
M) = Q(

√−q, 
√
−Mq) is not a cyclic extension of Q. Moreover, recalling 

that ψ denotes the Grössencharacter of A/H, we must have ϕ((p)) = ψ(w) for every 
prime w of H lying above p. On the other hand, by the theory of complex multiplication, 
the complex L-series of A/Q(j(O)) coincides with the Hecke L-function L(ψ, s), whence 
it follows easily that we must have ψ(w) = −p, and so ϕ((p)) = −p, completing the proof 
of (4.6). Hence the value at s = 1 of the Euler factor at (p) of the L-series L(ϕ̄Mχ, s) is 
given by (

1 + p−1)−1
. (4.7)

Since ord2(1 +p−1) = 1 because we have assumed p is congruent to 1 modulo 4, it follows 
by induction that, writing S for the set of all primes of K dividing M ′, we have

ord2

(
LS(ϕ̄Mχ, 1)

Ω∞

)
= ord2

(
L(ϕ̄Mχ, 1)

Ω∞

)
·

∏
p|M ′/M

ord2
(
1 + p−1) ≥ r − 1 (4.8)

for all proper divisors M of M ′. Granted Proposition 4.1, the assertion (4.5) now follows 
from Corollary 3.3 with M ′ = Mr. This completes the proof. �
Corollary 4.3. If M ∈ M has r ≥ 0 prime factors, we have

ord2(L(alg)(ψ̄M , 1)) ≥ h(r − 1). (4.9)

In the next section, we will prove that, for all M ∈ M , E = A(M) satisfies E(H) =
O/2O. Hence the conjecture of Birch and Swinnerton-Dyer predicts that L(ψ̄M , 1) �= 0, 
and, also, since the Tamagawa factor at each of the bad primes of E is well-known to be 
2, that

ord2

(
L(alg)(ψ̄M , 1)

)
= ord2 (#X(E/H)(p)) + h(r + 1) − 2.

Unfortunately, it does not seem easy to prove that L(ψ̄M , 1) �= 0, nor possible to 
strengthen the averaging method used in this section to give the lower bound of h(r+1) −2
for ord2

(
L(alg)(ψ̄M , 1)

)
.

5. Trivial 2-Selmer groups

Again let K = Q(
√−q), where q is a prime congruent to 7 modulo 8, and let O be the 

ring of integers of K. Let E be any Q-curve defined over J = Q(j(O)). We now carry 
out a classical 2-descent on E.

We begin by recalling the definition of the 2-Selmer group of E. We use the standard 
notation for Galois cohomology groups. If f is any nonzero element of O, Ef will denote 
the Galois module of f -division points on E. In particular, we have the exact sequence 
of Galois modules
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0 E2 E(H) 2
E(H) 0,

which gives rise to a short exact sequence

0 E(H)/2E(H) λ H1(H,E2) H1(H,E)2 0.

This exact sequence has a local analogue for all places v of H. Hence we obtain the 
following commutative diagram with exact rows

0 E(H)/2E(H) λ H1(H,E2)

Res

H1(H,E)2

Res

0

0
∏

v E(Hv)/2E(Hv)
∏

v λv ∏
v H1(Hv, E2)

∏
v H1(Hv, E)2 0

.

(5.1)

We define the 2-Selmer group S2(E/H) of E over H and the Tate-Shafarevich group 
X(E/H) of E over H by

S2(E/H) = Ker
(

H1(H,E2) −→
∏
v

H1(Hv, E)
)
,

X(E/H) = Ker
(

H1(H,E) −→
∏
v

H1(Hv, E)
)
.

(5.2)

It follows immediately that we have a short exact sequence

0 E(H)/2E(H) λ
S2(E/H) X(E/H)2 0. (5.3)

Now, as is remarked in (17.2.1) of [9], we have E2 = μ2 × μ2, allowing us to view E2 as 
a trivial G-module, and then G = Gal(H/K) acts on H1(H, E2). Since the class number 
h of K is odd, the restriction map induces an isomorphism

H1(K,E2) � H1(H,E2)G.

We define S2(E) by

S2(E) = S2(E/H)G. (5.4)

We remark that E(H)/2E(H) is a G-module in the sense of Theorem 2.2, and the map 
λ : E(H)/2E(H) → H1(H, E2) is indeed a homomorphism of G-modules (cf. Theorem 
17.2.3 in [9]). Hence λ induces an injection
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λG : (E(H)/2E(H))G ↪→ S2(E). (5.5)

Hence the calculation of S2(E), rather than the full 2-Selmer group S2(E/H), can provide 
an upper bound of the Q-rank of E. In fact, by Theorem 2.2, we have

rankO/2O(E(H)/2E(H))G = n(E) + 1. (5.6)

Let D denote a square-free integer such that D ≡ 1 mod 4, with the property that 
each prime factor of D is inert in K. We denote by M (resp. N) the product of the primes 
dividing D, all of which are congruent to 1 modulo 4 (resp. congruent to 3 modulo 4). 
Thus

D = (−1)kMN,

where k is the number of prime factors of N . In what follows, we take E = A(D) so that 
E has good reduction outside the set of primes of H dividing qD. Now E2 = Ep ⊕ Ep∗ , 
and so we have

H1(H,E2) = H1(H,Ep) × H1(H,Ep∗) � (H×/H×2)2,

where the last isomorphism is given by multiplicative Kummer theory. Moreover, we 
have the injection

λ = (λp, λp∗) : E(H)/2E(H) ↪→ (H×/H×2)2

which is described as follows. If P is in E(H), we choose a point R in E(H) such that 
2R = P , and then define λ(P )(σ) = σ(R) −R. It follows that R generates an extension 
H(R) = H(

√
α, 

√
β) of H, where we may choose α and β such that

λ(P ) ≡ (α, β) mod H×2. (5.7)

For each prime v of H, the map λv = (λv,p, λv,p∗) can be described similarly. Thus, in 
order to determine S2(E), we must decide which elements of

H1(K,E2) � (K×/K×2)2 ↪→ (H×/H×2)2

are in the image of 
∏

v λv, viewed inside 
∏

v(H×
v /H×2

v )2. Now let Ov denote the ring of 
integers of Hv.

Lemma 5.1. Let v be any prime of H. If v � 2, then the image of λv has order 4. If v � qD, 
then the image of λv is contained in the subgroup (O×

v /O×2
v )2.
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Proof. For the first assertion, we remark that if v � 2, the classical theory of formal 
groups of elliptic curves shows that (cf. see Lemma 3.1 in [1])

#E(Hv)/2E(Hv) = #E(Hv)2 = 4,

and hence Im(λv) has order 4. The second assertion is essentially the same as Lemma 
22.1.3 in [9]. If v � 2qD, it is easily seen that the extension Hv(R)/Hv is unramified. It 
follows that α and β in (5.7) have even valuation at v, from which the image of λv is given 
by (O×

v /O×2
v )2. Finally, if v | 2, the assertion of the lemma follows from Proposition 3.6 

in [1]. �
The following lemma is a fundamental result on the theory of elliptic curves with 

complex multiplication.

Lemma 5.2. E has good reduction everywhere over the fields H(Ep2) and H(Ep∗2).

Proof. The proof uses the Serre-Tate homomorphism and is entirely similar to that given 
for Lemma 2.1 in [3]. �

The next sequence of lemmas gives the determination of the image of λv when v is a 
prime of bad reduction for E, that is, when v divides qD. If v lies above a prime p | D, 
then we have Hv = Kp. Similarly, if v divides q, then we have Hv = Kq where q denote 
the prime ideal 

√−qO of K. We also note that when v divides D, −1 is a square in Hv, 
but not a square when v divides q.

Lemma 5.3. Let v be any prime of H lying above a prime p | M . Then the image of λv

is given by

{(1, 1), (1,
√
−qD), (

√
−qD, 1), (

√
−qD,

√
−qD)} ⊂ (H×

v /H×2
v )2.

Proof. By the first assertion of Lemma 5.1, it clearly suffices to show that there exists 
P ∈ E(H) such that λv,p(P ) ≡ α ≡ √−qDmod H×2

v , and similarly for the map λv,p∗ . 
We will give the proof of the former case, because that of the latter one is essentially 
parallel.

Let P be any nonzero p-torsion point in E(H), and choose R ∈ Ep2 such that 2R = P . 
It follows that λv(P ) ≡ (α, 1) mod H×2

v , whence

Hv(R) = Kp(R) = Kp(
√
α). (5.8)

By Lemma 5.2, E has good reduction everywhere over H(Ep2). Since E has bad reduction 
at all the primes of H above p, the field Kp(R) should be ramified over Kp. We now 
define Fp = Kp(

√
D). If E is viewed as an elliptic curve defined over Fp, then it has 

good reduction. It allows us to consider the reduced curve Ẽ on the residue field of Fp, 
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which is isomorphic to Fp2 . Let αp be a root of the characteristic polynomial of the p-th 
Frobenius endomorphism for A over Fp. The curves A and E are isomorphic over Fp, so 
that we have

#Ẽ(Fp2) = #Ã(Fp2) = p2 + 1 − α2
p − ᾱ2

p.

However, p is a supersingular prime for A, it follows that αp + ᾱp = 0 and therefore

#Ẽ(Fp2) = (p + 1)2, (5.9)

which is divisible by 4, not by 8. It follows that E(Fp) has no p2-torsion points; otherwise, 
by Theorem 2.1, E(Fp) would contain the subgroup Z/4Z ×Z/2Z, and so does Ẽ(Fp2), 
which is a contradiction. Hence Kp(R) is not equal to Fp = Kp(

√
D). Moreover, as the 

field extension Fp(R) over Fp is quadratic, so is the field extension Kp(R) over Kp. Hence 
we have

Kp(R) = Kp(
√
uD),

where u is any non-square element in K×
p . However, 

√−q is always a non-square element 
in K×

p . By Hensel’s lemma, we may check this claim in the residue field Fp2 . We have

(√
−q

)2 = −q ∈ F×
p and

(√
−q

)2(p−1) = 1. (5.10)

The group F×
p2 is cyclic of order p2 − 1 = 2(p − 1) 

(
p+1
2

)
, where p+1

2 is odd. Thus 
√−q

is an odd power of a generator of F×
p2 , and so is a non-square element. �

Lemma 5.4. Let v be any prime of H lying above a prime p | N . Then the image of λv

is given by

{(1, 1), (1, D), (D, 1), (D,D)} ⊂ (H×
v /H×2

v )2.

Proof. The proof follows immediately from the similar arguments of the previous lemma. 
As in the proof of Lemma 5.3, one can obtain the equation (5.9). Contrary to Lemma 5.3, 
(p + 1)2 is divisible by 16, which follows that E(Fp) has all p2-torsion points. Hence we 
have

Kp(R) = Fp = Kp(
√
D) (5.11)

which completes the proof of the lemma. Here we remark that 
√−q is now a square 

element in K×
p . �

Lemma 5.5. Let v be any prime of H lying above q. Then the image of λv is given by

{(1, 1), (1, ε′
√
−qD), (ε

√
−qD, 1), (ε

√
−qD, ε′

√
−qD)} ⊂ (H×

v /H×2
v )2,
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where the values ε, ε′ are either 1 or −1.

Proof. Similarly, since E has bad reduction at all the primes of H above q, the field 
extension Kq(R) over Kq is ramified. Recall that −1 is not a square in Hv = Kq, and so 
we have

Kp(R) = Kq(
√√

−qD) or Kq(
√

−
√
−qD).

In any case, the assertion of the lemma follows Lemma 5.1. �
Combining all of these lemmas above, we finally obtain the following result.

Proposition 5.6. Let D ≡ 1 mod 4 be a square-free integer, all of whose prime factors are 
inert in K. For E = A(D), we have S2(E) � (O/2O)k+1 where k denotes the number of 
prime factors of D which are congruent to 3 modulo 4.

Proof. Let r ≥ k ≥ 0 be integers and write N = p1 · · · pk and M = pk+1 · · · pr. We now 
assume that (α, β) ∈ (K×/K×2)2 belongs to the image of λv for all v. By Lemma 5.1
and the fact that H is unramified over K, α and β have even valuation at all places v of 
K not dividing qD. Since the class number of K is odd, we may write

α ≡ (−1)a(
√
−q)bpm1

1 · · · pmr
r mod K×2,

β ≡ (−1)c(
√
−q)dpn1

1 · · · pnr
r mod K×2,

(5.12)

where a, b, c, d and all the mi, ni belong to {0, 1}. Hence the Selmer group S2(E) ⊂
(K×/K×2)2 consisting of such pairs (α, β), restricts isomorphically onto

(K×
q /K×2

q )2 × (K×
p1
/K×2

p1
)2 × · · · × (K×

pr
/K×2

pr
)2.

Note that 
√−q ∈ K×

p is a square if p | N , and is a non-square if p | M . Moreover, by 
using a similar argument, all the pj with j �= i are squares in Kpi

. Comparing these 
facts with Lemma 5.3, Lemma 5.4 and Lemma 5.5, it follows that the exponents a and 
mk+1, · · · , mr (resp. c and nk+1, · · · , nr) are determined by b (resp. d). Moreover, the 
exponents b and m1, · · · , mk (resp. d and n1, · · · , nk) are independent of each other. 
Hence we conclude that S2(E) is isomorphic to (O/2O)k+1. �
Corollary 5.7. Assume that k = 0, in other words, D = M ∈ M . For E = A(M), we 
have S2(E) � O/2O and E(H) = O/2O.

Moreover, it is easily seen that the root number of E = A(D) is −1 whenever k is odd. 
Hence we also have the following corollary.

Corollary 5.8. Assume that k = 1. For E = A(D), we have E(H) = Oh ⊕ O/2O. In 
particular, the Mordell-Weil group E(H) has Q-rank 1.
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Finally, combining with the results of Yang [14], the proposition implies that the 
2-primary subgroup of the Tate-Shafarevich group of Q-curves can be arbitrary large.

Corollary 5.9. Assume that √q ≥ (12/π)D logD. For E = A(D), we have

dimF2 X(E/H)2 ≥ k.

Proof. Indeed, Yang proved in Theorem 3.4 of [14] that if √q ≥ (12/π)D logD, we have 
L(E/H, 1) �= 0. A theorem of Rubin [11] then implies that the Mordell-Weil group E(H)
is finite, and hence E(H) = O/2O. By Proposition 5.6 and the short exact sequence 
(5.3), we obtain the inequality

dimF2(X(E/H)2)G ≥ k. �
We are also interested in the 2-primary subgroup of the Tate-Shafarevich group 

X(E/H)(2) in Corollary 5.7 and Corollary 5.8. Unfortunately, we do not have any 
idea at present how to compute its order by elementary means, even though the short 
exact sequence (5.3) implies that

X(E/H)(2)G = 0.

However, it does not mean that one always has X(E/H)(2) = 0. Indeed, Villegas [13]
has computed the conjectural order of X(A/H) predicted by the conjecture of Birch and 
Swinnerton-Dyer for all primes q < 3000, and the table at the end of his paper shows 
that the conjectural order of X(A/H)(2) is non-trivial, and in fact of order at least 16, 
when

q = 431, 751, 1367, 1399, 1423, 1823, 1879, 2063, 2543, 2687, 2767.
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