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a b s t r a c t 

A micromechanical model for quantifying the simultaneous influence of irradiation hardening and 

swelling on the mechanical stiffness and strength of neutron-irradiated austenitic stainless steels is pro- 

posed. The material is regarded as an aggregate of equiaxed crystalline grains containing a random dis- 

persion of pores (large voids due to large irradiation levels) and exhibiting elastic isotropy but viscoplastic 

anisotropy. The overall properties are obtained via a judicious combination of various bounds and esti- 

mates for the elastic energy and viscoplastic dissipation of voided crystals and polycrystals. Reference 

results are generated with full-field numerical simulations for dense and voided polycrystals with peri- 

odic microstructures and crystal plasticity laws accounting for the evolution of dislocation and Frank loop 

densities. These results are calibrated with experimental data available from the literature and are em- 

ployed to assess the capabilities of the proposed model to describe the evolution of mechanical properties 

of highly irradiated Solution Annealed 304L steels at 330 o C. The agreement between model predictions 

and simulations is seen to be quite satisfactory over the entire range of porosities and loadings inves- 

tigated. The expected decrease of overall elastic properties and strength for porosities observed at large 

irradiation levels is reported. The mathematical simplicity of the proposed model makes it particularly 

apt for implementation into finite-element codes for structural safety analyses. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Many structural components within the vessel of Pressurized

ater Reactors (PWR) are made of austenitic stainless steels. These

o-called “internals” are found, for instance, in subsystems associ-

ted with many safety functions in western-type PWR, such as for

ore support, reactivity control, core cooling, and instrumentation

vailability [1] . In French 1300 MWe nuclear power plants operat-

ng under normal conditions, internals are subject to temperatures

anging from 286 ◦C to 370 ◦C [1] and to neutron irradiation doses

roducing up to a hundred displacements per atoms (dpa) over the

eactor lifetime [2] . Such operating environments can induce sig-

ificant changes in the microstructure and microchemistry of the

teel that degrade its mechanical properties [3] . However, the op-

rating environment and ensuing degradation of a particular inter-

al depends on its location relative to the core. This has motivated
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he development of engineering models to assess the influence of

rolonged irradiation periods on the mechanical properties of in-

ernals as a function of environmental conditions. 

Recent models proposed in [4,5] rely on finite-element descrip-

ions wherein bulk steel is represented as a periodic aggregate of

ingle crystals and the elastoplastic deformations within the crys-

als are described by constitutive laws that account for the evolu-

ion of dislocation and Frank loop densities [6,7] . These microme-

hanical models are able to reproduce the increase in macroscopic

ensile strength along with the significant reduction of strain hard-

ning typically observed in irradiated steels, and therefore serve

o quantify the degradation of mechanical properties due to irra-

iation. However, a basic assumption of these models is that the

rystals are fully dense. Now, some microscopic analyses of in-

ernals of PWR have revealed the occasional presence of intra-

ranular voids or cavities that could be associated with incipient

welling [8,9] . Many observations of macroscopic void swelling in

ast Breeder Reactors (FBR) have also been reported in the open

iterature [9] . Swelling normally exhibits an incubation period fol-

owed by a steady growth rate in the range of 1% per dpa [9] ; it

https://doi.org/10.1016/j.jnucmat.2020.152463
http://www.ScienceDirect.com
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is sensitive to several parameters including chemical composition,

heat treatment and mechanical processing of the material, irradia-

tion temperature, dpa and dpa rate, and irradiation spectrum. The

presence of such intragranular porosity levels is expected to fur-

ther degrade the mechanical properties. Motivated by these obser-

vations, the purpose of this work is to propose a micromechani-

cal model for quantifying the simultaneous influence of irradiation

hardening and swelling on the mechanical stiffness and strength

of austenitic steels subject to general stress states. The model re-

gards bulk steel as a polycrystalline aggregate of equiaxed grains

containing a random dispersion of voids and exhibiting an elasto-

viscoplastic microscopic response. The focus is on large irradiation

doses whereby the microscopic response no longer evolves with ir-

radiation damage. The macroscopic elasto-viscoplastic response for

a given degree of swelling is then obtained via a judicious combi-

nation of various bounds and estimates for the elastic energy and

viscoplastic dissipation of voided crystals and polycrystals. Refer-

ence results are also generated with full-field numerical simula-

tions for dense and voided polycrystals with periodic microstruc-

tures and the crystal plasticity laws of [6,7] . These results are cal-

ibrated with experimental data available from the literature and

employed to assess the capabilities of the proposed micromechan-

ical model to describe the evolution of mechanical properties of

highly irradiated Solution Annealed 304L steels at 330 o C. The pro-

posed model provides the elasto-viscoplastic deformation rate in

terms of the stress, the stress rate, and the degree of swelling,

as required by common phenomenological models for irradiated

stainless steels [10] . 

2. Analytical model 

2.1. Microstructure 

Austenitic stainless steels are regarded as random aggregates

of perfectly bonded single crystals, or grains, containing a disper-

sion of microvoids or pores whose level depends on the irradiation

dose. Only large voids due to large irradiation levels are consid-

ered in this study. Individual grains are assumed to be of similar

size, much smaller than the size of the aggregate and the scale

of variation of the applied loads, while the voids are assumed to

be much smaller than the grains. Furthermore, the aggregates are

assumed to have statistically uniform and ergodic microstructures.

For simplicity, the model assumes that aggregates are untextured

and porosity dispersion is isotropic. This is motivated by an obser-

vation reported in [11] on an irradiated SA304L stainless steel, in

which the spatial distribution of the cavities was found to be ho-

mogeneous. 

2.2. Microscopic response 

The local deformation of the grains is assumed to be the addi-

tive composition of an elastic part and a viscoplastic part due to

slip along the standard twelve slip systems of face-centered cubic

crystals ({111} 〈 110 〉 ). The total strain rate is thus written as 

˙ ε = 

˙ ε 

el + 

12 ∑ 

s =1 

˙ γ (s ) μ(s ) (1)

with each term characterized by 

˙ ε 

el = S : ˙ σ and ˙ γ (s ) = ˙ γ0 

∣∣∣∣σ : μ(s ) 

τ0 

∣∣∣∣n 

sign 

(
σ : μ(s ) 

)
, (2)

where σ, ε , ε el , and μ( s ) denote the local stress, total infinitesimal

strain, elastic strain, and Schmid tensors, respectively, ˙ γ (s ) denotes

the slip rate along the system s , and a dot over a variable denotes
ts time derivative. The inner product σ : μ( s ) of the two second-

rder tensors σ and μ( s ) is defined as σi j μ
(s ) 
i j 

. The Schmid tensor

( s ) is obtained from the symmetrized dyadic product of the two

nit vectors n 

( s ) , normal to the slip plane, and m 

( s ) , along the slip

irection of the s th system. They are specified in Appendix A for

ace-centered cubic crystals. The elastic compliance tensor is taken

f the form 

 = 

1 

3 k 
J + 

1 

2 μ
K , (3)

here J and K denote the standard fourth-order isotropic projec-

ion tensors [12] . The microscopic response is therefore fully char-

cterized by the bulk and shear moduli k and μ, the creep expo-

ent n , the flow stress τ 0 , and the reference strain rate ˙ γ0 . Thus,

he description neglects elastic anisotropy, plastic hardening, and

ariability of flow stress amongst slip systems, allowing for analyt-

cal treatment. These simplifications are introduced in order to get

n analytical model together with few parameters to be identified.

he comparisons provided in Section 4 suggest that this simplified

escription of the local deformation does not compromise the ca-

abilities of the model. 

.3. Macroscopic response 

The macroscopic response is characterized by the relation be-

ween the macroscopic stress � and strain E tensors, which are

dentified with the volume averages of their local counterparts

ver a representative volume element of the voided polycrystal.

he proposed model neglects any elastoplastic coupling at this

evel, so that the macroscopic strain rate ˙ E is the additive com-

osition of an elastic part ˙ E 

el and a viscoplastic part ˙ E 

v p : 

˙ 
 = 

˙ E 

el + 

˙ E 

v p . (4)

he dependence of each term on the macroscopic stress tensor �
s obtained by a judicious combination of various bounds and esti-

ates for the elastic energy and viscoplastic dissipation of voided

rystals and polycrystals. Mathematical derivations and definitions

f the model are provided in Appendix A . The resulting constitu-

ive relations are 

˙ 
 

el = ̃

 S : ˙ � and 

˙ 
 

vp = ˙ γ0 

∣∣∣∣ λ

τ0 

∣∣∣∣n 
f ∗

3 

(
1 − n − 1 

n + 1 
h −2 ( �m /λ) 

)
h ’ ( �m /λ) i + 

3 

β
( �d /λ) 

f ∗
(

1 − n − 1 

n + 1 
h −2 ( �m /λ) 

)
h ’ ( �m /λ) ( �m /λ) + 

2 

β
( �eq /λ) 

2 
sign ( λ) , 

(5)

here i and �d denote the identity and stress deviator tensors, re-

pectively, �m 

= tr �/ 3 and �eq = 

√ 

(3 / 2) �d : �d are the macro-

copic hydrostatic and von Mises equivalent stresses, f is the to-

al porosity of the aggregate for the irradiation level considered —

enceforth simply referred to as porosity—, f ∗ = q f is a modified

orosity by a fixed parameter q , the overall compliance tensor is

iven by 

 

 = 

1 

3 ̃

 k 
J + 

1 

2 ̃

 μ
K (6)

ith 

˜ k = k − f 
k 

1 − ( 1 − f ) k 
k + k ∗

, ˜ μ = μ − f 
μ

1 − ( 1 − f ) 
μ

μ+ μ∗
, 

 

∗ = 

4 

3 

μ, μ∗ = 

μ

6 

9 k + 8 μ

k + 2 μ
, (7)

he gauge factor λ is solution to the nonlinear equation 

1 

β
(�eq /λ) 2 + f ∗

(
h (�m 

/λ) + 

n − 1 

n + 1 
h −1 (�m 

/λ) 
)

= 1 + 

n − 1 

n + 1 
f ∗2 , (8)
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Table 1 

Values of α and β entering the gauge surface (8) for some val- 

ues of exponent n . 

n 1 2 3 5 10 15 

α 0.651 1.165 1.397 1.597 1.743 1.789 

β 1.502 2.732 3.586 4.541 5.457 5.793 

Table 2 

Description of the microstructures. 

Porosity 

( f ) 

Number of 

voids 

Mean number 

of voids per 

grain 

Approximate number 

of voxels per void 

0 0 0 - 

0.02 2048 4 1310 

0.04 4096 8 1310 

0.06 6144 12 1310 

0.08 8192 16 1310 
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Fig. 1. Microstructures employed in numerical model for various porosity levels 

and number of voids. Three different void distributions are considered in mi- 

crostructures with porosity levels 2% and 4%. 

c  

e  

T  

d

γ

w  

b  

s  

i

τ

w  

n  

t  

fi  

w

r

a

r  
nd the function h , with derivative h ′ , is given by 

 ( x ) = 

(
1 + 

| x | 1+ 1 n 

αn 

)n 

. (9) 

he coefficients α and β in these expressions depend on the

reep exponent n and local plastic anisotropy as discussed in

ppendix A . Table 1 specifies numerical values for common creep

xponents and the local plastic anisotropy assumed by (1) –(2) for

ace-centered cubic crystals. This set of expressions serves to fully

haracterize the elasto-viscoplastic response of the porous poly-

rystalline aggregate for any multiaxial loading history. As irradi-

tion dose progresses, the porosity f —and eventually some local

aterial parameters— will evolve. The resulting stiffness is dic-

ated by expressions (7) —the Young’s modulus following from
˜ 
 = 9 ̃ k ̃  μ/ ( ̃  μ + 3 ̃ k ) —, while the resulting strength is identified with

he flow stress deep in the plastic range. 

. Numerical model 

.1. Microstructure 

In contrast to the analytical model considered above, the nu-

erical model idealizes stainless steels as periodic aggregates of

rains describing a Voronoi tessellation and containing an isotropic

istribution of spherical voids. Fig. 1 shows the various unit cells

mployed in this study. These cells contain 512 grains and a vary-

ng number of intragranular mono-sized voids. The same Voronoi

essellation is used for all these microstructures. For porosity levels

f 0.02 or 0.04, three distinct sets of positions of the centers of the

oids are considered. For each of these microstructures, the poros-

ty over the whole volume and the number of voids in the total

olume is prescribed. It is noted that the voids are always of the

ame size, and are located entirely inside the grains, even though

umerous voids may fall in areas close to the grain boundaries. The

enters of the voids are supposed to be randomly distributed in-

ide the grains. The precise number of grains and voids employed

ollows from the parametric study reported in Appendix B . A sum-

ary of these microstructural parameters is provided in Table 2 . 

.2. Microscopic response 

The local deformation of the grains is assumed to follow

 physically-based crystal plasticity law recently developed by

6,7] specifically for irradiated SA304L steels at 330 ◦C. This crystal

lasticity law was used by [4] for studying the intergranular stress

istribution in irradiated stainless steels, by [13] for studying the

oid growth and coalescence of voids in irradiated face-centered
ubic single crystals, and by [14] for a comparison between finite

lement and Fast Fourier transforms-based methods simulations.

his law assumes the same additive form (1) to (2) for the local

eformation but with the slip rates given by 

˙ (s ) = 

{ | σ : μ(s ) | − τ (s ) 
c 

K 0 

}n 

sign (σ : μ(s ) ) , (10) 

here K 0 is a Norton parameter and { · } denote the Macaulay

rackets. In turn, the material parameters τ (s ) 
c represent critical re-

olved shear stresses that evolve with plastic deformation accord-

ng to a hardening law of the form 

(s ) 
c = τ̄0 + τa exp 

(
−| γ (s ) | 

γ̄0 

)
+ μ̄

√ 

12 ∑ 

u =1 

a su r 
(u ) 
D 

+ αL μ̄

√ 

4 ∑ 

p=1 

r (p) 
L 

, 

(11) 

here the internal variables r (s ) 
D 

and r 
(p) 
L 

represent, respectively,

ormalized densities of dislocations moving along the twelve crys-

alographic directions {111} 〈 110 〉 and densities of Frank loops de-

ned on the four crystalographic planes {111}, which in turn evolve

ith plastic deformation according to 

˙ 
 

(s ) 
D 

= 

( 

1 

κ̄

√ 

12 ∑ 

u =1 

b su r 
(u ) 
D 

+ 

1 

κ̄

√ 

K dl 

4 ∑ 

p=1 

r (p) 
L 

− G c r 
(s ) 
D 

) 

| ̇ γ (s ) | (12) 

nd 

˙ 
 

(p) 
L 

= −A L (r (p) 
L 

− r sat 
L ) 

( 

3 ∑ 

s ∈ plane p 

| ̇ γ (s ) | 
) ( 

3 ∑ 

s ∈ plane p 

r (s ) 
D 

) 

. (13)
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Table 3 

Model parameters for SA304L stainless steel at 330 o C and irradiated to 13 dpa, taken from [6] . Top row: parameters in 

absolute units. Middle and bottom row: normalized parameters. 

C 11 C 12 C 44 μ̄ K 0 τ a 

199 GPa 136 GPa 105 GPa 65.5 GPa 10 MPa s 1/ n 61.2 MPa 

n G c κ̄ a 1 a 2 a 3 a 4 a 5 a 6 
15 10.4 42.8 0.124 0.124 0.070 0.625 0.137 0.122 

b ii b ij i � = j r 0 D r 0 L K dl αL A L r sat 
L 

0 1 1 . 03 10 −11 4 . 9 10 −6 2 . 50 10 −7 0.57 5.548 10 8 3 . 234 10 −6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Tensile response. Comparison between experiments and numerical model. 
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Unlike the law employed in the analytical model, this law

accounts for elastic anisotropy and plastic hardening. Elastic

anisotropy is accounted for by assuming a cubic elasticity ten-

sor C ≡ S 
−1 ; plastic hardening is accounted for via twelve dislo-

cation densities and four Frank loop densities. The critical resolved

stresses are coupled with the dislocation densities via a twelve by

twelve dislocation interaction matrix a su with six independent pa-

rameters (general form specified in Appendix A ), while the various

dislocation densities are themselves coupled via a twelve by twelve

matrix b su indicated in Table 3 . Initially, the normalized dislocation

densities are assumed to take the same value r 0 
D 

in all slip systems,

and the normalized Frank loop densities are assumed to take the

same value r 0 
L 

for all slip planes. To account for a dislocation un-

lock mechanism, a reference slip denoted by γ̄0 has been intro-

duced to adjust the speed of avalanche after unlocking the dislo-

cations. For a detailed description of the physical basis behind this

description the reader is referred to [4,6,7] . 

3.3. Macroscopic response 

As in the analytical model, the macroscopic response is identi-

fied with the relation between the volume averages of the stress

and strain fields over a representative volume element. To com-

pute these fields for given loading conditions, the above constitu-

tive equations were implemented in the software CraFT [15] which

solves the mechanical field equations by means of a Fast-Fourier

Transform (FFT) algorithm proposed by [16,17] to determine the

effective properties of periodic composites, and integrates the re-

sponse in time with a fully implicit scheme [18] . Following the

work of [19] on porous viscoplastic crystals, we adopt the FFT algo-

rithm often referred to as the “basic scheme” which ensures strain

compatibility. The scheme discretizes the unit cell with a regular

grid composed of voxels. Based on the parametric study reported

in Appendix B we adopt a grid of 512 3 voxels so that there are 64 3 

voxels per grain on average and about 1310 voxels per void. 

Results are generated by imposing mixed loading conditions

[20] : the direction of the overall stress ( �o ) is prescribed together

with the strain-rate in this direction. At each iteration j of the gen-

eral algorithm, two errors are computed to check convergence. One

is relative to the local equilibrium condition, 

err 1 ( j) = 

〈 ∥∥div σ( j) 
∥∥2 
〉 1 / 2 ∥∥〈 σ( j) 〉 ∥∥ , (14)

while the other is relative to the prescribed direction of the macro-

scopic stress: 

err 2 ( j) = 

∥∥〈 σ( j) 〉 − k̄ �o 
∥∥∥∥k̄ �o 

∥∥ . (15)

Here, k̄ indicates the unknown level of overall stress, 〈 σ( j ) 〉 is the

volume average of the stress at iteration j (with the following no-

tation 〈·〉 = 1 / | 
| ∫ 
 ·d
, where 
 is the entire domain) and ‖ . ‖
denotes the Euclidean norm squared. The iterative procedure is

stopped when the errors err 1 and err 2 are respectively smaller

than 10 −2 and 10 −4 . 
In the sequel, predictions for a tensile loading are obtained by

xing a macroscopic stress direction with only one non-vanishing

omponent �33 > 0, applying a strain rate ˙ E 33 = 3 × 10 −4 s −1 ,

nd stopping when E 33 reaches 3 × 10 −2 . In turn, predictions for

 purely hydrostatic loading are obtained by fixing �o equal to the

dentity tensor, applying a hydrostatic strain rate ˙ E m 

= ( ̇ E 11 + 

˙ E 22 +
˙ 
 33 ) / 3 = 3 × 10 −4 s −1 , and stopping when E m 

reaches 3 × 10 −2 . Fi-

ally, mixed stress states are obtained by fixing 

o = 

( 

�o 
11 0 0 

0 �o 
11 0 

0 0 1 

) 

with 0 ≤ �o 
11 ≤ 1 , (16)

pplying the rate �o 
11 

˙ E 11 + �o 
11 

˙ E 22 + 

˙ E 33 = 9 × 10 −4 s −1 , and stop-

ing when that combination reaches 9 × 10 −2 . Another stress state

ncluding simple shear is tested by fixing 

o = 

( 

1 �o 
12 0 

�o 
12 1 0 

0 0 1 

) 

with 0 ≤ �o 
12 ≤ 1 . 732 , (17)

pplying the rate ˙ E 11 + 

˙ E 22 + 

˙ E 33 + 2�o 
12 

˙ E 12 = 9 × 10 −4 s −1 , and

topping when that combination reaches 9 × 10 −2 . 

. Results 

.1. Numerical model versus experimental observations 

We begin by calibrating the numerical model of Section 3 with

vailable experimental observations for fully dense steels. To that

nd, we adopt all material parameters from reference [6] with the

xception of γ̄0 and τ̄0 . The various numerical values are given

n Table 3 with the elastic constants reported in Voigt notation.

 relatively high creep exponent is employed to represent a low

train-rate sensitivity. The remaining parameters γ̄0 and τ̄0 are

hen used to fit various tensile curves of irradiated SA304L steels

t about 300 o C and high exposure levels —at least 10 dpa— re-

orted by [4,6,21] . Fig. 2 shows comparisons between those mea-

urements and numerical predictions obtained with γ̄ = 0 . 5 and
0 
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Fig. 3. Numerical predictions for the tensile response of porous polycrystals with 

the microstructures of Fig. 1 . 
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Fig. 4. Overall Young’s modulus as a function of swelling. 

Fig. 5. Overall maximal stress as a function of swelling. 
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¯0 = 58 MPa. These values are seen to reproduce the experimen-

al measurements with reasonable accuracy. In this connection, it

s observed that the experimental curves exhibit a slight soften-

ng just after the maximal stress. In line with [6] , we understand

hat this softening is not due to the stretching of the tensile speci-

en or to the ductile damage, but rather due to the specific dislo-

ation dynamics. The crystal plasticity laws of Section 3.2 can re-

roduce such a peak with a suitable choice of parameters. Indeed,

¯0 adjusts the speed of avalanche after unlocking the dislocations,

nd therefore decreasing its value enhances the peak on the over-

ll stress–strain curve of the polycrystal —often called ”yield point”

henomenon—, while τ̄0 adjusts the maximum stress level. How-

ver, numerical results for material responses with well-defined

eaks were found to exhibit pronounced dependences on the grid

ize. For this reason, we have opted for a description that identifies

aximum stress levels with those developed deep in the plastic

ange. 

The calibrated model is now used to generate results for porous

aterials. Fig. 3 shows the tensile curves obtained with the vari-

us microstructures presented in Section 3 . As expected, intragran-

lar porosity reduces the overall Young’s modulus and the max-

mal overall stress. It is seen that the three microstructures with

% porosity —microstructures (a), (b) and (c) in Fig. 1 — lead to

imilar tensile curves: the full-line, dashed and dotted curves in

ig. 3 are visually indistinguishable. A similar conclusion is reached

or 4% porosity. This confirms the appropriate representativeness

f the distribution voids within the unit cell. Thus, we can ex-

ract from these curves representative results for the evolution of

oung’s modulus and maximal stress with swelling, and compare

hem with experimental measurements. 

The evolution of the overall Young’s modulus ˜ E as a function

f swelling is reported in Fig. 4 , along with experimental measure-

ents of [22,23] on a Russian cold-worked austenitic steel. Here,

he swelling is defined in terms of the porosity f as f/ (1 − f ) , and
˜ 
 0 denotes the Young’s modulus for the fully dense material. The

ested samples were cut from fuel element cladding tubes that had

een irradiated in the BN-600 fast reactor. The numerical model is

ound to be in reasonable accord with experiments. According to

he model, a porosity level of 8% causes a 15% reduction in Young’s

odulus. 

The corresponding evolution of overall maximal stress ˜ R m 

in

imulations and experiments is reported in Fig. 5 , along with ex-

erimental measurements of [24] on a Russian Kh18H10T annealed

ustenitic stainless steel. The tested samples come from a duct ir-

adiated in the BOR-60 fast reactor. In this connection, it is recalled

hat the Kh18H10T steel is the primary construction material of in-
ernals in Russian water-cooled, water-moderated energy reactors,

nd that the closest Western analog of this material is the 321

tainless steel [24] . Results reported in Fig. 5 correspond to tests

onducted at or near the irradiation temperature, from 360 ◦C to

30 ◦C. Once again, the numerical model is found to be in reason-

ble accord with experiments. According to the model, a porosity

evel of 8% causes a 20% reduction in maximal stress. 

.2. Analytical versus numerical models 

The above numerical model is now used to assess the capabili-

ies of the simple analytical model presented in Section 2.3 to re-

roduce the response of a SA304L at 330 ◦C. We begin by calibrat-

ng the analytical model with the tensile response of a fully dense

aterial predicted by the numerical model. To that end, analyt-

cal predictions are obtained by integrating in time Eqs. (4) and

5) using an explicit Runge–Kutta 3(2) method with adaptative

ime step. At each iteration, the value of | λ| is obtained by solv-

ng the non-linear Eq. (8) with a Newton method. Following [6] ,

he local elastic moduli are set to k = 156 . 7 GPa and μ = 65 . 7 GPa.

n turn, the creep exponent n is set to the same value as in the

umerical model, i.e. n = 15 , and the reference strain-rate is set to

˙ 0 = 1 s −1 . For that creep exponent, the coefficients α and β are

iven by 1.789 and 5.793, respectively. Finally, a suitable value for

he flow stress τ 0 is identified by confronting the analytical and

umerical responses. The comparison shown in Fig. 6 corresponds

o τ0 = 498 MPa, which is deemed suitable. The complete set of

aterial parameters is summerized in Table 4 . 
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Fig. 6. Tensile curves: comparison between analytical and numerical predictions for 

the choice τ0 = 498 MPa. 

Table 4 

Parameters of the analytical model. 

k μ n ˙ γ0 τ 0 α β q 

156.7 GPa 65.7 GPa 15 1 s −1 498 MPa 1.789 5.793 2 

Fig. 7. Porous polycrystals under purely hydrostatic loading. Numerical simulations 

performed on the microstructures of Fig. 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Evolution of the overall Young modulus with respect to the porosity: mi- 

cromechanical model and FFT-based numerical full-field simulations. 

Fig. 9. Evolution of the overall bulk modulus with respect to the porosity: mi- 

cromechanical model and FFT-based numerical full-field simulations. 

Fig. 10. Overall maximal stress under uniaxial tension versus porosity: comparison 

between analytical and numerical models. 

d  

o  

t  

n  

r  

u  

t  

i  
Having calibrated the analytical model with the response for

fully dense materials, we can confront the analytical and numerical

predictions for porous materials. Figs. 8 and 9 show comparisons

for the overall Young’s modulus and bulk modulus versus porosity.

It is recalled that, in view of the overall isotropy, these two pa-

rameters completely characterize the elastic response. The agree-

ment between the models is seen to be quite satisfactory over the

entire range of porosity levels considered. This is in line with the

observations of [25] and theoretical predictions of [26] . Note that

the numerical predictions for the bulk modulus are obtained from

the purely hydrostatic loading case presented in Section 3.3 and

reported in Fig. 7 . 

The analytical description of the viscoplastic response contains

an additional parameter q in the definition of the modified poros-

ity f ∗. This parameter has been introduced following the experience

of [27] with the so-called standard GTN model for isotropic porous

plasticity to adjust the porosity percolation threshold at which the

material is expected to completely loose its load carrying capacity

[28] . A suitable value for q is identified by comparing the analyt-

ical and numerical predictions for the overall maximal stress un-
er uniaxial tension. Fig. 10 shows a comparison for q = 2 . Based

n the good agreement observed, this value is deemed suitable. In

his connection, it should be noted that the analytical model does

ot account for plastic softening and therefore does not exhibit a

igorous maximal stress. The maximal stress reported in this fig-

re corresponds to the stress level deep in the plastic range. Given

he large creep exponent employed, this stress level is relatively

nsensitive to the strain rate, at least within the range of strain
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Fig. 11. Overall maximal stress under hydrostatic tension versus porosity: compari- 

son between the analytical and numerical models. 

Fig. 12. Axisymmetric direction of macroscopic stress �o as specified in (16) . 

Macroscopic hydrostatic and equivalent stresses obtained at the end of the sim- 

ulations. Comparison between the micromechanical model and the FFT simula- 

tions. FFT simulations performed on the microstructure (a) with 4% porosity of 

Figure 1 . 

Fig. 13. Direction of macroscopic stress �o including simple shear as specified in 

(17) . Macroscopic hydrostatic and equivalent stresses obtained at the end of the 

simulations. Comparison between the micromechanical model and the FFT simu- 

lations. FFT simulations performed on the microstructure (a) with 4% porosity of 

Fig. 1 . 
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ates of interested in applications. Having fixed this last parameter,

o further fitting is required. The analytical model now provides

 predictive tool for the material response under general loading

onditions. Fig. 11 shows a comparison between the analytical and

umerical estimates for the overall maximal stress under hydro-

tatic tension. Analytical predictions are seen to remain accurate

or this loading condition in the entire range of porosity levels

onsidered. To confirm the accuracy of the model for more gen-

ral loading conditions, further comparisons are reported for the

ultiaxial stress states defined in Section 3.3 . The macroscopic hy-

rostatic and equivalent stresses obtained at the end of the sim-

lations of a specimen with moderate porosity level are plotted

n Figs. 12 and 13 . Once again, the agreement is seen to be satis-

actory over the whole range of stress states investigated despite

he fact that some of these stress states induce a different plastic

nisotropy from that induced by the uniaxial loading employed in

he calibration of the model. 

. Conclusions 

A micromechanical model for quantifying the simultaneous in-

uence of irradiation hardening and swelling on the mechani-

al stiffness and strength of neutron-irradiated austenitic stainless

teels has been proposed. The model makes use of several simpli-

ying assumptions allowing for a fully explicit elasto-viscoplastic

escription. In turn, reference results were generated with full-

eld numerical simulations for dense and voided polycrystals with

eriodic microstructures and crystal plasticity laws accounting for

he evolution of dislocation and Frank loop densities. These results

ere calibrated with experimental data available from the litera-

ure and were employed to assess the capabilities of the proposed

odel to describe the evolution of mechanical properties of highly

rradiated Solution Annealed 304L steels at 330 o C. The agreement

etween analytical and numerical predictions for stiffness and me-

hanical strength was found to be quite satisfactory over the en-

ire range of porosities and loadings investigated. The expected de-

rease of these properties for porosities observed at large irradi-

tion levels has been reported for porosity levels up to 8%. The

implicity of the analytical model comes at the expense of ne-

lecting the influence of local elastic anisotropy and plastic hard-

ning on the overall response. While the former is indeed negligi-

le, the latter may be non-negligible at least for some aspects of

he overall response not considered in this work, such as strain to

ailure. Fortunately, the multiscale nature of the analytical model

ould be exploited to incorporate plastic hardening through appro-

riate evolution laws for the local flow stress. In terms of the me-

hanical properties considered in this work, however, the analytical

odel seems suitable. Furthermore, in view of its capabilities and

athematical simplicity, the model is considered particularly apt

or implementation into finite-element codes for structural safety

nalyses. 
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Appendix A. Analytical model: derivations 

Micromechanical models for the elastic properties of austenitic

stainless steels subjected to radiation swelling are proposed in

[25] . In their work, the voids due to irradiation are considered as

randomly located, spherical in shape and embedded in an isotropic

elastic matrix. In [25] , the most widely used mean-field meth-

ods in micromechanics are implemented to calculate the effective

elastic properties, such as the non-interaction approximation (of-

ten called dilute limit approximation), the Hashin-Shtrikman up-

per bound [26] with the matrix as the reference medium (which

coincides with the Mori-Tanaka scheme [29] in the present case),

the differential scheme, the self-consistent scheme (see [30] among

others for a description of these models). The results are compared

with the experimental data of [22] . It is shown that, for the effec-

tive Young modulus, all the schemes give reasonable approxima-

tion and none can be called preferential. Here, following [25] , we

make use of the Hashin and Shtrikman upper bound to estimate

the effect of voids on the elastic properties of irradiated SA304L

austenitic stainless steel. The overall compliance tensor is given in

(6) . 

The macroscopic viscoplastic strain-rate is estimated through a

recent model proposed by [18] which is based on the definition

of a gauge surface for a porous FCC polycrystal with intragranular

voids. 

A1. A model for porous media with isotropic viscoplastic matrix 

First, let us recall a result from [31] in the case of an isotropic

porous material with an isotropic viscoplastic matrix described by

a simple Norton law of exponent n and spherical voids. In this

work, the local behavior of the matrix is governed by a stress po-

tential 

˙ ε 

v p = 

∂u 

∂σ
(σ) with u (σ) = 

˙ ε 0 σ0 

n + 1 

(
σeq 

σ0 

)n +1 

, (A.1)

where ˙ ε 0 and σ 0 are constants. The macroscopic response can

be characterized by an effective dissipation potential ˜ u such that

[32] 

˙ E 

v p = 

∂ ̃  u 

∂�
(�) , (A.2)

where ˜ u , in the present case, is a homogeneous function of degree

n + 1 which can be written under the following form 

˜ u ( �) = 

˙ ε 0 σ0 

n + 1 

( | λ( �) | 
σ0 

)n +1 

. (A.3)

λ( �) is a homogeneous function of degree 1 in �. Gauge surfaces

are equipotential surfaces used to characterize the domain of stat-

ically admissible stresses. They completely characterizes the effec-

tive response and they correspond to the yield surfaces in rate-

independent plasticity [31] . The effective gauge surface is defined

as 

S = { ̄� : ˜ u 

(
�̄
)

= 

σ−n 
0 

˙ ε 0 
n + 1 

} . (A.4)
31] proposed an estimate for the gauge surface under the form

f Eqs. (8) and (9) . These equations give the value of the function

( �) for any tensor �, since the normalized tensor �̄ = �/λ( �)
elongs to the effective gauge surface. 

2. A model for porous FCC polycrystals with intragranular voids 

Then, the case of a porous FCC polycrystal with intragranular

pherical voids (isotropic distribution) is considered following [18] .

n each grain of the polycrystal, the material surrounding the voids

s governed by this stress potential ( n ≥ 1) 

˙ 
 

v p = 

∂u 

∂σ
(σ) with u (σ) = 

˙ γ0 τ0 

n + 1 

12 ∑ 

s =1 

( | σ : μ(s ) | 
τ0 

)n +1 

, (A.5)

here ˙ γ0 and τ 0 are two constants. It corresponds to a simple

ower law function without hardening and the corresponding vis-

oplastic strain rate is specified in Eq. (2) . Since the potential u in

A.5) is still a positively homogeneous function of degree n + 1 in

(as in the previous subsection), the effective dissipation potential

˜  can be written under the following form 

˜ 
 ( �) = 

˙ γ0 τ0 

n + 1 

( | λ( �) | 
τ0 

)n +1 

, (A.6)

here λ( �) is still a homogeneous function of degree 1 in �. As

reviously, the gauge surface is defined as 

 = { ̄� : ˜ u 

(
�̄
)

= 

τ−n 
0 

˙ γ0 

n + 1 

} , (A.7)

nd, again, en estimate of the gauge surface (A.7) leads to an esti-

ate of the effective potential (A.6) . The model proposed in [18] is

ased on a double up-scaling process. First, an estimate is derived

or porous FCC single crystals. In this first up-scaling process, the

oided single crystal is idealized as a hollow sphere assemblage

the representative volume element is idealized as an assemblage

f an infinite number of homothetic hollow spheres filling up the

ntire volume). Then, this estimate for a porous single crystal is

sed together with a Voigt-type assumption (homogeneous strain

ate in the polycrystal) to derive a model for the overall behav-

or of the polycrystal. For a purely hydrostatic loading, this model

redicts that the orientation of the cubic crystal has no influence:

he obtained estimate is equivalent to the estimate for the porous

onocrystal under hydrostatic loading. A fully analytical gauge sur-

ace of [31] type is then derived from this result ( Eqs. (8) and (9) ).

is adjusted in order to match with the hydrostatic stress ob-

ained in [19] , in which the porous monocrystal was idealized as

 sequential laminate of infinite rank obeying an isotropic lami-

ation sequence. This estimate based on sequential laminates was

ound to be superior to more classical estimates based on hollow

phere assemblages. Then, β is adjusted in order to match with the

quivalent stress obtained with the model of [33] in the case of

 dense polycrystal ( f = 0 ). The two up-scaling processes are pre-

ented hereafter. 

2.1. First up-scaling: porous FCC monocrystal 

Let us consider a representative volume element (RVE) made

ith a statistically uniform distribution of voids and a crystalline

atrix with FCC structure. Matrix is identified as phase r = 1 and

oids are collectively identified as phase r = 2 . The behavior of the

rystalline matrix is purely viscoplastic. The domains occupied by

he crystalline matrix, the voids, and the RVE are respectively de-

oted by 
(1) , 
(2) , and 
. The viscoplastic response of the ma-

rix is characterized by a convex potential u such that the stress

nd strain rate tensors are related by (A.5) . The potential u can be

ritten under the following form 

 (σ) = 

τ0 ˙ γ0 

n + 1 

12 ∑ 

s =1 

(
σ

τ0 

: μ(s ) 
� μ(s ) : 

σ

τ0 

)(n +1) / 2 

, (A.8)

https://doi.org/10.13039/100008659
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here � denotes the tensor product. Alternatively, the viscoplastic

ehavior of the matrix can be derived from the dissipation poten-

ial w (which is the Legendre transform of u ): 

 ( ˙ ε 

v p ) = sup 

σ
{ σ : ˙ ε 

v p − u (σ) } . (A.9)

he macroscopic response (defined as the relation between the

olume averages of the stress and strain-rate) can be characterized

y an effective dissipation potential ˜ w such that (e.g. [32] ) 

= 

∂ ˜ w 

∂ ˙ E 

v p 
( ˙ E 

v p ) , (A.10) 

˜ 
 ( ˙ E 

v p ) = (1 − f ) min 

˙ ε v p ∈K ( ̇ E v p ) 

1 

| 
(1) | 
∫ 

(1) 

w 

(
˙ ε 

v p (x ) 
)

d
. (A.11)

ntroducing the following notation 〈 ·〉 
(1) for the average over 
(1) ,

t reads 

˜ 
 ( ˙ E 

v p ) = (1 − f ) min 

˙ ε v p ∈K ( ̇ E v p ) 
〈 w ( ˙ ε 

v p ) 〉 
(1) , (A.12)

here f = | 
(2) | / | 
| is the volume fraction occupied by the voids.

 

(
˙ E 

v p 
)

is the set of kinematically admissible strain-rate fields 

 

(
˙ E 

v p ) = 

{
˙ ε v p ∈ T | ˙ ε v p (x ) = ∇ �s ˙ u (x ) in 
 ∧ 

˙ u = 

˙ E 

v p · x on ∂

}
,

(A.13) 

here �s denotes the symmetric part of the tensor product, ∂
 is

he boundary of 
, T is the set of symmetric second-order tensors.

An estimate of the effective dissipation potential ˜ w can be ob-

ained from (A.12) following the the approach initiated by Gurson

34] . Let us introduce the following fourth-order tensor 

 = 

1 

τ0 

12 ∑ 

s =1 

μ(s ) 
� μ(s ) . (A.14) 

sing the following general property for a convex function φ( x )

uch that 
∑ K 

k =1 λk φ(x k ) ≥ φ( 
∑ K 

k =1 λk x k ) for 
∑ K 

k =1 λk = 1 , the con-

ex potential u can be bounded by 

 (σ) ≥ u −(σ) = 

12 τ0 ˙ γ0 

n + 1 

(
1 

12 τ0 

σ : M : σ
)(n +1) / 2 

. (A.15)

hen deriving this expression with respect to σ , one gets 

˙ 
 

vp = ˙ γ0 

(
1 

12 τ0 

σ : M : σ
)( n −1 ) / 2 

M : σ. (A.16) 

ntroducing L the pseudo-inverse of M such that M : L : M = M ,

ne gets 

˙ 
 

v p : L : ˙ ε 

v p = 12 τ0 ˙ γ
2 

0 

(
1 

12 τ0 

σ : M : σ
)n 

(A.17)

nd 

1 

12 τ0 

σ : M : σ = 

(
1 

12 τ0 ˙ γ 2 
0 

˙ ε 

v p : L : ˙ ε 

v p 

)1 /n 

. (A.18)

he potential u − is homogeneous of degree n + 1 in σ . Thus, one

an write σ : ∂ σu −(σ) = (n + 1) u −(σ) and σ : ˙ ε v p = (n + 1) u −(σ) .

aking into account the incompressibility of the matix together

ith expressions (A.18) and (A.15) , the dissipation potential can be

ounded by 

 ( ˙ ε 

v p ) ≤ w + ( ˙ ε 

v p ) 

= 

⎧ ⎪ ⎨ ⎪ ⎩ 

12 τ0 ̇ γ0 

m +1 

(
1 

12 τ0 ̇ γ 2 
0 

˙ ε 

v p : L : ˙ ε 

v p 
)(m +1) / 2 

if tr ( ˙ ε 

v p ) = 0 

+ ∞ otherwise 
(A.19) 

here m = 1 /n . The fourth-order tensor M is cubic and can be ex-

ressed in closed-form, considering the following fourth-order ten-

ors I , J , S with components 
 i jkl = 1 / 2 

(
δik δ jl + δil δ jk 

)
(A.20)

 i jkl = 1 / 3 δi j δkl (A.21)

 i jkl = δri δr j δrk δrl , (A.22) 

here δ is the Kronecker symbol. I is the usual fourth-order iden-

ity tensor and J is the usual fourth-order projector on hydrostatic

ymmetric tensors of order 2. Two additional fourth-order tensors

re introduced K a = S − J and K b = I − S , so that each fourth-order

ubic tensor can be decomposed into J , K a , and K b . Some direct

lgebra leads to the following expressions for M and L 

 = 

2 

τ0 

K a + 

2 

3 τ0 

K b , L = 

τ0 

2 

K a + 

3 τ0 

2 

K b . (A.23)

ote that potential w + in (A.19) together with this closed form ex-

ression for L is no longer explicitly dependent on the Schmid ten-

ors. The present model follows an approach initiated in the sem-

nal work of [34] . It consists in using the non-linear variational

rinciple (A.11) with suitably chosen velocity fields leading to an

pper bound for the effective potential. The representative volume

lement is considered as an assemblage of an infinite number of

omothetic hollow spheres filling up the entire volume. The effec-

ive potential is bounded by using the following velocity field in

ny given sphere 

˙ 
 (x ) = 

˙ E m 

b 3 

r 2 
ξ + 

˙ E d · x , (A.24)

here b is the radius of the sphere, r = | x | , ξ = x / | x | , and x is

he position vector relative to the center of the sphere. For clar-

ty, ˙ E 

v p is replaced here by ˙ E . ˙ E m 

is the hydrostatic component of
˙ 
 , ˙ E m 

= 1 / 3 tr ̇ E , and 

˙ E d its deviatoric part ˙ E d = 

˙ E − ˙ E m 

i . The strain

ate writes 

˙ 
 = −3 ̇

 E m 

b 3 

r 3 
ξ�d ξ + 

˙ E d . (A.25) 

he effective potential is then bounded by 

˜  ( ̇ E ) ≤ 1 − f 

(4 / 3) π(b 3 − a 3 ) 

∫ 
S 

∫ b 

a 
w 

(
−3 ̇ E m 

b 3 

r 3 
ξ �d ξ + 

˙ E d 

)
r 2 d r d S(ξ) , 

(A.26) 

here S is the unit sphere and a is the void radius so that f =
(a/b) 3 . Using inequality (A.19) , one gets 

˜ 
 ( ˙ E ) ≤ 1 

(4 / 3) πb 3 

∫ 
S 

∫ b 

a 

w + 

(
−3 ̇

 E m 

b 3 

r 3 
ξ �d ξ + 

˙ E d 

)
r 2 d r d S(ξ) 

(A.27) 

r 

˜  ( ̇ E ) ≤ 1 

(4 / 3) πb 3 

∫ 
S 

∫ b 

a 

12 τ0 ˙ γ0 

m + 1 

(
1 

12 τ0 ˙ γ 2 
0 

˙ ε : L : ˙ ε 

)(m +1) / 2 

r 2 d r d S(ξ) . 

(A.28) 

his right hand expression is then bounded by applying the

auchy-Schwarz inequality to this surface integral 

˜ 
 ( ˙ E ) ≤ 1 

(4 / 3) πb 3 

∫ b 

a 

(4 π) (1 −m ) / 2 12 τ0 ˙ γ0 

m + 1 

×
(∫ 

S 

1 

12 τ0 ˙ γ 2 
0 

˙ ε : L : ˙ ε dS(ξ) 

)(m +1) / 2 

r 2 dr. (A.29) 
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By using the velocity field (A.25) , in this expression, one gets 

˜ w ( ̇ E ) ≤ 12 τ0 ˙ γ0 

m + 1 

∫ 1 

f 

(
1 

12 τ0 ˙ γ 2 
0 

9 ̇ E 2 m 

κ

y 2 
+ 

1 

12 τ0 ˙ γ 2 
0 

˙ E d : L : ˙ E d 
)(m +1) / 2 

dy,

(A.30)

where κ = (11 / 15) τ0 . 

A2.2. Second up-scaling: polycrystal 

In the second transition of scales, the domain 
 consists of the

polycrystal idealized as an heterogeneous material with N phases

(domains 
( r ) , volume fractions c ( r ) ) described by the overall be-

havior of a porous single crystal. Random orientation is considered

for each phase of the polycrystal. The local potential w 

( r ) in each

phase r is obtained by the first scale transition and corresponds to

the right hand side in expression (A.30) . As before, the effective

strain rate potential reads 

˜ w ( ˙ E ) = min 

˙ ε ∈K( ̇ E ) 

N ∑ 

r=1 

c (r) 
〈
w 

(r) ( ˙ ε ) 
〉

(r) 

. (A.31)

Using a Voigt-type assumption (homogeneous strain rate in the

whole volume), one gets 

˜ w ( ˙ E ) ≤
N ∑ 

r=1 

c (r) 
〈
w 

(r) ( ˙ E ) 
〉

(r) 

. (A.32)

Note that, in this expression, the tensor ˙ E has to be expressed in

the local basis of each phase r . For any phase r , there is a second

order tensor Q 

( r ) such that 

w 

(r) ( ˙ E ) = w 

(0) (Q 

(r) · ˙ E · (Q 

(r) ) T ) , (A.33)

where 

w 

(0) ( ̇ ε ) = 

12 τ0 ˙ γ0 

m + 1 

∫ 1 

f 

(
1 

12 τ0 ˙ γ 2 
0 

9 ̇ ε 2 m 

κ

y 2 
+ 

1 

12 τ0 ˙ γ 2 
0 

˙ ε d : L : ˙ ε d 
)(m +1) / 2 

dy. 

(A.34)

For a statistically uniform distribution of grains and for an infinity

number of grains, the representative volume element can be con-

sidered as a spherical in shape volume in which each point corre-

sponds to a grain. Then (A.32) can be evaluated by an integration

over the unit sphere S such that 

˜ w ( ˙ E ) ≤
〈
w 

(0) (Q · ˙ E · Q 

T ) 
〉
S 
, (A.35)

where the following notation is used 〈 x 〉 S = 1 / (4 π) 
∫ 

S x dS. One

gets 

˜ w ( ̇ E ) ≤ τ0 ˙ γ0 

m + 1 

∫ 1 

f 

〈 (
1 

˙ γ 2 
0 

9 ̇ E 2 m 

κ∗

y 2 
+ 

1 

˙ γ 2 
0 

˙ E d (Q ) : L 

∗ : ˙ E d (Q ) 

)(m +1) / 2 
〉 

S 

dy,

(A.36)

where κ∗ = (12 (1 −m ) / (m +1) /τ0 ) κ and L 

∗ = (12 (1 −m ) / (m +1) /τ0 ) L .

Then the Cauchy-Schwarz inequality is applied 

˜ w ( ̇ E ) ≤ τ0 ˙ γ0 

m + 1 

∫ 1 

f 

(
1 

˙ γ 2 
0 

9 ̇ E 2 m 

κ∗

y 2 
+ 

1 

˙ γ 2 
0 

〈
˙ E d (Q ) : L 

∗ : ˙ E d (Q ) 
〉
S 

)(m +1) / 2 

dy. 

(A.37)

Then, considering ˙ E 

d (Q ) : L 

∗ : ˙ E 

d (Q ) = 

˙ E 

d : L 

∗(Q ) : ˙ E 

d together

with a result from [35] to get the orientation average of a fourth

order tensor, one gets 〈
˙ E 

d : L 

∗(Q ) : ˙ E 

d 
〉
S 

= 

33 

12 

(1 −m ) / (m +1) ˙ E 2 eq , (A.38)

20 
here ˙ E eq = 

√ 

2 / 3 ̇ E 

d : ˙ E 

d . Then (A.37) writes 

˜ 
 ( ˙ E ) ≤ τ0 ˙ γ0 

m + 1 

∫ 1 

f 

(
1 

˙ γ 2 
0 

9 ̇

 E 2 m 

κ∗

y 2 
+ 

1 

˙ γ 2 
0 

q ∗ ˙ E 2 eq 

)(m +1) / 2 

dy, (A.39)

here q ∗ = (33 / 20)12 (1 −m ) / (m +1) . 

2.3. Derivation of a gauge surface 

In the case of perfect plasticity ( m → 0), the inequality

A.39) writes 

 ( ˙ E ) ≤ τ0 

∫ 1 

f 

(
9 ̇

 E 2 m 

κ∗

y 2 
+ q ∗ ˙ E 2 eq 

)1 / 2 

dy. (A.40)

he yield surface associated with this effective strain-rate potential

rites 

1 

q ∗

(
�eq 

τ0 

)2 

+ 2 f cosh 

(
1 √ 

κ∗
�m 

τ0 

)
− 1 − f 2 = 0 . (A.41)

his result can be found directly by using a lemma given in

36] (Appendix A). By analogy with the work of [31] it is then

roposed to extend this yield surface in plasticity to the following

auge surface in viscoplasticity 

1 

q ∗
�2 

eq 

λ2 
+ f 

(
h ∗
(

�m 

λ

)
+ 

n − 1 

n + 1 
(h ∗) −1 

(
�m 

λ

))
− 1 − n − 1 

n + 1 
f 2 = 0 , 

(A.42)

here 

 

∗( x ) = 

(
1 + 

1 

n 

| 1 √ 

κ∗ x | 1+ 1 n 

)n 

. (A.43)

ccurate homogenization estimates are already available for two

articular cases: fully dense polycrystals under pure shear load-

ngs [33] , and porous polycrystals under pure hydrostatic loadings

19] . As it stands, the above gauge surface does not recover those

ccurate estimates, but it can be easily modified to do so. First,

he coefficient κ∗ entering h ∗ is adjusted in order to match with

he hydrostatic stress predicted by the homogenization estimate of

19] , in which the porous monocrystal was idealized as a sequen-

ial laminate of infinite rank obeying an isotropic lamination se-

uence. This estimate based on sequential laminates was found to

e superior to more classical estimates based on hollow sphere as-

emblages. Second, q ∗ is adjusted in order to match with the shear

tress predicted by the linear-comparison homogenization model

f [33] for fully dense polycrystals ( f = 0 ). In conclusion, the gauge

urface is expressed as 

1 

˜ σ0 /τ0 

)2 n/ (n +1) �2 
eq 

λ2 
+ f 

(
h 

∗∗
(

�m 

λ

)
+ 

n − 1 

n + 1 

(h 

∗∗) −1 

(
�m 

λ

))
− 1 − n − 1 

n + 1 

f 2 = 0 , (A.44)

here 

 

∗∗( x ) = 

(
1 + 

1 

n 

1 

αLAM 

/τ0 

| x | 1+ 1 n 

)n 

. (A.45)

or simplicity, αLAM 

/ τ 0 and ( ̃  σ0 /τ0 ) 
2 n/ (n +1) are respectively de-

oted by α and β in Eqs. (8) and (9) . Thus function h ∗∗ coincides

ith function h ( Eq. (9) ). Eqs. (A.2) and (A.6) give 

˙ 
 

v p = ˙ γ0 

( | λ| 
τ0 

)n 

sign (λ) 
∂λ

∂�
. (A.46)

he definition of the gauge surface (A.7) together with this relation

∂S 
¯

∂ �̄

∂�
= 0 , (A.47)
∂ �
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ead to the following equality 

∂λ

∂�
= 

λ

� : ∂S 
∂ ̄�

∂S 
∂ �̄

. (A.48) 

hus, Eq. (A.46) writes 

˙ 
 

v p = ˙ γ0 

( | λ| 
τ0 

)n 
1 

�̄ : ∂S 
∂ ̄�

∂S 
∂ �̄

sign (λ) . (A.49) 

y writing 

∂S 
∂ �̄

= 

1 

3 

∂S 
(
�̄m 

i 
)

∂ �̄m 

i + 

∂S 
(
�̄d 

)
∂ �̄d 

(A.50) 

nd 

∂S 
(
�̄m 

i 
)

∂ �̄m 

= f 

(
h 

∗∗′ (
�̄m 

)
− n − 1 

n + 1 

( h 

∗∗) −2 
(
�̄m 

)
h 

∗∗′ (
�̄m 

))
, (A.51) 

∂S 
(
�̄d 

)
∂ �̄d 

= 3 

(
1 

˜ σ0 /τ0 

)2 n/ (n +1) 

�̄d , (A.52) 

 

∗∗′ 
( x ) = 

1 

αLAM 

/τ0 

n + 1 

n 

(
1 + 

1 

αLAM 

/τ0 

1 

n 

| x | 1+ 1 n 

)n −1 

| x | 1 n sign (x ) , 

(A.53) 

t leads to Eq. (5) . 

3. Time-integration of the micromechanical model 

In closed form, the analytical model presented in Section

.3 writes 

˙ = ̃

 C : ⎛ ⎜ ⎝ ̇

 E − ˙ γ0 

∣∣∣∣ λ

τ0 

∣∣∣∣n 
f 

3 

(
1 − n − 1 

n + 1 
h −2 ( �m /λ) 

)
| h ′ ( �m /λ) | sign (�m ) i + 

3 

β
(�d / | λ| ) 

f 

(
1 − n − 1 

n + 1 
h −2 ( �m /λ) 

)
| h ′ ( �m /λ) | | �m /λ| + 

2 

β
(�eq /λ) 2 

⎞⎟⎠
(A.54)

ith 

˜ C = ̃

 S −1 . This equation can be written under the form 

˙ Y =
 

(
Y , ˙ E 

)
where Y is a vector containing the stress �. For a time in-

rement �T , vector Y is updated by a Runge–Kutta (3)2 FSAL (First

ame As Last) method. Tolerance factor ε is set to 10 −5 . General

lgorithm writes 

• Initialization k F SAL = F (Y 0 ) , δt = �T , �t = 0 , p = 0 
• While �t < �T do 

1. Evaluate Y p+1 by a Runge–Kutta method with order 3 

k 1 = k F SAL 

k 2 = F (Y p + ā 21 k 1 δt) 

k 3 = F (Y p + ā 31 k 1 δt + ā 32 k 2 δt) 

Y p+1 = Y p + ( ̄b 1 k 1 + ̄b 2 k 2 + ̄b 3 k 3 ) δt

2. Evaluate ˆ Y p+1 by a Runge–Kutta method with order 2 

k F SAL = F (Y p+1 ) 

ˆ Y p+1 = Y p + ( ̄d 1 k 1 + d̄ 2 k 2 + d̄ 3 k 3 + d̄ 4 k F SAL ) δt

3. Evaluate the relative error η between the 2 methods 

η = max 
i 

(
| Y (i ) 

p+1 
− ˆ Y (i ) 

p+1 
| / | Y (i ) 

p+1 
+ 10 −20 | 

)
where Y ( i ) denotes 

the i th component for Y 

4. Convergence criterion 

if η ≤ ε then 

Y p := Y p+1 

�t := �t + δt

p := p + 1 

• endif 

5. Evaluate the optimal time step δt 
if η ≤ ε then 

δt opt = min 

(
2 , ( ε/η) 1 / 3 

)
δt

• else 

δt opt = max 
(
1 / 2 , 0 . 9 ( ε/η) 1 / 3 

)
δt

• endif 
• δt = min 

(
δt opt , �T − �t 

)
• end 

here coefficients ā i j , b̄ j and d̄ j are defined as ā 21 = 1 / 2 , ā 31 = 0 ,

¯ 32 = 3 / 4 , b̄ 1 = 2 / 9 , b̄ 2 = 1 / 3 , b̄ 3 = 4 / 9 , d̄ 1 = 7 / 24 , d̄ 2 = 1 / 4 , d̄ 3 =
 / 3 and d̄ 4 = 1 / 8 . During the algorithm, when function F needs to

e evaluated, the scalar | λ| is obtained by solving the non linear

q. (8) by a Newton method. Particular care must be taken when

nitializing the Newton algorithm. Eq. (8) can be written under the

ollowing form 

1 

β
(�eq /λ) 2 + f 

√ 

n − 1 

n + 1 

( √ 

n + 1 

n − 1 
h (�m 

/λ) + 

√ 

n − 1 

n + 1 
h −1 (�m 

/λ) 

) 

− 1 − n − 1 

n + 1 
f 2 = 0 . (A.55) 

he inequality x + 1 /x ≥ 2 when x ≥ 0 allows to write the follow-

ng inequality ( β ≥ 0) 

 λ| ≥ | λ0 | = 

�eq √ 

β| 1 − f 

√ 

n −1 
n +1 

| 
. (A.56)

ewton algorithm is initialized using this lower bound for | λ|.

ote also that the purely hydrostatic case ( �eq = 0 ) leads to the

traightforward solution for | λ| 

 λ| = 

(
αn 

(
f −1 /n − 1 

))−n/ (n +1) | �m 

| . (A.57)

imilarly, the purely deviatoric case ( �m 

= 0 ) leads to the straight-

orward solution for | λ| 

 λ| = 

�eq √ 

β
(
1 + 

n −1 
n +1 

f 2 
) . (A.58) 

o the end, Newton algorithm writes 

• From Y , compute the absolute value of the stress triaxiality

X � = | �m 

| / �eq , compute | λ0 | with Eq. (A.56) 
• if X � > 10 5 then evaluate | λ| from the purely hydrostatic solu-

tion (A.57) , endif and exit. 
• if X � < 10 −5 then evaluate | λ| from the purely deviatoric solu-

tion (A.58) , endif and exit. 
• while q < 10 0 0, do 

λq := λq +1 

λq +1 = λq − S 
(
λq 

)
/∂ λq 

S 
(
λq 

)
Convergence criterion 

if | λq +1 − λq | − T OL < 0 then | λ| = | λq +1 | exit 

else q := q + 1 endif 

• end 

The derivative ∂ λS ( λ) writes 

∂S 
∂λ

( λ) = − 2 

β

(�eq ) 
2 

λ3 
− f 

�m 

λ2 

(
h ′ (�m 

/λ) − n − 1 

n + 1 
h −2 (�m 

/λ) h ′ (�m 

/λ) 
)
. 

(A.59) 

4. Slip systems 

Unit vectors n 

( s ) and m 

( s ) used to define the Schmid tensors μ( s ) 

re recalled in Table A.1 . 

The dislocation interaction matrix a writes under the form

pecified in Table A.2 . 
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Table A1 

Slip systems for face-centered cubic crystals with Schmid and Boas notations. 

n ( s ) (111) ( ̄1 11) ( ̄1 ̄1 1) (1 ̄1 1) 

m 

( s ) [01 ̄1 ] [10 ̄1 ] [1 ̄1 0] [01 ̄1 ] [101] [110] [011] [101] [1 ̄1 0] [011] [10 ̄1 ] [110] 

Table A2 

General form of the dislocation interaction matrix a . 

k 1 2 3 4 5 6 7 8 9 10 11 12 

1 a 1 a 2 a 2 a 4 a 5 a 5 a 5 a 6 a 3 a 5 a 3 a 6 
2 a 2 a 1 a 2 a 5 a 3 a 6 a 4 a 5 a 5 a 5 a 6 a 3 
3 a 2 a 2 a 1 a 5 a 6 a 3 a 5 a 3 a 6 a 4 a 5 a 5 
4 a 1 a 5 a 5 a 1 a 2 a 2 a 6 a 5 a 3 a 6 a 3 a 5 
5 a 5 a 3 a 6 a 2 a 1 a 2 a 3 a 5 a 6 a 5 a 5 a 4 
6 a 5 a 6 a 3 a 2 a 2 a 1 a 5 a 4 a 5 a 3 a 6 a 5 
7 a 5 a 4 a 5 a 6 a 3 a 5 a 1 a 2 a 2 a 6 a 5 a 3 
8 a 6 a 5 a 3 a 5 a 5 a 4 a 2 a 1 a 2 a 3 a 3 a 6 
9 a 3 a 5 a 6 a 3 a 6 a 5 a 3 a 2 a 1 a 5 a 4 a 5 
10 a 5 a 5 a 4 a 6 a 5 a 3 a 6 a 3 a 5 a 1 a 2 a 3 
11 a 3 a 6 a 5 a 3 a 5 a 6 a 5 a 5 a 4 a 2 a 1 a 2 
12 a 6 a 3 a 5 a 5 a 4 a 5 a 3 a 6 a 5 a 2 a 2 a 1 
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Appendix B. Numerical model: parametric studies 

B1. Statistical representativeness 

A parametric study has been carried out in order to deter-

mine the number of grains within a unit cell required for statis-

tical representativeness. This is a difficult issue that cannot be ad-

dessed thoroughly. First, it is clear that the notion of representa-

tiveness is an asymptotic notion (the exact representativeness can

only be reached for an infinite medium) and secondly, it depends

on the “quantity of interest”. Here, stationarity is only studied for

the effective tensile curve, and particularly for the maximal overall

stress. Computations are performed on cells with 64 3 , 128 3 , 256 3 

and 512 3 voxels. The mean number of voxels per grain is fixed to

32 3 . By doing so, a cell with 8 grains contains 6 4 3 voxels, 6 4 grains

leads to 128 3 voxels, 512 grains leads to 256 3 voxels, 4096 grains
Fig. B14. 10 different microstructures considered for the sta

Fig. B15. 10 different microstructures considered for the stat
tistical representativeness study. 8 grains in each cell. 

eads to 512 3 voxels. For each case, 10 realizations of microstruc-

ures are drawn as depicted on Figs. B.14 –B.16 , except for the case

ith 4096 grains (512 3 voxels), for which only one microstructure

s considered ( Fig. B.17 ). The tensile curves obtained from these mi-

rostructures are shown in Fig. B.18 : only one case per volume size

s reported here, as the same trend has been observed with the

ther realizations. The simulations are performed using the pa-

ameters reported in Table 3 along with the values γ̄0 = 0 . 5 and

¯0 = 58 MPa determined in Section 4 . The overall maximal stress

 m 

versus the number of grains in the cells is plotted in Fig. B.19 .

ne can observe that dispersion is low when 512 grains are consid-

red. Thus, these figures tend to indicate that a single realization

ith 512 grains in the aggregate seems to be a good compromise

etween size and accuracy. 

2. Spatial resolution 

A second parametric study has been carried out in order to

etermine a suitable spatial discretization (in voxels) of the mi-

rostructures. This parameter is closely related to the number of

oxels which should be used for each grain of the aggregate in or-

er to capture the field fluctuations in each grain leading to an

ccurate overall response of the aggregate. A specific microstruc-

ure with 100 grains is considered. The number of voxels used in

ts spatial discretization is increasing as shown in Fig. B.20 . Once

gain, the simulations are performed using the set of parameters

eported in Table 3 along with γ̄0 = 0 . 5 and τ̄0 = 58 MPa. 

The simulated tensile curves are shown in Fig. B.21 . A very

ood agreement between the different cases is observed: all

urves superimpose almost perfectly. Then, the question of spatial

iscretization of the microstructures in the porous case is
istical representativeness study. 64 grains in each cell. 
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Fig. B16. 10 different microstructures considered for the statistical representativeness study. 512 grains in each cell. 

Fig. B17. Microstructure with 4096 grains considered for the statistical representa- 

tiveness study. 

Fig. B18. Simulated tensile curves. Effect of the number of grains in the cell. 

Simulations performed on the top left microstructures of Fig. B.14 with 8 grains, 

Fig. B.15 with 64 grains, Fig. B.16 with 512 grains and the microstructure of 

Fig. B.17 with 4096 grains. 

Fig. B19. Maximal overall stress obtained from the simulated tensile curves. Effect 

of the number of grains in the cell. Simulations performed on the microstructures 

of Fig. B.14 with 8 grains, Fig. B.15 with 64 grains, Fig. B.16 with 512 grains and the 

microstructure of Fig. B.17 with 4096 grains. 

Fig. B21. Simulated tensile curves. Effect of the number of voxels (discretization). 

Simulations performed on the microstructures of Fig. B.20 with 100 grains. 

Fig. B20. For the same microstructure, increase of the number of voxels used for the spatial discretization: (a) 32 3 voxels, (b) 64 3 voxels, (c) 128 3 voxels, (d) 256 3 voxels, 

(e) 512 3 voxels. 
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Fig. B22. For the same microstructure, increase of the number of voxels used for the spatial discretization (porous case, single void): (a) 16 3 voxels, (b) 32 3 voxels, (c) 64 3 

voxels, (d) 128 3 voxels. 

Fig. B23. Simulated tensile curves for porous monocrystal with the microstructures 

displayed in Fig. B.22 . Effect of the number of voxels (discretization). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

addressed. The question is closely related to the number of vox-

els which should be used for each intragranular void inside the

aggregate. As explained in [37] , this question should be addressed,

ideally, realization by realization, by conducting parametric stud-

ies in which the number of voxels is increased until stationar-

ity of the quantities of interest (here the maximal overall stress)

is reached. Following this procedure would require a formidable

computational effort in the porous polycrystal case where we want

to put as many as possible of the smallest possible voids inside

the grains with respect to the available RAM memory. To fix ideas,

a simulation with 512 3 voxels already requires 140 GB RAM. In-

stead of that, we followed a procedure already implemented in

past studies [28,37,38] which consists in examining a cubic unit-

cell with a single void at its center and determining how many

voxels are required to achieve a reasonable compromise for a sin-

gle void. The porosity is set to 4% and a study relative to the spa-

tial discretization is performed. The microstructures are plotted on

Fig. B.22 . The crystal surrounding the void is oriented along the

laboratory basis (Euler angles (φ1 , �, φ2 ) = (0 , 0 , 0) ). For each dis-

cretization, the obtained tensile curve is plotted in Fig. B.23 . This

figure tends to indicate that the discretization with 32 3 voxels is

a good compromise between size and accuracy. It corresponds to a

number of 1310 voxels per void. In Section 3 we adopt a discretiza-

tion with 512 3 voxels so as not to increase too much the amount

of required memory. For each porous microstructure, the porosity

and the number of voids are specified to get approximately 1310

voxels per void. 
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