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Abstract 
 
The stability of tungsten self-interstitial atom (SIA) clusters is studied using first-principles 
methods. Clusters from one to seven SIAs are systematically explored from 1264 unique 
configurations. Finite-size effect of the simulation cell is corrected based on the scaling of 
formation energy versus inverse volume cell. Furthermore, the accuracy of the calculations is 
improved by treating the 5p semicore states as valence states. Configurations of the three most 
stable clusters in each cluster size n are presented, which consist of parallel [111] dumbbells. The 
evolution of these clusters leading to small dislocation loops is discussed. The binding energy of 
size-n clusters is analyzed relative to an n → (n-1) + 1 dissociation and is shown to increase with 
size. Extrapolation for n > 7 is presented using a dislocation loop model. In addition, the 
interaction of these clusters with a substitutional Re, Os, or Ta solute is explored by replacing 
one of the dumbbells with the solute. Rhenium and Os strongly attract these clusters, but Ta 
strongly repels. The strongest interaction is found when the solute is located on the periphery of 
the cluster rather than in the middle. The magnitude of this interaction decreases with cluster 
size. Empirical fits to describe the trend of the solute binding energy are presented. 
 
Keywords: fusion; tungsten; interstitial cluster; structure; stability; dissociation; solute; binding 
energy; density functional theory; finite-size scaling; semicore states 
 
1. Introduction 
 
Understanding defect dynamics is fundamental in predicting the evolution of various defect 
structures in a material. The existence of defects can be beneficial, for instance a dopant in 
semiconductors, or detrimental, such as solid or gaseous transmutation products in reactor 
materials. In this research, we focus on the latter case, in particular for tungsten. Current fusion 
energy system designs utilize tungsten as a plasma-facing material [1-4]. Naturally occurring 
tungsten is made up of five stable isotopes: 180W (0.1%), 182W (26.3%), 183W (14.3%), 184W 
(30.7%), and 186W (28.6%). Under fusion neutron irradiation, tungsten undergoes (n, γ) and (n, 
2n) transmutation reactions that mainly produce rhenium and osmium isotopes [5, 6]. Neutron 
absorption in 180W produces traces of Ta through β+ decay of 181W [5]. Therefore, Re, Os, and to 
a lesser extent Ta, are the main concerns in regards to the effects of transmutation products on 
tungsten properties degradation. These solutes will eventually lead to the formation of brittle 
intermetallic phases that is detrimental to the mechanical properties of tungsten [7, 8]. 
 
Transmutation products also influence the nature of atomic displacement damage accumulation 
during neutron irradiation. Experiments performed in the JOYO reactor found that accumulation 
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of vacancies results in the formation of a void lattice [9-11], however, this phenomenon was not 
observed in HFIR irradiations [7, 12, 13]. It was inferred that due to the higher thermal neutron 
content of the HFIR neutron spectrum, solid transmutation products were generated at a high 
enough rate to suppress void lattice formation. Presumably, whether or not a void lattice forms 
depends on a rate-dependent dynamical balance between vacancy generation and distribution 
(including migration and dissociation of vacancies from smaller vacancy clusters and growth of 
larger clusters), one-dimensional (1D) diffusion of self interstitial atoms (SIAs) that engrave the 
distributed vacancies into a void lattice, and other defects that alter the vacancy distribution as 
well as the carving efficiency of the SIAs. Therefore, predicting the evolutionary and 
combinatorial effects of transmutation products and intrinsic defects requires knowledge of how 
they interact with each other. 
 
A great number of vacancies and interstitials are generated as a result of high-energy collisions 
between neutrons and tungsten atoms. Various sizes and morphologies of these defects are 
produced [14-17] each with its own characteristics of diffusion [12, 18-22], dissociation [20, 23], 
and binding [12, 23, 24]. Recently, ab initio data on the interaction of an individual vacancy or 
SIA with transition metal elements were reported [24]. It was found that an SIA would have to 
overcome at least a binding energy of approximately 0.82 and 1.65 eV to detach from a Re and 
Os substitutional solute, respectively. Less is known about the interaction of clusters of SIAs 
with these solutes. For instance, does a cluster of SIAs bind less strongly to a solute than 
individual SIAs do? What is the asymptotic model of the binding energy? These questions are 
particularly relevant for tungsten because, similar to an SIA, SIA clusters are also highly mobile 
[22, 25]. 
 
To our knowledge, ab initio data on the interaction of SIA clusters with solutes are absent, 
understandably because of the high computational cost to explore various structures of such 
clusters. In [23], the binding energy of an SIA within an SIA cluster was reported, however, no 
details were given about the configuration or how the configuration was chosen. Here, we 
present the results of a systematic search of the structure and stability of SIA clusters up to size 
seven and their binding properties to a substitutional Re, Os, or Ta solute. 
 
2. Methods 
 
The stability of SIA clusters is studied within the density functional theory (DFT) framework. 
VASP.5.4.1 [26, 27] software is used to solve the Kohn-Sham equations with plane-wave basis 
sets. Projector-augmented-wave (PAW) [27] pseudo-potentials for W, Re, Os, and Ta are taken 
from VASP’s library potpaw_PBE_v5.2.12. Perdew-Burke-Ernzerhof (PBE) functionals [28] are 
employed for the electronic exchange-correlation energies. 
 
2.1. Convergence study 
 
Defect formation energies are calculated using cubic 5x5x5 supercells of tungsten’s body-
centered cubic (bcc) unit cell. A perfect crystal consists of 250 W atoms. The coordinates of the 
atoms and box volume are optimized while maintaining cubic symmetry. In our opinion, 
maintaining cubic symmetry is more appropriate than relaxing cell shape because the defect is 
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assumed to be isolated. In other simulations in which the defect concentration matters, relaxing 
cell shape is appropriate since high enough concentration of defect may induce a phase 
transformation of the whole crystal. Nevertheless, both relaxation procedures should give the 
same results for large enough cell or after finite size effect has been corrected for infinitely large 
cell. The relaxation is stopped when the norm of the force on each atom is < 0.025 eV/Å and the 
external pressure acting on the box is < 0.5 kbar. At the end of the relaxations, a static 
calculation is performed to eliminate errors due to plane-wave basis incompleteness associated 
with volume changes. A Monkhorst-Pack [29] k-point grid is employed to sample the Brillouin 
zone. 
 
The energy cutoff (ENCUT) of the plane waves is carefully determined following a convergence 
study of the formation energies of [111], [110], and [100] W dumbbells. The results are 
presented in Table 1, along with the results from [30] in which the data were obtained using the 
same pseudo-potential, supercell size, and relaxation procedure as employed here. ENCUT = 250 
eV is found to be sufficient to converge the formation energies to within 20 meV. In fact, one 
may use a slightly lower cutoff of 225 eV if only differences between the formation energies are 
of interest. We note that the maximum plane-wave energy of the pseudo-potentials for W, Ta, 
Re, and Os is very similar to one another, namely 223, 224, 226, and 228 eV respectively. 
Consequently, the energy convergence behavior of a system containing Ta, Re, and/or Os is 
expected to be very similar to pure W. The k-points are determined from a convergence of the 
formation energy of the [111] dumbbell. The results are shown in the bottom panel in Table 1. A 
5x5x5 k-point grid is sufficient to converge the formation energy within 20 meV. Therefore, we 
set ENCUT = 250 eV and k-points = 5x5x5 for calculations with the 5x5x5 supercells. The bulk 
of the calculations to explore the various configurations of SIA clusters are performed using the 
5x5x5 supercell (cell555). The total number of unique SIA cluster configurations explored in this 
study is 12,559. Through a systematic reduction that will be described in Section 3, there are 
1,264 clusters that are evaluated with DFT. 
 
Table 1. (top panel) Convergence tests of the plane-wave energy cutoff (ENCUT) with 5x5x5 
cells and 3x3x3 k-points. Formation energy (Ef) of [111], [110], and [100] dumbbells, and a 
vacancy in tungsten. The ENCUT in bold converges the Ef to within 20 meV. (bottom panel) 
Convergence tests of k-points for the Ef of [111] dumbbell. The k-points in bold converge the Ef 
to within 20 meV. 

Ef  (eV) 
ENCUT (eV) 

200 225 250 300 350 500 450 Ref [30] 
111 9.95 10.03 10.00 10.00 10.01 10.01 9.98 

110 - 111 0.26 0.24 0.25 0.26 0.25 0.26 N/A 
100 - 111 1.85 1.98 1.99 2.00 2.00 2.00 N/A 
Vacancy 3.32 3.31 3.30 3.32 3.32 3.31 3.34 

 ENCUT (eV) 
k-points  

3x3x3 4x4x4 5x5x5 6x6x6 7x7x7  

111 
250 10.00 9.80 9.90 9.91 9.91  
300 10.00 9.79 9.89 9.91 9.91  
500 10.01 9.81 9.91 9.92 9.92  
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2.2. Finite size correction 
 
The finite size of the supercell introduces elastic interactions between periodic arrays of 
displacement fields. This finite size effect is particularly significant for interstitial defects with 
extended displacement fields [31-34]. In an elastically isotropic medium, the elastic interaction 
between two displacement fields is proportional to the inverse volume [35, 36]. Using this 
relation, the correction to the defect formation energy can be obtained by plotting the formation 
energy as a function of inverse volume. To obtain the finite size correction, we employ 4x4x4, 
5x5x5, and 6x6x6 supercells (i.e. cell444, cell555, and cell666). The formation energy of the 
[111] dumbbell is used to determine the k-points for each supercell. The convergence is studied 
up to 8x8x8, 7x7x7, and 7x7x7 k-points for cell444, cell555, and cell666, respectively. The 
formation energy is converged to within 0.02 eV with k-points = 6x6x6 for cell444, 5x5x5 for 
cell555 as previously described, and 5x5x5 for cell666. 
 
Figure 1 shows the finite size scaling for the most stable clusters of SIAs (the procedure find the 
most stable clusters is later described in Section 3). The plotted values are the formation energy 
per the number of SIAs. A linear scaling is evident from Figure 1. The formation energies, and 
consequently binding energies, reported in Sections 3 and 4 are calculated using the same finite 
size scaling approach. The error in the formation energy per SIA associated with the fitting is 
typically 0.01 eV or less for all cluster sizes. 
 

 
Figure 1. Formation energy of self-interstitial clusters per the number of interstitial atoms in the 
cluster as a function of system size (number of atoms in an undefected supercell). Fit lines show 

a linear scaling with respect to inverse system size. 
 
2.3. Semicore states 
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The bulk of the calculations are performed using the standard version of the paw_PBE_v5.2.12 
potentials, in which electrons in 6s and 5d states are treated as valence electrons. It was shown 
that including the 5p orbitals in the valence states is important to obtain accurate formation 
energies of SIAs in tungsten [24, 31, 33]. Gharaee et al reported that the effect of semicore states 
is only weakly dependent on the k-points and system size [31]. Our calculations with cell444 and 
cell555 support their finding. For instance, the difference in the semicore effect using those 
supercells is < 0.01 eV for formation energy of [111] dumbbell. The semicore effect on binding 
energy is 0.01 eV for size-2 SIA clusters, < 0.01 eV for Re binding to a size-1 or size-2 SIA 
clusters. Therefore, the effect of semicore states for all the energies presented in Sections 3 and 
4, is calculated using cell444 with 6x6x6 k-points. 
 
3. Results 
 
3.1. Size-2 Clusters 
 
To explore configurations of two SIAs, a group of 10 lattice sites as shown in Figure 2a is used 
to select the location of the dumbbells. This group encompasses up to the fifth nearest-neighbor 
distance (nn5), i.e. from atom 1 to atom 81. To begin, we pick n = 2 site combinations out of the 
m = 10 sites. Subsequently, non-equivalent site combinations are identified based on bond 
lengths. In this case, there are five unique combinations. Then, we construct dumbbells at those 
sites. Given that the most stable dumbbell orientation in W is [111], we focus on clusters of 
<111> dumbbells. Permuting the <111> orientations of the dumbbells at those sites gives a total 
of 4x4x5 = 80 possible clusters. Unique clusters are identified based on the list of bonds in the 
cluster, resulting in 23 unique clusters, which are then relaxed. 
 

 
Figure 2. a) Lattice sites from which configurations of size-2 interstitial clusters are searched. 
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The five most stable clusters are shown in order from b) to f). The orientations are b) both [111], 
c) both [11-1], d) both [111], e) [111] and [11-1], and f) [111] and [1-11]. The most stable cluster 
is shown in b), it consists of dumbbell atoms labeled as 1, 2, 3, and 4. In b), if the 1-2 dumbbell 

translates one hop along [111], i.e. atom 2 forms a new dumbbell with atom 1’, the resulting 
cluster is equivalent to the one shown in c). 

 
The five most stable configurations are shown in Figures 2b through 2f, in which the dumbbell 
atoms are rendered as green spheres with the location of the dumbbell sites depicted as small red 
dots. The most stable size-2 cluster (MSC-2) consists of a [111] dumbbell at site 1 and another 
[111] dumbbell at site 18, i.e. the third nearest-neighbor distance (nn3) apart. We note that this 
finding is consistent with the pair correlation function of SIA defects generated in a displacement 
cascade [15]. In that study, the dominant peak in the pair correlation function occurs at nn3.  
 
The stability of a size-n cluster is studied by calculating its binding energy with respect to an n 
→ (n-1) + 1 reaction as follows 

����� = ���� − 1� + ���1� − ����� − ���0� (1) 

where Et{ n} is the total energy of a supercell containing a size-n cluster and Et{0} is the total 
energy of a perfect supercell. A positive Eb{ n} denotes that a size-n cluster is more stable than a 
configuration consisting of a size-(n-1) cluster and a separate SIA. Note that the dissociation 
energy for an SIA to separate from a size-n cluster will be equal to Eb{ n} + Em{1}, where Em{1} 
is the migration energy of an SIA. For each cluster size, the binding energies of the three most 
stable configurations are summarized in Table 2. 
 
Table 2. Binding energy of a size-n cluster conrresponding to an n → (n-1) + 1 reaction. All 
energies are in eV. The results for the three most stable (1st, 2nd, and 3rd) configurations are 
presented. Results are extrapolated based on finite size scaling using 4x4x4 cell (6x6x6 k-
points), 5x5x5 cell (5x5x5 k-points), and 6x6x6 cell (5x5x5 k-points). Calculations with and 
without 5p semicore states are denoted as w/sc and w/o sc, respectively. The semicore 
corrections were obtained using the 4x4x4 cell (6x6x6 k-points). 

n 
w/o sc w/sc 

1st 2nd 3rd 1st 2nd 3rd 
2 2.38 2.35 1.84 2.45 2.42 1.86 
3 3.49 2.87 2.33 3.65 2.94 2.46 
4 4.42 4.33 3.03 4.60 4.51 3.18 
5 4.41 3.50 3.17 4.60 3.67 3.33 
6 4.90 4.76 4.51 5.13 5.00 4.74 
7 6.29 4.78 4.67 6.52 5.02 4.90 

 
The binding energy of the MSC-2 indicates that dissociation of this cluster into two [111] 
dumbbells is highly unlikely. The second most stable cluster is a pair of [11-1] dumbbells 
separated at the first nn distance (Figure 2c). The third most stable cluster consists of a pair of 
[111] dumbbells at the fourth nn distance (Figure 2d). The fourth stable cluster consists of [111] 
and [11-1] dumbbells at the second nn distance (Figure 2e). The fifth stable cluster consists of 
[111] and [1-11] dumbbells at the third nn separation (Figure 2f).  
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The results indicate that these clusters are strongly bound. The strongest clusters are found when 
the dumbbells are oriented in parallel. In fact, the three most stable clusters all form in parallel 
configurations. However, a collinear cluster exhibits repulsion even at a large separation 
distance. For instance, since the displacement field induced by a [111] dumbbell is highly 
directional along [111] and [-1-1-1] [24, 32, 34], we may estimate the range of repulsion of 
collinear dumbbells as follows. Consider a [111] dumbbell in a cell555 where this dumbbell 
together with its periodic images form an infinite array of collinear [111] dumbbells. In such a 
case, the difference in the formation energy using a cell555 and an infinitely large cell (obtained 
from finite-size scaling) is approximately equal to the binding energy of an infinite array of 
collinear [111] dumbbells, which for cell555 two collinear dumbbells are separated at the 10th 
hop along [111] (~ 28 Å). This binding energy is -0.06 eV (without semicore states) and -0.08 
eV (with semicore states). While the binding energy within such an array is not exactly the same 
as the binding energy between two isolated collinear dumbbells, it gives an estimate of the range 
of the repulsion of collinear dumbbells ~ 28 Å, or the range of influence of a single dumbbell to 
be half of this distance, i.e. ~ 14 Å, which is in a fairly good agreement with the estimated range 
reported in [24] of ~ 11 Å. Such a range of influence is larger than that in Fe (~ 7 Å [34, 37]). 
Hence our calculation further corroborates the comparison of the atomic displacement for the 
<111> string of atoms induced by a <111> dumbbell among bcc metals [32] which shows that 
the extent of a <111> dumbbell in the 4d and 5d metals is larger than that in the 3d metals.  
 
To verify the assumption that clusters of [111] dumbbells form the most stable cluster, we 
explore clusters consisting of a [111] and a [110] dumbbells (db111db110), as well as clusters of 
two [110] dumbbells (db110db110). For the db111db110 case, permuting <111> and <110> 
orientations at the five two-site combinations, as previously described, results in 120 clusters out 
of which 37 clusters are unique. After relaxing these clusters, the three most stable clusters are 
found to be the same as the three most stable clusters shown in Figure 2c-2d. In other words, the 
[110] dumbbell has rotated so that it is aligned with the [111] counterpart. For the db110db110 
exploration, there are 180 clusters in which 38 clusters are unique. After relaxation, the three 
most stable clusters are again found in the parallel [111] configurations as shown in Figure 2c-
2d. These results clearly indicate that the clusters prefer configurations that consist of [111] 
dumbbells. Therefore, to explore size-3 clusters, only [111] dumbbells are considered. 
 
3.2. Size-3 Clusters 
 
As previously noted, in searching for size-2 clusters, site 81 is included so that we can explore a 
pair of dumbbells up to the fifth nearest neighbor, which is the distance between site 1 to site 81. 
The results of size-2 clusters show that the five most stable configurations do not involve any 
pair separated at the fifth nearest neighbor. Therefore, site 81 is excluded in exploring size-3 
clusters. In other words, candidates for size-3 clusters are identified from nine lattice sites 
forming a body-centered cube, as shown in Figure 2a but without site 81. Taking combinations 
of three out of nine sites gives 84 combinations which reduces to six unique cases, namely (1, 65, 
17), (1, 65, 18), (1, 65, 22), (1, 17, 18), (1, 17, 22), and (1, 18, 6). Permuting the <111> 
orientations of the dumbbells at those sites results in 384 clusters, which reduce to 101 unique 
configurations, which are then relaxed. Note that the results from the size-2 clusters suggest that 
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clusters prefer parallel configurations. To verify this finding, here in exploring size-3 clusters, all 
non-parallel orientations are included. 
 
The most stable size-3 cluster (MSC-3) is shown in Figure 3a. The configuration consists of [11-
1] dumbbells forming an isosceles triangle on a (01-1) plane. The lengths of the triangle’s sides 
correspond to nn1, nn1, and nn2. The second and third most stable clusters are shown in Figures 
3b and 3c, respectively. The cluster in Figure 3b consists of [111] dumbbells forming an 
isosceles triangle on a (110) plane with side lengths corresponding to nn1, nn1, and nn3. One 
may construct an equivalent cluster to this one by arranging [11-1] dumbbells on a (01-1) plane. 
Therefore, this cluster has the same dumbbell orientation and arrangement plane as MSC-3 but 
differs in the location of the dumbbells. The cluster in Figure 3c forms a linear configuration of 
[11-1] dumbbells along [111]. Comparing these clusters, we observe that a more compact 
configuration provides increased stability. 
 
All clusters in Figure 3 may be seen to belong to a family of clusters consisting of [11-1] 
dumbbells arranged on a (01-1) plane. In this family, the dumbbells are oriented approximately 
35o off normal (i.e. from the plane’s normal). A different family of clusters can be derived from 
[11-1] dumbbells arranged on a (11-1) plane, i.e. the dumbbells are parallel to the plane’s 
normal, also known as prismatic clusters. For a size-3 prismatic cluster, the most compact 
configuration consists of [11-1] dumbbells forming an equilateral triangle with side length 
equaling nn3 (e.g. occupying sites 5, 17, and 22 in Figure 2a). The binding energy of such a 
cluster is Eb = -0.29 eV (without semicore states) and -0.21 eV (with semicore states). Note that 
even though these values of binding energy suggest that this cluster is unstable with respect to 
MSC-1 and MSC2, it is still highly binding with respect to three separate [111] dumbbells (i.e. 
Eb = 2.09 eV (without semicore) and 2.17 eV (with semicore)). The results from size-3 clusters 
support the finding from size-2 clusters in that parallel configurations of <111> dumbbells are 
much more stable than non-parallel configurations. Therefore, to explore size-4 and larger 
clusters, we focus on parallel dumbbells. 
 

 
Figure 3. Three most stable configuration of size-3 self-interstitial clusters. The bonds are drawn 
between dumbbells that are located within the first nearest-neighbor distance. In a), the dumbbell 

atoms are labeled from 1 to 6 and will be used when discussing the binding property of this 
cluster with a substitutional Re, Os, or Ta. 

 
3.3. Larger Clusters 
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Size-4 clusters are explored from two sets of lattice site. In the first set, the locations for the 
dumbbells are searched from 12 lattice sites shown in Figure 4a. The 12 sites are located on a 
(01-1) plane. This is motivated from the results of size-3 clusters in which the three most stable 
clusters form [11-1] dumbbells on the (01-1) plane. Hence, in this set we focus on [11-1] 
dumbbells. Combination of 4 out of 12 sites gives 495 combinations out of which 90 are unique. 
In the second set, the locations of the dumbbells are explored from 16 lattice sites forming a 
2x2x2 cubic supercell (Figure 4b). Combination of 4 out of 16 is 1820, which reduces to 83 
unique combinations. Unlike in the first set, the orientation of the dumbbells is not limited to 
[11-1]. In the second set, parallel configurations of [111], [11-1], [1-11], and [-111] dumbbells 
are allowed. Hence there are 4x83 = 332 parallel clusters in which 254 are unique. The three 
most stable configurations obtained from the first set are shown in Figure 5a to 5c. From the 
second set, we also found the same configurations as shown in Figure 5a to 5c as the three most 
stable clusters. 
 
For this reason, candidates for larger clusters are generated from a collection of [11-1] dumbbells 
on a (01-1) plane, similar to the first set of size-4 clusters. For size-5, size-6, and size-7 clusters, 
there are 792, 924, and 792 site combinations, respectively. Clusters are constructed by placing 
[11-1] dumbbells at those sites. Even after eliminating equivalent clusters, the number of unique 
clusters in each group remains large. There are 181, 259, and 269 unique clusters, respectively.  
 
Figure 5 shows three of the most stable clusters for each size; panels a) to c), d) to f), g) to i), and 
j) to l) for size-4, size-5, size-6, and size-7, respectively. In Figure 5, for non-planar clusters, 
arrows are drawn to point to the projected location of the dumbbells onto the corresponding 
plane. In each row, the clusters are presented in the order of their stability, with the most stable 
configuration plotted in the first column (panels a), d), g), and j)). The binding energies for these 
clusters are summarized in Table 2. The most stable cluster for size-4, size-5, size-6, and size-7 
is referred to as MSC-4, MSC-5, MSC-6, and MSC-7, respectively.  
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 10

 
Figure 4. a) The 12 lattice sites on a (01-1) plane from which candidate configurations of size-4 
to size-7 clusters are searched. b) The 16 lattice sites (rendered with larger spheres) forming a 
2x2x2 cubic supercell from which additional candidate configurations of size-4 clusters are 

searched. 
 
Even though we start with planar configurations, the majority of the clusters transform into non-
planar configurations. More specifically, the dumbbells are arranged in two layers of {110} 
planes. In fact, MSC-4, MSC-5, MSC-6, and MSC-7 are all non-planar. The arrangement of 
MSC-7 can be seen as four [11-1] dumbbells on a (01-1) plane and three [11-1] dumbbells on an 
adjacent (01-1) plane. It can also be seen as [11-1] dumbbells arranged on three (11-1) planes 
forming a perfect prismatic cluster. Using the dumbbell numbering scheme shown for MSC-7, 
smaller prismatic clusters can be identified. For example, a size-3 prismatic cluster corresponds 
to the assemblage formed by dumbbells 1-2, 3-4, and 5-6. This cluster is previously described in 
section 3.2. A size-4 prismatic cluster is formed by dumbbells 7-8, 9-10, 13-14, and 11-12, 
constituting a perfect tetrahedron with Eb = 2.53 eV (without semicore states) and 2.66 eV (with 
semicore states). The binding energy of this tetrahedral cluster is much smaller than that of 
MSC-4. Therefore, it appears that, the results from size-4 to size-7 clusters confirm the results 
from size-2 and size-3 clusters in that small clusters of interstitials prefer parallel configurations 
of <111> dumbbells on {110} planes, with the dumbbells oriented ~35o off normal. 
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Figure 5. Three most stable configurations for SIA clusters shown in the order of decreasing 

stability from the first to the third column. For non-planar clusters, arrows are drawn to point to 
the projected location of the dumbbells on the corresponding plane. The bonds are drawn 
between dumbbells that are located within the first nearest-neighbor distance. The binding 

energies are shown in Table 2. In a), d), g), and j), the numbering scheme of the dumbbell atoms 
is shown and will be used in the discussion. 
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3.4. Interaction with Substitutional Solute Re, Os, and Ta 
 
When an SIA binds to a substitutional solute positioned along its migration path, it forms a 
mixed dumbbell. Thus, in a mixed dumbbell, the solute atom adopts an interstitial position. For 
brevity, a mixed dumbbell of Re refers to a Re-W dumbbell. The formation energy of a mixed 
dumbbell is calculated from 

���
��� = ���
��� − ��,� − ���� (2) 

where Et{ dbx} is the total energy of the supercell containing a mixed dumbbell, and Et,W is the 
total energy of a pure supercell, and Esol is the total energy per atom of the solute in its 
groundstate structure, i.e. Re and Os in hexagonal close-packed structure and Ta in bcc. 
Similarly, the formation energy of a substitutional solute is calculated from 

��,� = ��,� − ��,�
�� − 1
��

− ���� 
(3) 

where Et,s is the total energy of the supercell containing a substitutional solute and N0 is the 
number of W atoms in a pure supercell. Table 3 shows the Ef{ dbx} in [100], [110], and [111] 
orientations and Ef,s for Ta, Re, and Os. 
 
Table 3. Formation energies of Ta-W, W-W, Re-W, and Os-W dumbells in the [111], [110], and 
[100] orientations, as well as the formation energies of a substitutional Ta, Re, and Os, and a 
vacancy in W. All energies are in eV. Values in bold are the formation energies corresponding to 
the most stable orientation of these dumbbells. Note that the Ta-W [100] dumbbell 
instantaneously relaxes to a W-W [100] dumbbell and a substitutional Ta. Results are 
extrapolated based on the finite size scaling using 4x4x4 cell (6x6x6 k-points), 5x5x5 cell 
(5x5x5 k-points), and 6x6x6 cell (5x5x5 k-points). Calculations with and without 5p semicore 
states are denoted as w/sc and w/o sc, respectively. The semicore corrections were obtained 
using the 4x4x4 cell (6x6x6 k-points). 

 w/o sc w/sc 
Ta-W W-W Re-W Os-W Ta-W W-W Re-W Os-W 

111 10.12 
(10.04a) 

9.96 
(9.89a) 

9.32 
(9.30a) 

9.06 10.38 
(10.34a) 

10.21 
(10.16a) 

9.56 
(9.53a) 

9.26 

110 10.54 
(10.53a) 

10.23 
(10.25a) 

9.24 
(9.30a) 

8.70 10.93 
(11.01a) 

10.51 
(10.59a) 

9.46 
(9.55a) 

8.86 

100 11.38 12.03 11.28 10.88 11.36 12.22 11.44 10.99 
Substitutional -0.47 

(-0.46a) 
0.00 0.17 

(0.17a) 
0.75 -0.47 

(-0.47a) 
0.00 0.18 

(0.17a) 
0.76 

Vacancy N/A 3.17 N/A N/A N/A 3.15 N/A N/A 
a are extrapolated results from [31] in which the finite size scaling was obtained using 3x3x3, 4x4x4, and 5x5x5 
cells all with 6x6x6 k-points, and the semicore states corrections were obtained using 4x4x4 cell with 3x3x3 k-
points. 

 
The formation energy of substitutional solutes in W increases from Ta → Re → Os. While the 
opposite trend is observed for the [111] and [110] dumbbells where their formation energy 
decreases from Ta-W → W-W → Re-W → Os-W. For the [100], W-W, Re-W, and Os-W 
dumbbells also follow a decreasing trend, while the Ta-W does not. The anomalous behavior of 
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Ta-W [100] dumbbell is caused by the fact that, unlike all other dumbbells listed in Table 3 in 
which the solute is part of the mixed dumbbell, the Ta-W [100] dumbbell instantaneously relaxes 
to a W-W [100] dumbbell and a substitutional Ta. The most stable orientation for a Ta-W 
dumbbell is [111], while for Re-W and Os-W it is [110].  
 
Similar to the case of an SIA, when an SIA cluster binds to a substitutional solute located along 
its migration path, the solute adopts an interstitial site and becomes part of the dumbbell atoms. 
Therefore, the binding property of SIA clusters with a substitutional solute is studied by 
replacing one of the conjugate atoms with Re, Os, or Ta. Conjugate atoms are those initially at 
lattice sites but now sharing the sites with SIAs as dumbbells. The binding energy of a size-n 
cluster with a substitutional solute is calculated from 

����: �, ���� = ����: �� + ��,� − ����: �, ���� − ���0� (4) 

where Et{ α:n} is the total energy of the supercell containing a size-n cluster in α configuration, 
Et{ α:n,sol} is similar to Et{ α:n} but with one of the conjugate atoms replaced by a solute, Et,s is 
the total energy of the supercell containing a substitutional solute, and Et{0} is the total energy of 
a perfect supercell. For example in a size-3 cluster, there are six dumbbell atoms in which three 
are the actual interstitial atoms and the other three are the conjugate atoms, when we replace one 
of the dumbbell atoms with a solute, we mean to replace one of these conjugate atoms. 
Therefore, the size of the cluster remains three. Clearly, from this configuration, depending on 
the reference state selected, one may calculate a binding energy with respect to a size-2 SIA 
cluster and a mixed dumbbell, instead of with respect to a size-3 SIA cluster and a substitutional 
solute. The binding energy defined in Equation (4) refers to the latter case and is the binding 
energy that will be discussed in the following paragraphs. Further justification and importance of 
the chosen definition of binding energy will be apparent in Section 4 when we compare different 
definitions of binding energies. 
 
Three of the most stable clusters for each cluster size are considered and their binding with a 
solute atom is explored. From these three clusters, the minimum, maximum, and average binding 
energies are calculated. The results are presented in the top panel of Table 4. Even within a given 
cluster size, solute binding varies depending on the location of the solute in the cluster. This is 
illustrated by the data given in the bottom panel of Table 4 in which the minimum, maximum, 
and average values are presented only for the MSCs. 
 
 
Table 4. Binding energy of size-n SIA clusters to a substitutional solute obtained by replacing 
one of the dumbbell atoms with the solute. The minimum, maximum, and average values are in 
eV and calculated from the three most stable configurations (top panel) and from the most stable 
configuration only (bottom panel). Results are extrapolated based on the finite size scaling using 
4x4x4 cell (6x6x6 k-points), 5x5x5 cell (5x5x5 k-points), and 6x6x6 cell (5x5x5 k-points). 
Calculations with and without 5p semicore states are denoted as w/sc and w/o sc, respectively. 
The semicore corrections were obtained using the 4x4x4 cell (6x6x6 k-points). 

w/o sc 

n 
Re Os Ta 

Min Max Ave Min Max Ave Min Max Ave 
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1 0.81 0.81 0.81 1.65 1.65 1.65 -0.63 -0.63 -0.63 
2 0.74 0.86 0.80 1.67 1.75 1.73 -0.74 -0.59 -0.64 
3 0.66 0.91 0.79 1.39 1.82 1.61 -0.67 -0.52 -0.61 
4 0.69 0.83 0.78 1.43 1.67 1.58 -0.66 -0.53 -0.60 
5 0.55 0.80 0.74 1.16 1.64 1.51 -0.66 -0.43 -0.60 
6 0.56 0.78 0.71 1.14 1.58 1.47 -0.65 -0.47 -0.59 
7 0.43 0.77 0.67 0.87 1.56 1.40 -0.65 -0.41 -0.56 
2 0.74 0.86 0.80 1.75 1.75 1.75 -0.66 -0.60 -0.64 
3 0.81 0.83 0.82 1.68 1.69 1.69 -0.64 -0.62 -0.63 
4 0.69 0.79 0.76 1.48 1.66 1.56 -0.64 -0.53 -0.59 
5 0.60 0.79 0.74 1.42 1.57 1.52 -0.66 -0.56 -0.61 
6 0.56 0.78 0.72 1.14 1.58 1.46 -0.65 -0.47 -0.59 
7 0.43 0.74 0.67 0.87 1.50 1.41 -0.61 -0.43 -0.56 

w/sc 
1 0.83 0.83 0.83 1.71 1.71 1.71 -0.64 -0.64 -0.64 
2 0.77 0.89 0.83 1.74 1.82 1.80 -0.75 -0.60 -0.65 
3 0.68 0.93 0.81 1.43 1.87 1.66 -0.68 -0.52 -0.62 
4 0.71 0.85 0.80 1.46 1.70 1.61 -0.66 -0.54 -0.60 
5 0.57 0.82 0.76 1.20 1.68 1.55 -0.66 -0.43 -0.60 
6 0.58 0.80 0.72 1.17 1.61 1.50 -0.65 -0.48 -0.60 
7 0.46 0.80 0.70 0.90 1.60 1.43 -0.65 -0.41 -0.56 
2 0.77 0.89 0.83 1.82 1.82 1.82 -0.70 -0.62 -0.66 
3 0.83 0.85 0.84 1.73 1.73 1.73 -0.64 -0.63 -0.64 
4 0.71 0.81 0.77 1.52 1.69 1.60 -0.65 -0.54 -0.59 
5 0.62 0.81 0.77 1.46 1.61 1.56 -0.66 -0.56 -0.61 
6 0.58 0.80 0.73 1.17 1.61 1.49 -0.65 -0.48 -0.59 
7 0.46 0.77 0.69 0.90 1.54 1.44 -0.61 -0.43 -0.56 

 
From Table 4, it is evident that Re binds strongly to SIA clusters but the strength decreases with 
increasing cluster size. Osmium shows a similar binding trend, but stronger than Re. On the other 
hand, SIA clusters are strongly repelled by Ta on their migration path with the magnitude of the 
repulsion decreasing for larger clusters. The interaction for Ta exhibits a comparable magnitude 
to that of Re, but with an opposite sign. While the interaction for Os is about twice that of Re. 
Comparing these interactions with the difference in the electronic valence of Ta, Re, and Os with 
respect to W, namely -1, +1, and +2, suggests that the binding properties of these solutes are 
closely related to the electronic band structures. We note that this valence difference does not 
necessarily reflect the difference in Pauling electronegativity. The Pauling electronegativity is 
1.5 (Ta), 2.36 (W), 1.9 (Re), and 2.2 (Os). Clearly Ta, Re, and Os are all less electronegative 
compared to W, but yet Re and Os are attracted to SIA clusters while Ta is repelled. On the other 
hand, the binding property may also be related to the difference in atomic volume, with Re and 
Os being undersized and Ta being oversized compared to W. The correlation between solute-SIA 
binding characteristic with atomic volume, and lack of correlation with electronegativity, has 
been observed for various transition metals in W [24] as well as in Fe [37]. 
 
In Equation (4), the solute binding energy of a cluster in α configuration is calculated with 
respect to the corresponding α configuration of the pure cluster. This is necessary because solute 
replacement may induce translation of the dumbbells in the cluster along <111>. In this regard, 
we have carefully taken the following precaution. Whenever a translation occurs such that α 
configuration becomes β configuration, we replace the solute in the β configuration with W and 
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relax the configuration, if after the relaxation the pure cluster stays in β configuration, we take 
this β configuration as the reference in calculating the binding energy, if it relaxes back to α 
configuration, we take α configuration as the reference state. In addition, in a few replacement 
cases with Ta, the cluster instantaneously translates away from Ta. When this happens, the 
binding energy approaches zero. Therefore, we exclude such cases from the data collected in 
Table 4. 
 
In the following paragraphs, we describe all instances of translation for the MSCs. For this 
purpose, the replacement sites are numbered (in black text) as shown in Figures 2, 3, and 5. In 
general, small clusters are more susceptible to translation, and Os and Ta are more likely to 
induce translation than Re. Furthermore, the most energetically favorable binding location for Re 
is usually the same for Os, which typically is the most energetically unfavorable site for Ta. 
 
For MSC-2 (Figure 2b), the unique replacement sites are 1=4 and 2=3 (the = sign denotes 
equivalence). Rhenium and Ta at any of these sites do not cause translation. Osmium at site 2 
causes itself to leave atom 1 to form a new mixed dumbbell with atom 1’ and causes the 3-4 
dumbbell to translate one hop along [111], such that the final configuration is equivalent to that 
if Os were placed at site 1. Site 1 provides the most binding for Re and Os and most repulsion for 
Ta. 
 
For MSC-3 (Figure 3a), the unique replacement sites are 1=4, 2=3, and 5=6. Rhenium at any of 
these sites does not cause translation. Osmium at site 2 does not cause translation. Osmium at 
site 1 causes itself to form a new mixed dumbbell with its neighboring atom along [-1-11] and 
causes the 3-4 and 5-6 dumbbells to translate one hop along [-1-11] to form a final configuration 
that is equivalent to that of Os replacement at site 2. Osmium at site 5 causes translation to create 
an eventual configuration equivalent to Os replacement at site 2. Tantalum at any of the sites 
does not cause translation, except at site 1. At site 1, the cluster simply translates away, as a 
whole, from Ta. The strongest binding site for Re and Os is site 2. The strongest repulsion site 
for Ta is site 5. 
 
For MSC-4 (Figure 5a), the unique replacement sites are 1=3, 2=4, 5, 6, 7, and 8. Rhenium and 
Os at any of these sites do not cause translation, except at site 5. At site 5, they cause 1-2 and 3-4 
dumbbells to translate one hop along [11-1] to form a final configuration that is equivalent to 
replacement at site 7. Tantalum at sites 2, 6, and 8 does not cause translation. Tantalum at sites 1, 
5, and 7 cause the whole cluster to translate away from the Ta. The strongest binding site for Re 
and Os is site 7. The strongest repulsion for Ta is at site 6. The weakest binding site for Re and 
Os, and weakest repulsion for Ta, is site 2.  
 
For MSC-5 (Figure 4d), all replacement sites are unique. Rhenium at any site does not induce 
translation. Osmium does not cause any translation except at site 7. Osmium at site 7 causes all 
other dumbbells to translate one hop along [-1-11] to form an equivalent configuration to Os 
replacement at site 8. Tantalum also does not cause any translation except at site 7. Tantalum at 
site 7 causes atom 8 to leave the Ta and form a new dumbbell with its closest neighbor along 
[11-1]. The strongest binding for Re and Os, and the strongest repulsion for Ta, is at site 1. The 
weakest binding for Re and Os is at site 7. The weakest repulsion for Ta is site 8. 
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For MSC-6 (Figure 4g), the unique replacement sites are 1=2, 3=6, 4=5, 7=9, 8=10, 11, and 12. 
Rhenium and Os do not induce translation at any of these sites.  Tantalum causes translation only 
at site 1 in which atom 2 leaves the Ta and forms a new dumbbell with its closest neighbor along 
[11-1]. The strongest binding for Re and Os, and the strongest repulsion for Ta, is at site 2. The 
weakest binding for Re and Os, and the weakest repulsion for Ta, is at site 11. 
 
For MSC-7 (Figure 4j), the unique replacement sites are 1=3=5, 2=4=6, 7=10=14, 8=9=13, 11, 
and 12. Rhenium does not induce translation at any site. Osmium at site 1, 7, or 12 causes 
translation. At 1, it causes dumbbells 7-8, 9-10, and 11-12 to translate one hop along [-1-11]. At 
7, it causes itself to leave atom 8 and to form a new mixed dumbbell with its nearest neighbor 
along [11-1], and causes all other dumbbells, except dumbbell 11-12, to translate one hop along 
[11-1], forming a final cluster equivalent to Os replacement at site 2. At site 12, Os causes 
dumbbells 1-2, 3-4, and 5-6 to translate one hop along [11-1]. Tantalum causes translation only 
at site 1 or 8, in which the cluster, as a whole, separates from the Ta.  The strongest binding for 
Re and Os, and the strongest repulsion for Ta, is at site 2. The weakest binding for Re and Os, 
and the weakest repulsion for Ta, is at site 12. 
 
It is interesting to relate the dumbbell sliding induced by a solute in several cases, as described 
above, to the transformation of the core configuration of a screw dislocation in bcc metals due to 
an interstitial solute (C, B, N, and O in Fe, and C in W) [38]. The solute causes the 
transformation from an easy-core configuration to a hard-core configuration. The two core 
configurations differ in the way the three nearest columns of atoms along <111> around the core 
are positioned along the <111> direction. It appears that the transformation is mediated by the 
sliding of these <111> columns, similar to the sliding of <111> dumbbells in our analysis above. 
 
4. Discussion 
 
We have explored cluster configurations up to size seven in which the binding energy of a size-n 
cluster with respect to the n → (n-1) + 1 reaction is calculated through Equation (1). Figure 6 
shows the average binding energy as a function of n, calculated from the three most stable 
clusters (Table 2), corresponding to the data with semicore states. In Figure 6, tic marks above 
and below the average values represent the maximum and the minimum values. Since the data 
are collected from the three most stable clusters, the maximum and minimum values correspond 
to the data from the first and the third most stable clusters, respectively.  For n > 7, the binding 
energy may be calculated using the capillary approximation [23], in which the formation energy 
is proportional n2/3. However this approximation may not be suitable for interstitial clusters 
studied here since these SIA clusters represent small nano-scale dislocation loops [34, 39], rather 
than spherical objects. The formation energy of a dislocation loop can be written as [40, 41] 

����� = �√� + �√�	ln	(�) (5) 

where a is the coefficient associated with the core-energy term and b is the coefficient associated 
with the elastic deformation energy of the medium surrounding the dislocation loop. The binding 
energy in Equation (1) can be rewritten as 
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����� = ���1� + ���� − 1� − ����� (6) 

Using Equation (5), Equation (6) becomes 

����� = ���1� − �#√� − √� − 1$ − �(√� ln(�) − √� − 1 ln(� − 1)) (7) 

The coefficients a and b may be fitted to the average binding energy data, or may be solved by 
using two values from those data. Since we are concerned with n > 7, we solve a and b using the 
data from the two largest clusters in this study, i.e. size-7 and size-6 clusters. The results are 

� =
���1� − ���7� − 0.7595	�

0.1963
 

(8) 

� =
0.2134(���1� − ���7�) − 0.1963(���1� − ���6�)

0.0070
 

(9) 

where, for the data with semicore states, Ef{1} = 10.21 eV, Eb{7} = 5.48 eV, and Eb{6} = 4.96 
eV yield a = 35.96 eV and b = -3.06 eV. With this model, the binding energy curve for n > 7 is 
plotted in Figure 6. For infinitely large clusters, the binding energy approaches the formation 
energy of a single <111> dumbbell [42].   
 

 
Figure 6. Binding energy of size-n SIA clusters with respect to an n → (n-1) + 1 reaction. For 
this work, the data are extrapolated to an infinite supercell based on a finite size scaling and the 
calculations are performed with the 5p semicore states treated as valence states. For each cluster 
size, the average value over the three most stable clusters is plotted with the tic marks above and 

below the average values representing the maximum and the minimum values. For n > 7, an 
empirical formula as shown in the figure can be used. The formula is based on the formation 

energy of dislocation loops (see text). The formula is fit to the binding energy of size-6 and size-
7 clusters, resulting in a = 35.96 eV and b = -3.06 eV. The asymptotic value is equal to the 
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formation energy of a single interstitial ([111] dumbbell) of Ef{1} = 10.21 eV. For comparison, 
data points from [23] are plotted as squares. 

 
In Figure 6, we compare the data from this study to those reported in [23] (squares). We find that 
the results from [23] generally fall within the range of the present results, except for n = 6 which 
is lower than our minimum value. Nevertheless, because the details of the configurations were 
not reported in [23] and that the calculations were performed with a different setup, without 
finite size scaling, and without semicore states, further assessment cannot be made. 
 
So far, cluster stability is analyzed in terms of dissociation of one dumbbell from the cluster. 
Other processes can lead to different dissociation products. For instance, dissociation of a size-2, 
or a size-3 cluster from the parent cluster, and so on. It follows from Equation (6) that the larger 
the size of the dissociation product, the more energy needed. Therefore, the most likely 
dissociation mechanism is through a sequential process, involving one dumbbell at a time, even 
so, it is very unlikely given the strong binding of a single dumbbell. 
 
The trend of the solute binding energy as a function of cluster size is depicted in Figure 7. As 
before, the data points are averaged from the results using the three most stable clusters (Table 4) 
and over different positions of the solute in the cluster. The maximum and minimum values show 
the range of the binding. From Figure 7, it is evident that as the cluster size increases, the binding 
decreases (for Re and Os). In addition, the variation of the binding at different replacement 
positions generally increases for larger clusters. A similar trend, but opposite sign, is obtained for 
Ta, i.e. the repulsion weakens for larger clusters. 
 

 
Figure 7. Binding energy of size-n SIA clusters to a Re, Os, or Ta atom substitutionally 
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replacing one of the W dumbbell atoms. The data points represent the average over the three 
most stable clusters. The tic marks represent the maximum and minimum values. The fit curves 
show the results of fitting the solute binding energy with an empirical formula of ����, ���� =

��,� + -√�./0√1 + 
, where Ef,s is the formation energy of the substitutional solute and c, β, and 
d are the fitting parameters. The value of Ef,s, c, β, and d is, respectively, 0.18, 1.21, 0.74, 0.06 

(for Re), 0.76, 2.06, 0.85, 0.10 (for Os), and -0.47, -0.40, 0.99, -0.03 (for Ta). The data are 
obtained from the calculations with finite-size correction and 5p semicore states. 

 
From the data for size-7 clusters, it is found that the strongest binding is at the periphery of the 
cluster (seen from the projected view along the orientation of the dumbbells), or equivalently, the 
weakest binding occurs when the solute is in the middle of the cluster. In other words, the 
binding is strongest in regions with the largest stress field. The solute binding energy defined in 
Equation (4) can be rewritten in terms of formation energies, instead of total energies, as 

����: �, ���� = ��,�+����: �� − ����: �, ���� (10) 

The meaning of the notation is the same as in Equation (4). Deriving a physical model to 
describe the effect of a solute to the cluster’s energetic proves to be very complex. As a first 
approximation, we express the difference in the formation energy between a pure cluster and a 
cluster with a solute for a size-n cluster as: 

����: �� − ����: �, ���� = -2345 .
/067

4
+ 
2 = 	-√�./0√1 + 
 

(11) 

 
In the above equation, R denotes the radius of the cluster (assumed to be a circular loop). The 
first term is a product between the area of the cluster and the change in the formation energy per 
area caused by the charge density of the solute in which the influence of the solute is assumed to 

decay as a screened Coulomb interaction, i.e. ~ 9:;	(/067)
7

. The second term, d, denotes the value 

of the formation energy change for an infinitely large cluster. The value of d is assumed to be 
constant because in an infinitely large cluster, every position of the solute in the cluster is 
equivalent. Furthermore, the value of d is non-zero because the strain field from an infinite array 
of [111] dumbbells is different from the strain field inside a bcc lattice, i.e. the formation energy 
of a solute within an infinite array of [111] dumbbells is different from the formation energy of a 
substitutional solute in a bcc lattice. Using this model, we fit the coefficients c, β, and d using the 
solute binding energy data as plotted in Figure 7. Table 6 summarizes the fit results along with 
the R2 of the fit. We realize that this model lacks rigorous physical justifications. Surprisingly, 
however, the fit curves show that the model can well describe the trend of the solute binding 
energies. 
 
Table 6. Fit results of the average binding energy, over the three most stable clusters, of size-n 

SIAs to a substitutional solute, using an empirical model of ����, ���� = ��,� + -√�./0√1 + 
, 
where Ef,s is the formation energy of the substitutional solute and c, β, and d are the fitting 
parameters. Data are obtained from calculations with finite-size corrections and with 5p semicore 
states. 
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 Re Os Ta 
Ef,s (eV) 0.18 0.76 -0.47 
c (eV) 1.21 2.06 -0.40 

β 0.74 0.85 0.99 
d (eV) 0.06 0.10 -0.03 

R2 of the fit 0.97 0.94 0.86 
 
In this work, we include the results for which the solute is binding along the migration path of 
the clusters. Studying the binding properties for solute located perpendicular to the migration 
path of the clusters requires exploration of even larger sets of solute positions. For this reason, 
such study will be reserved for future work. Meanwhile, for a special case of an SIA dumbbell, 
the solute binding properties along parallel (//) as well as perpendicular (⊥) to the <111> 
direction have been reported [24]. It was found that at the first nearest site (⊥1), the binding for 
Ta, Re and Os is on the order of 0.2, 0.5 and 1.0 eV, respectively. However, the binding 
decreases rapidly towards zero for the second (⊥2) and third (⊥3) nearest site, suggesting that the 
interaction distance is very local, ~ 3 Å. On the other hand, the interaction distance along the // 
direction is much larger, ~ 15 Å. Given that the interaction range along a ⊥ direction is very 
local, one would expect that the behavior for larger clusters would be similar to that of a 
dumbbell. Note that while Ta strongly repels SIA clusters along the // direction, it was found to 
be attractive (Eb = ~0.2 eV) at ⊥1. 
 
Consider an {α:n,sol} cluster, that is a size-n SIA cluster with one of the conjugate atoms 
replaced with a solute. We may ask the question what is the most energetically favorable 
dissociation product? Is it a substitutional solute, an SIA, or a mixed dumbbell? For simplicity, 
let’s denote the binding energy associated with these three cases as Eb{ n,sol}, µdb{ n}, and 
µdbx{ n}, respectively, again the α configuration index has been omitted to indicate that these 
energies are average values over different configurations for each n. Eb{ n,sol} is the solute 
binding energy of an SIA cluster as defined in Equation (4). µdb{ n} and µdbx{ n} are related to 
Eb{ n,sol} as 

<=�>��� = ����, ���� + ����� − ���1, ���� 

<=���� = ����, ���� + ����� − ���� − 1, ���� 

(12) 

(13) 

Where Eb{ n} is the binding energy of a size-n SIA cluster as defined in Equation (1). Note that 
Eb{1 ,sol}, which is the solute binding energy for a size-1 SIA cluster, is the same as the binding 
energy of a mixed dumbbell. Note that Eb{ n,sol} for Re, Os, and Ta have been plotted in Figure 
7. Furthermore, the magnitude of Eb{ n,sol} is very small compared to µdb and µdbx. Therefore, in 
Figure 8, only µdb and µdbx are plotted. For Re and Os, µdb{ n} > µdbx{ n} >> Eb{ n,sol}, i.e. the 
most energetically favorable dissociation process is for the SIA cluster to separate, as a whole, 
from the solute. This conclusion is apparently valid also for Ta, since the cluster is repulsive to 
Ta. In a recent work [43], the binding properties of a pair of W-Re dumbbells were reported. The 
binding is analyzed with respect to separation into two individual W-Re dumbbells and can reach 
as high as 3.20 eV. Based on our comparison study of Eb{ n,sol}, µdb and µdbx above, the most 
energetically favored separation is when the whole SIA cluster detaches from the solute, leaving 
a substitutional Re. Therefore, it seems important to verify whether a cluster of two W-Re 
dumbbells would likely to separate into two individual W-Re dumbbells as analyzed in [43], or 
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to separate into a size-2 SIA cluster leaving behind two substitutional Re atoms. Indeed, future 
investigations are needed to elucidate the rich binding phenomena in complex W-Re clusters. 
 

 
Figure 8. Binding energy of an {n,sol} cluster, i.e. a size-n SIA cluster with one solute replacing 

one of the dumbbells, with respect to two sets of products: a W-W dumbbell + {n-1,sol} with 
binding energy denoted as µdb (plotted as red squares), or a W-sol mixed dumbbell + a size-(n-1) 
SIA cluster with binding energy denoted as µdbx (plotted as black dots). The solutes are Re, Os, 

or Ta. Data represent averages over three most stable clusters in each size and over different 
solute position within the cluster. The data are obtained from the calculations with finite-size 

correction and 5p semicore states. 
 
Note that a mixed dumbbell migrates through a series of rotations between <111> and <110> 
with a barrier equal to the difference in the formation energy between the two orientations: 0.37, 
0.07, and 0.34 eV for Ta, Re, and Os, respectively. On the other hand, an SIA can migrate 
through a rotation between <111> and <110> (with a barrier of 0.25 eV) and/or a translation 
along <111>. A calculation using the climbing nudged elastic band (cNEB) method gives the 
<111> migration barrier of 0.004 eV, compared to other plane-wave DFT results of 0.002 eV 
[30], 0.004 eV [44], and 0.005 eV [45]. The error of calculation in our simulation is on the order 
of 0.01 eV. Thus, the <111> migration barrier is negligible. A different ab initio study using a 
linear combination of atomic orbitals (LCAO) basis gives 0.05 eV [32] with the error in that 
calculation on the order of 0.015 eV. An experimental measurement suggests a value of 0.054 eV 
[25], but a more recent experiment shows that SIA migration is active even below 1.5 K [46] 
indicating that the barrier is close to zero. For SIA clusters, diffusion simulations with a classical 
interatomic potential shows that the diffusivity varies linearly with temperature [22], similar to 
the diffusion of an SIA [21]. In [21], the diffusivity data was fitted with a migration barrier of 
0.013 eV and a pre-factor that varies linearly with temperature. From the above data, it is evident 
that the migration barrier of an SIA and SIA clusters is much smaller than that of a mixed 
dumbbell (i.e. the rotation barrier). Therefore, taking into account the migration barriers, in 
addition to the binding energies, the most energetically favorable dissociation path remains for 
the SIA cluster to separate, as a whole, from the solute. 
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5. Conclusions 
 
We have explored a large number of candidate configurations of SIA clusters. The results show 
that small interstitial clusters prefer parallel <111> dumbbell orientations arranged in compact 
configurations on two or more {110} planes. These clusters are strongly binding. Three of the 
most stable clusters in each size of cluster have been used to obtain an average binding property. 
The binding energy of a size-n cluster with respect to n → (n-1) + 1 reaction increases with size 
from approximately 2.24 eV (n = 2) to 5.48 eV (n = 7). For n > 7, an empirical model based on 
the formation energy of dislocation loops is presented as ����� = ���1� − �#√� − √� − 1$ −
�(√� ln(�) − √� − 1 ln(� − 1)) where Ef{1} = 10.21 eV is the formation energy of a [111] 
dumbbell and fitted parameters a = 35.96 eV and b = -3.06 eV. The model implies that the 
binding energy of an infinitely large cluster is equal to the formation energy of a [111] dumbbell. 
  
The interaction of these clusters with Re, Os, or Ta substitutional solutes is studied by replacing 
one of the dumbbell atoms with the solute. It is found that these clusters are strongly attracted to 
Re and Os, but strongly repelled by Ta. The strongest interaction is found when the solute is 
located on the periphery of the cluster rather than in the middle of the cluster. Averaging over 
different positions of the solute in the cluster for the three most stable clusters in each cluster size 
shows that the solute binding energy decreases with cluster size from 0.83 eV (n = 1) to 0.70 eV 
(n = 7) for Re, from 1.71 to 1.43 eV for Os, and increases from -0.64 to -0.56 eV for Ta. The 
trend of the solute binding energy is well reproduced with a formula of ����, ���� = ��,� +
-√�./0√1 + 
, where Ef,s is the formation energy of the substitutional solute and c, β, and d are 
the fitting parameters. The value of Ef,s, c, β, and d is, respectively, 0.18, 1.21, 0.74, 0.06 (for 
Re), 0.76, 2.06, 0.85, 0.10 (for Os), and -0.47, -0.40, 0.99, -0.03 (for Ta). All the data are 
obtained from calculations with finite-size corrections and 5p semicore states included as valence 
states. 
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• Systematic DFT exploration of tungsten SIA clusters from 1,264 configurations. 
• Detailed structures of several most stable clusters are presented. 
• Novel finding of the trend of solute binding of Re, Os, and Ta with SIA clusters. 
• Empirical models that describe the trends of the solute binding energies. 


