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The geometrical convergence of the Gibbs sampler for simulating a probability
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1. INTRODUCTION

Stochastic relaxation is a powerful idea used extensively for sampling
probability distributions in high-dimensional spaces. The convergence of
the stochastic relaxation to the equilibrium and the rate of convergence are
important issues remained to be settled in general.

The Gibbs sampler and the Metropolis algorithm are among the best
known examples of stochastic relaxations commonly used in applications
[9]. Their behaviors are far from well understood [2, 5, 6, 7, 12, 15]. In
this paper we shall consider the Gibbs sampler in the Euclidean space.

For the Gaussian case the Gibbs sample has a specific representation
[3]. We show that a similar representation holds under our conditions.
And this result demonstrates the intrinsic difference between these two
types of algorithms. Note that the Metropolis algorithm in the Euclidean
space is a perturbation of the gradient dynamics [8, 14]. Another main
result is the exponential convergence of the Gibbs sampler. Related works
for the Metropolis algorithm can be found in [12, 15].

First we mention some known results on the convergence for the Gibbs
sampler. Exponential convergence in variational norm for the deterministic
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and random updating strategies in the Gaussian case are obtained in [3].
The rates of convergence for these two strategies are also compared. In
[1], the exponential convergence of the Gibbs sampler for bounded pertur-
bations of Gaussian densities is proved.

For simplicity we assume that the given distribution has a log-concave
density which is proportional to exp(&V(x)). The main results continue to
hold under slightly general conditions, see Section 2 and the remark after
Theorem 3.5. We apply some powerful results from the theory of Harris
recurrent Markov chain [13] to establish the convergence of the Gibbs
sampler and obtain the exponential rate of convergence.

It is known that the Markov chain generated by the Gibbs sampler is
Harris recurrent if the probability density is continuous and positive.
Therefore,

&Pn (x, } )&+( } )&var � 0, n � �,

where Pn is the n-step transition probabilities, +( } ) is the given distribution
and & }&var is the variational norm of measures. Moreover, if the Markov
chain is geometrically recurrent, then Pn (x, } ) converges to +( } ) exponen-
tially for almost all x. These results and some related notions are presented
in the Appendix.

Under suitable conditions, we show that the Markov chain generated is
geometrically recurrent. Furthermore we deduce that it converges exponen-
tially to the equilibrium for an initial point.

The main ingredient of our approach comes from the following observa-
tion. Denote the Markov chain in Rd generated by the Gibbs sampler as
X (0), X (1), X (2), ..., and

X (n)=(x (n)
1 , Z(n)), x (n)

1 # R, Z(n) # Rd&1,

then there are maps 9, ,,

9 : Rd&1 � Rd&1

,: Rd&1 � R

such that

X (n+1)=8(Z(n))+'(n),

8=\ ,
9+ .

9 is shown to satisfy the property that 9m, the mth iteration of 9, is a
contraction map. Note that for the Gibbs sampler the transition from X (n)
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to X (n+1) is done by updating the coordinates one by one. Now compare
this updating scheme with a deterministic one. , here is the argument in
the first coordinate which minimizes V with other coordinates fixed. 8 is
defined similarity by performing the same minimization procedure
throughout the other coordinates. '(n) is the resulting error. Details of this
approach will be spelled out later.

Note that the above formulation is very similar to that in the nonlinear
autoregressive (NLAR) time series [4, 16, 17] where the innovations '(n)

are i.i.d. However, in the current setup the innovations are not i.i.d. in
general. Instead we establish that there are ;>0, c>0 such that

E[exp(; |'(n)|2) | X (n)]�c,

for all n. This will be sufficient to deduce the geometrical convergence of
the dynamics.

It is very tempting to use the NLAR formulation, i.e., by applying a
deterministic dynamic to the current state plus an innovation as the updat-
ing scheme to generate the Monte Carlo Markov chain. The difficulty lies
in finding feasible dynamics and innovations in practice. But if we consider
a similar situation in the continuous time setup, &{V and Brownian
motion may be used as the deterministic dynamics and innovations respec-
tively [10]. However, the discrete time approximation of this diffusion has
a different limiting distribution.

The paper is arranged as follows. The main results are presented in Sec-
tion 3. Assumptions, definitions, and some elementary properties are
presented in Section 2. Some relevant results of Harris recurrent Markov
chains are in the Appendix, e.g., the Gibbs sampler for a positive con-
tinuous density is Harris recurrent. This very result was announced in [11]
without a complete proof.

2. ASSUMPTIONS AND PRELIMINARY RESULTS

Let + be a probability distribution on Rd with density (still denoted by
+) given by

+(X)=
1
M

exp(&V(X)),

where M is the normalizing constant and V( } ) is assumed to satisfy the
following condition.
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(A) V( } ) is smooth, strictly convex and there are :1 , :2>0 such that

:1�\ �2V
�x i �x j

(X)+�:2 \X # Rd.

The inequalities are meant for nonnegative definite matrices. Our main
results still hold under conditions slightly more general than (A). (See the
remark after Theorem 3.5.) Under (A), V( } ) has a unique minimum and,
without loss of generality, we assume

V(0)=min V.

The following lemmas are easily obtained.

Lemma 2.1. 1
2:1 |X|2�V(X)� 1

2:2 |X| 2.

Lemma 2.2. :1 |X|�|{V(X)|�:2 |X|. Here {V is the gradient of V.

Now we introduce the Gibbs sampler. Let X=(x1 , ..., xd), Y=( y1 , ..., yd)
be in Rd. Denote

W (k)=( y1 , ..., yk&1 , xk+1 , ..., xd),
(2.1)

Y (k)=( y1 , ..., yk , xk+1 , ..., xd),

and

Pk ( yk | W (k))=
1

Zk (W (k))
exp(&V(Y (k)))

with

Zk (W (k))=| exp(&V(Y (k))) dyk .

The Gibbs sampler we consider is a Markov chain with transition density
P(X, Y) given by

P(X, Y)=P1 ( y1 | W (1)) P2 ( y2 | W (2)) } } } Pd ( yd | W (d )). (2.2)

The following property is easily verified,

| +(X) P(X, Y) dX=+(Y).
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Namely, the Gibbs sampler has +( } ) as its invariant measure. Moreover, by
the ergodic property established in the Appendix, +( } ) is the unique
invariant measure.

The following maps are essential. For each k, k=1, 2, ..., d, and
W # Rd&1, there uniquely exists a point ,k(w) in R satisfying

V(w1 , ..., wk&1 , ,k (W), wk , ..., wd&1)=min
y

V(w1 , ..., wk&1 , y, wk , ..., wd&1).

(2.3)

Then, the following mapping from Rd&1 to R is well defined.

V� k (W)=V(w1 , ..., wk&1 , ,k (W), wk , ..., wd&1). (2.4)

Lemma 2.3. _c1 , c2>0 such that

c1 exp(&V� k (W (k)))�Zk (W (k))

�c2 exp(&V� k (W (k))).

Proof. It is easy to see

1
2:1 ( yk&,k (W (k)))2�V(Y (k))&V� k (W (k))

� 1
2:2 ( yk&,k (W (k)))2.

The result follows by taking

c1=�2?
:2

c2=�2?
:1

.

Lemma 2.4. There is c>0 such that

|{,k |�c \k.

Proof. Since

�V
�xk

(w1 , ..., wk&1 , ,k (W), wk , ..., wd&1)=0,

we differentiate this with respect to wj to get

�2V
�xjxk

+
�2V
�xk

2

�,k

�wj
=0 if j�k&1,
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and

�2V
�xj+1 �xk

+
�2V
�xk

2

�,k

�wj
=0 if j�k.

Here the functions are evaluated at the point (w1 , ..., wk&1 , ,k (W), wk , ...,
wd&1). It is easy to deduce the result from these by using condition (A).

Let X (0), X (1), X (2), ... be the Markov chain in Rd generated by the Gibbs
sampler. For each n, let W (n, k) be the random vectors in Rd&1 defined by
(2.1) with X=X (n), Y=X (n+1).

Lemma 2.5. The random variables ! (n)
k defined by

x (n+1)
k =,k (W (n, k))+! (n)

k

have the following property: There are ;, c>0 such that

EX[e; | !k
(n) |2 | Fn]�c

for all X and n. Fn is the _-algebra generated by X (0), ..., X (n).

Proof. We only consider k=1. The rest are similar.

EX[e; | !1
(n) |2

| Fn]=
1

Z1 (W (n, 1)) | e; | x&,1(W (n, 1))|2e&V(x, W (n, 1)) dx.

This integral is smaller than

1
c1

| e; | x&,1(W (n, 1))|2e&V(x, W (n, 1))+V(,1(W (n, 1)), W (n, 1))) dx

�
1
c1

| e; | x&,1(W (n, 1))|2e&(1�2) :1 |x&,1(W (n, 1))|2 dx

�c

for some c>0 if ;< 1
2:1 , as asserted.

3. GEOMETRICAL CONVERGENCE OF THE GIBBS SAMPLER

We shall show the geometrical convergence of the Gibbs sampler starting
from any initial point. Let X (0), X (1), X (2), ... be the Markov chain in Rd

with transition (2.2). Denote Z(0), Z(1), Z(2), to be the random vectors

Z(n)=(x (n)
2 , ..., x (n)

d ) # Rd&1,
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where X (n)=(x (n)
1 , ..., x (n)

d ). And define the following mappings, for Z=
(z2 , ..., zd) # Rd&1,

�2 (Z)=,2 (,1 (Z), z3 , ..., zd),

�3 (Z)=,3 (,1 (Z), �2 (Z), z4 , ..., zd),

b

�d (Z)=,d (,1 (Z), �2 (Z), ..., �d&1 (z)),

9=(�2 , ..., �d).

For ,1 , ..., ,d , see (2.3).

Theorem 3.1. We have

x (n+1)
1 =,1 (Z(n))+! (n)

1

Z(n+1)=9(Z(n))+'(n).

Here, '(0), '(1), ... are random vectors in Rd&1 satisfying

E[e; | '(n)|2 | FZ
n ]�c

for all n for some ; and c>0, FZ
n is the _-algebra generated by Z(0), Z (1),

Z(2), ..., Z(n).

This is a direct consequence of Lemmas 2.4 and 2.5. We omit its proof.
In the following, we denote V� on Rd&1 by V� ( } )=V� 1 ( } ). That is,

V� (Z)=V(,1 (Z), Z)

=min
x

V(x, Z).

Lemma 3.2. 1
2:2 |Z|2�V� (Z)� 1

2 :2 |Z|2.

Proof. By Lemma 2.1,

V� (Z)=V(,1 (Z), Z)

� 1
2:1 (,1 (Z)2+|Z|2)

� 1
2:1 |Z|2.

On the other hand,

V� (Z)�V(0, Z)

� 1
2:2 |Z|2,

as asserted.

28 HWANG AND SHEU



File: DISTL2 173508 . By:CV . Date:24:06:98 . Time:10:02 LOP8M. V8.B. Page 01:01
Codes: 2110 Signs: 843 . Length: 45 pic 0 pts, 190 mm

Lemma 3.3. supZ{0 (V� (9(Z))�V� (Z))=#<1.

The proof will be given at the end of this section.

Corollary 3.4. _m>0 integer such that

|9 (m) (Z)|� 1
2 |Z|.

Proof. V� (9 (m) (Z))�#mV� (Z). This implies

1
2:1 |9 (m) (Z)| 2�#m 1

2 :2 |Z| 2,

i.e.,

|9 (m) (Z)| 2�
:2

:1

#m |Z|2.

From this, |9 (m) (Z)|� 1
2 |Z| if m is large. This completes the proof.

We now state the main result.

Theorem 3.5. Let q be large enough

Sq=inf[n�1; |Z(n)|�q].

Then there is ;>0 such that

sup
|Z|�q

EZ[e;Sq]<�.

This implies that the Markov chain is of geometrical recurrence. Hence it
converges to the equilibrium exponentially.

Proof. We shall show that, for * small e*V� (Z(n))+n is supermartingale
before Sq . Assume |Z(n)|>q. By

V� (Z(n+1))=V(,1 (Z(n+1)), Z(n+1)

=V(,1 (9(Z(n))), 9(Z(n)))+ :
d

j=2

�V
�xj

(,1 (9(Z(n))), 9(Z(n))) ' (n)
j

+O( |'(n)|2)

=V� (9(Z(n)))+ :
d

j=2

�V
�x j

(,1 (9(Z(n))), 9(Z(n))) ' (n)
j +O( |' (n)|2),
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we have

E[e*V� (Z(n+1)) | FZ
n ]

�ce*V� (9(Z(n)))| exp \&: |'|2+* :
d

j=2

�V
�x j

(X) ' j+ d'2 } } } d'n ,

where X=(,1 (9(Z(n))), 9(Z(n)) and : is some positive number. From this,
by simple calculus, we have

E[e*V� (Z(n+1)) | FZ
n ]�c1 e*V� (9(Z(n)))e(*2�4:2) |{V(X)|2.

But

*V� (9(Z(n)))+
*2

4:2 |{V(X)|2�*(1+c*) V� (9(Z(n)))

�*(1+c*) #V� (Z(n))

=*V� (Z(n))&*(1&(1+c*) #) V� (Z(n)).

Choose * such that

(1+c*) #<1.

Then choose q large enough such that

*(1&(1+c*) #) V� (Z(n))>1+lnc1

if |Z(n)|>q. This implies

E[e*V� (Z(n+1))+(n+1) | FZ
n ]�e*V� (Z(n))+n,

as asserted. From the last result, we deduce

E[e*V� (Z(Sq))+Sq | FZ
1 ]�e*V� (Z(1))+1

when |Z(1)|>q. This implies the geometrical recurrence.
We shall next prove the geometrical convergence of the Markov chain

with any initial point.
According to Corollary A14,

&Pn (X, } )&+( } )&Var�M(X) \n
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for some M( } ) # L1 (+), 0<\<1,

&P(n+1) (X, } )&+( } )&Var �| P(X, dY ) &Pn (Y, } )&+( } )&Var

�\n | P(X, dY) M(Y ). (3.1)

The transition density P(X, Y ) defined by (2.2) satisfies,

P(X, Y )�cd exp \& :
d

k=1

(V(Y (k))&V(Y� (k)))+
Y (k)=( y1 , ..., yk , xk+1 , ..., xd),

Y� (k)=( y1 , ..., yk&1 , ,k ( y1 , ..., yk&1 , xk+1 , ..., xd), xk+1 , ..., xd).

Observing,

V(Y (k&1))�V(Y� (k)), k=2, ..., d,

we then have

P(X, Y )�cd exp(&(V(Y )&V(Y� (1)))

=cd exp(V� 1 (x2 , ..., xd)) exp(&V(Y)). (3.2)

Plugging (3.2) in (3.1), we obtain

&P(n+1) (X, } )&+( } )&Var�cd exp(V� 1 (x2 , ..., xd)) | M(Y) +(dY ) \n.

This completes the proof.

Remark. Assume +( } ) has the property

c1�
+(dY )
+0 (dY )

�c2

for some c1 , c2>0 and +0 ( } ) satisfies the condition (A). Then Lemma 2.5,
hence Theorem 3.5, still holds.

Proof of Lemma 3.3. It is easy to see, by the strict convexity of V( } ),
that V� (9(Z))<V� (Z) for any Z{0. Therefore it is enough to consider the
case where |Z| is large.

Fix $>0 and small. Assume

} �V
�x i+1

(X (i))}<$ |Z| (3.3)
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holds for X (i)=(,1 (Z), �2 (Z), ..., �i (Z), zi+1 , ..., zd) and i=1, ..., d&1.
Then, by using

�V
�xi+1

(X (i))&
�V

�xi+1

(X i+1))

=|
1

0

�2V
�x2

i+1

(X (i)+*(X (i+1)&X (i)))(zi+1&�i+1 (Z)) d*,

�V
�xi+1

(X (i+1))=0,

and the condition (A), we deduce

|zi+1&�i+1 (Z)|�
1

:1

$ |Z|.

for i=1, ..., d&1. This further implies

|X (i)&X (1)|�(i&1)
1

:1

$ |Z|

�d
1

:1

$ |Z|.

Then

} �V
�xi+1

(X (1))}�\1+cd
1

:1+ $ |Z|

for i=1, ..., d&1, since �V��xi+1 is Lipschitz. We conclude,

|{V(X (1))|�d \1+cd
1
:+ $ |Z|,

which contradicts Lemma 2.2 if $ is small enough.
We now fix such a $. By the above result, there is an i such that

} �V
�xi+1

(X (i))}�$ |Z|. (3.4)
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Using the following relation,

�V
�xi+1

(X (i))=
�V

�xi+1

(X (i))&
�V

�xi+1

(X (i+1))

=|
1

0

�2V
�x2

i+1

(X (i+1)+*(X (i)&X (i+1))) d*(zi+1&�i+1 (Z)),

we obtain

|zi+1&�i+1 (Z)|�
1

:2

$ |Z|.

Then

V(X (i))&V(X (i+1))

=|
1

0
|

1

0

�2V
�x i+1

(X (i+1)+*+(X (i)&X (i+1))) * d+ d*(zi+1&�i+1 (Z))2

�
1
2

:1 (zi+1&�i+1 (Z))2

implies

V(X (i))&V(X (i+1))�
1
2

:1 \ $
:2+

2

|Z| 2.

We conclude

V� (Z)&V� (9(Z))=V(X (1))&V(X (d ))

�
1
2

:1 \ $
:2+

2

|Z|2.

Finally, from this and Lemma 3.2,

1&
V� (9(Z))

V� (Z)
�

:1

:2 \
$

:2+
2

=$0

i.e.,

V� (9(Z))

V� (Z)
�1&$0 .

This completes the proof.
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APPENDIX

The purpose of this section is to give a brief review of some relevant
results taken from the theory of Harris recurrent Markov chains. Defini-
tions and results, except for A.15 and A.16, can be found in [13].

Let P be a transition probability on a measurable space (E, =) and , be
a _-finite measure on (E, =).

Definition A1. P is ,-irreducible if for all x # E, ,(A)>0, there exists
an n such that Pn (x, A)>0.

P is irreducible if P is ,-irreducible for some ,. In this case, , is called
an irreducible measure for P.

An irreducible measure � for P is called maximal if every irreducible
measure for P is absolutely continuous with respect to �.

Proposition A2. Assume P is irreducible. Then

(i) there exists a maximal irreducible measure for P,

(ii) � is maximal irreducible iff �P<<�.

Now fix a maximal irreducible measure � for P and denote

=+=[ f �0 and measurable, �( f )>0]

M+=[* nonnegative measure on (E, =), *(E)>0].

Definition A3. Assume S # =+, & # M+ are such that

Pm0 (x, A)�;S(x)[n]&(A), \x # E, A # =

for some m0 and ;>0. Then S is called a small function and & is called a
small measure.

Theorem A4. If P is irreducible, then there exist a small function and a
small measure.

Definition A5. P is recurrent if h�
N >0 everywhere, h�

B =1 �-a.e. for
B # =+.

P is Harris recurrent if h�
B #1. Here h�

B (x)=Px[X (n) # B i.o.], X (0), X (1),
X (2), ..., is the Markov chain generated by P.

34 HWANG AND SHEU



File: DISTL2 173514 . By:CV . Date:24:06:98 . Time:10:02 LOP8M. V8.B. Page 01:01
Codes: 2431 Signs: 1393 . Length: 45 pic 0 pts, 190 mm

Theorem A6. Assume P is irreducible and recurrent and

Pm0 (x, } )�S(x) &( } ).

Then there exists a unique invariant measure ?S such that ?S(S)=1.

Definition A7. Assume that P is irreducible and recurrent with a
unique invariant measure ?S given in Theorem A6. We call P positive
recurrent if ?S(E)<�. Otherwise P is null recurrent.

Theorem A8. P is Harris recurrent iff Px[SC<�]=1 for all x # C for
some small set C.

If supx Ex SC<� for some small set C (i.e., IC is small), then P is
positive recurrent. Here SC=inf[n�1; X (n) # C].

Theorem A9. Assume that P is positive Harris recurrent and aperiodic
with the unique invariant distribution ?. Then

&*Pn&?&var � 0 as n � �

for any initial distribution *. Here & }&var is the variational norm for
measures.

The following define the aperiodicity of P.

Definition A10. The disjoint sets E0 , E1 , ..., Em&1 in =, are called
m-cycle (for P) if for x # Ei , i=0, 1, ..., m&1, j=i+1 (mod m),
P(x, Ej)=1.

Definition A11. Assume that S is a small function and & is a small
measure, such that &(S)>0 and Pm0 (x, } )�S(x) &( } ). It is easy to see that
the set [m�1, Pm (x, } )�;mS(x) &( } ) for some ;m>0] is closed under
addition. The greatest common divisor of this set is independent of the
choice of S and & and is called the period of P. P is aperiodic if its period
is 1.

Theorem A12. Let d be the period. Then

(i) If there is a m-cycle, then d divides m,

(ii) There is a d-cycle.
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Definition A13. P is irreducible and Harris recurrent. Then P is
geometrically recurrent if for some small set C and #>1

sup
x # C

Ex[rSC]<�.

Theorem A14. Assume that P is aperiodic, geometrically recurrent.
Then there are M( } ) # L1 (?), \<1 such that

&Pn (x, } )&?&Var�M(x) \n.

Now assume on Rd,

+(dx)= f (x) dx,

and f is positive and continuous. Let P be the transition density of the
Gibbs sample for + defined in Section 2. Then it is easy to see that P is
irreducible with Lebesque measure as a maximal irreducible measure.
Remark that + is an invariant measure for P. The following can be proved
using an argument in [18, pp. 235�241].

Theorem A15. Let K be a compact set in Rd with nonempty interior.
Then

h�
K (x)#1 \x, \K

or

h�
K (x)#0 \x, \K.

Proposition A16. P is Harris recurrent. Therefore

&*Pn&+&Var � 0 as n � �

for any initial distribution *.

Proof. See [18, p. 242]. Let hm
K (x)=Px[x(n) # K for some n�m]. Then

hm
K (x) a h�

K (x). Since hm
K (x)�Pm (x, K) and

+(K)=| Pm (x, K) +(dx)

�| hm
K (x) +(dx),
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we have

0<+(K)�| h�
K (x) +(dx).

Therefore we can not have h�
K #0, i.e., h�

K #1 and P is Harris recurrent.
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