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The paper presents a permutation procedure for testing reflected (or diagonal)
symmetry of the distribution of a multivariate variable. The test statistics are based
in empirical characteristic functions. The resulting permutation tests are strictly
distribution free under the null hypothesis that the underlying variables are
symmetrically distributed about a center. Furthermore, the permutation tests are
strictly valid if the symmetric center is known and are asymptotic valid if the center
is an unknown point. The equivalence, in the large sample sense, between the tests
and their permutation counterparts are established. The power behavior of the tests
and their permutation counterparts under local alternative are investigated. Some
simulations with small sample sizes (�20) are conducted to demonstrate how the
permutation tests works. � 1998 Academic Press
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1. INTRODUCTION

Testing for symmetry of a random variable has received considerable
attention in the literature. In univariate cases, many statistics have been
proposed. For example, Butler (1969), Rothman and Woodroofe (1972),
Doksum, Fenstad, and Aaberge (1977), Antille, Kersting and Zucchini
(1982), Shorack and Wellner (1986, Section 22), Aki (1987), Cso� rgo�
and Heathcote (1987), and Schuster and Barker (1987). There are two
different but related issues in multivariate cases. One is to test for spherical
(elliptical) symmetry. For example, Kariya and Eaton (1977), Beran
(1979), Blough (1989), Baringhaus (1991), Baringhaus and Henze (1991),
Fang, Zhu and Bentler (1993), and Zhu, Fang, and Zhang (1994). Another
one is to test for reflected symmetry (or diagonal symmetry), which will be
involved in the present paper, such as Aki (1993). Ghosh and Ruymgaart
(1992) extended the statistic proposed by Feuerverger and Mureika (1972)
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to the multivariate case, which rests upon an integrated empirical charac-
teristic function. Heathcote, Rachev, and Cheng (1995) used, among others, a
maximized empirical characteristic function to investigate this problem.

Since little is known about the sampling and limiting null distributions
of the test statistics (Ghosh and Ruymgaart, 1992, p. 439; Heathcote,
Rachev, and Cheng, 1995, p. 99), some approximation procedures includ-
ing Bootstrap were suggested for practical use of the tests. It is not clear,
however, whether the approximations have good performance.

The purpose of the present paper is to develop a permutation procedure
for testing the reflected symmetry of multivariate random variables. We will
show that the permutation tests are, respectively, strictly (asymptotically)
valid number reflected symmetry about a known (unknown) center. It
will turn out that the tests and their associated permutation ones will be
asymptotically equivalent. The permutation tests are conditionally distribu-
tion-free under the null hypothesis.

Section 2 will contain a review of the tests proposed by Ghosh and
Ruymgaart (1992) and Heathcote, Rachev, and Cheng (1995). The permu-
tation tests will be defined in Section 3 and the validity and asymptotic
validity of the tests will be presented in the same section. A power study
under local alternatives will be made in Section 4. Section 5 will contain
some simulation experiments. Section 6 will present some concluding
remarks. All proofs are postponed to the Appendix.

2. REVIEW OF TESTS

As mentioned in the previous section, a d-variate random variable x is
said to be reflectedly symmetric about a center + if

(x&+) and &(x&+) have the same distribution, (2.1)

or equivalently, if the imaginary part of the characteristic function of x&+
equals zero, i.e.,

E[sin(t$(x&+))]=0 for t # Rd, (2.2)

where t$ stands for the transpose of t. Let x1 , ..., xn be i.i.d. copies of x and
Pn( } ) the corresponding empirical measure. Based on (2.2), Ghosh and
Ruymgaart (1992) and Heathcote, Rachev, and Cheng (1995) constructed
the tests, respectively,

n |
Br

[Pn(sin(t$(x&+)))]2 dw(t) (2.3)
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and

sup
A

|- n Pn[sin(t$(x&+̂))]|, (2.4)

where both Br (a sphere with the radius r) and A (a general region) are
working regions, w( } ) is a distribution function on Rd, and Pn( f (x)) stands
for (1�n) �n

j=1 f (xj). We now use other notations to represent them. Define
an empirical process,

[Vn(Xn , t)=- n Pn[sin(t$(x&+))] : t # A], (2.5)

and an estimated empirical process,

[Vn1(Xn , +̂, t)=- n Pn[sin(t$(x&+̂))] : t # A], (2.6)

where Xn=(x1 , ..., xn), +̂ is an estimate of + when + is unknown, and A is
a working region as Heathcote, Rachev, and Cheng (1995) mentioned. The
test statistics are defined as

Q1(Xn)=|
A

(Vn(Xn , t))2 dw(t), (2.7)

M1(Xn)=sup
A

|Vn(Xn , t)|, (2.8)

Q2(Xn , +̂)=|
A

[Vn1(Xn , +̂, t)]2 dw(t), (2.9)

and

M2(Xn , +̂)=sup
A

|Vn1(Xn , +̂, t)|, (2.10)

where Q1 and M2 are the ones in (2.3) and (2.4). When + is known Ghosh
and Ruymgaart (1992) derived some asymptotic properties of the test
based on (2.3), while Heathcote, Rachev, and Cheng (1995) investigated
the limiting behavior of the test related to (2.4) for the case where the
center + is unknown.

3. PERMUTATION TESTS

Let a } b mean that every component of the vector b is multiplied by a
common univariate variable a. Here Pn is the empirical measure of (ei , x i),
i=1, ..., n, where e1 , ..., en are i.i.d. univariate variables, ei=\1, i=1, ..., n,
with probability values one half; define En=(e1 , ..., en). We use a generic

131PERMUTATION TESTS FOR SYMMETRY



File: DISTL2 169704 . By:GC . Date:27:10:98 . Time:14:58 LOP8M. V8.B. Page 01:01
Codes: 2615 Signs: 1617 . Length: 45 pic 0 pts, 190 mm

notation where Pn stands for a probability measure which may rest upon
different sets of variables for each appearance. For the known center case
define an empirical permutation process, given Xn , by

[Vn(En , Xn , t)=- n Pn[sin(t$e } (x&+))] : t # A]. (3.1)

Comparing this process with that defined in (2.5), the versions are the same
excepts that the inserted permutation variables appear in the permutation
process. We will derive, as stated in Theorem 3.3, the (asymptotic) equiv-
alence of the processes, that is, almost surely, both processes converge in
distribution to the same limit process.

For the unknown center case, the situation is not so simple. In order to
ensure the equivalence between the empirical permutation process, which
will be defined below, and its unconditional counterpart in (2.6), both
versions cannot be the same. The definition of our permutation process is
motivated by the following fact which will be proved in the Appendix,
Proof of Theorem 3.4: For an unknown center +, an estimate +̂ is needed
replacing + in (2.6); here +̂=x� , the sample mean, is applied. It can be
proved that, uniformly on t # A,

- n Pn(sin(t$(x&x� )))=- n Pn(sin(t$(x&+)) cos(t$Pn(x&+)))

&- n (Pn((t$(x&+)) sin(t$Pn(x&+))))

=- n Pn(sin(t$(x&+))

&- n sin(t$Pn(x&+)))(Pn((t$(x&+))))+op(1).

Accordingly, we define an estimated empirical permutation process
[Vn1(En , Xn , x� , t) : t # A] given Xn by

Vn1(En , Xn , x� , t)=- n Pn(sin(t$e } (x&x� )))

&- n sin(t$Pn(e } (x&x� ))) Pn(cos(t$e } (x&x� ))). (3.2)

The resulting permutation test statistics given Xn are, for a known
center +,

Q1(En , Xn)=|
A

(Vn(En , Xn , t))2 dw(t) (3.3)

and

M1(En , Xn)=sup
A

|Vn(En , Xn , t)|. (3.4)
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The unknown center counterparts are defined in (3.10). When the working
region A is a cube [&a, a]d and the weight function w( } ) is the uniform
distribution on this cube, Q1(En , Xn) will have a specific form which will be
easy to compute. In fact,

Q1(En , Xn)=|
[&a, a]d

(Vn(En , Xn , t))2 dw(t)

=
1
n

:
n

i=1

:
n

j=1

e ie jI(i, j), (3.5)

where

I(i, j)=
1
2 \ `

d

k=1

sin(a(xi&xj)k)

a(xi&x j)k
& `

d

k=1

sin(a(xi+xj&2+)k)

a(x i+x j&2+)k + ,

and (x)k means the k th component of x. We will prove this formula in the
Appendix. The following states the validity of the tests in (3.3) and (3.4).

Theorem 3.1. Assume that x1 , ..., xn are i.i.d. d-variate variables which
are reflectedly symmetric about a known center. Let E (1)

n , ..., E (m)
n be independent

copies of En . Then for any 0<:<1 and T=Q1 or M1

P (i)
n, m(:)=P[T(Xn)>m&[m:] of T(E ( j)

n , Xn)$ s]

�
[m:]+1

m+1
, (3.6)

where [z] stands for the largest integer part of z.

Remark 3.2. Inequality (3.6) is strict only if T fails to resolve certain
Xn , which can happen because of discreteness of Xn or because of E ( j)

n (e.g.,
T(Xn)=T(E (k)

n , Xn), if E (k)
n =(1, ..., 1). But if m is reasonably large, and x

satisfies some regularity conditions like continuity, (3.6) will be close. In
fact under some conditions on the distribution of x,

lim
n � �

lim
m � �

P (i)
n, m (:)=: (3.7)

for any 0<:<1, which is a consequence of Theorem 3.3 below.

Theorem 3.3. Assume, in addition to the conditions of Theorem 3.1,
that the distribution of x is continuous with third absolute moment. Then
the empirical permutation process [Vn(En , Xn , t) : t # A] given Xn in (3.1)
converges weakly to a Gaussian process [V(t) : t # A] for almost all sequen-
ces [x1 , ..., xn , ...], which is likewise the limit of the empirical process
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[Vn(Xn , t) : t # A] in (2.5). Then Q1(En , Xn) and M1(En , Xn) given Xn (in
(3.3) and (3.4)) and Q1(Xn) and M1(Xn) (in (2.7) and (2.8)) have almost
surely the same limit, say Q1=� (V(t))2 dw(t) and M1=supA |V(t)|.

Now, the convergence of the associated quantiles can be established.
Denote by *n(:), *n(:, Xn), and *(:) the 1&: quantiles of the distribu-

tions of Q1(Xn), Q1(En , Xn), given Xn and Q1 , respectively.

Corollary 3.4. Under the conditions in Theorem 3.3 for almost all
sequences [x1 , ..., xn , ...],

*n(:, Xn) � *(:) in Probab. (3.8)

*n(:) � *(:) in Probab. (3.9)

as n � �. A similar result holds for M1(Xn) and M1(En , Xn) given Xn .

For the symmetry testing about an unknown center, define permutation
test statistics as

Q2(En , Xn , x� )=|
A

(Vn1(En , Xn , x� , t))2 dw(t), (3.10)

M2(En , Xn , x� )=sup
t # A

|Vn1(Xn , x� , t)|, (3.11)

where Vn1( } ) is defined in (3.2). The following theorem states the asymptotic
validity of the permutation test based on Q2 and M2 .

Theorem 3.5. Assume that x1 , ..., xn , ... are i.i.d. univariate variables
which are reflectedly symmetric about an unknown center +. Let E (1)

n , ...,
E (m)

n , ... be independent copies of En . Then for any 0<:<1,

lim
n � �

P[Q2(Xn , x� )>m&[m:] of Q2(E ( j)
n , Xn , x� )$ s]

= lim
n � �

P[Q2(E 0
n , Xn , +)+Op(1�- n)>

m&[m:] of (Q2(E ( j)
n , Xn , +)+Op(1�- n))$ s]

�
[m:]+1

m+1
, (3.12)

and similarly for M2 , where Q2(Xn , x� ) and M2(Xn , x� ) are defined in (2.9)
and (2.10). In addition, assume that the x's have a common distribution with
third absolute moment. Then the assertions of Theorem 3.3 and of Corollary 3.4
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continue to hold for processes in (2.6), (3.2), and a certain Gaussian process
[V1(t)=t # A].

Remark 3.6. For performing the above tests, one has to choose a work-
ing region A and a weight function w( } ) (for Q1 and M1). This issue was
discussed by Heathcote, Rachev, and Cheng (1995). In our simulations in
Section 5 below A=[&1, 1]d and w( } ) is uniform distribution on A. The
Gaussian processes [V(t) : t # A] in Theorem 3.3 and [V1(t) : t # A] in
Theorem 3.5 are just the ones in Ghosh and Ruymgaart (1992) and
Heathcote, Rachev, and Cheng (1995).

4. POWER STUDY

Heathcote, Rachev, and Cheng (1995, Theorem 3.2) show that the test
defined in (2.4) is consistent against any fixed alternative. We here investigate
the behavior of the tests and the permutation tests for local alternatives. For
convenience, let sin(i)(t$x) be the ith derivative of sin( } ) at the point t$x.

Suppose that i.i.d. d-variate variables have the representation xi+ yi �n:,
i=1, ..., n, for some :>0. This means that the distribution of x is the
convolution of a symmetric distribution and a distribution converging to
the degenerate one. The following theorem reveals the power behavior of
the tests for such local alternatives.

Theorem 4.1. Assume that the following conditions hold:

(1) Both distributions of x and of y are continuous and, in addition, x
is reflectedly symmetric about a known center +.

(2) Let l denote the smallest integer, such that

sup
t # A

|B l (t)| :=sup
t # A

|E((t$( y&Ey)l sin(l )(t$(x&Ex))))|{0,

E(&y&2l)<�, and E(&y&2(l&1) &x&2)<�. (4.1)

Then

[- n Pn[sin(t$(x+ y�n1�(2l )&Ex&Ey�n1�(2l )))] : t # A]

=[- n Pn[sin(t$(x&Ex))+(1�l !) Bl (t)] : t # A]+op(1). (4.2)
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This leads to convergence in distribution ( O )

|
A

[- n Pn(sin(t$(x+ y�n1�(2l )&Ex&Ey�n1�(2l ))))]2 dw(t)

O |
A

(V(t)+(1�l !) Bl (t))2 dx(t), (4.3)

sup
t # A

|- n Pn(sin(t$(x+ y�n1�(2l )&Ex&Ey�n1�(2 l ))))|

O sup
t # A

|V(t)+(1�l !) Bl (t)|, (4.4)

where V(t) : t # A] is a Gaussian process defined in Theorem 3.3.

Remark 4.2. This conclusion means that the tests can detect local alter-
natives converging to the null hypothesis at n1�(2l )-rate or slower (the test
statistics will converge in distribution to infinity under the local alternative
with slower convergence rate). In some cases, this rate can reach a para-
metric rate, that is, l=1. For example, if x has a uniform distribution on
[&- 3, - 3]d and if y=(x2

1&1, ..., x2
d&1), we can see easily that, via a

little elementary calculation, supt # [&1, 1]d |E(t$y cos(t$x))|{0. Hence, l will
be one. On the other hand, when x and y are independent of each other,
l is at least three, and the tests can detect, at most, alternatives converging
to the null hypothesis at n1�6-rate. In fact, it is clear that for l=1, 2

sup
t # [&1, 1]d

|E((t$y) l sin(l )(t$x))|=0.

We also note that our tests are omnibus because of the absolute and square
values in the test statistics, and that therefore the tests are asymptotically
unbiased for all shapes of the functions Bl .

Remark 4.3. Let us discuss the meaning of condition (4.1). It should
be easier to understand the implication of this condition in the case where
x and y are independent. Clearly, any d-variate variable, w say, can be
decomposed into two components x and y say, where x is symmetric.
Assume further that the moment generating function of w exists. In the case
where these two components are independent, w is symmetric if and only
if y is symmetric which, in turn, is equivalent to the fact that all odd
centered moments of t$y equal zero for any t. In other words, the larger l
is, the more symmetric the variable y is in a certain sense and then the
harder the alternative is detected. In view of supt # A |Bl (t)|, we can see that
supt # A |Bl (t){0 is equivalent to supt # A |E(t$( y&Ey))l|{0 under the
independence of x and y and the symmetry of x. Consequently, supt # A |Bl (t)|
is an index measuring the symmetry extent of the variable. The case where
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both components are dependent is more complicated, but the implication
is similar.

We now study the permutation procedures for symmetry about a known
center +. Of course, we hope that the tests are sensitive to alternatives. In
contrast, it is hoped that the permutation procedure is not sensitive to the
underlying distribution. The reason is as follows. As described in Section 3,
the permutation procedures are applied merely to determine the critical
values. Therefore, it is important that the permutational distribution,
serving for computing the critical value, is not affected by an asymmetry of
the underlying distribution. The following theorem indicates that the critical
values determined by the permutation tests, under local alternatives, equals
in fact approximately the ones under the null hypothesis. Hence the critical
values remain unaffected, in the sense of large sample, by the underlying
distribution of the sample with small perturbation for symmetry.

Theorem 4.4. Assume E &y&2<�. Then for any %>0 the empirical
permutation processes [- n Pn[sin(t$e } (x+ y�n%&Ex&Ey�n%))] : t # A],
given the (xi , yi)'s, and [- n Pn[sin(t$e } (x&Ex))] : t # A], given the x$i 's
have, almost surely, the same limiting Gaussian process [V(t) : t # A] as the
empirical process [- n Pn[sin(t$(x&Ex))] : t # A]. Hence the quadratic or
maximum functionals of these processes have, almost surely, the same limiting
distribution as the random variables �A (V(t))2 dw(t) or supt # A |V(t)|.

For the unknown center case, there also exists, similar to the known
center case, a nonrandom shift function t � (1�l !) Bl (t) in the limiting
process of [- n Pn[sin(t$(x+ y�n1�(2l )&x� & y� �n1�(2l )))] : t # A] under local
alternatives. The following result describes this.

Theorem 4.5. Assume the same conditions as in Theorem 4.1. Then

[- n Pn[sin(t$(x+ y�n1�(2l )&x� & y� �n1�(2l )))] : t # A]

=[- n Pn(sin(t$(x&Ex)))&- n sin(t$Pn(x&Ex) E(cos(t$(Ex))))

+(1�l !) Bl (t) : t # A]+op(1) (4.5)

and consequently,

|
A

[- n Pn(sin(t$(x+ y�n1�(2l )&x� & y� �n1�(2l ))))]2 dw(t)

O |
A

(V1(t)+1�l !) Bl (t))2 dw(t) (4.6)
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and

sup
t # A

|- n Pn(sin(t$(x+ y�n1�(2l )&x� & y� �n1�(2l ))))|

O sup
t # A

|V1(t)+(1�l !) Bl (t)|, (4.7)

where [V1(t) : t # A] is a Gaussian process mentioned in Theorem 3.5.

For the estimated empirical permutation process, there is a parallel
conclusion to Theorem 4.4.

Theorem 4.6. Under the conditions of Theorem 4.4, for any %>0, the
estimated empirical permutation process, given (xi , yi)'s,

[- n Pn(sin(t$e } (x+ y�n%&x� & y� �n%)))

&- n Pn(cos(t$e } (x+ y�n%&x� & y� �n%)))

_sin(t$Pn(e } (x+ y�n%&x� & y� �n%))) : t # A]

and the empirical permutation process, given xi 's,

[- n Pn(sin(t$e } (x&x� )))

+- n Pn(cos(t$e } (x&x� )))(sin(t$Pn(e } (x&x� )))) : t # A],

as well as the unconditional process

[- n Pn(sin(t$e } (x&x� ))) : t # A],

have, almost surely, a common limiting Gaussian process [V1(t) : t # A]
mentioned in Theorem 3.5. Then the quadratic or maximum functionals of
these processes converge weakly to �A (V1(t))2 dw(t) or supt # A |V1(t)| (almost
surely for the permutation ones).

5. SIMULATIONS

In order to demonstrate the performance of the permutation tests, some
small-sample simulation experiments have been performed. In the simula-
tion results reported in the tables below the sample sizes are n=10 and
n=20, the dimensions of random variable are x di=2, 4, and 6 and the
following distributions of the variable have been taken:
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N��x has standard multivariate normal distribution N(0, Id);

N+/2��x has standard normal distribution N(0, Id) and

y=[x2
1&1, ..., x2

d&1]; the resulting random variable is

w=x+ y;

N+Ns��x has standard multivariate normal distribution N(0, Id)
and the independent y has multivariate normal distribution N(1�- n, Id �n);
the resulting random variable is w=x+ y.

In order to get a critical value for fixed [(x1 , y1), ..., (xn , yn)], 2000
pseudo-random numbers En=(e1 , ..., en) of size n=10 and n=20 are
generated by the Monte Carlo method. The basic experiment was replicated
3000 times for each combination of sample size, dimension of random
variable, and the underlying distribution of the variable. The nominal level
is 0.05. The proportion of times that the values of the statistics exceeded the
critical values are recorded as the estimated power of the tests. In order to
judge the performance of the permutation tests, we compute the ``accurate''
power of the test using the Monte Carlo method. Here ``accurate'' power
means that the null distribution of the variable is assumed to be the
standard normal N(0, Id), a completely known distribution. So we can get
by the Monte Carlo method the exact null distribution of the test statistics
and the critical values (not approximated ones) as long as the number of
replications is large enough. Based on these critical values, the obtained
power of the tests is called ``accurate'' power here. The replication number
of each single experiment is 3000. Let us explain why we consider the alter-
native N+Ns in the known center case. Clearly w&1�- n is symmetric,
but we regard N(1�- n, Id �n) as an unknown small perturbation of the null
distribution N(0, Id). Hence, we do not center the variable w in the simulations
presented in the Tables I and II.

TABLE I

Estimated Power in the Known Center Case, n=10

N N N+/2 N+/2 N+Ns N+Ns

Q1 M1 Q1 M1 Q1 M1

Accurate n=10 0.0517 0.0487 0.2970 0.5130 0.1927 0.1803
Permutation di=2 0.0410 0.0433 0.2897 0.0967 0.1867 0.1500

Accurate n=10 0.0497 0.0500 0.3323 0.5147 0.2477 0.2010
Permutation di=4 0.0623 0.0633 0.2700 0.0700 0.2333 0.1767

Accurate n=10 0.0490 0.0470 0.1660 0.2643 0.2163 0.1793
Permutation di=6 0.0400 0.0167 0.2023 0.0733 0.2467 0.1400
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TABLE II

Estimated Power in the Known Center Case, n=20

N N N+/2 N+/2 N+Ns N+Ns

Q1 M1 Q1 M1 Q1 M1

Accurate n=20 0.0490 0.0487 0.5847 0.7867 0.2083 0.1713
Permutation di=2 0.05400 0.0300 0.5900 0.1877 0.1900 0.1543

Accurate n=20 0.0500 0.0483 0.64376 0.7863 0.2517 0.2190
Permutation di=4 0.0633 0.0500 0.6423 0.1933 0.2900 0.2000

Accurate n=20 0.0503 0.0493 0.5497 0.6357 0.2990 0.2220
Permutation di=6 0.0310 0.0600 0.5933 0.1133 0.2653 0.1933

Let us first look at Tables I and II. We see that, under the null hypo-
thesis, the simulated level of the permutation tests Q1 and M1 is close to
the nominal one in most cases, even if the sample size is quite small, such
as n=10. However, if the dimension is large and the sample size is too
small as compared with the dimension, M1 does not seem to be as good as
we expected. This is the case when the dimension is 6 and the sample size
is 10. With increasing sample size, the situation becomes better. Under
the alternative considered here, Q1 still has quite good performance. The
results in Table II show that the power is very close to the ``accurate'' one.
This means that the permutation test Q1 behaves as a test being based on
a known null distribution. Hence Q1 is distribution-free, not only in
theory but also in practice. On the other hand, the performance of M1 is
discouraging, although theoretically it is also a conditional distribution-free
test. The estimated power under alternatives is considerably lower than the
``accurate'' one. Hence M1 is presumably applicable in large sample cases,
since, comparing Tables I and II the power of M1 is increasing with
increasing the sample size.

For the N+Ns case, the tests cannot detect such an alternative. How-
ever, this is reasonable since the theory in Section 4 has told us that the
tests hardly detect this kind of alternative, since the mean of y is 1�- n, a
too small shift. From Tables I and II, we can see that, even if the critical
value is based on the sampling null distribution (the ``accurate'' one),
N+Ns is also hard to detect. This means that one may need to define a
more efficient test for detecting such kinds of local alternatives. We will
discuss this problem further in the next section.

In the cases where the symmetric center is unknown, the permutation
test Q2 can still hold the level, but M2 cannot, especially in high-dimen-
sional cases. Under alternatives Q2 is still applicable especially in lower
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TABLE III

Estimated Power in Unknown Center Case, n=10

N N N+/2 N+/2

Q2 M2 Q2 M2

Accurate n=10 0.0527 0.0527 0.7957 0.7593
Permutation di=2 0.0343 0.0367 0.4133 0.1177

Accurate n=10 0.0487 0.0503 0.9000 0.7430
Permutation di=4 0.0387 0.0167 0.2553 0.0143

Accurate n=10 0.0523 0.0477 0.9407 0.6100
Permutation di=6 0.0343 0.0033 0.877 0.0000

dimension cases. M2 does not seem to be recommendable in small sample
cases. However, comparing Tables III and IV, there is information suppor-
ting M2 . That is, with increasing the sample size, the power of M2 is
increasing. Hence, M2 may be applicable in large sample cases.

Summarizing, the permutation tests have good performance in the case
where the center of symmetry is known but are worse in the situation
where it is unknown. This is easy to explain. As shown in the theorems and
in Remark 3.6, the tests are asymptotically valid at - n-rate in the sense of
Theorem 3.5. When the sample points are too sparse in the high-dimen-
sional space, a O(1�- n) perturbation for the test statistic cannot be ignored
in small sample cases. Hence, they cannot be expected to have a satisfying
performance.

TABLE IV

Estimated Power in Unknown Center Case, n=20

N N N+/2 N+/2

Q2 M2 Q2 M2

Accurate n=20 0.0520 0.0513 0.9640 0.9550
Permutation di=2 0.0600 0.0567 0.9000 0.1600

Accurate n=20 0.0490 0.0503 0.9947 0.9523
Permutation di=4 0.0533 0.0267 0.7100 0.0467

Accurate n=20 0.0490 0.0487 0.9967 0.9193
Permutation di=6 0.0443 0.0167 0.3400 0.0133
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6. CONCLUDING REMARKS

We have developed a permutation procedure for testing reflected symmetry
of a multivariate variable, which is based on the empirical characteristic
function. Under some regularity conditions on the distribution of the
variable, we have investigated the validity of the permutation tests and the
power behavior of the tests and their permutation counterparts under local
alternatives.

Remark 6.1. In principle, other test statistics may be found for the above
testing problems. When the symmetry center is assumed to be known, a
permutation test would be based on its unconditional counterpart without
any modification following our approach in Section 3 in (3.3) or (3.4). It
is worthwhile to mention, that when the symmetry center has to be estimated,
the permutation test will generally not have the same form as its uncondi-
tional counterpart as the one in (3.5) or (3.6) which is based on (3.2). The
modification will guarantee an equivalence, in the large sample sense,
between the test and the associated permutation one. On the other hand,
if we want to have a test whose permutation counterpart is strictly valid for
the unknown center case, it seems to us that such a test has to be location-
invariant.

Remark 6.2. Although the choice of the working region and of the
weight function have been under consideration in the present paper, it is
necessary to explore how these choices affect the performance of the tests.
On the other hand, in some cases, the choice of working regions is not very
important. We now show an example in which the fact that the imaginary
part of the characteristic function equals zero in a compact subset of Rd

such as [&1, 1]d is equivalent to reflected symmetry of the variable.
Suppose that the moment generating function of a multivariate variable x,
say, exists in a cube [&a, a]d, a>0. Then the moment generating function
of #$x, the linear projector of x on R1, exists in an interval [&a1 , a1] for
any # being on the unit sphere in Rd, where a1 does not depend on #. If the
imaginary part of the characteristic function of x equals zero in a cube
[&a2 , a2]d, so does the one of #$x in an interval [&a3 , a3]. It is easy to
see than then all moments of #$x with odd orders equal zero. This means
that the characteristic function of #$x is real; hence, #$x is symmetric about
the origin for any #. This conclusion implies, in turn, that x is reflectedly
symmetric. Consequently, the choice of the working region is not very
important in such a case. For example, we could choose >d

i=1 [&ai , ai] as
a working region, where ai is the variance of the i th component of x.

Remark 6.3. In the simulation of Section 5, the permutation test, for
the known center case, is a distribution-free test. The power is close to the
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``accurate'' one obtained by assuming the null distribution to be known.
One may use the same principle, as mentioned in Remark 6.1, to define
further tests. Hence, it remains to compare the different proposals.

Remark 6.4. For the unknown center case, the permutation tests defined
in the present paper do not have a good performance in the small-sample-
high-dimension case. One of the main reasons is that the test is only
asymptotically valid. It would be interesting to construct a test being strict
validity even in the unknown center case. We defer this to future research.

Remark 6.5. In this paper we use the sample mean as an estimate of
the unknown center. If the underlying distribution is heavy-tailed, its
use may be questionable due to its lack of robustness, and furthermore,
according to the discussion in Heathcote, Rachev, and Cheng (1995) and
Remark 6.4, it could not be expected that the tests have good performance
in small sample cases we conducted. The sample size may be considerably
larger for having good performance of the tests. We will study this question
in connection with robustness considerations.

Remark 6.6. We name the conditional test procedure as the permuta-
tion test, although it is not exactly like the classical permutation procedure.
Actually, it is a random symmetrization procedure. The same idea could be
applied to some other setting in the statistical inference.

APPENDIX: PROOFS OF THEOREMS

We first prove the formulae in (3.5). Note that sin(x) } sin( y)=
1�2(cos(x& y)&cos(x+Y). Then

Q1(En , Xn)

=(2a)&d |
[&a, a]d {1�- n :

n

i=1

sin(t$e i } (xi&+))=
2

dt

=1�n :
n

i=1

:
n

j=1
{(2a)&d |

[&a, a] d
sin(t$(xi&+)) sin(t$(xi&+)) dt= eiej

=1�n :
n

i=1

:
n

j=1
{(2)&d&1 |

[&1, 1] d
cos(t$a } (xi&xj))

&cos(t$a } (xi+xj&2+)) dt= eiej

:=1�n :
n

i=1

:
n

j=1

e iej I(i, j).

143PERMUTATION TESTS FOR SYMMETRY



File: DISTL2 169716 . By:GC . Date:27:10:98 . Time:14:58 LOP8M. V8.B. Page 01:01
Codes: 2723 Signs: 1495 . Length: 45 pic 0 pts, 190 mm

Since the uniform distribution on [&1, 1]d is symmetric, we have for u
having uniform distribution on [&1, 1]d,

I(i, j)=2&d&1E(cos(u$a } (xi&xj))&cos(u$a } (xi+xj&2+)))

=2&d&1(Re E(e(u$a } (xi&xj )))&Re E(e(u$a } (xi+xj&2+))))

=2&d&1 \Re `
d

k=1

E(e(uk a(xi&xj)k ))&Re `
d

k=1

E(e (uka(xi+xj&2+)k ))+
=1�2 \Re `

d

k=1

sin(a(x i&xj)k)
a(xi&xj)

& `
d

k=1

sin(a(xi+xj&2+)k)
a(xi+xj&2+) + .

The proof is completed.

We now start to prove theorems. For convenience of the notations, let
a b b mean the vector with every component of a is multiplied by the corre-
sponding component of b, and c denotes a generic constant which may
change its meaning, even in the same formula.

Proof of Theorem 3.1. Recall the definition of a } b at the beginning of
Section 3. First, we prove that x is reflectedly symmetric if and only if
x=e } x*, where e=\1 with probability one-half and is independent of x*
and, furthermore, x* has the same distribution as x. Sufficiency is clear
since

P[e } x*�t]= 1
2P[x*�t]+ 1

2P[&x*�t]

= 1
2P[x�t]+ 1

2P[&x�t]=P[x�t].

Similarly P[&e } x*�t]=P[&x�t]; hence

P[x�t]=P[&x�t].

For necessity, let x* :=e } x, where e=\1 with probability one half and is
independent of x. Then x and x* have the same distribution, x=e } x*.
Furthermore, x* and e are independent since for any s # Rd,

P[e=\1, e } x�s]= 1
2P[e } x*�s | e=\1]

= 1
2P[\x�s]

=P[e=\1] P[e } x�s].

Let Xn*=(x1* , ..., xn*). The set [Q i (Xn)>m&[m:] of Qi (E ( j)
n , Xn)$ s]

equals exactly the set [Qi (En , X n*)>m&[m:] of Qi (En b E ( j)
n , X n*),

j=1, ..., m]. It is easy to check that [En , En b E ( j)
n , j=1, ..., m] are i.i.d.
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n-dimensional variables. Indeed, for any t in the set consisting of all n-dimen-
sional variables of the form (\1, ..., \1), say [t1 , ..., t2 n],

P[En b E (1)
n =t, En b E (2)

n =s]

=
1
2n :

2n

j=1

P[E (1)
n b tj=t, E (2)

n b tj=s]

=
1
2n :

2n

j=1

1
2n

1
2n

=P[En b E (1)
n =t] P[En b E (2)

n =s].

The independence between En and En b E ( j)
n can be checked in the same

way. Hence, given Xn*, the m+1 variables Qi (En , Xn*) and Qi (En b E ( j)
n , Xn*),

are i.i.d., which implies that

P[Qi (En , X n*)>m&[m:] of Qi (En b E ( j)
n , X n*)$ s | Xn*]�

[m:]+1
m+1

.

The proof is conclude by integrating Xn*.

Proof of Theorem 3.3. In the following, we first show that the process
[Vn(En , Xn , t) : t # A], given Xn , converges almost surely to the process
[V(t) : t # A] which is the limiting process of [Vn(Xn , t) : t # A]. The
conclusion of Theorem 3.3 will then hold.

Define sets D1=[limn � � 1�n �n
j=1 &xj&+&2=E &x&+&2],

Dt, s={ lim
n � �

1
n

:
n

j=1

sin(t$(xj&+)) sin(s$(x j&+))

=E(sin(t$(x&+)) sin(s$(x&+)))=,

and D=D1 & [�t, s # A0
Dt, s], where A0 is any countable dense set of A. D

is a subset of the sample space having probability measure one. Then
by the Lipschitz continuity of the sine function, it is clear that D=D1 &
[�t, s # A Dt, s]. We describe the convergence of the process in a lemma.

Lemma 7.1. Under the conditions of Theorem 3.3, given any sequences
[x1 , ..., xn , ...] # D, the process [Vn(En , Xn , t) : t # A] converges weakly to
a centered Gaussian process [V(t) : t # A] with the covariance kernel
E(sin(t$(sj&+)) sin(s$(x&+))) for t, s # A.
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Proof. In the following, we always assume without further mentioning
that the given [x1 , ..., xn , ...] belongs to D. We need to prove the fidis
convergence and the uniform tightness of the process.

(1) Fidis convergence. This part of the proof is standard, so we only
give an outline. For any integer k, t1 , ..., tk # A. Let

V (k)=(E(sin(t$i (x&+)) sin(t$l (x&+))))1�i, l�k .

We have to show that

V (k)
n =[Vn(En , Xn , ti) : i=1, ..., k] O N(0, V (k)). (7.1)

It suffices to show that for any unit k-dimensional vector #

#$V (k)
n O N(0, #$V (k)#) (7.2)

Note that the variance of the LHS in (7.2) is

#$(Pn(sin(t$i (x&+)) sin(t$l (x&+))))1�i, l�k # � #$V (k)#. (7.3)

Hence, if #$V (k)#=0, (7.2) is trivial. Assume #$V (k)#>0. Invoking the
Lyapunov condition,

#$V (k)
n �- #$V (k)# � N(0, 1)

The fidis convergence holds via combining with (7.3).

(2) Uniform tightness. All we need to do is to show that for any
'>0 and =>0, there exists a $>0 such that

lim sup
n � �

P[sup
[$]

|Vn(En , Xn , t)&Vn(En , Xn , s)|�' | Xn]<=, (7.4)

where [$]=[(t, s) : &t&s&�$]. Since the limiting property is investigated
for n � �, n is always considered to be large enough below which simplifies
some arguments of the proof.

Note that

Vn(En , Xn , t)=- n Pn(sin(t$e } (x&+)))=- n Pn(e sin(t$(x&+))).
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Write P%n for the signed measure that places mass ei�n at (xi&+). We then
write the LHS of (7.4) in another form

lim sup
n � �

P[sup
[$]

- n |P%n(sin(t$(x&+)))&(sin(s$(x&+)) Xn , s)|>' | Xn].

(7.5)

Note that when &t&s&�$ for large n

Pn(sin(t$(x&+))&sin(s$(x&+)))2

�&t&s&
1
n

:
n

j=1

&xj&+&2�2 &t&s& E &x&+&2=c &t&s&. (7.6)

Then applying the Hoeffding inequality for any t, s # A,

P[- n |(P%n(sin(t$(x&+))&sin(s$(x&+))))>'c &t&s& | Xn , En]

�2 exp(&'2�32). (7.7)

In order to apply the chaining lemma (e.g., Pollard, 1984, p. 144), we need
to check that the covering integral

J2($, & }&, A)=|
$

0
[2 log [(N2(u, & }&, A))2�u]]1�2 du (7.8)

is finite for small $>0, where & }& is the Euclidean norm in Rd and the
covering number N2(u, & }&, A) is the smallest m for which there exist m
points t1 , ..., tm with min1�i�m &t&t i &�u for every t # A. It is clear that

N2(u�c, & }&, A)�cu&d. (7.9)

Consequently, for small $>0

J2($, & }&, A)�c |
$

0
(log(1�u))1�2 du�c$1�2. (7.10)

Applying now the chaining lemma, there exists a countable dense subset
[$]* of [$] such that

P[sup
[$]*

- n |(P%n(sin(t$e } (x&+))&sin(s$&+)))|>26cJ2($, & }&, A) | Xn]

�2c$. (7.11)

The countable dense subset [$]* can be replaced by [$] itself because
- n P%n[sin(t$(x&+))&sin(s$(x&+))] is a continuous function with respect
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to t and s for each fixed Xn . Hence, choosing $ smaller than 1�e2 in (7.10),
=�(8C), and ('�(26c))2 in (7.11) Eq. (7.4) is proved. The proof of the lemma
is completed.

On the other hand, the weak convergence of the process [- n Pn(sin
(t$(x&+)) : t # A] to the process [V(t) : t # A] can follow from our results.
The sequence e1 } x1 , e2 } x2 , ... has the same distribution as the sequence
x1 , x2 , .... Hence, the limit process is the same for the [ei } xi] as for the
[xi]. The above convergence of conditional process implies immediately
the convergence of unconditional process, which has been derived by
Ghosh and Ruymgaart (1992) and Heathcote, Rachev, and Cheng (1995).
The proof of the Theorem 3.3 is concluded from noticing that Qi are
continuous functionals of the process [Vn(En , Xn , t) : t # A].

Proof of Theorem 3.5. Note that sine and cosine functions are, respec-
tively, odd and even functions, then

- n Pn(sin(t$e } (x&x� )))=- n Pn(sin(t$e } (x&+)) cos(t$Pn(x&+)))

&- n (Pn(e } cos(t$(x&+)) sin(t$Pn(x&+))))

=: In1(t)&In2(t) (7.12)

and

- n sin(t$Pn(e } (x&x� )))=- n sin(t$Pne } (x&+)) cos(t$e� } Pn(x&+))

&- n cos(t$Pne } (x&+)) sin(t$e� } Pn(x&+))

=: In3(t)&In4(t), (7.13)

where e� =(1�n) �n
j=1 ej . By the central limit theorem we have - n Pn(x&+)

=Op(1). It is then easy to see that

In1(t)=- n Pn(sin(t$e } (x&+)))+Op(1�- n),

(7.14)
In2(t)=Op(1�- n),

In3(t)=- n sin(t$Pn(e } (x&+)))+Op((1�- n)2),

In4(t)=Op(1�- n),

uniformly over t # A, as long as we notice that [- n Pn(sin(t$e } (x&+))) :
t # A] and [- n Pn(e } cos(t$(x&+))) : t # A] both converge weakly to
Gaussian processes. Consequently, for almost all sequences [x1 , ..., xn , ...]
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Vn1(En , Xn , x� , t)

=- n Pn(sin(t$e } (x&+)))

&- n Pn(cos(t$e } (x&+)) sin(t$Pn e } (x&+)))+Op(1�- n)

=Vn1(En , Xn , +, t)+Op(1�- n), (7.15)

uniformly over t # A. The proof of (3.12) can be based on (7.15). Moreover,
following the argument used in the proof of Theorem 3.3 above, we see that
the process [Vn1(En , Xn , x� , t) : t # A], given Xn , in (3.2) converges weakly
to a Gaussian process for almost all sequences [x1 , ..., xn , ...], which is
likewise the limit of the process [Vn1(Xn , x� , t) : t # A] defined in (2.6); see
Theorem 3.1 in Heathcote, Rachev, and Cheng (1995). Hence, the conclu-
sions in Theorem 3.3 and Corollary 3.4 hold. The proof of Theorem 3.5 is
complete.

Proof of Theorem 4.1. Without loss of generality, assume Ex=Ey=0.
It is known that max1� j�n &yj &�n1�(2l ) � 0, a.s. Hence, by the Taylor
expansion of sine function for any t # A,

- n Pn[sin(t$(x+ y�n1�(2l )))]

=- n Pn[sin(t$x)]+ :
l&1

i=1

(1�i !) n&i�(2l )
- n Pn[(t$y) i sin(i)(t$x)]

+(1�l !) Pn[(t$y) l sin(l )(t$x)]

+(1�l !) n&1 :
n

j=1

[(t$yj)
l sin(l )(t$(x j+(t$y j)*�n1�(2l )))&sinl (t$xj)],

(7.16)

where (t$yj)* is a value between 0 and t$yj . We have to show that the
second and fourth summands in the RHS of the equality tend to zero in
probability for n � � and that the third summand converges in probability
to E[(t$y)l) sin(l)(t$, x)]. First, consider the second summand. It is enough to
show that for each 1�i�l&1, [- n Pn((t$y) i sin(i)(t$x)) : t # A] converges
weakly to a centered Gaussian process. By Theorem VII.21 and the equi-
continuity lemma (Pollard, 1984, p. 157, p. 150), all we need to do is to
check that for any '>0 and =>0, there exists a $>0 for which

lim sup P[J2($, Pn , 0i)>']<=, (7.17)
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where 0i=[(t$y) i sin(i)(t$x)) : t # A]. The covering integral J2($, Pn , 0) is
similar to that in (7.8) and the seminorm in L2(Pn) is - Pn( f &g)2. Note
that

- Pn[(t$y) i sin(i)(t$x)&(s$y) i sin(i)(s$x)]2

�c &t&s& - Pn &y&2i+Pn(&y&2i &x&2)=: c &t&s& Cn1 , (7.18)

where Cn1 � c=- E &y&2i+E &y&2i &x&2, a.s. For the case Cn1<2c, we
can bound J2($, Pn , 0i) by c$1�2, similar to (7.10). Hence,

P[J2($, Pn , 0i)>']<P[Cn1�2c]

+P[J2($, Pn , 0i)>'] � 0 (7.19)

as n � �. The convergence of the third summand in (7.16) can be derived
by applying Theorem II. 24 (Pollard, 1984, p. 26). The fourth summand
tends to zero, since for some constant c>0,

sup
t # A

|(t$y j)
l (sin(l)(t$(x j+(t$yj)*�n1�(2l )))&sinl (t$j))|

�c &yj &l (max
j

&yj&�n1�(2l )),

max1� j�n &yj &�n1�(2l ) � a.s., and E &y&l<�; Eq. (4.2) in Theorem 4.1 is
proved. Both (4.3) and (4.4) are consequences of (4.2). The proof is
completed.

Proof of Theorem 4.4. Without loss of generality, assume Ex=Ey=0.
Since

- n Pn(sin(t$e } (x+ y�n%)))

=- n Pn(sin(t$e } x)(cos(t$y�n%)))&cos(t$x) sin(t$e } y�n%).

Hence, all we need to do is to show that for almost all sequences [(x1 , y1), ...]

sup
t # A

|- n P%n(sin(t$x)(1&cos(t$y�n%)))| � 0 in Probab. (7.20)

and

sup
t # A

|- n P%n(cos(t$x) sin(t$y�n%))| � 0 in Probab., (7.21)

where P%n is a signed measure that places mass ei �n at (x i , yi). We show
(7.20). A similar way can be applied to show (7.21). Let Yn=( y1 , ..., yn).
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If P is any probability, the seminorm in L1(P) is P | f &g| and 0n=
[sin(t$ } )(1&cos(t$ } �n%) : t # A]. Then it is easy to show that, by the
Lipschitz continuity of the function sin(t$ } )(1&cos(t$ } �n%)), the covering
number N1(u, P, 0n) can be bounded by Bu&W for some B and W
uniformly over P. Precisely, we have for 0<u<1

sup
P

N1(u, P, 0n)�Bu&W. (7.22)

Furthermore, note that

sup
t # A

Pn(sin(t$e } x)(1&cos(t$e } y�n%)))2 | (Xn , Yn)

<cPn &y&2�n2%�cn&2% (7.23)

for some c>0. Applying the formula (31) of Pollard (1984, p. 31), we have

P[sup
t # A

|- n P%n(sin(t$x)(1&cos(t$y�n%)))|>= | (Xn , Yn)]

�2B\ =

- n+
W

exp(=2�(2cn&2%)) � 0 (7.24)

for n � �; (7.20) is proved. The proof of (7.21) is similar. This finishes the
proof of Theorem 4.4.

Proof of Theorem 4.5. Note that

sup
t # A

|Pn(cos(t$(x&Ex)+( y&Ey)�n1�(2l)))&cos(t$(x&Ex))|

<cPn &y&Ey&�n1�(2l )=O(n&1�(2l )) a.s.,

sup
t # A

|1&cos(t$Pn((x&Ex)+( y&Ey)�n1�(2l )))|

<c(&Pn x&Ex&2+&Pny&Ey&2�n1�l)=Op(n&1),

and

sup
t # A

|- n (sin(t$Pn(x&Ex)+Pn( y&Ey)�n1�(2l )))&sin(t$Pn(x&Ex))|

<c - n &Pny&Ey&�n1�(2l )=Op(n&1�(2l)).
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Based on these inequalities, it is easy to see that

- n Pn(sin(t$(x+ y�n1�(2l )&(x� + y� �n1�(2l )))))

=- n Pn(sin(t$((x&Ex)+( y&Ey)�n1�(2l )))

_cos(t$Pn((x&Ex)+( y&Ey)�n1�(2l ))))

&- n Pn(cos(t$((x&Ex)+( y&Ey)�n1�(2l )))

_sin(t$Pn((x&Ex)+( y&Ey)�n1�(2l ))))

=- n Pn(sin(t$(x+ y�n1�(2l )&(Ex+Ey�n1�(2l )))))

&- n Pn(cos(t$(x&Ex)) sin(t$Pn(x&Ex))+Op(n&1�(2l )))

=- n Pn(sin(t$(x&Ex)))+(1�l !) E[(t$( y&Ey)) l sin(l )(t$(x&Ex))]

&- n sin(t$Pn(x&Ex)) E(cos(t$(x&Ex))+Op(n&1�(2l ))).

This is just the formula in (4.5), completing the proof.

Proof of Theorem 4.6. By arguments similar to those in Theorems 4.5
and 4.4, the conclusion can be derived, so we omit the details.
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