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This paper investigates the efficiencies of several generalized least squares
estimators (GLSEs) in terms of the covariance matrix. Two models are analyzed:
a seemingly unrelated regression model and a heteroscedastic model. In both
models, we define a class of unbiased GLSEs and show that their covariance
matrices remain the same even if the distribution of the error term deviates from the
normal distributions. The results are applied to the problem of evaluating the lower
and upper bounds for the covariance matrices of the GLSEs. � 1999 Academic Press
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1. INTRODUCTION

In this paper, we consider the linear regression model

y=X;+= with E(=)=0 and E(==$)=0, (1)

where

0=0(%) # S+(n).

Here, X is an n_k known matrix of full rank, 0 is a function of an
unknown vector %, and S+(n) denotes the set of n_n positive definite
matrices. A generalized least squares estimator (GLSE) of ; is defined as

;� (0� )=(X$0� &1X )&1 X$0� &1y with 0� =0(%� ), (2)
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where %� is an estimator of %. This paper investigates the finite sample
efficiencies of several unbiased GLSEs in terms of covariance matrix. We
assume that the distribution of the error term = is elliptically symmetric
with mean 0 and covariance 0. That is, the probability density function
f (=) of = is expressed as

f (=)=|0|&1�2 f0(=$0&1=)

for some nonnegative function f0 such that �Rn f0(x$x) dx=1 and
�Rn xx$ f0(x$x) dx=In . This will be written as L(=) # En(0, 0), where L(=)
denotes the distribution of =. The class En(0, 0) contains some distributions
whose tails are longer than that of the normal distribution Nn(0, 0).

In the case where = is distributed as Nn(0, 0), several GLSEs satisfy the
following condition: conditional on 0� ,

E(;� (0� ) | 0� )=; and Cov(;� (0� ) | 0� )=H, (3)

where H is given mby

H#H(0� , 0)=(X$0� &1X )&1 X$0� &100� &1X(X$0� &1X )&1. (4)

Clearly (3) implies that Cov(;� (0� ))=E(H(0� , 0)). Typical examples are the
unrestricted Zellner estimator (UZE) in a seemingly unrelated regression
(SUR) model (Zellner, 1962, 1963) and a GLSE in a heteroscedastic
model. For such a GLSE, Kurata and Kariya (1996) and Kariya (1981)
derived the lower and upper bounds for the covariance matrix Cov(;� (0� ))
as

(X$0&1X )&1�Cov(;� (0� ))�E[L(0� , 0)](X$0&1X )&1, (5)

where L(0� , 0)=(l1+ln)2�4l1 ln and l1� } } } �ln are the latent roots of
0&1�20� 0&1�2. Bilodeau (1990) regarded L(0� , 0) as a loss function for
choosing an estimator 0� in ;� (0� ) and derived the optimal estimator with
respect to L(0� , 0).

However, it strongly depends on the normality of = whether a GLSE
satisfies the condition (3) or not. Hence we need to investigate the cases
where the distribution of = may deviate from the normality. In the next sec-
tion, we consider the SUR model under the elliptical symmetry of =. We
first define a class of unbiased GLSE and show that their covariance
matrices remain the same as long as L(=) # En(0, 0). This leads to a
generalization of the results of Kariya (1981), Bilodeau (1990), and Kurata
and Kariya (1996) stated above. In Section 3, we pursue a similar analysis
for some GLSE in the heteroscedastic model.
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In the recent literature, Hasegawa (1994, 1995, 1996) treated the
Revankar's SUR model (Revankar, 1974), an SUR model of a simple struc-
ture, and investigated the finite sample efficiencies of typical GLSEs under
several families of non-normal distributions. See also the references therein.
As for the the asymptotic efficiencies of the GLSEs under non-normality,
consult Srivastava and Maekawa (1995). Fundamental results of statistical
inference in the SUR model are summarized in Srivastava and Giles (1987).

Here we briefly review several facts on the elliptically symmetric distribu-
tions. Let an n_1 random vector x be distributed as En(0, 0). Then
L(10&1�2x)=L(0&1�2x) holds for any 1 # O(n), where O(n) denotes the
group of n_n orthogonal matrices. If 0=In , then &x&=- x$x and x�&x&
are independent and x�&x& is distributed as the uniform distribution on the
unit sphere in Rn (Muirhead, 1982, Chap. 1). Decompose x as x=(x$1 , x$2)$
with xj : nj_1 and n1+n2=n. Then the marginal distribution of x j is nj -
variate elliptical with mean 0 and covariance Inj

. Further, the conditional
distribution of x1 given x2 is also n1 -variate elliptical with mean

E(x1 | x2)=0 (6)

and conditional covariance

Cov(x1 | x2)=c~ (x$2x2) In1
(7)

for some function c~ (Fang and Zhang, 1990, Chap 2). The function c~
satisfies E(c~ (x$2x2))=1, since Cov(x1)=In1

. Note that if x is normal, then
c~ #1.

2. EFFICIENCIES OF GLSEs IN THE SUR MODEL

The SUR model considered here is the model (1) with the structure

y=( y$1 , ..., y$N)$, X=diag[X1 , ..., XN], ;=(;$1 , ..., ;$N)$
(8)

==(=$1 , ..., =$N )$, 0=7�Im and 7 # S+(N ),

here yj : m_1, Xj : m_kj , ;j : kj_1, k=�N
j=1 kj , n=Nm and diag denotes

the block diagonal matrix. L(=) # En(0, 7�Im) is assumed.
Let 7� #7� (S ) be an estimator of 7 which depends on y only through the

random matrix S, where

S=Y$[I&X
*

(X$
*

X
*

)+ X$
*

] Y

=E$[I&X
*

(X$
*

X
*

)+ X$
*

] E : N_N,
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Y=( y1 , ..., yN ) : m_N, X
*

=(X1 , ..., XN ) : m_k, E=(=1 , ..., =N ) : m_N,
and A+ denotes the Moore�Penrose generalized inverse of A. Let C� be the
class of GLSEs of the form ;� (7� �Im) with 7� =7� (S ) and 7� # S+(N ) a.s..
Any GLSE in C� is unbiased if the expectation exists, because S is an even
function of the ordinary least squares residual vector (Kariya and
Toyooka, 1985, and Eaton, 1985). See also Theorem 2.1 below. We define
a subclass C of C� as

C=[;� (7� �Im) # C� | 7� (S ) is one to one continuous function of S. For any

a>0, there exists a positive number ###(a)

such that 7� (aS )=#(a) 7� (S )].

The class C contains the GLSEs with such 7� (S )'s as

7� (S )=TDT $, (9)

where T is the lower triangular matrix with positive diagonal elements such
that S=TT $ and D is a diagonal matrix with positive elements. In this
case, #(a)=a. (It seems to be difficult to find reasonable estimators with
#(a){a.) By letting D=IN in (9), we can see that the GLSE with
7� (S )=S, the unrestricted Zellner estimator (UZE), is in C. It is easily
shown from the general result of Kariya and Toyooka (1985) that any
GLSE in C has finite second moments.

We introduce some notations. Let p=rankX
*

and q=m&p. Let X� and
Z� be any m_p and m_q matrices such that

X� X� $=X
*

(X$
*

X
*

)+ X$
*

, X� $X� =Ip

and

Z� Z� $=Im&X
*

(X$
*

X
*

)+ X$
*

, Z� $Z� =Iq .

Then 1#(X� , Z� ) # O(m). Let

=~ =(7&1�2�Im) =#(=~ $1 , ..., =~ $N )$

'=(IN�1 $) =~ #('$1 , ..., '$N)$ with ' j=\X� $=~ j
Z� $=~ j+=\$j

!j+ ,

where =~ j : m_1, $j : p_1 and !j : q_1. Then we can easily see that

L(=~ )=L(')=L(($$, !$)$) # En(0, In)

S=71�2U$U71�2,
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where $=($$1 , ..., $$N)$ : Np_1, !=(!$1 , ..., !$N)$ : Nq_1 and U=(!1 , ..., !N) :
q_N. As a function of !, S#S(!) satisfies

S(a!)=a2S(!) for any a>0. (10)

If = is normally distributed, then S is distributed as WN(7, q), the Wishart
distribution with mean q7 and degrees of freedom q.

Theorem 2.1. Suppose that L(=) # En(0, 7�Im).

(i) If ;� (7� �Im) # C� , then E(;� (7� �Im) | 7� )=;.

(ii) If ;� (7� �Im) # C� , then

Cov(;� (7� �Im) | 7� )=c(7� ) H(7� �Im , 7�Im) (11)

for some function c such that E(c(7� ))=1.

(iii) If ;� (7� �Im) # C, then c(7� ) and H(7� �Im , 7�Im) are independent.

Proof. By using Xj$Z� =0 and (6), the following two equalities are
proved:

X$(7� &1�Im) ==X$(7� &171�2�X� ) $ (12)

and

E($ | 7� )=E[E(E($ | !) | S ) | 7� ]=0. (13)

Hence we obtain E(;� (7� �Im) | 7� )=(X$(7� &1�Im) X )&1 X$(7� &171�2�X� )
E($ | 7� )+;=;, proving (i). Similarly, E($$$ | 7� )=E[E(E($$$ | !) | S ) | 7� ]
=E[E(c~ (&!&2) | S ) | 7� ] INp

holds for some function c~ (see (7)). Noting
that &!&2=tr(S7&1) and letting c(7� )=E(c~ (tr(S7&1)) | 7� ) yield

E($$$ | 7� )=c(7� ) INp
. (14)

The function c satisfies E(c(7� ))=1, since Cov($)=INp
. Therefore, from

(12) and (14), we obtain

Cov(;� \(7� �Im) | 7� )

=(X$(7� &1�Im) X )&1 X$(7� &171�2�X� )

_ E($$$ | 7� )(71�27� &1 �X� $) X(X$(7� &1�Im) X )&1

=c(7� )(X$(7� &1�Im) X )&1 X$(7� &177� &1 �X� X� $)

_X(X$(7� &1 �Im) X )&1.

90 HIROSHI KURATA



Here it is easily proved by a direct calculation that X$(7� &177� &1�X� X� $) X=
X$(7� &177� &1�I ) X. Thus we establish (ii). To prove (iii), we assume that
;� (7� �Im) # C. As a function of !,

H(7� (S(!))�Im , 7�Im)#H� (!) (15)

depends on ! only through !�&!&, since for any a>0,

H� (a!)=H(7� (S(a!))�Im , 7�Im)

=H(7� (a2S(!))�Im , 7�Im)

=H(#(a2) 7� (S(!))�Im , 7�Im)

=H(7� (S(!))�Im , 7�Im)

=H� (!),

where the second equality follows from (10), the third follows from the
definition of C, and the fourth follows because H(a0� , 0)=H(0� , 0) holds
for any a>0 in general (see (4)). On the other hand, c is a function of
&!&2, because

c(7� )=E[c~ (tr(S7&1)) | 7� ]

=E[c~ (tr(S7&1)) | S ] (7� is a one to one function of S )

=c~ (tr(S7&1))=c~ (&!&2).

This proves (iii). K

Since the distribution of !�&!& is unique, the following theorem is
obtained.

Theorem 2.2. For any GLSE ;� (7� �Im) # C, the covariance matrix
Cov(;� (7� �Im)) remains the same as long as L(=) # En(0, 7�Im).

It follows from this result and (5) that any GLSE ;� (7� �Im) # C satisfies

(X$(7&1 �Im) X )&1�Cov(;� (7� �Im))�E[L(7� , 7 )](X$(7&1�Im) X )&1

with L(7� , 7 )=(l1+lN)2�4l1 lN , (16)

where l1� } } } �lN are the latent roots of 7&1�27� (S ) 7&1�2 and the expec-
tation E[L(7� , 7 )] is calculated under StWN(7, q). In particular, when
N=2, the upper bound for the covariance matrix of the UZE is given by
1+2�(q&3) (Kariya, 1981). For general N, see Kurata and Kariya (1996).
As a loss function for estimating 7, L(7� , 7 ) is invariant under the group
GT+(N ) of N_N lower triangular matrices with positive diagonal
elements with action 7� � G7� G$ and 7 � G7G$, where G # GT+(N ). An
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equivariant estimator of 7 is of the form (9). In the case where N=2,
Bilodeau (1990) derived the optimal estimator of 7 with respect to this loss
function as

7� B#7� B(S )=TDB T $ with DB=diag[1, - (q+3)�(q&1)]

and proposed the GLSE ;� (7� B�Im). Since L(7� (S(a!)), 7 )=L(#(a2)
7� (S(!)), 7 )=L(7� (S(!)), 7 ) holds for any a>0, the upper bounds them-
selves also remain the same as long as L(=) # En(0, 7�Im). This implies
that the GLSE ;� (7� B�Im) is still optimal under the elliptical symmetry
of =.

3. EFFICIENCIES OF GLSEs IN THE HETEROSCEDASTIC MODEL

In this section, we consider the heteroscedastic model of the form

y=( y$1 , ..., y$N )$, X=(X$1 , ..., X$N)$, ==(=$1 , ..., =$N )$
(17)

0=0(%)=diag[%1Im1
, ..., %NImN

] with %=(%1 , ..., %N)$ : N_1,

where yj : mj_1, Xj : mj_k, =j : mj_1, n=�N
j=1 mj , and L(=) #

En(0, 0(%)). Since the analysis in this section is quite similar to that of
Section 2, we often omit the details.

Let %� =%� (s) be an estimator of % which depends on y only through the
random vector s=(s1 , ..., sN )$ : N_1, where

sj=yj$ [Imj
&Xj (X j$ Xj )

+ Xj$ ] y j �qj , (18)

pj=rankXj , and qj=mj&pj . Let C� be the class of unbiased GLSEs of the
form ;� (0(%� )) with 0(%� ) # S+(n) a.s.. We consider the following subclass C

of C� whose definition is similar to that of Section 2:

C=[;� (0(%� )) # C� | %� (s) is one to one continuous function of s. For any

a>0, there exists a positive number ###(a) such that

%� (as)=#(a) %� (s)].

This class contains the GLSEs with such %� (s)'s as

%� (s)=( f1s1 , ..., fNsN)$, (19)

where fj's are positive constants.
Let X� j and Z� j be any mj_pj and mj_qj matrices such that

X� j X� j$=Xj (Xj$ Xj )
+ Xj$ , X� j$ X� j=Ipj
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and

Z� j Z� j$=Imj
&Xj (X j$ X j)

+ Xj$ , Z� j$ Z� j=Iqj
.

Then 1#diag[11 , ..., 1N] # O(n), where 1j=(X� j , Z� j) # O(mj). The following
notations are essentially the same as those of Section 2,

=~ =0&1�2=#(=~ $1 , ..., =~ $N )$

'=1 $=~ #('$1 , ..., '$N )$ with 'j=\X� j$ =~ j
Z� j$ =~ j+#\$j

!j+ ,

where =~ j : mj_1, $j : pj_1 and !j : qj_1. Let $=($$1 , ..., $$N )$ : ( p1+ } } } +pN )
_1, !=(!$1 , ..., !$N )$ : (q1+ } } } +qN )_1. As a function of !, s#s(!)
satisfies s(a!)=a2s(!) for any a>0.

Theorem 3.1. Suppose that L(=) # En(0, 0(%)).

(i) If ;� (0(%� )) # C� , the E(;� (0(%� )) | %� )=;.

(ii) If ;� (0(%� )) # C� , then

Cov(;� (0(%� )) | %� )=c(%� ) H(0(%� ), 0(%)) (20)

for some function c such that E(c(%� ))=1.

(iii) If ;� (0(%� )) # C, then c(%� ) and H(0(%� ), 0(%)) are independent.

Proof. Let X� =diag[X� 1 , ..., X� N]. Then we can see that X$0(%� )&1 ==
X$0(%� )&1 0(%)1�2 X� $. This proves (i). The proofs of (ii) and (iii) are
parallel to those of Theorem 2.1. K

Theorem 3.2. For any GLSE ;� (0(%� )) # C, the covariance matrix
Cov(;� (0(%� )) remains the same as long as L(=) # En(0, 0(%)).

The implications of this theorem are also similar to those of Theorem 2.2
and omitted.
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