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Abstract

Edgeworth expansions and saddlepoint approximations for the distributions of estimators of certain
eigenfunctions of covariance and correlation matrices are developed. These expansions depend on
second-, third-, and fourth-order moments of the sample covariance matrix. Expressions for and esti-
mators of these moments are obtained. The expansions and moment expressions are used to construct
second-order accurate confidence intervals for the eigenfunctions. The expansions are illustrated and
the results of a small simulation study that evaluates the finite-sample performance of the confidence
intervals are reported.
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1. Introduction

A flexible spectral model for principal components of covariance matrices from several
populations was proposed by Boik [6]. This model unifies and extends the common prin-
cipal component model and related models of Flury [14] and others. The spectral model
also is applicable to a covariance matrix from a single population. It allows arbitrary eigen-
value multiplicities and it allows the distinct eigenvalues to be modeled parametrically or
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nonparametrically. Procedures that provide the same flexibility for modeling principle com-
ponents of correlation matrices were proposed by Boik[7]. In this article, second-order accu-
rate confidence intervals for functions of eigenvalues of covariance and correlation matrices
are developed. Asymptotic expansions of the distributions of model-based estimators of the
eigenvalues also are constructed.

To be more specific, lety be a randomp-vector with positive definite covariance matrix
� and correlation matrix�. Denote thep-vector of eigenvalues of either� or � by �.
Second-order accurate confidence intervals for

�1 = h′� and �2 = h′�/(1′
p�) (1)

are developed without assuming normality, whereh is ap-vector of known constants and1p

is ap-vector of ones. The eigenfunctions�1 and�2 could reflect partial sums or differences
among eigenvalues. For example, ifh is selected to beh = (1′

a 0
′)′ and eigenvalues are

ordered from largest to smallest, then�1 represents the variability associated with the
first a principal components and�2 represents the proportion of the total variability that
is associated with the firsta components. If� is the vector of eigenvalues of a correlation
matrix, then�1 = p�2 and the two functions yield equivalent information. If� is the vector
of eigenvalues of a covariance matrix, however, then�1 and�2 yield different information.
Edgeworth and saddlepoint approximations for the distributions of

�̂1 = h′̂� and �̂2 = h′̂�/(1′
p�̂) (2)

also are developed in this article, where�̂ is a consistent model-based estimator of�, possibly
subject to constraints. The proposed methods can be extended to arbitrary differentiable
functions of�, but attention in this article is restricted to�1 and�2.

The expansions and confidence intervals depend on higher-order moments of the sample
covariance matrix. In Section2, matrix expressions for second-, third-, and fourth-order
moments of the sample covariance are obtained. In addition, unbiased estimators of the
second- and third-order moments and consistent estimators of the fourth-order moments
are constructed.

Parameterizations for� and� in terms of eigenvalues and eigenvectors are briefly re-
viewed in Section 3. Section 4 describes Edgeworth and saddlepoint approximations for
the distributions of̂�1 and�̂2 when sampling from multivariate normal populations. Sec-
tion 5 gives asymptotically distribution free (ADF) expansions of the distributions of�̂1
and �̂2. Normal theory and ADF confidence intervals that are based on the expansions
are described in Section 6. The asymptotic expansions and confidence intervals are illus-
trated in Section 7. Section 8 reports the results of a simulation study that examines the
accuracy of the Edgeworth and saddlepoint approximations under normality as well as the
finite sample coverage of the confidence intervals under normality and under nonnormal-
ity. The proposed second-order accurate confidence intervals show a substantial improve-
ment in coverage probability compared to first-order accurate intervals. Expressions for
certain required derivatives are available in a supplement that can be down-loaded from
<http://www.math.montana.edu/∼rjboik/pca_eigen/>.
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2. Moments of the sample covariance matrix

It is assumed that the observable data can be represented as

Y = XB + E, (3)

whereY is anN × p observable random matrix,X is anN × q matrix of known constants,
rank(X) = r �q, andE is anN ×p unobservable matrix of random deviations. The rows of
E are assumed to be independently and identically distributed with mean zero and variance
�. The distribution ofE is arbitrary except that the regularity conditions described in Section
5 are assumed to be satisfied. The usual unbiased estimator of� is

S= 1

n
Y ′QY, whereQ = IN − HX, HX = X

(
X ′X

)− X ′ (4)

is the perpendicular projection operator that projects ontoR(X), the vector space generated
by the columns ofX, andn = N − r. It is assumed thatR(X ′) does not depend onN,
the nonzero eigenvalues ofX ′X diverge to infinity asN → ∞, and limN→∞ qii = 1 for
i = 1, . . . , N , whereqii is theith diagonal element ofQ.

Expansions of̂�1 and�̂2 depend on the moments of
√

n(s− �), wheres= vec(S) and
� = vec(�). In particular, expansions of

Wi
def= √

n(�̂i − �i ) and Zi
def= Wi/̂�Wi

for i = 1, 2 (5)

require the following moments or consistent estimators thereof:

�22,n
def= nE

[
(s− �)(s− �)′

]
, �222,n

def= n
3
2 E

[
(s− �) ⊗ (s− �)(s− �)′

]
,

�42,n
def= n Cov

[
vec(�̂22,n), s

]
and

�2222,n
def= n2E

[
(s− �)(s− �)′ ⊗ (s− �)(s− �)′

]
, (6)

wherê�2
Wi

is a consistent estimator of Var(Wi) and�̂22,n is an estimator of�22,n. Subscripts
22, 42, 222, and 2222 refer to the order of the moments. The matrix�22,n, for example,
is the expectation of the product of two second-order terms inY. The subscriptn serves
as a reminder that the moments depend on the model matrix,X, which, in turn, depends
on the sample size. The quantity�222,n is O(n−1/2), whereas the remaining moments in
(6) areO(1). As sample size increases, the moments�22,n,

√
n�222,n, �42,n, and�2222,n

approach�22,∞, �∗
222,∞, �42,∞, and�2222,∞, respectively, where

�22,∞
def= lim

n→∞ �22,n, �∗
222,∞

def= lim
n→∞ n

1
2 �222,n,

�42,∞
def= lim

n→∞ �42,n and �2222,∞
def= lim

n→∞ �2222,n. (7)

In this section, matrix expressions for the moments in (6) and (7) are obtained. Unbiased
estimators of�42,n and�222,n and consistent estimators of the moments in (7) are derived.
Expressions for and estimators of�22,n already are known, but for completeness and to
illustrate the method of construction, these results also are given.
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Let � be any row ofE in (3) and define�21, �22, �42, and�44 as

�21
def= E

(
� ⊗ ��′

)
, �22

def= E
(
��′ ⊗ ��′

)
,

�42
def= E

(
��′ ⊗ ��′ ⊗ � ⊗ �

)
and �44

def= E
(
��′ ⊗ ��′ ⊗ ��′ ⊗ ��′

)
, (8)

respectively. Consistent estimators of these quantities are obtained by substituting the ob-
servable residual̃� for � and averaging. That is,

�̃21 = 1

n

N∑
i=1

(̃
�i ⊗ �̃ĩ�

′
i

)
, �̃22 = 1

n

N∑
i=1

(̃
�ĩ�

′
i ⊗ �̃ĩ�

′
i

)
,

�̃42 = 1

n

N∑
i=1

(̃
�ĩ�

′
i ⊗ �̃ĩ�

′
i ⊗ �̃i ⊗ �̃i

)
and

�̃44 = 1

n

N∑
i=1

(̃
�ĩ�

′
i ⊗ �̃ĩ�

′
i ⊗ �̃ĩ�

′
i ⊗ �̃ĩ�

′
i

)
, (9)

wherẽ�i is theith residual vector. Specifically,̃�′i is theith row ofQY, whereQ is defined
in (4).

To obtain expressions for�22,n and�22,∞, first note thatQY = QE. Accordingly,

S= 1

n

N∑
i=1

N∑
j=1

�iqij �
′
j and �̃j =

N∑
i=1

�iqij , (10)

where�′i is theith row ofE andqij is theij th component ofQ. Substituting the expressions
for �̃i andS in (10) into �̃22, ss′, and(S⊗ S), and then taking expectations reveals that

E(̃�22 ss′ Np[S⊗ S)])′

=


1

n


c2 [c1 − c2] [c1 − c2]
c1
n

[
n − c1

n

] [
1 − c1

n

]
c1
n

[
1 − c1

n

] [
n + 1 − 2c1

n

]
 ⊗ Ip2


 �22

��′
Np[� ⊗ �]

 , (11)

wherec1 = tr(Q�2), c2 = 1′
NQ

�41N , Np = (Ip2 + I (p,p))/2, I (a,b) is the commutation
matrix [27], and� is the elementwise operator. For example, ifa is aq × 1 vector, then
e�a′ = (ea1 · · · eaq ). The commutation matrix,I (a,b) is denoted byKba in Magnus and
Neudecker [28,29, Section 3.7]. By using (11) and the definitions in (6) and (7) it is readily
shown that

�22,n = c1

n

(
�22 − ��′) +

(
1 − c1

n

)
2Np(� ⊗ �)

and

�22,∞ = �22 − ��′. (12)
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Solving (11) for the moment matrices yields

(�22 ��′ 2Np[� ⊗ �])′

=

a


n(n + 2) − 3c1 n(c2 − c1) n(c2 − c1)

−c1
n(n + 1)c2 − 2c2

1
n − 1

c2
1 − nc2
n − 1

−2c1
2(c2

1 − nc2)
n − 1

n2c2 − c2
1

n − 1

 ⊗ Ip2


× E

 �̃22
ss′

2Np[S⊗ S)]

 , (13)

wherea = n/[n(n + 2)c2 − 3c2
1], andc1 andc2 are defined in (11). It follows from (12)

and (13) that

�̂22,n = a1̃�22 + a2ss′ + a32Np(S⊗ S) (14)

is an unbiased estimator of�22,n where

a1 = anc1, a2 = −a[2nc2 + (n − 3)c2
1]

(n − 1)
and a3 = −an(c2

1 − nc2)

(n − 1)
,

a is defined in (13) andc1 andc2 are defined in (11). IfX = 1N , thenn = N − 1 and the
coefficients simplify to

a1 = n2

a0
, a2 = −n(n2 − 2)

(n + 1)a0
and a3 = − n2

(n + 1)a0
,

wherea0 = (n − 1)(n − 2). Also, it is apparent that

�̃22,∞ = �̃22 − ss′ (15)

is a consistent estimator of�22,∞, wherẽ�22 is defined in (9). Browne [10] and Koning et
al. [22] derived the estimator in (14) for the special case whenX = 1N . Boik [5, Theorem
5], derived the estimator in (14) for generalX by a slightly different method than above.

The methods that were used to obtain the expressions in (12) and the estimators in (14)
and (15) can, in principle, be extended to moments of any order. The derivations are rather
tedious, however, so comparable results are obtained for third-order moments ofS (sixth-
order moments of�) only. These results are summarized in Theorem 1.

Theorem 1. Matrix expressions for third-order moments ofSare given by

�222,n =
12∑

i=1

a222,iM i and �42,n =
12∑

i=1

a42,iM i ,

where the sixth-order moments, {M i}12
i=1, as well as the coefficientsci , a222,i , anda42,i for

i = 1, . . . , 12are defined in Table1.
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Table 1
Sixth-order moments and associated coefficients

i M i ci n
3
2 a222,i n2a42,i

1 �42 tr
(
Q�2

)
c8

na1c5
+c8(a2 + 2a3)

2
(
� ⊗ ��′) 1′

N
Q�41N 2c8

n2[a1(c1 − c2) + 2a3 + c1]
+n3a2 + 2na1(c5 − c9)

−nc1(3a2 + 2a3)

+2[a2c8 + 2a3(c8 − c1)]

3
2Np2×(

� ⊗ � ⊗ �
)

2Np
q′Qq 2c8

−2c1

+na1[c1 − c9 + 2(c5 − c2)]
+n2a2 + n(2a3 − a2c1)

+2[a2(c8 − c1) + a3(2c8 − 3c1)]

4 vec
[
(� ⊗ �)2Np

]
�′ 1′

N
Q�31N

2c8
−2c1

n3(a3 − 1)

+n2[a1(c1 − c2) + a2 + a3 + c1]
+n[2a1(c5 − c9) − c1(a2 + 4a3)]
+2[a2(c8 − c1) + a3(2c8 − c1)]

5

(
2Np ⊗ 2Np

)×(
� ⊗ � ⊗ �

)
2Np

q′Q�41N

n

−3c1
+2c8

na1[c1 − c9 + 2(c5 − c2)]
+n2a3 + n[a2 + a3(1 − c1)]

+a2(2c8 − 3c1) + a3(4c8 − 5c1)

6 2Np2(�22 ⊗ �) 1′
N
Q�61N −c8

n[a1(c9 − c5) + a2c1]
+2a3(c1 − c8) − a2c8

7 vec(�22)�′ 1′
N

(
Q�3

)2
1N −c8

n2(a1c2 − c1)

+n[c1(2a3 + a2) − a1c5]
−c8(a2 + 2a3)

8

2Np2(2Np ⊗ Ip2)×[
� ⊗ dvec(�22, p3, p)

]
×2Np

tr
(
Q�3

)
c1

−c8

na1(c2 − c5)

+(a2 + 2a3)(c1 − c8)

9
(2Np ⊗ 2Np)×

(Ip ⊗ I (p,p) ⊗ Ip)×
(�22 ⊗ �)

q′Q�2q
c1

−c8

n[a1(c9 − c5) + a3c1]
+a2(c1 − c8) + a3(c1 − 2c8)

10
2Np2(2Np ⊗ Ip2)×

(�′
21 ⊗ vec�21)

q′QQ�31N
c3

−c8

na1(c10 − c5)

+(a2 + 2a3)(c3 − c8)

11 (�21 ⊗ �21)2Np tr

[(
Q�2

)2
Q
]

c3
−c8

na1(c11 − c5)

+a2(c3 − c8) + 2a3(c4 − c8)

12
(2Np ⊗ 2Np)×

(Ip ⊗ I (p,p) ⊗ Ip)×
(�21 ⊗ �21)

tr

[(
QQ�2

)2
]

c4
−c8

na1(c11 − c5)

+a2(c4 − c8)

+a3(c3 + c4 − 2c8)

Q is given in (4), q = (Q11 Q22 · · · QNN )′, and{ai }3i=1 are defined in (12).
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Denote the sample version of theith sixth-order moment bỹM i and definẽM asM̃ def=
(M̃ ′

1 · · · M̃ ′
12)

′. Specifically, M̃ i is obtained by replacing�, �21, �22, and�42 in M i by S,
�̃21, �̃22, and �̃42, respectively. The expectations of the sample sixth-order moments are

E
(
M̃
) = (

W ⊗ Ip4
)
M , where M def= (M ′

1 · · ·M ′
12)

′,

and the components of the12× 12coefficient matrixW = {wij } ıare given in AppendixA.
An unbiased and consistent estimator ofM is given bŷM = (

W−1 ⊗ Ip4
)
M̃ .The estimator

M̂ can be used along with the coefficients in Table1 to obtain unbiased estimators of�222,n
and�42,n. For example,

�̂222,n = n− 3
2
(
c8M̂1 + 2c8M̂2 + · · ·) .

Simplifications of the coefficients for the unbiased estimators�̂222,n and �̂42,n exist
under special conditions. For example, ifX = 1N , whereX is the model matrix in (3), then

�̂222,n = (
w′

222 ⊗ Ip4
)
M̃ and �̂42,n = (

w′
42 ⊗ Ip4

)
M̃ , (16)

where the 12× 1 coefficient vectorsw222 andw42 are given in TableA.1 in Appendix A.
An unbiased estimator of�2222,n in (6) can be constructed by the methods employed in

Theorem 1, but it is sufficient for present purposes to construct a consistent estimator of

�2222,∞. Usingn
1
2 (s− �)

dist−→ N(0, �22,∞), it is readily shown that

�2222,n = 2Np2(�22,n ⊗ �22,n) + vec(�22,n)
[
vec(�22,n)

]′ + O
(
n−1

)
and that

�2222,∞ = 2Np2(�22,∞ ⊗ �22,∞) + vec(�22,∞)
[
vec(�22,∞)

]′
.

Accordingly,

�̃2222,∞ = 2Np2

(
�̃22,∞ ⊗ �̃22,∞

)
+ vec

(
�̃22,∞

) [
vec

(
�̃22,∞

)]′
(17)

is a consistent estimator of�2222,∞, where�̃22,∞ is given in (15). Note, the estimator

in (17) remains consistent if̃�22,∞ is replaced bŷ�22,n.
The focus in this section is on the moments ofSwhen sampling from nonnormal dis-

tributions. Nonetheless, it still is of interest to examine the moments under the assumption
of multivariate normality ofY. Boik [6, Theorem A.2] gave expressions for�222,n and
�2222,n under normality. These results, along with known results for�22,n and a new result
for �42,n are given below:

�22,n = �22,∞ = 2Np(� ⊗ �),

�222,n = n− 1
2 �∗

222,∞ = n− 1
2 (2Np ⊗ 2Np)(� ⊗ � ⊗ �)2Np,

�42,n = �42,∞ = n
1
2 �222,n
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and

�2222,n = �2222,∞ = 2Np2(2Np ⊗ 2Np)(� ⊗ � ⊗ � ⊗ �)

+ vec
[
2Np(� ⊗ �)

] {
vec

[
2Np(� ⊗ �)

]}′ + O
(
n−1

)
.

See[6, Theorem A.2] for an explicit expression for theO(n−1) term in�2222,n. Consistent
estimators under normality can be obtained by substitutingS for � in the above equations.

3. Parameterizations of covariance matrices

3.1. Eigenvalues of the correlation matrix

In the remainder of this article it is assumed that the correlation matrix� is irreducible.
That is, it cannot be permuted into a nontrivial block diagonal matrix and, therefore,Theorem
2 in [7] is satisfied fork = 1. More generally, if a correlation matrix can be permuted into
a nontrivial block diagonal matrix, then the following parameterization must be applied
separately to each of the diagonal blocks.

Following Boik [7], the covariance matrix� is parameterized as a function of a�̇-
dimensional vector,�, where

� = �D��D = �(�), � = ���′, � =
 �

�

�

 , � =
 dim(�)

dim(�)

dim(�)

 , (18)

�̇ = dim(�), �D = Diag(�d), �d = �d(�) is thep-vector of standard deviations of the
elements ofy, � = �G(�, �)

∣∣
�=0, � = Diag(�), � = �(�), and� is a matrix of unit-norm

orthogonal eigenvectors. The dimension of� is �2 = (p2 − m′m)/2 − (p − 1), where
m is a vector whose elements are the multiplicities of the distinct eigenvalues of�. The
vector of standard deviations is parameterized as�d = T1 exp{�T2�}, whereT1: p × q1
andT2: q1 × �1 are full column-rank design matrices of known constants. Details on the
parameterization ofG in terms of(�, �) can be found in[7, Section 2.3].

The vector of eigenvalues is parameterized as

� = p

(
T3 exp{�T4�}
1′

pT3 exp{�T4�}

)
, (19)

whereT3: p × q3 andT4: q3 × q4 are full column-rank design matrices of known con-
stants. Without loss of generality, it can be assumed thatT4 satisfies1′

q3
T4 = 0. If this

condition is not satisfied, then replaceT4 by any matrix whose columns form a basis for

R
[
(Iq3 − 1q3q−1

3 1′
q3

)T4

]
. If no restrictions are placed on the parameter vector�, then

�3 = q4. More generally,� can be represented by (19), subject to the constraintC′
1� = c0,

whereC1 is a known matrix of constants andc0 is a known vector of constants. In this case,
� in (19) is replaced by	, where	 is an implicit function of� and�3 = dim(�) < dim(	).
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For details, see[7, Section 2.4]. Derivatives of� with respect to� are denoted by

D(1)

�:�
def= � �

��′ , D(2)

�:�,�

def= �2�

��′ ⊗ ��′ ,

and

D(3)

�:�,�,�
= �3�

��′ ⊗ ��′ ⊗ ��′ . (20)

Expressions for these derivatives are given in the supplement.

3.2. Eigenvalues of the covariance matrix

If interest is in the eigenvalues of the covariance matrix, then� can be parameterized as
a function of ȧ�-dimensional vector,�, where

� = ���′ = �(�), � =
(

�

�

)
, � =

(
dim(�)

dim(�)

)
, � = �G(�)

∣∣
�=0, (21)

�̇ = dim(�), and� = �(�). The dimension of� is(p2−m′m)/2, wherem is a vector whose
elements are the multiplicities of the distinct eigenvalues. Details on the parameterization
G in terms of� can be found in[6, Section 2.3].

If interest is in�1 = h′�, then a suitable parameterization for� is

� = T1 exp{�T2�} , (22)

whereT1: p ×q1 andT2: q1 ×q2 are full column-rank design matrices of known constants.
If no restrictions are placed on the parameter vector�, then�2 = q2. If � must satisfy
C′

1� = c0, then� can be parameterized as (22) except that� is replaced by	, where	

is an implicit function of� and�2 = dim(�) < dim(	). Derivatives of� with respect
to � are denoted as in (20). Details and expressions for these derivatives are given in the
supplement.

If interest is in�2 = h′�/ tr(�), then a suitable parameterization for� is

� = �1

(
T1 exp{�T2�2}
1′

pT1 exp{�T2�2}

)
, where�1 = tr(�) and� =

(
�1
�2

)
. (23)

It can be assumed, without loss of generality, thatT2 satisfies1′
q1
T2 = 0. If no restrictions

are placed on the parameter vector�2, then�2 = q2 + 1. If �2 must satisfyC′
1��−1

1 = c0,
then� can be parameterized as (23) except that�2 is replaced by	, where	 is an implicit
function of�2 and�2 − 1 = dim(�2) < dim(	). Derivatives of� with respect to�2 are
denoted by

D(1)

�:�2

def= � �

��′
2

, D(2)

�:�2,�2

def= �2�

��′
2 ⊗ ��′

2

,
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and

D(3)

�:�2,�2,�2

def= �3�

��′
2 ⊗ ��′

2 ⊗ ��′
2

. (24)

Details and expressions for these derivatives are given in the supplement.

4. Edgeworth and saddlepoint expansions under normality

In this section, Edgeworth and saddlepoint expansions are constructed for the density of
�̂1 = h′̂�, wherê� is the maximum likelihood estimator of the vector of eigenvalues of the
correlation or covariance matrix based on a sample of sizeN = n + r from a multivariate
normal distribution andr is the rank ofX in (3). The eigenvalues are parameterized as (19) if
interest is in correlation matrices or as (22) if interest is in covariance matrices. Modifications
for the expansion of the density of�̂2 = h′̂�/(1′

p�̂), wherê� is the maximum likelihood
estimator of the vector of eigenvalues of the covariance matrix are described in Section
4.3. See [3, Chapter 4] and Reid [34] for descriptions of Edgeworth and saddlepoint (tilted
Edgeworth) expansions. First-order asymptotic distributions of�̂1 and�̂2 in the case of
covariance matrices and under multivariate normality were obtained by Anderson [1].

4.1. Edgeworth expansion under normality

Let S be a sample covariance matrix whose distribution is Wishart:nS ∼ Wp(n, �),
where� = �(�). Denote the corresponding log likelihood function as�(�) and itsith
derivative as�i (�). Specifically,

�1
def= ��(�)

��
, �2

def= �2
�(�)

��′ ⊗ ��
and �3

def= �3
�(�)

��′ ⊗ ��′ ⊗ ��
. (25)

These derivatives depend on� only through the derivatives of vec� with respect to�. The
latter derivatives are denoted as

F(1) def= � vec�

��′

∣∣∣∣
�=0

, F(2) def= �2
vec�

��′ ⊗ ��′

∣∣∣∣
�=0

and F(3) def= �3
vec�

��′ ⊗ ��′ ⊗ ��′

∣∣∣∣
�=0

.

For notational convenience, the following definitions are used:

F̈(1) def=
(
�−1 ⊗ �−1

)
F(1) and F̈(2) def=

(
�−1 ⊗ �−1

)
F(2) . (26)

DefineZj as

Zj
def= √

n
(
n−1�j − K j

)
, whereK j = n−1E(�j ). (27)

For example,

Z1 = 1
2 F̈

(1)′ √n(s− �), K1 = 0, and K2 = −1
2 F

(1)′ F̈(1) .
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Explicit expressions for log likelihood derivatives,Z2, Z3, K3, andK4 are given in the
supplement. Note thatZj = Op(1) for all j,

√
nZ1 is the score function and that−K2 = I �

is the average Fisher information. The MLE of� can be expanded in tensor notation as
(7.10) in[31] or in vector notation as

√
n(̂� − �) = 
̂0 + n− 1

2 
̂1 + n−1̂
2 + Op

(
n− 3

2

)
, (28)

where


̂0 = I
−1
� Z1, 
̂1 = I

−1
� [Z2̂
0 + 1

2K3(̂
0 ⊗ 
̂0)]

and


̂2 = I
−1
� [Z2̂
1 + 1

2Z3(̂
0 ⊗ 
̂0) + K3(̂
0 ⊗ 
̂1) + 1
6K4(̂
0 ⊗ 
̂0 ⊗ 
̂0)].

An expansion of the density of̂�1 can be obtained by inverting the characteristic function
of W1 in (5). First, the moment generating function ofW1 will be found. For convenience,
denoteW1 byW, i.e.,W = √

n(�̂1−�1). To obtainMW (t), first expandWaround�̂1 = �1.
LetE� be a matrix of ones and zeros that satisfiesE′

�� = �. An explicit expression forE�

is obtained by writingE� asE�,3 and then using Eq. (4) in [7]. The random variableWcan
be expanded as follows:

W = Q0 + 1√
n

Q1 + 1

n
Q2 + Op

(
n− 3

2

)
, whereQ0 = h′D(1)

�:�E
′
�
̂0,

Q1 = h′[D(1)

�:�E
′
�
̂1 + 1

2D
(2)

�:�,�
(E′

�
̂0 ⊗ E′
�
̂0)] (29)

and

Q2 = h′[D(1)

�:�E
′
�
̂2 + D(2)

�:�,�
(E′

�
̂0 ⊗ E′
�
̂1)

+1
6D

(3)

�:�,�,�
(E′

�
̂0 ⊗ E′
�
̂0 ⊗ E′

�
̂0)].
The moment generating function ofWcan be obtained by expanding the exponential function
etW and then taking expectations. That is,

MW (t) = E(etW )

= E

(
exp{tQ0}

[
1 + t√

n
Q1 + t

n
Q2 + t2

2n
Q2

1 + Op

(
n− 3

2

)])
, (30)

whereQ0, Q1, andQ2 are defined in (29) and the expectation is taken with respect to the
Wishart distributionWp(n, �). The exponential function on the right-hand side of (30) can
be combined with the Wishart density function,fwish(nS; n, �), to obtain

exp{tQ0} fwish(nS; n, �)

= |�t | n
2

|�| n
2

exp

{
− t

2

√
n tr(V�)

}
fwish(nS; n, �t ),
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where

V = V ′ = dvec(v, p, p), v = F̈(1) I
−1
� E�D

(1)′
�:�h,

�t =
(
�−1 − t√

n
V
)−1

=
∞∑

j=0

(
t√
n

)j

(�V)j �, (31)

F̈(1) is defined in (26), and dvec(M , a, b) is ana×b matrix that satisfies vec[dvec(M , a, b)]
= vecM . It is assumed that|t | is sufficiently small so that−∞ < rj t <

√
n for j =

1, . . . , p is satisfied, wherer1, . . . , rp are the eigenvalues of�V. The ratio of determinants
in (31) can be expanded as

|�t | n
2

|�| n
2

= exp

n

2

∞∑
j=1

(
t√
n

)j tr(�V)j

j

 .

Accordingly, the moment generating function ofWcan be expressed as

MW (t) = exp

{
t2

4
tr(�V)2

}
×
{

1 + t3

3!√n
tr(�V)3 + 3t4

4!n tr(�V)4 + 10t6

6!n
[
tr(�V)3

]2 + O
(
n− 3

2

)}
×E

[
1 + t√

n
Q1 + t

n
Q2 + t2

2n
Q2

1 + Op

(
n− 3

2

)]
,

whereQ1 andQ2 are defined in (29) and the expectation is taken with respect to the Wishart
distributionWp(n, �t ) and�t is given in (31). The results, after taking expectations, are
summarized in Theorem 2.

Theorem 2. The moment generating function ofW = √
n(�̂1 − �1) is

MW (t) = exp

{
t2

2
�2

W

}
×
{

1 + t√
n
�1 + t2

2n
�2 + t3

3!√n
�3 + t4

4!n�4 + t6

6!n�6 + O
(
n− 3

2

)}
,

where

�2
W = 1

2 tr(�V)2,

and expressions for�i , i = 1, 2, 3, 4, 6,are given in AppendixB.

In some cases, a more accurate approximation can be obtained from the moment gener-
ating function ofWm = √

m(�̂1 − �1) rather than from the moment generating function
of W, wherem = n + � and� = O(1). It is readily shown that the moment generating

function ofWm is identical to the moment generating function ofW to orderO(n− 3
2 ) except

thatn is replaced bymand

t2

2n
�2 is replaced by

t2

2m

(
�2 + ��2

W

)
. (32)
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The Edgeworth expansion for the distribution of�̂1 is obtained by inverting the characteristic
function MW (it) or MWm(it). The results based onWm are summarized in Theorem3.
Results based onWare obtained by equating� to zero and equatingm to n.

Theorem 3. The density and distribution functions for the random variable�̂1 are

f�̂1
(x|�) =

√
m

�W

�(z)

{
1 + 1

�W

√
m

H1(z)�1 + 1

�2
W 2m

H2(z)
(
�2 + ��2

W

)
+ 1

�3
W 3!√m

�3H3(z) + 1

�4
W 4!m �4H4(z) + 1

�6
W 6!m �6H6(z) + O

(
m− 3

2

)}
and

F�̂1
(x|�) = P (�̂1�x) = 	(z) − �(z)

{
1

�W

√
m

�1 + 1

�2
W 2m

H1(z)
(
�2 + ��2

W

)
+ 1

�3
W 3!√m

�3H2(z) + 1

�4
W 4!m�4H3(z) + 1

�6
W 6!m�6H5(z) + O

(
m− 3

2

)}
,

wherez = √
m(x −�1)/�W , �( · ) is the standard normal pdf, 	( · ) is the standard normal

cdf, andHj ( · ) is thej thHermite polynomial.

Konishi [24,25] gave scalar expressions for theO(n− 1
2 ) terms in Theorem 3 applied to

correlation matrices for the special case when (a)� = 0, (b) the eigenvalues of� are not
constrained as in (19), i.e., when� is estimated by the eigenvalues of the sample correlation
matrix and (c) eitherh contains a single nonzero entry orh has the formh = (1′

a 0
′)′ for

a�p and the eigenvalues are ordered from large to small.
Konishi [23] and Fujikoshi [15] derived scalar expressions for Edgeworth expansions

of differentiable functions of the eigenvalues of sample covariance matrices. The error
in these expansions isO(n−3/2), the same as in Theorem 3. Fujikoshi’s [15] expansion
is more general than Konishi’s in that the eigenvalues need not be simple. Unlike the
expansion in Theorem 3, however, Fujikoshi’s expansion does not allow the eigenvalues
to be modeled in parametric form. The expansion in Theorem 3 agrees numerically with
Fujikoshi’s expansion in the special case when the distinct eigenvalues are unconstrained.

4.2. Saddlepoint expansions under normality

An approximation to the cumulant generating function of�̂1 is readily obtained from the
moment generating function given in Theorem 2. The result, after using (32), is

K�̂1
(t) ≈ t
1 + t2

2m

2 + t3

3!m2
3 + t4

4!m3
4, (33)

where


1 = �1 + �1

m
, 
2 = �2

W + �2 − �2
1 + ��2

W

m
, 
3 = �3, 
4 = �4 − 4�1�3,
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and�i for i = 1, . . . , 4 as well as�2
W are defined in Theorem2. From Easton and Ronchetti

[13], the general saddlepoint approximation to the density of�̂1 atx is

f�̂1
(x) = f̂�̂1

(x) + O
(
n−1

)
, (34)

where

f̂�̂1
(x) =

[
m

2�R′′
m(t0)

] 1
2

exp{m [Rm(t0) − xt0]} ,

Rm(t) = 1

m
K̂�̂1

(mt) = t
1 + t2

2

2 + t3

3!
3 + t4

4!
4,

R′′
m(t0) = �2

Rm(t)

(�t)2

∣∣∣∣
t=t0

,

t0 is the solution toR′
m(t0) = x, and

R′
m(t) = �Rm(t)

�t
.

The renormalized saddlepoint approximation isc0f̂�̂1
(x), wherec0 is chosen so that

the approximation to the density integrates to one. The relative error in the renormalized
saddlepoint approximation is onlyO(n−3/2), at least in the normal deviation regionx−�1 =
O(n−1/2).

It is possible thatR′
m(t0) = x has either no real solution or multiple real solutions. For

this reason, Wang[38] suggested thatRm(t) in (34) be replaced by

R̃m(t, b) = t
1 + t2

2

2 +

[
t3

3!
3 + t4

4!
4

]
exp

{
− t2

2

2b2

}
, (35)

where

b = max[1
2, inf {b∗; R̃′′

m(t, b∗)�0 for all t}].
ReplacingRm(t) by R̃m(t, b) does not change the order of the approximation.

The saddlepoint approximation to the CDF of�̂1 can be obtained by using the method
of Lugannini and Rice[26]. The result is

F�̂1
(x|�) = P (�̂1�x)

= 	(r
√

m) − �(r
√

m)√
m

 1

t0

√
R̃′′

m(t0, b)

− 1

r

 + O
(
n−1

)
,

where

r = sign(t0)

√
2
[
t0x − R̃m(t0, b)

]
, t0 is the solution tõR′

m(t0, b) = x, (36)

�( · ) is the standard normal pdf, and	( · ) is the standard normal cdf.
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4.3. Modifications for̂�2

The expansions in Sections4.1 and 4.2 can be applied to the random variable�̂2 =
h′̂�/(h′̂�), wherê� is the maximum likelihood estimator of the vector of eigenvalues of the
covariance matrix, by making the following modifications.

(1) Parameterize the eigenvalues as (23) rather than (22).
(2) ReplaceD(1)

�:�, D(2)

�:�,�
, andD(3)

�:�,�,�
by �−1

1 D(1)

�:�2
, �−1

1 D(2)

�:�2,�2
, and

�−1
1 D(3)

�:�2,�2,�2
, respectively. Expressions for these derivatives are given in the supple-

ment.
(3) ReplaceE� = E�,3 byE�2 = E�∗,3, where�∗ = [dim(�) 1 dim(�2)]′.
The Edgeworth expansions of Konishi[23] and Fujikoshi [15] also can be used for�̂2 in the
special case wherê� is the vector of eigenvalues of the sample covariance matrix. Sugiyama
and Tong [35] also gave an Edgeworth expansion for the density of�̂2 in the same special
case. Their expansion, however, is not invariant to scalar multiplication of�, and, therefore,
it is not correct.

5. Edgeworth and saddlepoint expansions without normality

In this section, expansions for the density of�̂1 are constructed without assuming multi-
variate normality of�, an arbitrary row ofE in (3). Expansions for̂�2 are similar in structure
and can be obtained by making the modifications described in Section 4.3.

5.1. Validity conditions

Sufficient conditions to ensure validity of Edgeworth expansions when sampling from
nonnormal distributions have been described by Bhattacharya and Ghosh [4], Wallace [37],
Hall [18, Section 2.4], and others. It follows from Theorem 2.2 in Hall that, with remainder
O(n−1), Edgeworth expansions of the distributions ofWk in (5) for k = 1, 2 are valid if
the following conditions are satisfied.

(a) E(||�||6) < ∞ and

(b) lim sup||t||→∞ |M�∗(it)| < 1, where�∗ =
(

�

vech(��′)

)
, the vech operator stacks the

distinct elements of a symmetric matrix, andM�∗(it) is the characteristic function of
�∗.

Define�̂2
Wk

to be a consistent estimator of Var(Wk) based on observing{
vech(̃�j �̃

′
j ⊗ �̃j �̃

′
j )
}n

j=1
for k = 1, 2. Then, with remainderO(n−1), Edgeworth expan-

sions of the distributions ofZk in (5) for k = 1, 2 are valid if the following conditions are
satisfied.
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(a∗) E(||�||12) < ∞ and

(b∗) lim sup||t||→∞ |M�∗∗(it)| < 1, where�∗∗ =
(

�∗
vech(��′ ⊗ ��′)

)
.

Conditions (b) and (b∗) are satisfied if the distribution of� has an absolutely continuous
component whose density is strictly positive on some nonempty open set. The above con-
ditions are sufficient but not necessary. Babu[2] showed that Edgeworth expansions can
be valid even if only one component of the random vector (� in the present application)
satisfies Cramér’s condition, (b) or (b∗). Booth, Hall, and Woods [8] and Kong and Levin
[21] showed that Edgeworth expansions of the distribution of a statistic,T, can be valid even
if one samples from a discrete distribution provided that the sampling distribution ofT is not
lattice and its support set is sufficiently dense. Booth, Hall, and Woods ensure thatT is not
lattice by requiring that the parent distribution be nonlattice and that its support set contain
a minimal number of atoms. Kong and Levin ensure thatT be nonlattice by requiring that
covariates not cluster around too few points.

5.2. ADF edgeworth expansions

The first three moments of̂�1 under general conditions can be obtained by expanding

�̂1, �̂
2
1, and�̂

3
1 arounds= � and taking expectations. The results in Section 2 are useful

for evaluating these expectations. The three moments, in turn, can be used to construct
Edgeworth expansions. With remainderO(n−1), the Edgeworth expansions for the density
and distribution functions of̂�1 are given in Theorem 4.

Theorem 4. If the data follow the model in(3) and(a)and(b) in Section5.1are satisfied,

then the density and distribution functions of�̂1 are as follows:

f�̂1
(x|�) =

√
n

�W

�(z)

{
1 + �1z

�W

√
n

+ �3

�3
W 3!√n

H3(z) + O
(
n−1

)}
and

F�̂1
(x|�) = 	(z) − �(z)

{
�1

�W

√
n

+ �3

�3
W 3!√n

H2(z) + O
(
n−1

)}
,

where

z =
√

n(x − �1)

�W

; W = √
n(�̂1 − �1); �2

W = 1
4v

′�22,nv;

�1 = 1
4 tr

{
F̈(2)

[
a⊗ I

−1
� F̈(1)′ �22,n

(
Ip2 − PF

)′]} + 1
8 tr

(
A2 F̈(1)′ �22,n F̈(1)

)
− 1

16v
′ F(2) vec

(
I

−1
� F̈(1)′ �22,n F̈(1) I

−1
�

)
− tr

[(
V ⊗ �−1

) (
Ip2 − PF

)
�22,nPF

′] ,
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�3 =
√

n

8
(v⊗ v)′�222,nv + 3

16
b′I �A2I �b+ 3

8
v′�22,n

(
Ip2 − PF

)′ F̈(2)(a⊗ b)

−3

2
v′�22,n

(
Ip2 − PF

)′ (V ⊗ �−1
)
PF �22,nv − 3

32
v′ F(2)(b⊗ b),

b = I
−1
� F̈(1)′ �22,nv,

V andv are defined in(31); a, A2, andPF are defined in AppendixB; and the remaining
terms are defined in Theorem3. Under normality, the expressions for�1, �2

W , and�3 in
simplify to those in(30).

Waternaux [39] obtained the Cornish–Fisher expansion for the percentiles of the marginal
distributions of the eigenvalues of a sample covariance matrix without assuming normality.
The Cornish–Fisher expansion was based on an Edgeworth expansion with errorO(n−1).
Fujikoshi [16] also obtained the Edgeworth expansion for the distribution of the eigenvalues
of a sample covariance matrix without assuming normality. Fujikoshi’s expansion has error

only O(n− 3
2 ), but like Waternaux’s expansion, it does not allow restrictions on the eigen-

values. In particular, both Waternaux’s and Fujikoshi’s expansions require that eigenvalue
multiplicities be one.

5.3. ADF saddlepoint expansions

An ADF saddlepoint approximation to the distribution of�̂1 can be obtained by using the
method of Gatto and Ronchetti [17]. In the present application, their procedure consists first
of keeping only theQ0 andQ1 terms of the expansion ofWin (29).This truncated expansion,
in turn, is approximated by aU statistic of degree 2.AnADF Edgeworth expansion for theU
statistic is then obtained and is used to construct the saddlepoint approximation. The result
is identical to the saddlepoint approximation in (34), except that
ig is substituted for
i

for i = 1, . . . , 4, where


1g = �1 + �1

m
, 
2g = �2

W + �2g + ��2
W

m
,


3g = �3

(

2g

�2
W

) 3
2

and 
4g = �4g

(

2g

�2
W

)2

, (37)

�2
W , �1, and�3 are given in Theorem4; and expressions for�2g and �4g are given

in Appendix C. Unlike the expansion in (34), however, the renormalized saddlepoint ap-
proximation of Gatto and Ronchetti has relative errorO(n−1) rather thanO(n−3/2). The
loss of accuracy occurs because the error in the expansion ofW is Op(n−1) rather than
Op(n−3/2).
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6. ADF confidence intervals

Confidence intervals for�1 can be constructed from the density and distribution functions
of the studentized statistic

Z
def= Z1, wherê�2

W =
 1

2 tr
(
V̂�̂

)2
if normality is assumed,

1
4 v̂

′�̂22,n̂v otherwise,

Z1 is defined in (5),V̂ and̂v areV andv of (31) in which consistent estimators are substituted
for parameters and̂�22,n is given in (14). Expanding the numerator and denominator ofZ
around̂� = � and�̂22,n = �22,n and then taking expectations reveals that

E(Z) = �∗
1√
n

+ O
(
n− 3

2

)
, Var(Z) = 1 + O

(
n−1

)
and

E [Z − E(Z)]3 = �∗
3√
n

+ O
(
n− 3

2

)
,

where

�∗
1 = �1

�W

− �3

3�3
W

− 1

6�3
W

tr(V�)3 + �

�3
W

,

�∗
3 = − 1

�3
W

[
�3 + tr(V�)3

]
+ 6

�

�3
W

,

� = 1

16
v′�22,n(Ip2 − PF )′ F̈(2)(a⊗ b) − 1

16
(v⊗ v)′�42,nv + 1

6
tr(V�)3

+
√

n

24
(v⊗ v)′�222,nv − 1

4
v′�22,n(Ip2 − PF )′

(
V ⊗ �−1

)
PF �22,nv, (38)

�22,n, �42,n, and�222,n are defined in (6); and the remaining terms are defined Theorem
4. If Y has a multivariate normal distribution, then�1 and�3 simplify to the expressions
in Theorem 2 and� simplifies to� = 0.

DefineZ∗ as

Z∗ = Z − �̂∗
1√
n

, (39)

whereZ is defined in (6) and�̂∗
1 is �∗

1 of (38) in which consistent estimators have been
substituted for parameters. If conditions (a∗) and (b∗) in Section 5.1 are satisfied, then the
Edgeworth expansions of the density and distribution ofZ∗ to O(n−1) are

fZ∗(z∗|�) = �(z∗)

{
1 + �∗

3

3!√n
H3(z∗) + O

(
n−1

)}
and

FZ∗(z∗|�) = 	(z∗) − �(z∗)

{
�∗

3

3!√n
H2(z∗) + O

(
n−1

)}
, (40)
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where�∗
3 is defined in (38). In practice, a consistent estimator of�∗

3 must be substituted
for �∗

3. This substitution does not affect the accuracy of the expansions. Several confidence
interval procedures can be constructed directly from (40). These methods plus another
method based on an empirical saddlepoint approximation are described in the following
subsections. Confidence intervals for�2 are obtained in the same manner after making the
substitutions described in Section 4.3.

6.1. First-order method and second-order edgeworth method

To orderO(n− 1
2 ), the random variableZ in (6) has distributionZ ∼ N(0, 1).Accordingly,(

�̂1 − z
2

�̂W√
n

, �̂1 − z
1

�̂W√
n

)
(41)

is a 100(
2 − 
1)% confidence interval for�1 with error O(n− 1
2 ), wherez
 satisfies

	(z
) = 
.
A second-order accurate confidence interval can be based on the Edgeworth expansion

of the distribution ofZ∗ in (39). Percentiles of this distribution toO(n−1) can be computed
by inverting the cumulative distribution function in (40). The desired inverse function is
readily obtained from the Cornish–Fisher expansion [11]. The results are as follows:

P (Z∗ �z∗

) = 
 + O

(
n−1

)
, wherez∗


 = z
 + �̂∗
3(z2


 − 1)

6
√

n
.

Accordingly,(
�̂1 − �̂W√

n

[
z∗

2

+ �̂∗
1√
n

]
, �̂1 − �̂W√

n

[
z∗

1

+ �̂∗
1√
n

])
(42)

is a 100(
2 − 
1)% confidence interval for�1 with error O(n−1). Note that the widths
of the first-order interval in (41) and the second-order interval in (42) are identical. The
second-order interval is merely shifted to correct for bias and skewness.

6.2. Hall’s cubic transformation method

Hall [19] argued against using a confidence interval such as that in (42) when sample size
is small. The problem with (42) is thatz∗


1
andz∗


2
both diverge to∞ or to−∞, depending

on the sign of�∗
3 as
2 − 
1 → 1. Instead of (42), Hall recommended that confidence

intervals be based on the Cornish–Fisher quantity

T = Z∗ − �̂∗
3(Z∗2 − 1)

6
√

n
, (43)

which to orderO
(
n−1

)
has the N(0, 1) distribution. Hall added a term of sizeO(n−1) to

simplify the inversion fromT to Z∗. Hall’s quantity isTH = T + �̂∗2

3 Z∗3
/(108n) and this
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quantity also has the N(0, 1) distribution toO(n−1). The inverse is

Z∗ = 6
√

n

�̂∗
3

{
1 −

[
1 + �̂∗

3

2
√

n

(
�̂∗

3

6
√

n
− TH

)] 1
3
}

.

Applying the inverse transformation toP (z
1 �TH �z
2) = 
2 −
1 +O(n−1) reveals that
(L2, L1) is a 100(
2 − 
1)% confidence interval for�1 with errorO(n−1), where

Li = �̂1 − �̂W

{
�̂∗

1

n
+ 6

�̂∗
3

− 6

�̂∗
3

[
1 + �̂∗

3

2
√

n

(
�̂∗

3

6
√

n
− z
i

)] 1
3
}

. (44)

6.3. DiCiccio and Monti’s transformation method

DiCiccio and Monti [12] indirectly employed the Cornish–Fisher quantity in (43) to
construct second-order correct confidence intervals. Their approach, applied to the current
problem, is to work withZC rather thanZ∗, where

ZC =
√

n(�̂ − �)

�̂�
, �̂ = h(�̂1),

and the functionh( · ) is chosen to remove skewness. Ifh is chosen to be a member of the

Box–Cox[9] family of transformations,h(�̂1) = (�̂
�
1 − 1)/�, thenZC can be expanded as

ZC = Z∗ − (� − 1)̂�W

2�̂1
√

n

(
Z∗2 − 1

)
+ �̂∗

1√
n

− �̂∗
3

6
√

n
+ O

(
n−1

)
,

Furthermore, if� is estimated aŝ� = 1 + (�̂1�̂
∗
3)/(3̂�W ), then

ZC = T + �̂∗
1√
n

− �̂∗
3

6
√

n
+ O

(
n−1

)
,

whereT is defined in (43). Accordingly,

ZC − �̂∗
1√
n

+ �̂∗
3

6
√

n
∼ N(0, 1)

to orderO(n−1). Applying the inverse Box–Cox transformation to

P

(
z
1 �ZC − �̂∗

1√
n

+ �̂∗
3

6
√

n
�z
2

)
= 
2 − 
1 + O

(
n−1

)
reveals that(L2, L1) is a 100(
2 − 
1)% confidence interval for�1 with error O(n−1),
where

Li = �̂1

[
1 −

(
�W

�̂1
√

n
+ �̂∗

3

3
√

n

)(
z
i

+ �̂∗
1√
n

− �̂∗
3

6
√

n

)]1/�̂

, (45)

and�̂ = 1 + �̂1�̂3/(3̂�W ).
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6.4. Tingley and Field’s saddlepoint method

Tingley and Field[36] proposed a technique for constructing confidence intervals for
smooth scalar functions of a parameter vector, where the parameters are estimated by an
M-estimator. For the problem under consideration, the technique begins by approximating
the distribution of

G = N−1
N∑

i=1

1

2
v̂′ [(�i ⊗ �i ) − �̂] ,

wherêv is v of (31) in which parameters are replaced by estimates,v̂ and�̂ are treated as
fixed vectors, and�i for i = 1, . . . , N have the same joint distribution as the rows ofE in
(31). If �i ∼ N(0, �), then the cumulant generating function ofG is

KḠ(t) = NKG(N−1t),

where

KG(t) = − t

2
tr
(
�V̂

) − 1

2
ln |Ip − t�V̂| = 1

2

∞∑
j=2

(
tj

j

)
tr(�V̂)j . (46)

More generally, the cumulant generating function ofG can be approximated by the empirical
cumulant generating function

K̂Ḡ(t) = NK̂G(N−1t), where exp
{
K̂G(t)

} = N−1
N∑

i=1

exp{tgi} , (47)

{gi}N
i=1 is the observed configuration,gi = v̂′ [(̃�i ⊗ �̃i ) − �̂] /2, �̃i is theith residual, and

�̃i is defined in (9).
A confidence interval for�1 is then constructed by inverting a test of H0: �1 = �10. The

test itself is obtained by applying an exponential tilt to the distribution ofG:

fḠ(ḡ|�) ≈ exp
{
�ḡ − KḠ(�)

}
fḠ(ḡ),

whereKḠ is the cumulant generating function ofG and� is chosen to satisfyE
(
G|�) =

(�10 − �̂1)(N − 1)/N . The test statistic isG, the observed value is̄gobs = 0, and the
confidence interval is the set of values{

�1; 
1 < P (G < ḡobs|�) < 
2
}

,

where the probabilityP (G < ḡobs|�) is computed by using a saddlepoint approxima-
tion to the densityfḠ(ḡ|�). Using the method of Lugannini and Rice[26], the resulting
100(
2 − 
1)% confidence interval with errorO(N−1) is (L1, L2), where

Li =
(

N

N − 1

)
K ′

G(�∗
3−i ) + �̂1,

�∗
3−i satisfies	

[
− sign(�∗

3−i )

√
2(N − 1)KG(�∗

3−i )

]
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+exp
{−(N − 1)KG(�∗

3−i )
}

√
2�(N − 1)

 1

�∗
3−i

√
K ′′

G(0)

− sign(�∗
3−i )√

2KG(�∗
3−i )

 = 
i ,

K ′
G(�∗

3−i ) = �KG(�)

��

∣∣∣∣∣
�=�∗

3−i

, K ′′
G(�∗

3−i ) = �2
KG(�)

(��)2

∣∣∣∣∣
�=�∗

3−i

, (48)

andKG is given in (46) if normality is assumed or is replaced bŷKG in (47) otherwise.

7. Example

Data set #144 in [20] contains five measurements on skulls that had been collected
in Tibet. The skulls were classified by region into two groups of size 17 and 15. For
further details, see [32]. Mardia’s [30] measures of multivariate skewness and kurtosis
are b1 = 12.88, b2 = 36.64 for the first group andb1 = 13.99, b2 = 32.61 for the
second group. These values suggest that the distribution of skull measurements is fairly
symmetric and mildly meso-kurtic. The likelihood ratio test of equality of the two pop-
ulation covariance matrices is nonsignificant (Bartlett correctedX2 = 18.37, df = 15,
p = 0.24). The pooled sample covariance matrix together with the sample correlation
matrix are displayed in the lower and upper triangular parts of the following
matrix:

S\R =



59.01 0.17 0.37 0.61 0.40

9.01 48.26 0.03 0.15 0.65

17.22 1.08 36.20 0.19 0.10

20.12 4.34 4.84 18.31 0.46

20.11 30.05 4.11 12.99 43.70

 .

A correlation model was fit to the skull measures. The model placed no restrictions on the
standard deviations, but restricted the distinct eigenvalues of the correlation matrix to follow
an exponential curve,�2 = �3, and�4 = �5. These restrictions can be imposed by choosing
T3 andT4 in (19) as

T3 = (1 ⊕ 12 ⊕ 12) and T4 =
(

1 1 1
1 2 3

)′
.

The later matrix, however, does not satisfy1′
3T4 = 0. As described below equation (19),

T4 can be replaced by any matrix whose columns form a basis forR[(I3 − 13(1
3)1′

3)T4].
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Table 2
Eigenvalues ofR and�̂

Index Eigenvalues Standard error Bias estimate

R �̂ Normal ADF Normal ADF

1 2.331 2.531 0.249 0.243 0.090 0.131
2 1.236 0.908 0.054 0.053 −0.024 −0.033
3 0.804 0.908 0.054 0.053 −0.024 −0.033
4 0.366 0.326 0.071 0.069 −0.021 −0.033
5 0.263 0.326 0.071 0.069 −0.021 −0.033

One such matrix isT4 = (1 0 − 1)′. The estimate of�, for this choice of model matrices,
is �̂ = 1.025. The fitted covariance and correlation matrices are displayed in the lower and
upper triangular parts of the following matrix:

�̂\�̂ =


61.87 0.29 0.34 0.64 0.51
15.90 47.25 0.21 0.24 0.61
16.45 8.89 37.15 0.13 0.21
21.81 7.21 3.51 19.00 0.49
26.44 27.80 8.33 14.13 44.17

 . (49)

The lack of fitX2 statistic is 2.87 (2.65 after Bartlett correction) with 5 degrees of freedom.
See Table 2 in[7] for details on the lack of fit test.

The eigenvalues of the sample correlation matrix,R, and the fitted correlation matrix,
�̂ = �̂�̂�̂

′
are displayed in Table 2. Also displayed are standard errors from (6) and

estimated bias of the eigenvalues of�̂, computed with and without the assumption of
normality. See [7] for details on the estimator of bias. The estimated biases and standard
errors do not depend too much on whether the normal theory or the ADF estimators are
employed because the distribution of skull measurements does not strongly depart from
normality.

Two-sided 90% confidence intervals for each of the distinct eigenvalues of the correlation
matrix are displayed in Table 3. The limits of the intervals also serve as limits for one-
sided 95% lower and upper confidence intervals. The intervals displayed in Table 3 are the
first-order method from (41), the second-order Edgeworth method from (42), the second-
order Hall method from (44), the second-order DiCiccio and Monti method from (45), and
the second-order Tingley and Field method from (48). The intervals were computed using
normal theory (Theorem 2, Eq. (46)) andADF (Theorem 4, Eq. (47)) estimators of unknown
quantities.

The three intervals based on the Edgeworth expansion (Edgeworth, Hall, DiCiccio) are
similar to one another and differ from the first-order intervals primarily by a shift that adjusts
for bias and skewness. The Tingley and Field intervals appear to be a compromise between
the first-order intervals and the Edgeworth-based intervals, at least when ADF estimators
are used.
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Table 3
90% Confidence intervals for the eigenvalues of the correlation matrix of skull measurements

Method Normal theory based

�1 �2 and�3 �4 and�5

Lower Upper Lower Upper Lower Upper

First order 2.121 2.941 0.820 0.997 0.210 0.442
Edgeworth 2.028 2.848 0.827 1.004 0.249 0.482
Hall 2.028 2.848 0.825 1.006 0.248 0.483
DiCiccio 2.029 2.846 0.831 1.002 0.244 0.488
Tingley 2.096 3.078 0.790 1.002 0.171 0.450

Asymptotic distribution free
First order 2.131 2.931 0.822 0.995 0.212 0.440
Edgeworth 1.987 2.788 0.841 1.014 0.265 0.493
Hall 1.987 2.788 0.840 1.014 0.263 0.496
DiCiccio 1.970 2.797 0.845 1.010 0.256 0.508
Tingley 2.114 2.875 0.834 0.999 0.229 0.445

8. Simulation study

8.1. Edgeworth and saddlepoint approximations under normality

A five-dimensional covariance matrix,�, was set equal to the fitted covariance matrix
from the skull data in (49) and 50, 000 samples were generated from the Wishart distribution
W5(20, �). The restricted model was fit to each sample covariance matrix and the following
functions of the eigenvalues of the correlation matrix were estimated:

�11
�12
�13
�14

 =


�1

�2 + �3
�4 + �5

�1 + �2 + �3

 = H ′�, whereH =


1 0 0 0 0
0 1 1 0 0
0 0 0 1 1
1 1 1 0 0


′

. (50)

Fig. 1 displays the kernel smoothed empirical pdf of�̂11, . . . , �̂14. Also displayed are the
Edgeworth and saddlepoint approximations from Theorem 3 and (34), respectively, and the
first-order normal approximation

�̂1j ∼̇N
[
�1j , tr(�Vj )2/(2n)

]
,

whereVj is V of (31) in whichh is thej th column ofH in (50). The value� = 0 was
used. Vertical bars are drawn at the means of the first-order normal approximations. The
first-order normal approximations fail to account for the bias and skewness that are present
in the distributions of the estimators. The saddlepoint approximations are substantially more
accurate than the first-order normal approximations, but they are slightly less accurate than
the Edgeworth approximations. The saddlepoint approximations of Gatto and Ronchetti in
Section 5.3 also were computed but are not displayed in Fig. 1. They are more accurate
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Fig. 1. Density of̂�11, . . . , �̂14 for the skull model.

that the first-order normal approximations, but less accurate than the normal theory-based
Edgeworth and saddlepoint approximations.

Fig. 2 displays the difference between the empirical CDF and the CDFs based on the
normal theory Edgeworth approximation in Theorem 3, the normal theory saddlepoint
approximation in (36), and ADF saddlepoint in Section 5.3. No single approximation is
uniformly superior, but the Edgeworth expansion tends to have smaller errors followed in
order by the normal theory saddlepoint and ADF saddlepoint approximations.

8.2. Finite-sample coverage of confidence intervals

Random samples were drawn from six multivariate distributions, each having covari-
ance matrix equal to the fitted matrix in (49). The marginal standardized third and fourth
cumulants of the five random variables within each distribution are listed in Table 4. The
multivariate Bernoulli random variables were generated using the algorithm of Qaqish [33].
Marginally, each of the five random variables in this distribution has a Bernoulli distribu-
tion with probability of success 0.28. This is the smallest probability for which Qaqish’s
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Fig. 2. Error in CDF of̂�11, . . . , �̂14 for the skull model.

multivariate Bernoulli distribution exists, subject to� = �̂ of (49). The multivariate
Bernoulli distribution does not satisfy regularity condition (b∗) in Section 5.1. Therefore,
there is no assurance that the associated Edgeworth expansions are valid. The parameters of
the multivariate lognormal distributions were chosen to attain specific marginal standard-
ized third cumulants and� = �̂ of (49). Random samples of sizeN = 21, 51, 101, 201,
501, and 1001 were drawn from each distribution except lognormal 4. Random samples of
sizeN = 201, 501, 1001, and 5001 were drawn from the lognormal 4 distribution.

For each sample size, 5000 samples were drawn from the parent distribution in Table 4.
If the covariance matrix based on multivariate Bernoulli sampling was singular, then the
sample was discarded and a new sample was drawn. This occurred in less than 10% of the
samples whenN = 21 and did not occur whenN �51. For each sample, 95% one-sided
lower and upper confidence intervals for the distinct eigenvalues of the correlation matrix
were computed by the methods illustrated in Table 3. It is possible that the DiCiccio and
Monti interval in 45 cannot be computed because the inverse Box–Cox transformation fails
to exist for one or both endpoints. If an endpoint of a DiCiccio and Monti interval could
not be computed, then the endpoint was equated to the corresponding first-order endpoint
computed on the same data set.
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Table 4
Marginal standardized cumulants of population distributions

Distribution Variable

1 2 3 4 5

Normal

3j 0.00 0.00 0.00 0.00 0.00

4j 0.00 0.00 0.00 0.00 0.00
Bernoulli

3j 0.98 0.98 0.98 0.98 0.98

4j −1.04 −1.04 −1.04 −1.04 −1.04
Lognormal1

3j 0.25 0.50 0.75 1.00 1.25

4j 0.11 0.45 1.02 1.83 2.90
Lognormal2

3j 0.50 1.00 1.50 2.00 2.50

4j 0.45 1.83 4.25 7.86 12.85
Lognormal3

3j 1.00 2.00 3.00 4.00 5.00

4j 1.83 7.86 19.40 38.00 65.26
Lognormal4

3j 2.00 4.00 6.00 8.00 10.00

4j 7.86 38.00 102.76 214.49 384.78


3j = (Yj − �j )3/�3
j , 
4j = (Yj − �j )4/�4

j − 3.

Minimum and maximum coverage rates were estimated empirically for each (method,
sample size) combination. For example, 5000 samples of sizeN = 21 were drawn from the
multivariate normal distribution N(1n�

′, �), where� = �̂ of (49). Empirical coverage rates
of the first-order normal-theory intervals for(�1, �2, �4) were(0.8258, 0.9688, 0.9930) for
the lower intervals and(0.9856, 0.8762, 0.7778) for the upper intervals yielding minimum
and maximum coverage rates of 0.7778 and 0.9930. The corresponding coverage rates
for the first-order ADF method were(0.7892, 0.9572, 0.9836) for the lower intervals and
(0.9762, 0.8298, 0.7480) for the upper intervals yielding minimum and maximum coverage
rates of 0.7480 and 0.9836.

Fig. 3 displays the minimum and maximum coverage rates when sampling from either
multivariate normal or multivariate Bernoulli distributions. If normality is satisfied, then
coverage for all confidence intervals converges to 1− 
 = 0.95 asn → ∞. It is apparent
in the left-hand panel of Figure 3 that the coverage rates for second-order Edgeworth-based
methods (Edgeworth, Hall, and DiCiccio) converge to 1− 
 substantially faster than do the
first-order methods. Using normal-theory estimators when normality actually is satisfied
yields minimum coverage rates that are slightly closer to 1− 
 than are the minimum
coverage rates of intervals based on ADF estimators. The penalty for using ADF estimators,
however, decreases rapidly asn increases. The right-hand panel of Fig. 3 shows that ADF
methods are superior to normal-theory methods and that second-order ADF methods are
superior to the first-order ADF method when sampling from the multivariate Bernoulli



R.J. Boik / Journal of Multivariate Analysis 96 (2005) 136–171 163

Normal Bernoulli

0.7

0.8

0.9

1

(a)

C
ov

er
ag

e

Coverage = 0.95

Empirical: ADF

Empirical: Normal

0.7

0.8

0.9

1

(b)

0.7

0.8

0.9

1

(c)

C
ov

er
ag

e

0.7

0.8

0.9

1

(d) n

0.7

0.8

0.9

1

(e)

C
ov

er
ag

e

n

0.7

0.8

0.9

1

(a)

(a): 1st Order
(b): 2nd Order, Edgeworth
(c): 2nd Order, Hall
(d): 2nd Order, DiCiccio

(e): 2nd Order, Tingley

0.7

0.8

0.9

1

(b)

0.7

0.8

0.9

1

(c)
101 102 103

0.7

0.8

0.9

1

(d)

0.7

0.8

0.9

1

(e) n

101 102 103

101 102 103
101 102 103

Fig. 3. Coverage when sampling from normal or Bernoulli distributions.

distribution. That is, employing skewness and bias corrections yields superior confidence
intervals even though regularity condition (b∗) in Section5.1 is not satisfied. Under Bernoulli

sampling, the distribution ofZ in (6) is discrete with as many as
(
N+25−1

N

)
atoms. Presumably,

the probability mass is spread among these atoms in such a manner that the step sizes in
the cdf ofZ are no larger thanO(n−1). Fig. 3 also reveals that, under Bernoulli sampling,
coverage rate of the normal-theory-based intervals converges to a value smaller that 1− 
.
Overall, the three Edgeworth-based methods perform best.

Fig. 4 displays minimum and maximum confidence interval coverage when sampling
from multivariate lognormal distributions. Collectively, the four panels show that (a) if
deviation from normality is slight (lognormal 1) and sample size is small, then normal-
theory intervals are superior to ADF intervals; (b) as deviation from normality increases,
performance of normal-theory intervals degrades and ADF intervals, both first and second
order, are superior to the corresponding normal-theory intervals; (c) the performance of
second-order ADF Edgeworth-based intervals (Edgeworth, Hall, DiCiccio) is superior to
that ofADF Tingley intervals; (e) coverage of second-orderADF Edgeworth-based intervals
is superior to that of first-order ADF intervals; and (d) if deviation from normality is large
(lognormal 4), then sample sizeN = 5001 is too small to ensure coverage of 1− 
, even
for second-order ADF methods.

Of the 680, 000 DiCiccio and Monti confidence interval endpoints depicted in Figs. 3
and 4, 2037 endpoints could not be computed. Most of these failures (2004) were ADF
endpoints and this occurred because the ADF estimators of bias and skewness are more
variable than are the normal-theory estimators.
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Fig. 4. Coverage when sampling from lognormal distributions.

Overall, the three Edgeworth-based ADF intervals in Eqs. (42), (44), (45) are recom-
mended. These methods performed substantially better than first-order methods under all
conditions; nearly as well as second-order normal-theory methods in cases where the par-
ent distribution is normal or nearly so; and substantially better than normal theory methods
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when the parent distribution is not normal.Approximately1
2 of 1% of theADF DiCiccio and

Monti endpoints could not be computed, but in these instances, second-order Edgeworth
or Hall endpoints can be substituted. If deviation from normality is large, then none of the
methods perform well. In this case, intervals based on robust estimators of the eigenvalues
likely would perform better.

Appendix A. Weights for sixth-order moments

The coefficient matrixW in Theorem1 can be written as

W = D−1W∗, whereD = n ⊕ n3I3 ⊕ n2I8, W∗ = (w∗
1 w

∗
2 · · · w∗

12),

(w∗
1 w

∗
2 w

∗
3)

=



c6
c8
4c8
2c8
8c8
2c5
c5
8c5
4c5
4c7
2c7
4c7

c8 − 3c5 + 2c6

n3 − 3nc1 + 2c8

4[n2 − (n + 2)c1 + 2c8]
2[n2 − (n + 2)c1 + 2c8]

8(n − 3c1 + 2c8)

2(nc1 + 2c5 − nc2 − 2c9)

nc1 + 2c5 − nc2 − 2c9
8(c1 + 2c5 − 2c2 − c9)

4(c1 + 2c5 − 2c2 − c9)

4(c3 + 2c7 − 2c10 − c11)

2(c3 + 2c7 − 2c10 − c11)

4(c4 + 2c7 − 3c11)

c8 − 3c5 + 2c6

n2 − (n + 2)c1 + 2c8

n(n2 + n + 2) − 4(n + 2)c1 + 8c8
2(n − 3c1 + 2c8)

4[n(n + 1) − (n + 5)c1 + 4c8]
(n + 1)c1 + 4c5 − (n + 2)c2 − 3c9

c1 + 2c5 − 2c2 − c9
2[(n + 3)c1 + 8c5 − (n + 6)c2 − 5c9]

4(c1 + 2c5 − 2c2 − c9)

2(c3 + c4 + 4c7 − 2c10 − 4c11)

2(c3 + 2c7 − 2c10 − c11)

2(c3 + c4 + 4c7 − 2c10 − 4c11)



,

(w∗
4 w

∗
5)

=



c8 − 3c5 + 2c6

n2 − (n + 2)c1 + 2c8
4(n − 3c1 + 2c8)

n2(n + 1) − 2(2n + 1)c1 + 4c8
4[n(n + 1) − (n + 5)c1 + 4c8]

2(c1 + 2c5 − 2c2 − c9)

nc1 + 2c5 − nc2 − 2c9
8(c1 + 2c5 − 2c2 − c9)

2[(n + 1)c1 + 4c5 − (n + 2)c2 − 3c9]
4(c3 + 2c7 − 2c10 − c11)

2(c4 + 2c7 − 3c11)

2(c3 + c4 + 4c7 − 2c10 − 4c11)

c8 − 3c5 + 2c6
n − 3c1 + 2c8

2[n(n + 1) − (n + 5)c1 + 4c8]
n(n + 1) − (n + 5)c1 + 4c8

n(n2 + 3n + 4) − 6(n + 3)c1 + 16c8
2(c1 + 2c5 − 2c2 − c9)

c1 + 2c5 − 2c2 − c9
2[(n + 3)c1 + 8c5 − (n + 6)c2 − 5c9]

(n + 3)c1 + 8c5 − (n + 6)c2 − 5c9
2(c3 + c4 + 4c7 − 2c10 − 4c11)

c3 + c4 + 4c7 − 2c10 − 4c11
3c3 + c4 + 8c7 − 6c10 − 6c11



,
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(w∗
6 · · · w∗

9)

=



c5 − c6
nc1 − c8

2[(n + 1)c1 − 2c8]
2(c1 − c8)

8(c1 − c8)

nc2 + c9 − 2c5
c9 − c5

4(c2 + c9 − 2c5)

4(c2 − c5)

2(c10 + c11 − 2c7)

2(c10 − c7)

4(c11 − c7)

c5 − c6
nc1 − c8

4(c1 − c8)

2(nc1 − c8)

8(c1 − c8)

2(c9 − c5)

nc2 − c5
8(c2 − c5)

4(c9 − c5)

4(c10 − c7)

2(c11 − c7)

4(c11 − c7)

c5 − c6
c1 − c8

(n + 3)c1 − 4c8
2(c1 − c8)

2[(n + 3)c1 − 4c8]
c2 + c9 − 2c5

c2 − c5
(n + 4)c2 + 3c9 − 8c5

2(c2 + c9 − 2c5)

c10 + 3c11 − 4c7
c10 + c11 − 2c7

2(c10 + c11 − 2c7)

c5 − c6
c1 − c8

4(c1 − c8)

(n + 1)c1 − 2c8
2[(n + 3)c1 − 4c8]

2(c2 − c5)

c9 − c5
4(c2 + c9 − 2c5)

(n + 2)c2 + c9 − 4c5
2(c10 + c11 − 2c7)

2(c11 − c7)

2(c10 + c11 − 2c7)



,

(w∗
10 · · · w∗

12) =



c7 − c6
c3 − c8

2(c3 + c4 − 2c8)

2(c3 − c8)

4(c3 + c4 − 2c8)

c10 + c11 − 2c5
c10 − c5

2(c10 + 3c11 − 4c5)

2(c10 + c11 − 2c5)

3c12 + c2
4 − 4c7

2(c12 − c7)

4(c12 − c7)

c7 − c6
c3 − c8

4(c3 − c8)

2(c4 − c8)

4(c3 + c4 − 2c8)

2(c10 − c5)

c11 − c5
4(c10 + c11 − 2c5)

4(c11 − c5)

4(c12 − c7)

c12 + c2
4 − 2c7

4(c12 − c7)

c7 − c6
c4 − c8

2(c3 + c4 − 2c8)

c3 + c4 − 2c8
2(3c3 + c4 − 4c8)

2(c11 − c5)

c11 − c5
4(c10 + c11 − 2c5)

2(c10 + c11 − 2c5)

4(c12 − c7)

2(c12 − c7)

3c12 + c2
4 − 4c7



,

andci for i = 1, . . . , 12 are given in Table1.
The coefficient vectorsw222 andw42 in (16) are displayed in Table A.1.

Appendix B. Expressions for�i in Theorem 2

The quantities�i for i = 1, 2, 3, 4, 6 can be written as follows:

�1 = 1
2a

′
2 vec(I �) − 1

4v
′ F(2) vec

(
I

−1
�

)
,

�2 = �2
1 − 2 tr

[
F(1)′ (V ⊗ �−1

)(
Ip2 − PF

)
F(2)(a⊗ I

−1
� )

]
+ a′I �A3vec

(
I �
)

+4 tr
[
PF

(
�V ⊗ Ip

) (
Ip2 − PF

)
Np

(
�V ⊗ Ip

)] − 1
2a

′I �A2F(1)′ F̈(2) vec
(
I

−1
�

)
+1

2 tr
[
F̈(2)′ (Ip2 − PF

)
F(2)(aa′ ⊗ I

−1
� )

]
+ tr

[
A2F(1)′ (V ⊗ �−1

)
F(1)

]
−1

2v
′ F(2) a2 − 1

2
v′ F(3)

[
a⊗ vec

(
I

−1
�

)]
+ 1

8v
′ F(2)

(
I

−1
� ⊗ I

−1
�

)
F(2)′ v
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Table A.1
Coefficients for unbiased estimators of�222,n and�42,n whenX = 1N

i w222,i /n3/2 w42,i /n2

1

(
n3 + 3n2 + 2n + 12

)
(n − 4)4 (n + 1)

(n + 2)
(
n2 − n + 2

)
(n − 4)4 (n + 1)

2 2

(
n4 − n3 − 12n2 + 8n + 12

)
(n − 4)4 (n + 1)2 2

(
n4 − 2n3 − 9n2 + 8n + 12

)
(n − 4)4 (n + 1)2

3 2
n
(
2n2 − 5n − 1

)
(n − 4)4 (n + 1)2 2

n
(
n2 − 2n − 1

)
(n − 4)4 (n + 1)2

4 2
n
(
2n2 − 5n − 1

)
(n − 4)4 (n + 1)2 2

n
(
2n2 − 5n − 5

)
(n − 4)4 (n + 1)2

5 2
n
(
n2 − 2n + 3

)
(n − 4)4 (n + 1)2

n
(
n2 − n + 2

)
(n − 4)4 (n + 1)2

6 −
(
n4 + n3 − 8n2 − 16n + 4

)
(n − 4)4 (n + 1)2 −

(
n4 − n3 − 6n2 − 4n + 4

)
(n − 4)4 (n + 1)2

7 −
(
n4 + n3 − 8n2 − 16n + 4

)
(n − 4)4 (n + 1)2 −

(n + 2)
(
n3 − n2 − 8n − 2

)
(n − 4)4 (n + 1)2

8 −
(
2n3 + n2 − 5n + 8

)
(n − 4)4 (n + 1)2 −

(n + 2)
(
n2 − n + 2

)
(n − 4)4 (n + 1)2

9 −
(
2n3 + n2 − 5n + 8

)
(n − 4)4 (n + 1)2 −

n
(
2n2 − n − 7

)
(n − 4)4 (n + 1)2

10 −
(
n3 − n2 − 2n + 4

)
(n − 1) (n − 4)2 (n + 1)2 −

n
(
n2 − 2

)
(n − 2)2 (n − 4) (n + 1)2

11 −
(
n3 − n2 − 2n + 4

)
(n − 1) (n − 4)2 (n + 1)2 −

(
n3 + n2 − 4n − 8

)
(n − 4)4 (n + 1)2

12 −
(
5n2 + 5n − 12

)
(n − 4)4 (n + 1)2 −

(
3n2 + 3n − 4

)
(n − 4)4 (n + 1)2

(n − a)b is Pochhammer’s symbol,(n − a)b = (n − a)(n − a + 1) · · · (n − a + b − 1).

−1
2v

′ F(2) vec
[
I

−1
� F(1)′ (V ⊗ �−1

)
F(1)I

−1
� − I

−1
� F(1)′ F̈(2)

(
a⊗ I

−1
�

)]
− tr

[
F(1)′ F̈(2) (a⊗ A2)

]
+ [

vec(V�V)
]′ (Ip2 − PF

)
F(2) vec

(
I

−1
�

)
+1

4v
′ F(2)

[
a⊗ I

−1
� F(1)′ F̈(2) vec

(
I

−1
�

)]
+ 1

2 tr
[
A2I �A2I �

]



168 R.J. Boik / Journal of Multivariate Analysis 96 (2005) 136–171

−1
2

[
vec

(
I

−1
�

)]′
F̈(2)′ (Ip2 − PF

)
F(2)(a⊗ a),

�3 = −3
2v

′ F(2)(a⊗ a) + 3a′I �A2I �a+ tr(�V)3,

�4 = 4�1�3 − 6v′ F(2)
[
a⊗ I

−1
� F(1)′ vec(V�V)

]
+ 12

[
vec(V�V)

]′ F(1)A2I �a

+12a′I �A2I �A2I �a− 12v′ F(2)
[
a⊗ A2I �a

] + 3 tr(�V)4

−2v′ F(3)(a⊗ a⊗ a) − 6a′I �A2F(1)′ F̈(2)(a⊗ a) + 4a′I �A3
[
I �a⊗ I �a

]
+3v′ F(2)

[
a⊗ I

−1
� F(1)′ F̈(2)(a⊗ a)

]
+ 3v′ F(2)

(
aa′ ⊗ I

−1
�

)
F(2)′ v,

�6 = 10�2
3,

PF = 1
2F

(1)I
−1
� F̈(1)′, a = I

−1
� E�D

(1)′
�:�h,

a2 =
(
I

−1
� E� ⊗ I

−1
� E�

)
D(2)′

�:�,�
h, A2 = dvec(a2, �̇, �̇),

a3 =
(
I

−1
� E� ⊗ I

−1
� E� ⊗ I

−1
� E�

)
D(3)′

�:�,�,�
h, andA3 = dvec(a3, �̇, �̇2).

The quantityPF is the projection operator that projects ontoR(F(1)) alongN (F̈(1)′).

Appendix C. Expressions for�2g and �4g in (37)

The quantities�2g and�4g can be written as follows:

�2g =
(

2m

m − 1

)[
1

64
tr (V2�22V2�22)

+ 1

16
tr
{
F̈(2)′ (Ip2 − PF

)
�22

(
Ip2 − PF

)′ F̈(2)
(
aa′ ⊗ I

−1
� F̈(1)′ �22 F̈(1) I

−1
�

)}
+ tr

{
PF

′ (�−1 ⊗ V
) (
Ip2 − PF

)
�22

(
Ip2 − PF

)′ (�−1 ⊗ V
)
PF �22

}
+ 1

162v
′ F(2)

(
I

−1
� F̈(1)′ �22 F̈(1) I

−1
� ⊗ I

−1
� F̈(1)′ �22 F̈(1) I

−1
�

)
F(2)′ v

−1

2
tr
{
(a′ ⊗ F̈(1) I

−1
� ) F̈(2)′ (Ip2 − PF

)
�22

(
Ip2 − PF

)′ (�−1 ⊗ V
)
PF �22

}
− 1

32
v′ F(2) vec

{
I

−1
� F̈(1)′ �22

(
Ip2 − PF

)′ F̈(2)
(
a⊗ I

−1
� F̈(1)′ �22 F̈(1) I

−1
�

)}
+ 1

16
tr
{(
a′ ⊗ F̈(1) I

−1
�

)
F̈(2)′ (Ip2 − PF

)
�22V2�22

}
+1

8
v′ F(2) vec

{
I

−1
� F̈(1)′ �22

(
Ip2 − PF

)′ (�−1 ⊗ V
)
PF �22 F̈(1) I

−1
�

}
−1

4
tr
{
PF

′ (�−1 ⊗ V
) (
Ip2 − PF

)
�22V2�22

}
− 1

64
v′ F(2) vec

{
I

−1
� F̈(1)′ �22V2�22 F̈(1) I

−1
�

}]
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and

�4g = 1
16(v⊗ v)′�44(v⊗ v) + 3

2

[
tr(V�)

]2 �2
W

+ 3
16

[
tr(V�)

]4 − 1
4 tr(V�)(v⊗ v)′�42v − 3�4

W

+3(v⊗ v)′
{[

�42 − 2(� ⊗ �22) − vec(�22)�
′ − (� ⊗ ��′)

] ⊗ v′�22

}
×
{

1
4 vec

[
(Ip2 − PF )′ F̈(2)

(
a⊗ I

−1
� F̈(1)′)] + 1

8v2

− vec
[
(Ip2 − PF )′(�−1 ⊗ V)PF

]
− 1

16

(
F̈(1) I

−1
� ⊗ F̈(1) I

−1
�

)
F(2)′ v

}
+3

4(a⊗ b)′ F̈(2)′ (Ip2 − PF

)
�22

(
Ip2 − PF

)′ F̈(2)(a⊗ b)

+12v′�22PF
′ (�−1 ⊗ V

) (
Ip2 − PF

)
�22

(
Ip2 − PF

)′ (�−1 ⊗ V
)
PF �22v

+ 3
64v

′ F(2)
(
bb′ ⊗ I

−1
� F̈(1)′ �22 F̈(1) I

−1
�

)
F(2)′ v

+ 3
16v

′�22V2�22V2�22v

−6(a⊗ b)′ F̈(2)′ (Ip2 − PF

)
�22

(
Ip2 − PF

)′ (�−1 ⊗ V
)
PF �22v

−3
8v

′ F(2)
{
b⊗ I

−1
� F̈(1)′ �22

(
Ip2 − PF

)′ F̈(2) (a⊗ b)
}

+3
4(a⊗ b)′ F̈(2)′ (Ip2 − PF

)
�22V2�22v

+3
2v

′ F(2)
{
b⊗ I

−1
� F̈(1)′ �22

(
Ip2 − PF

)′ (�−1 ⊗ V
)
PF �22v

}
−3v′�22PF

′ (�−1 ⊗ V
) (
Ip2 − PF

)
�22V2�22v

− 3
16v

′ F(2)
(
b⊗ I

−1
� F̈(1)′ �22V2�22v

)]
,

where

v2 =
(
F̈(1) I

−1
� E� ⊗ F̈(1) I

−1
� E�

)
D(2)′

�:�,�
h,

V2 = dvec
(
v2, p2, p2

)
,

and the remaining terms are defined in (8) and in Appendix B.
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