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Abstract

Edgeworth expansions and saddlepoint approximations for the distributions of estimators of certain
eigenfunctions of covariance and correlation matrices are developed. These expansions depend on
second-, third-, and fourth-order moments of the sample covariance matrix. Expressions for and esti-
mators of these moments are obtained. The expansions and moment expressions are used to construct
second-order accurate confidence intervals for the eigenfunctions. The expansions are illustrated and
the results of a small simulation study that evaluates the finite-sample performance of the confidence
intervals are reported.
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1. Introduction

A flexible spectral model for principal components of covariance matrices from several
populations was proposed by Boik [6]. This model unifies and extends the common prin-
cipal component model and related models of Flury [14] and others. The spectral model
also is applicable to a covariance matrix from a single population. It allows arbitrary eigen-
value multiplicities and it allows the distinct eigenvalues to be modeled parametrically or
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nonparametrically. Procedures that provide the same flexibility for modeling principle com-
ponents of correlation matrices were proposed by Bikn this article, second-order accu-
rate confidence intervals for functions of eigenvalues of covariance and correlation matrices
are developed. Asymptotic expansions of the distributions of model-based estimators of the
eigenvalues also are constructed.

To be more specific, lgt be a randonp-vector with positive definite covariance matrix
X and correlation matriX¥. Denote thep-vector of eigenvalues of eithé or ¥ by /.
Second-order accurate confidence intervals for

Yp=h2i and y,=h7i/1,2 1)

are developed without assuming normality, whereap-vector of known constants ang

is ap-vector of ones. The eigenfunctioprs andy, could reflect partial sums or differences
among eigenvalues. For examplehifs selected to bé = (1, 0')’ and eigenvalues are
ordered from largest to smallest, the¢n represents the variability associated with the
first a principal components angl, represents the proportion of the total variability that
is associated with the firstcomponents. If. is the vector of eigenvalues of a correlation
matrix, then); = py, and the two functions yield equivalent informationl i the vector

of eigenvalues of a covariance matrix, however, theandy, yield different information.
Edgeworth and saddlepoint approximations for the distributions of

Y1=h7 and Y, =h"/(1,7) @)

also are developed inthis article, whéiis a consistent model-based estimatot,qfossibly
subject to constraints. The proposed methods can be extended to arbitrary differentiable
functions of4, but attention in this article is restrictedyq andiy,.

The expansions and confidence intervals depend on higher-order moments of the sample
covariance matrix. In SectioB, matrix expressions for second-, third-, and fourth-order
moments of the sample covariance are obtained. In addition, unbiased estimators of the
second- and third-order moments and consistent estimators of the fourth-order moments
are constructed.

Parameterizations f& and¥ in terms of eigenvalues and eigenvectors are briefly re-
viewed in Section 3. Section 4 describes Edgeworth and saddlepoint approximations for
the distributions off; andy, when sampling from multivariate normal populationi Sec-
tion 5 gives asymptotically distribution free (ADF) expansions of the distributiong; of
andy,. Normal theory and ADF confidence intervals that are based on the expansions
are described in Section 6. The asymptotic expansions and confidence intervals are illus-
trated in Section 7. Section 8 reports the results of a simulation study that examines the
accuracy of the Edgeworth and saddlepoint approximations under normality as well as the
finite sample coverage of the confidence intervals under normality and under nonnormal-
ity. The proposed second-order accurate confidence intervals show a substantial improve-
ment in coverage probability compared to first-order accurate intervals. Expressions for
certain required derivatives are available in a supplement that can be down-loaded from
<http://mwww.math.montana.edurjboik/pca_eigent.
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2. Moments of the sample covariance matrix

It is assumed that the observable data can be represented as
Y =XB +E, 3)

whereY isanN x p observable random matriX, is anN x g matrix of known constants,
rank(X) = r <¢,andEisanN x p unobservable matrix of random deviations. The rows of

E are assumed to be independently and identically distributed with mean zero and variance
Y. The distribution o is arbitrary except that the regularity conditions described in Section

5 are assumed to be satisfied. The usual unbiased estimaias of

1 _
S=-Y'QY, whereQ =1y —Hy, Hx=X(XX)" X (4)
n

is the perpendicular projection operator that projects @), the vector space generated
by the columns o, andn = N — r. It is assumed thaR (X") does not depend oN,
the nonzero eigenvalues ¥fX diverge to infinity asV — oo, and limy_, » gi; = 1 for
i =1,..., N,whereg;; is theith diagonal element d).

Expansions ofj; andy/, depend on the moments Qfi(s — o), wheres = veqS) and
o = veqY). In particular, expansions of

W, @, -y and Z; € wi ey, fori=12 (5)

require the following moments or consistent estimators thereof:

ef

Qo EnE[s—0)s—0)], Qoo En2E[(s—0)® (5—0)(5—0)],
Qo def n Cov [Vedﬁzzn), s]

and
Q22200 B n?E [(s— 0)(s— 6) ® (5— 0)(s— 0)']. (6)

WhereaW is a consistent estimator of @;) andQZZn is an estimator a2, ,,. Subscripts
22,42, 222 and 2222 refer to the order of the moments. The Ny, for example,

is the expectation of the product of two second-order term$.ifthe subscriph serves
as a reminder that the moments depend on the model mAtriwhich, in turn, depends
on the sample size. The quant®p,,, is O (n~Y?), whereas the remaining moments in
(6) areO(1). As sample size increases, the momeR4s ,,, /12222, Q42,,, andQ2222,
approach2os oo, 2395 o, 42,00, ANAL2222 0, respectively, where

def . def . 1
Q = lim Q 5 = lim nzQ
22,00 11— 00 22,15 222 00 H— 00 2221
def . def .
942,00 = lim 942,, and 9222200 = |lim 92222,,. (7)
n—oo n— o0

In this section, matrix expressions for the momentinand (7) are obtained. Unbiased
estimators of24, , andQ», , and consistent estimators of the moments in (7) are derived.
Expressions for and estimators @b, , already are known, but for completeness and to
illustrate the method of construction, these results also are given.
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Let ¢ be any row ofE in (3) and defing,1, y22, y42, andys4 as

11 & E (e®ed), 122 & E (e¢ @e¢),
a2 C E (ef ®@ed ®e®e) and yaq e (68 ® 88 @ &g ® &€') , (8)

respectively. Consistent estimators of these quantities are obtained by substituting the ob-
servable residualfor ¢ and averaging. That is,
1Y 1Y
Y21 = ;2;(& ®REE). 722=; 2(&%@’%5;),
= 1=

1
1 N
~ )y e~
Va2 =~ D (5% 9%E ®F ®%F)
i=1

and
tum 13" 67 057 053 057) ©)
" e
yvhere“s‘,- is theith residual vector. Specifically, is theith row of QY, whereQ is defined
; '(FA(;)bbtain expressions fdRy2,, andQoz o, first note thaQY = QE. Accordingly,

S:

S|

N N N
Z Z 8,‘6],’/8/] and Ej = ZS,’C],‘j, (10)
i=1 i=1

i j=1

whereg! is theith row of E andg;; is thei jth component 0Q. Substituting the expressions
for’g; andSin (10) intoy,y, s$, and(S® S), and then taking expectations reveals that

E@zz ss Np[S® S)])/

c2 [e1—c2]  [e1—c2]
A= 9] fe | e ). ey
g [1-9] [r+1-2] Np[X® ]

wherecy = tr(Q®?), ¢z = 1,Q%1y, N, = (12 + 1(p.p))/2, (a5 is the commutation
matrix [27], and® is the elementwise operator. For example is ag x 1 vector, then

e — (e™---e%). The commutation matrix,, ) is denoted byK,, in Magnus and
Neudecker [28,29, Section 3.7]. By using (11) and the definitions in (6) and (7) it is readily
shown that

_a . _a
Qozp =~ (y22 — a6’) + (1 — ) 2N,(Z®X)
and

Q25 o = y22 — 66, (12)
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Solving (11) for the moment matrices yields

(y2266" 2N, [EZ Q@ X))
nn+2)—3c1  n(z—c1) nlcz—c1)
nn+ ey — ZC% c% —ncp

= 1|4 A n—1 n—1 ®1 )2
Z(C% — ncea) nzcz — c%
—2c1 n—1 n—1
V22
x E ss , (13)
2N,[S® 9]

wherea = n/[n(n + 2)cp — 3cf], andc; andcp are defined inX1). It follows from (12)
and (13) that

Q22, = ati2 + az58 4+ azs2N,(S® S) (14)
is an unbiased estimator &%, where

—al2ncy + (n — 3)c%] —an(c% — ncp)
aiy = ancy, daz = and a3 = —————,

n-=1) (n—1)

ais defined in 13) andc1 andc; are defined in (11). IK = 1y, thenn = N — 1 and the
coefficients simplify to

n? nn?—2) n?
ag=—, aa=—-——— and a3=——"7-—,
aop (n + Dag (n + Dao

whereag = (n — 1)(n — 2). Also, it is apparent that
Q2200 = Y22 — 58 (15)

is a consistent estimator 6I; ., Wherey, is defined in 9). Browne [10] and Koning et
al. [22] derived the estimator in (14) for the special case wKea 1y. Boik [5, Theorem
5], derived the estimator in (14) for genekaby a slightly different method than above.

The methods that were used to obtain the expressions in (12) and the estimators in (14)
and (15) can, in principle, be extended to moments of any order. The derivations are rather
tedious, however, so comparable results are obtained for third-order moméhgsixth-
order moments of) only. These results are summarized in Theorem 1.

Theorem 1. Matrix expressions for third-order moments®#ére given by

12 12
Qoo =) azaiM; and Qazp =Y asiM,
i=1 i=1

where the sixth-order momentMi}lzl, as well as the coefficients, azz2;, andaay; for

i=

i=1,...,12are defined in Tablé&.
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Table 1
Sixth-order moments and associated coefficients
I M; ¢ n2a7; ncas
1 ¢ 02 najcs
Va2 ' (Q ) 8 +cglaz + 2a3)
nz[a13(61 —¢2) + 2a3 + c1]
2naq(cg — cg)
2 / 1. 0941 2 +n~a + 1(c5 —cg
(¢ ®ad) NQ Ty 8 —nc1(3ap + 2a3)
+2[azcg + 2az(cg — c1)]
+naile1 — cg + 2(c5 — ¢2)]
2N o x
3 Eor gza) . a'Qq _2531 +nZap + n(2az — azey)
P +2[ao(cg — c1) +az(2cg — 3c1)]
n3(az —1)
2c: +n2[ay(c —c2) +az+az+cil
4 vec[E®I)2N,]d 1,Q®31 8 w2 1
[(EoX2n,] nQ N —2c1 +n[2ay(cs — cg) — c1(az +4az)]
+2[az(cg — c1) + az(2cg — c1)]
n nai[c1 —cg + 2(c5 — )1
5 (g’;po_@@zg)pg,\]( q'Q%%1y —3c1 +n2az + nla + az(1 — ¢1)]
P +2cg +ap(2cg — 3c1) + az(4cg — 5c1)
nlai(cg — c5) + azc
6 2Np2()’22 ® 0) 1/NQ(961N —cg [a1(co 5) 2c1l

7 vedyz)e’

2N 2(2Np ® 1 ,2) %

8 [Z ® dvedyzp, p°, p)]
XZNP

(2N, ® 2N )
9 (Ip®lp.p) ®1p)x
(y22® 0)

10 2Np$(2N[,®|p2)><
(Y21 ® vecyz1)

11 (21 ® 212N

(2Np ® 2N ) x
12 (1p®lp ) ®1p)x
(21 ® v21)

+2az(c1 — cg) — azcs

2 n2(aycz — c1)
4y (@) 1y - +nle1(2a3 + az) - axcs|
—cglaz + 2a3)

W) e

q'Q%2q a nlay(cg — c5) 4 azcq]
—cg +az(c1 — cg) +az(cy — 2cg)

7QQ%1x ‘o et 2 o

! [<Q®2)2 Q] —638 +a2(03rfli‘§(36)‘l-lir ;acss()m —cg)

2 nay(c11 — ¢s)
tr [(QQOZ) j| _Cg +ap(cq — cg)
8 +ag(c3 + c4 — 2cg)

Qisgivenin@),q= (Q11 Q22 -

Onn) and{a;}3_; are defined in12).
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Denote the sample version of tité sixth-order moment byl; and defineVi asM def

(M} ---M?,)". Specifically M; is obtained by replacing, y21, y22, andyaz in M; by S,
V21, Y22, andyso, respectivelyThe expectations of the sample sixth-order moments are

E(M)=(W®al,)M, whereM E M- M,

and the components of th& x 12 coefficient matrixV = {w;;} 1are given in AppendiA.
An unbiased and consistent estimatokbis given byM = (W™ ® I ,4) M. The estimator

M can be used along with the coefficients in Tabte obtain unbiased estimators @by ,,
and Q45 ,,. For example

N . R
Qo2 =n"2 (cgM1 +2cgMa 4 -- ).

Simplifications of the coefficients for the unbiased estimaﬁﬁsz,l and ﬁ42,n exist
under special conditions. For exampleXit= 1y, whereX is the model matrix ing), then
ﬁzzz” = (W ® 1 4) M and ﬁ427,1 =Wy ®1,4) M, (16)

where the 12« 1 coefficient vectorsvo2 andwy, are given in Tablé.1 in Appendix A.
An unbiased estimator &®2222,, in (6) can be constructed by the methods employed in
Theorem 1, but it is sufficient for present purposes to construct a consistent estimator of

Q227 0. Usingn%(s— o) E N(0, 222 ), it is readily shown that

Q22221 = 2N ,2(Q22., ® D22,) + Ve Q22,) [VedR22,)] + O (n_l)
and that
Q222200 = 2N ,2(222, 00 ® Q22 00) + VEUAR222 50) [veaQ2200)] -

Accordingly,
ﬁ222200 = 2Np2 <§2200 24 622,00> =+ VeC(ﬁzzoo) [Vec<§22,oo)]/ (17)

is a consistent estimator 622222, whereﬁzz’oo is given in @L5). Note, the estimator

in (17) remains Consistentﬂ.&w is replaced b)(A!ZZn.

The focus in this section is on the momentsSoivhen sampling from nonnormal dis-
tributions. Nonetheless, it still is of interest to examine the moments under the assumption
of multivariate normality ofY. Boik [6, Theorem A.2] gave expressions ¥%2,, and
Q57275, under normality. These results, along with known result€Xgs,, and a new result
for Q45 ,, are given below:

Qo2n = Q2200 =2N,(ER L),
Qoooy ="y =n 22N, @ 2N,)(E® 6 ® £)2N,,

1
Qa2 = Q4200 =122,
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and
Q22200 = 2222200 = 2N ,2(2N), @ 2Np)(E@ L QL ® X)
+vec[2N,(Z® D] {vec[2N, @ D]} + 0 (v 7).

Se€[6, Theorem A.2] for an explicit expression for tiggn —1) term inQ2227,. Consistent
estimators under normality can be obtained by substitiifag X in the above equations.

3. Parameterizations of covariance matrices
3.1. Eigenvalues of the correlation matrix

In the remainder of this article it is assumed that the correlation m#tisirreducible.
Thatis, it cannot be permuted into a nontrivial block diagonal matrix and, therefore, Theorem
2in [7] is satisfied foik = 1. More generally, if a correlation matrix can be permuted into
a nontrivial block diagonal matrix, then the following parameterization must be applied
separately to each of the diagonal blocks.

Following Boik [7], the covariance matriX is parameterized as a function ofva
dimensional vecto®), where

T dim(rt)
Y=0,¥Y6,=X0), ¥Y=TAI'", O0=|u]|, v=| dimmw |. (18)
¢ dim(e)

v = dim(0), e, = Diag(s,), 6, = 06,(7) is the p-vector of standard deviations of the
elements of, I' = I'G(u, (p)|ﬂ20, A = Diag(4), 4 = A(¢), andI' is a matrix of unit-norm
orthogonal eigenvectors. The dimensiongois v; = (p? — m'm)/2 — (p — 1), where
m is a vector whose elements are the multiplicities of the distinct eigenvalu#s the
vector of standard deviations is parameterized,as: T1exp{OTzt}, whereT1: p x g1
andT3: g1 x vp are full column-rank design matrices of known constants. Details on the
parameterization dB in terms of(u, ¢) can be found irf7, Section 2.3].

The vector of eigenvalues is parameterized as

. ( Tsexp(OTap) ) (1)

1;,T3 exp{OTae}

whereT3: p x g3 andTy4: g3 x g4 are full column-rank design matrices of known con-
stants. Without loss of generality, it can be assumedThaﬂatisfieleIBU = 0. If this
condition is not satisfied, then replatg by any matrix whose columns form a basis for

R [(Iq3 - 1q3q3‘11/qs)T4]. If no restrictions are placed on the parameter vegiothen

v3 = q4. More generally/. can be represented b$9), subject to the constrai@; 1 = co,
whereC1 is a known matrix of constants aglis a known vector of constants. In this case,
¢ in (19) is replaced by, whereé is an implicit function ofg andvz = dim(¢) < dim(&).



144 R.J. Boik / Journal of Multivariate Analysis 96 (2005) 136—-171
For details, sef7, Section 2.4]. Derivatives of with respect tap are denoted by

2,
(1) def 04 @ def 04

Ao T a(P/’ Lo T a(P/®6(P/’

and

3
®  _ 31
Ao,0.0 @(p’ ® aq)/ ® @(p’.

(20)
Expressions for these derivatives are given in the supplement.

3.2. Eigenvalues of the covariance matrix

If interest is in the eigenvalues of the covariance matrix, ean be parameterized as
a function of ai-dimensional vectol, where

YX=TAI' =X(0), 0= <(p> , v= (dim(go)) , I'= FG(,u)|”:0, (22)

7 = dim(0), andA = A(¢). The dimension oftis (p2—m’m)/2, wherem is a vector whose
elements are the multiplicities of the distinct eigenvalues. Details on the parameterization
G in terms ofu can be found ij6, Section 2.3].

If interest is iny; = h’4, then a suitable parameterization fois

A =Tirexp{OT2e}, (22)

whereT1: p x g1 andT2: g1 x g2 are full column-rank design matrices of known constants.
If no restrictions are placed on the parameter vegtothenv, = ¢o. If ¢ must satisfy
Cj4 = co, thenZ can be parameterized a22) except thatp is replaced by, whereé
is an implicit function ofep andv, = dim(e) < dim(€). Derivatives of4 with respect
to ¢ are denoted as in (20). Details and expressions for these derivatives are given in the
supplement.
If interest is imy, = h’1/tr(X), then a suitable parameterization fois

A= 0, /Tl exp{OT2¢2} . whereg, = tr(Z) andg — (@1) . (23)
1,T1exp{OT 202} »2

It can be assumed, without loss of generality, fh@BatisfieSL;sz = 0. If no restrictions

are placed on the parameter veapor thenvy = g2 + 1. If @2 must satisfﬁ&igo;l = Co,
then/ can be parameterized &3] except thad is replaced by, whereé is an implicit
function of @2 andvy — 1 = dim(g2) < dim(€). Derivatives of4 with respect tap, are
denoted by
) 2,
1) def 04 @  def 074

P Jip2.p2 D0, ® 00,
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and

3
- def v
792,902,002 09,09, ®0 ‘P/z'

(24)

Details and expressions for these derivatives are given in the supplement.

4. Edgeworth and saddlepoint expansions under normality

In this section, Edgeworth and saddlepoint expansions are constructed for the density of
1}1 = hJ., wherey. is the maximum likelihood estimator of the vector of eigenvalues of the
correlation or covariance matrix based on a sample of Bize n + r from a multivariate
normal distribution andis the rank oiX in (3). The eigenvalues are parameterized as (19) if
interestis in correlation matrices or as (22) ifinterestis in covariance matrices. Modifications
for the expansion of the density (i@ = h'4/(1},4), where/ is the maximum likelihood
estimator of the vector of eigenvalues of the covariance matrix are described in Section
4.3. See [3, Chapter 4] and Reid [34] for descriptions of Edgeworth and saddlepoint (tilted
Edgeworth) expansions. First-order asymptotic distributionéloand x/sz in the case of
covariance matrices and under multivariate normality were obtained by Anderson [1].

4.1. Edgeworth expansion under normality

Let S be a sample covariance matrix whose distribution is WisheBt~ W, (n, X),
whereX = X(0). Denote the corresponding log likelihood functionéd8) and itsith
derivative a¥; (0). Specifically,

def 0£(0) det 0°£(0) dget  0°0(0)
1= —— bh=——=— and 3= —/—F7F—.
a0 00’ ® 00 00 ® 00’ ® 00

These derivatives depend @ronly through the derivatives of veétwith respect td. The
latter derivatives are denoted as

(25)

2 3
00" |40 00’ ® 00’ | ,—o 00’ ® 00’ ® 00’ | ,—o
For notational convenience, the following definitions are used:
FOE (2o )F® and FOE (xlex)F@. (26)
DefineZ; as
z; € a(n7t;—K;), whereK; =nE(,). (27)
For example,

Z1=3FY /n(s—0), Ki1=0 and Ky=—-3FYFD,
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Explicit expressions for log likelihood derivativegp, Z3, K3, andK4 are given in the
supplement. Note tha@; = 0, (1) for all j, \/nZ1 is the score function and that, = Tg

is the average Fisher information. The MLE @®tan be expanded in tensor notation as
(7.10) in[31] or in vector notation as

V(0 —0) =3 +n" 20, +n" 135+ 0, (n_g> (28)
where

B0 = T(;lzl, b1 = T(;l[Zzso + %Ks(go ® 00)]
and

82 = T(;l[zzgl + %23(30 ® o) + K3(3o ® 01) + %K4(30 ® 30 ® 00)].

An expansion of the density ojAJfl can be obtained by inverting the characteristic function
of W1 in (5). First, the moment generating functionWwi will be found. For convenience,
denoteW1 byW, i.e.,W = ﬁ(@l—xpl). To obtainM (¢), first expanlearound}l =Y.

Let E, be a matrix of ones and zeros that satisEg# = ¢. An explicit expression fokE,,

is obtained by writingz,, asE, 3 and then using Eq. (4) in [7]. The random varialean

be expanded as follows:

o~

1 1
W=00+—=01+-02+ 0, (n_%) ., whereQo = h'DY E 3o
n n

\/_ Lo o7
01 =hWDPE 8+ 1D? (E 80 ®E,d0)] (29)
1= i:(plpl 270,90 0?90 00
and
— D s (2 S S
Q2 = W[D; E,d2+ D}, (E,d0® E,01)

+3DS o (Epd0 ® Eiyd0 ® Efdo)l.

The moment generating functionfcan be obtained by expanding the exponential function
¢'" and then taking expectations. That is,

My (1) = E('V)

2
t t e 5 _3
E (exp{th} [1+ EQ:L +- Q2+ 01+ 0p (n Z)D . (30)
whereQoq, 01, andQ» are defined inZ9) and the expectation is taken with respect to the
Wishart distributionW, (n, X). The exponential function on the right-hand side of (30) can
be combined with the Wishart density functiofyisn(nS; n, X), to obtain

exp{t Qo} fwish(nS; n, X)

¥ (4
= | llﬁz EXp{—Lﬁtr(VE)} Swish(nS; n, Xy),
BE 2
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where
V =V’ =dveay, p, p), v=F® '_o_leD%h’

¥, = <21 - %vyl _ g(ﬁ)l (EV) £, (31)

F® is defined in26), and dvetM, a, b) is ana x b matrix that satisfies vddvedM, a, b)]

= vecM. It is assumed that| is sufficiently small so that-oo < rjr < /n for j =
1,..., pissatisfied, wherey, . .., r, are the eigenvalues &V. The ratio of determinants
in (31) can be expanded as

X2 n ( t )ftr(ZV)i
= eX A = .
x|z P ZZ NG

j=1 /

Accordingly, the moment generating function\ofcan be expressed as
2
Mw(t) = exp{’— tr(ZV)Z}

{1+ %tr(zvﬁ Sl = trzv)?t +1Ot [IF(ZV)] +0<”g>}

E|1 0,(n?
X [+7Q1+ Q2+ Q1+ ( )}

whereQ1 andQ» are defined inZ9) and the expectation is taken with respect to the Wishart
distribution W, (n, X;) andX; is given in (31). The results, after taking expectations, are
summarized in Theorem 2.

Theorem 2. The moment generating functiondf = ﬁ(z/}l —q)is

t2
My (1) = eXp{EU‘ZV}

¢ 12 3 4 18 3
X114+ —w1+ — +—w4+—w6+0(n 2) ,

T 2 T R T g T

where
0%, = 1tr(EV)?,

and expressions fap;, i = 1, 2, 3, 4, 6, are given in AppendiB.

In some cases, a more accurate approximation can be obtained from the moment gener-
ating function ofw,, = \/n_q(fpl — Yy rather than from the moment generating function
of W, wherem = n + 4 and4 = O(1). It is readily shown that the moment generating
function of W, is identical to the moment generating functiovéfo orderO (n_%) except
thatnis replaced bynand

ﬁwz is replaced byi (wz + Ad? ) . (32)
2n 2m W
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The Edgeworth expansion for the distributior@qﬁs obtained by inverting the characteristic
function My (ir) or My, (it). The results based oW,, are summarized in Theore
Results based diV are obtained by equatingto zero and equatingnto n.

Theorem 3. The density and distribution functions for the random variabjeare

A Jm 1 1 .
fl/,l(XI(’) = W¢(Z){l+ p—y Hi(z)w1 + o%VZm Ho(z) <w2+A0w>
b gHs(2) 4 aHa() + wH<>+o( 3)}
0%3!\/% 3113(2 0%4! A114(Z W6 6116(2Z

and

A 1
Fj (x10) = P(py<x) = @(2) — d)(z){ o

1
w1+ Hi(2) (w2 + Ad?
1 aﬁ,Zm 1()(2 W)

TR Ha(2) + — " aH(0) + 5 waHs(2) + O (m 3)}
—a) C!) w b
0%3!ﬁ3zz 4 4113(2 66 6/15(2

wherez = /m(x —1)/ow, ¢(-) is the standard normal pd®( - ) is the standard normal
cdf,and H; (- ) is the jth Hermite polynomial

Konishi[24,25] gave scalar expressions for uﬁen*%) terms in Theorem 3 applied to
correlation matrices for the special case whenda} 0, (b) the eigenvalues & are not
constrained as in (19), i.e., wheris estimated by the eigenvalues of the sample correlation
matrix and (c) eitheh contains a single nonzero entrylohas the formh = (1, 0')’ for
a < p and the eigenvalues are ordered from large to small.

Konishi [23] and Fujikoshi [15] derived scalar expressions for Edgeworth expansions
of differentiable functions of the eigenvalues of sample covariance matrices. The error
in these expansions @ (n~%/?), the same as in Theorem 3. Fujikoshi’s [15] expansion
is more general than Konishi’s in that the eigenvalues need not be simple. Unlike the
expansion in Theorem 3, however, Fujikoshi’'s expansion does not allow the eigenvalues
to be modeled in parametric form. The expansion in Theorem 3 agrees numerically with
Fujikoshi’s expansion in the special case when the distinct eigenvalues are unconstrained.

4.2. Saddlepoint expansions under normality

An approximation to the cumulant generating functionfx@ﬁs readily obtained from the
moment generating function given in Theorem 2. The result, after using (32), is
12 13 4
K&l(l)lel"F%Kz—FWK:g—f—TmsKm (33)

where

B w1 2 wz—w%—f—Aa%, B B
K1—¢1+W, K2—0'W+—m , K3= w3, K4=w4—4wims,
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andw; fori =1,..., 4aswell as:%v are defined in Theoreth From Easton and Ronchetti
[13], the general saddlepoint approximation to the densit&loeﬁtx is
. _ 7 -1
f3,00 = J 0+ 0 (n7), (34)
where

1
~ m 2
fl/}l(x) = [m] exp{m Ry, (to) — xto]},

1~ 12 13 4
Ry (1) = —K (mt) =1K1+ K2+ 5 K3+ TS
2 3!
Rl (1) = )
" (002 |—

fo is the solution taRr;, (rp) = x, and

OR, (2

Ry, (1) = Rn®

The renormalized saddlepoint approximatiorr@.s"t (x), wherecq is chosen so that

1

the approximation to the density integrates to one. The relative error in the renormalized
saddlepoint approximation is ondy(n~%/?), atleastin the normal deviation region; =
o(n=1?).

It is possible thatr/, (f0) = x has either no real solution or multiple real solutions. For
this reason, Wan[B8] suggested thak,, (r) in (34) be replaced by

l‘2 2

x+t3x+l4 expl — = icob? (35)
22 3,3 a1 p 22 ,

Ipélm(ts b) =K1+
where
b= max[2,|nf{b* R (¢, b%) >0 for all £}].

ReplacingR,, (1) by R (t, b) does not change the order of the approximation.
The saddlepoint approximation to the CDFyof can be obtained by using the method
of Lugannini and Ricg26]. The result is

Fy, (x10) = PW1<x)

S N ALy S )

v\ o R (0. b)

r= sign(to)\/Z [tox — Ru(to,b)], 10 is the solution tak, (10, b) = x, (36)

where

¢(-) is the standard normal pdf, ady -) is the standard normal cdf.
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4.3. Modifications fory,

Ihe gxpansiogs in Sectiodsl and 4.2 can be applied to the random variaﬁge:
h'A/(h'2), wherel is the maximum likelihood estimator of the vector of eigenvalues of the
covariance matrix, by making the following modifications.

(1) Parameterize the eigenvalues 23)(rather than (22).
@D KO 3 -1 (1) -1~(2)
(2) ReplaceD/.w, Di-:tp,w’ andD;_:(P’q,’ by 1 D) o0 P1 D’ 020" and
goIlDfi)pz 020" respectively. Expressions for these derivatives are given in the supple-
ment. ’

(3) Replacee, = E, 3 by Ep, = Ey+ 3, wherev* = [dim(u) 1 dim(g2)]'.

The Edgeworth e>’<\pansi0ns of KonigBB] and Fujikoshi [15] also can be used fE)f inthe
special case whergis the vector of eigenvalues of the sample covariance matrix. Sugiyama
and Tong [35] also gave an Edgeworth expansion for the density of the same special
case. Their expansion, however, is notinvariant to scalar multiplicatiznanid, therefore,

it is not correct.

5. Edgeworth and saddlepoint expansions without normality

In this section, expansions for the densityhfare constructed without assuming multi-
variate normality o€, an arbitrary row oE in (3). Expansions foy, are similar in structure
and can be obtained by making the modifications described in Section 4.3.

5.1. Validity conditions

Sufficient conditions to ensure validity of Edgeworth expansions when sampling from
nonnormal distributions have been described by Bhattacharya and Ghosh [4], Wallace [37],
Hall [18, Section 2.4], and others. It follows from Theorem 2.2 in Hall that, with remainder
0 (n~1), Edgeworth expansions of the distributionsgf in (5) for k = 1, 2 are valid if

the following conditions are satisfied.

(@) E(lel®) < oo and

. . &
(b) limsup) -0 [Mex(it)] < 1, wheree* = vech(e)
distinct elements of a symmetric matrix, amt+ (it) is the characteristic function of

g*.

, the vech operator stacks the

Define?%,v to be a consistent estimator of \@r;) based on observing
{vecf’(”,sj ®8]8])] for k = 1, 2. Then, with remainde© (n 1), Edgeworth expan-

sions of the d|str|but|ons afy in (5) for k = 1, 2 are valid if the following conditions are
satisfied.
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@) E(lel|*?) < oo and

*
(b*) lim sup;)— o0 [Me=(it)| < 1, whereeg™ = (vecr(si,’ ® &£) >

Conditions (b) and (B are satisfied if the distribution afhas an absolutely continuous
component whose density is strictly positive on some nonempty open set. The above con-
ditions are sufficient but not necessary. Bgplshowed that Edgeworth expansions can

be valid even if only one component of the random vectan(the present application)
satisfies Cramér’s condition, (b) or*(b Booth, Hall, and Woods [8] and Kong and Levin

[21] showed that Edgeworth expansions of the distribution of a stafisten be valid even

if one samples from a discrete distribution provided that the sampling distributibis obt

lattice and its support set is sufficiently dense. Booth, Hall, and Woods ensuiieishadt

lattice by requiring that the parent distribution be nonlattice and that its support set contain
a minimal number of atoms. Kong and Levin ensure Thke nonlattice by requiring that
covariates not cluster around too few points.

5.2. ADF edgeworth expansions

The first three moments o’ﬁl under general conditions can be obtained by expanding

~ =~ ~3 : . . .
V1, Y1, andy, arounds = ¢ and taking expectations. The results in Section 2 are useful
for evaluating these expectations. The three moments, in turn, can be used to construct
Edgeworth expansions. With remaind2¢z 1), the Edgeworth expansions for the density

and distribution functions ole are given in Theorem 4.

Theorem 4. If the data follow the model i8) and(a) and(b) in Sectiorb.1are satisfied
then the density and distribution function&l/blf are as follows

f, x10) = f(b(z){ Gwljf + 3'[ H3(z) + O (n’l) }
and

Fy, (x10) = &) — ¢>(z){ e 3|fH2(Z) +0 (nt) }
where

7= W; W=y — ) 0% = 2VQ,v;

w1 = Z]itl’ ll':'(z) [a@ T()_l g Oy, (| p2 — PF)/]} + %tl’ <A2 g@ Qo ii(l))
Va1 EV 2, VT, )

—tr[(VOET) (1,2 — Pr) Q22.PF .
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3 - - 3 e
w3 = g(v ® V) Q222,V + ﬂsb/loAzmb + éV/QZZ,n (1,2 —Pr) F?@®b)

3 / -1 3 /E®
~SV Q22 (1,2 — Pr) (v ®L ) PrQz22,v — =V FP (b @ b).

I
b= |0 F(l)/ sz’nv,

V andv are defined in31); a, Az, and Py are defined in Appendi®; and the remaining
terms are defined in Theoreg Under normality the expressions fan1, oﬁ,, and w3 in
simplify to those i{30).

Waternaux [39] obtained the Cornish—Fisher expansion for the percentiles of the marginal
distributions of the eigenvalues of a sample covariance matrix without assuming normality.
The Cornish—Fisher expansion was based on an Edgeworth expansion witt? 6rrds.
Fujikoshi[16] also obtained the Edgeworth expansion for the distribution of the eigenvalues
of a sample covariance matrix without assuming normality. Fujikoshi’s expansion has error

only O(n_%), but like Waternaux’s expansion, it does not allow restrictions on the eigen-
values. In particular, both Waternaux’s and Fujikoshi’'s expansions require that eigenvalue
multiplicities be one.

5.3. ADF saddlepoint expansions

An ADF saddlepoint approximation to the distributionhfcan be obtained by using the
method of Gatto and Ronchetti [17]. In the present application, their procedure consists first
of keeping only thedo andQ1 terms of the expansion @¥in (29). This truncated expansion,
inturn, is approximated byd statistic of degree 2. An ADF Edgeworth expansion forithe
statistic is then obtained and is used to construct the saddlepoint approximation. The result
is identical to the saddlepoint approximation in (34), except thais substituted for;
fori =1,...,4, where

2
w1 5 2 +Ady,
Kl = + -, KZ =0 + 9
g 'pl m 8 w m
3
K2 2 K2 2
8 8
K3g = w3 - and K4g = CU4g > s (37)
Ow Ow

0%,, w1, and wz are given in Theorend; and expressions fapy, and wa, are given

in Appendix C. Unlike the expansion in (34), however, the renormalized saddlepoint ap-
proximation of Gatto and Ronchetti has relative ereum 1) rather thanO (n=%/2). The

loss ofg/azccuracy occurs because the error in the expansi\zmisyfo,,(n—l) rather than
0,(n%?).
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6. ADF confidence intervals

Confidence intervals faf ; can be constructed from the density and distribution functions
of the studentized statistic

2
def tr (V):) if normality is assumed

z =71, wherecs, =

Bl NI

V'Qy,,V otherwise

Zjisdefinedin 6),\ZandVareV andv of (31) in which consistent estimators are substituted
for parameters anf2,; ,, is given in (14). Expanding the numerator and denominat@ of
aroundf = 0 andQy,,, = Q25 ,, and then taking expectations reveals that

w1 -3 -1
E(Z)_ﬁ~|—0(n z), Var(Z)_1+0(n )
and
_ s_ 3 -3
E[Z-E@2) = ﬁ—f-O(n 2),
where
1 5
wf =223 (vE 4 o
ow 3O'W 60W (o

1 0
05 = =5 |03 + r(VE] + 65,
Ow Ow
1
16
n 1 _
+\2/—;(V ® V) Qa22,V — ZV’sz,n(lpz —Pr) (V ®X l) PrQ22,V,  (38)
05, Qa2 ,, andQyo22, are defined ing); and the remaining terms are defined Theorem
4. 1f Y has a multivariate normal distribution, then andws simplify to the expressions
in Theorem 2 and simplifies tod = 0.
DefineZ* as

.. 1 1
0= 75Vl 2 — Pr) FP@® b) — 7.V @ V) QazV + £ tr(VE)®

7*=z7--L (39)

whereZ is defined in 6) and®j is wj of (38) in which consistent estimators have been
substituted for parameters. If conditiong)and (I¥) in Section 5.1 are satisfied, then the
Edgeworth expansions of the density and distributio@’bfo O (n~1) are

* * CU?; * -1
fz=(Z*10) = ¢(z ){1+ WHS(Z )+ O (n ) }
and
w3

3 /n

Fze(510) = 0(") — ¢(z*){ Ha(z) + 0 (n7?) } (40)
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wherew3 is defined in 88). In practice, a consistent estimatoregf must be substituted

for w3. This substitution does not affect the accuracy of the expansions. Several confidence
interval procedures can be constructed directly from (40). These methods plus another
method based on an empirical saddlepoint approximation are described in the following
subsections. Confidence intervals fioy are obtained in the same manner after making the
substitutions described in Section 4.3.

6.1. First-order method and second-order edgeworth method

To orderO (n‘%), the random variablg in (6) has distributiorz ~ N(0, 1). Accordingly,

(l/p\l - Zdz%’ /‘p\l - Zilf}%) (41)

is a 10Quz — 21)% confidence interval fory, with error O(n*%), where z,, satisfies
D(zy) = o
A second-order accurate confidence interval can be based on the Edgeworth expansion
of the distribution ofZ* in (39). Percentiles of this distribution @(»~1) can be computed
by inverting the cumulative distribution function in (40). The desired inverse function is

readily obtained from the Cornish—Fisher expansion [11]. The results are as follows:
05(z2 — 1)
N

P(Z*<zy)) =a+ 0 (n_1> ,  Wwherezl =z, +

Accordingly,

~ ow[, O]~ ow[, k Of
(b= il Gl - Gl ) )

is a 10Qa — a1)% confidence interval fog/; with error O(n~1). Note that the widths
of the first-order interval in41) and the second-order interval in (42) are identical. The
second-order interval is merely shifted to correct for bias and skewness.

6.2. Hall's cubic transformation method

Hall [19] argued against using a confidence interval such as that in (42) when sample size
is small. The problem with (42) is thaf, andz7, both diverge tax or to —oco, depending
on the sign ofw} asaz — ag — 1. Instead of (42), Hall recommended that confidence
intervals be based on the Cornish—Fisher quantity

- o527 — 1)
6yn

which to orderO (n~?) has the NO, 1) distribution. Hall added a term of size(n 1) to
simplify the inversion fronT to Z*. Hall's quantity isTy = T + 6322*3/(1081) and this

T=2* (43)
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quantity also has the (9, 1) distribution toO (n~1). The inverse is

1

6./n o5 [ o 3

7F=Y_1l1-|1 3 3—T) )
wgi [+2ﬁ<6ﬁ "

Applying the inverse transformation ®(z,, < Ty <zq,) = 02 — 01+ O (n~1 reveals that
(L2, L1) is a 10Qaz — 21)% confidence interval foy, with errorO(n—1), where

1

. _ (@ & o5 (@Y 5
Li=p—awl@+ 2211 2t 44
V1 “W{n+w§ w§[+2ﬁ<6ﬁ Z 44

6.3. DiCiccio and Monti’s transformation method

DiCiccio and Monti[12] indirectly employed the Cornish—Fisher quantity in (43) to
construct second-order correct confidence intervals. Their approach, applied to the current
problem, is to work withZ - rather thariz*, where

i — )
=T 5,

Zc ; $=h(%),

and the functiori(-) is chosen to remove skewnesshlis chosen to be a member of the
Box—Cox[9] family of transformationsi,z(’xp\l) = (@i —1)/{, thenZ¢ can be expanded as

(5w (. 3 @ )
—ﬁ(zz—ng%—g%JrO(nl),

Furthermore, i’ is estimated ag: 14+ (I’ﬁl&);)/(%w), then

Zc=27"

W] 0 1
Ze=T+L- 240 (nY),
¢ Jn 6yn "

whereT is defined in 43). Accordingly,

* Sk

o 0
Zc— —=+ — ~N(0,1
= atem NOD
to orderO (n~1). Applying the inverse Box—Cox transformation to
o , 7 :
P (Za1§ZC — ﬁ + mgzaz) =0 —o1+ O <n_ )

reveals tha(Ly, L1) is a 10Quz — a1)% confidence interval foy; with error oY,
where

% ~x % /e
R I L ©1 @3

and? = 1+ 03/ (35w).
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6.4. Tingley and Field’s saddlepoint method

Tingley and Field[36] proposed a technique for constructing confidence intervals for
smooth scalar functions of a parameter vector, where the parameters are estimated by an
M-estimator. For the problem under consideration, the technique begins by approximating
the distribution of

N
_ 1 ~
G = N_lZEV[(Si ®é&) —a],
i=1
whereV is v of (31) in which parameters are replaced by estimatesmde are treated as
fixed vectors, and; fori = 1, ..., N have the same joint dislribution as the rowdssoih
(31). If & ~ N(0O, X), then the cumulant generating function@®@fis

Kg(t) = NKg(N 1),

where

~ 1 ~ 1, /4 P
Ke(t) = —%tr (£9) = Sinil, =V =5 ) (%) tr(=V)/. (46)
j=2

More generally, the cumulant generating functioafan be approximated by the empirical
cumulant generating function

N
Ks(t) = NKG(N~Yr), where exdKg(1)} = N71Y explegi}. (47)
i-1

{gi}f\’zl is the observed configuratiop;, = V' [(&; ® &) — 6] /2,%; is theith residual, and
¢; is defined in ).

A confidence interval fog/; is then constructed by inverting a test af:kf; = 1o. The
test itself is obtained by applying an exponential tilt to the distributio6 of

f6(810) ~ exp{lg — K5O} f5(@),

whereK  is the cumulant generating function 6fand( is chosen to satisfy (5|C) =

(Y10 — z///\l)(N — 1)/N. The test statistic i$;, the observed value igps = 0, and the
confidence interval is the set of values

{lﬁl; o < P(E < g’obs|§) < 012}7

where the probabilityP (G < gond() is computed by using a saddlepoint approxima-
tion to the densityf(g|{). Using the method of Lugannini and Ri§26], the resulting
100(ct> — 217)% confidence interval with erra® (N 1) is (L1, L), where

N

Li = (N—_1> K&+,

(5, satisfiesd [— Sign(3_),/2(N — 1)1<G(c§_,.)}
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exp{—(N — DKg ({5 )} 1 _ Signs-) = o
J2i(N =1 G JKLO \J2Ka()

6I(G(C) 11 % _62KG(C)
i | . K& =G0

(=C3

K/G(@—i) =

: (48)
(=5

andK is given in @6) if normality is assumed or is replaced Ky; in (47) otherwise.

7. Example

Data set #144 in [20] contains five measurements on skulls that had been collected
in Tibet. The skulls were classified by region into two groups of size 17 and 15. For
further details, see [32]. Mardia’s [30] measures of multivariate skewness and kurtosis
areby = 1288 b, = 36.64 for the first group and; = 1399, b, = 3261 for the
second group. These values suggest that the distribution of skull measurements is fairly
symmetric and mildly meso-kurtic. The likelihood ratio test of equality of the two pop-
ulation covariance matrices is nonsignificant (Bartlett corredféd= 18.37, df = 15,

p = 0.24). The pooled sample covariance matrix together with the sample correlation
matrix are displayed in the lower and upper triangular parts of the following
matrix:

59001 017 037 061 040

9.01 4826 003 015 065

S\R=1] 1722 108 3620 019 010
20.12 434 484 1831 046

20.11 3005 411 1299 4370

A correlation model was fit to the skull measures. The model placed no restrictions on the
standard deviations, but restricted the distinct eigenvalues of the correlation matrix to follow
an exponential curvéy = 3, andl4 = /5. These restrictions can be imposed by choosing
Tz andT4in (19) as

111\
T3=1® 1, 1) and T4=<123> .

The later matrix, however, does not satidfyT4 = 0. As described below equatiof9),
T4 can be replaced by any matrix whose columns form a basig fdrs — 13(%)1’3)T4].
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Table 2 R
Eigenvalues oR and¥
Index Eigenvalues Standard error Bias estimate
R v Normal ADF Normal ADF
1 2.331 2.531 0.249 0.243 0.090 0.131
2 1.236 0.908 0.054 0.053 —0.024 —0.033
3 0.804 0.908 0.054 0.053 —0.024 —0.033
4 0.366 0.326 0.071 0.069 —0.021 —0.033
5 0.263 0.326 0.071 0.069 —0.021 —0.033

One such matrix i¥ 4 = (1 0 — 1)’. The estimate of, for this choice of model matrices,
isp = 1.025. The fitted covariance and correlation matrices are displayed in the lower and
upper triangular parts of the following matrix:

6187 029 034 064 051
| 1590 4725 021 024 061
T\¥ = | 1645 889 3715 013 021 |. (49)
2181 721 351 1900 049
26.44 2780 833 1413 4417

The lack of fitx 2 statistic is 287 (265 after Bartlett correction) with 5 degrees of freedom.
See Table 2 iifi7] for details on the lack of fit test.

The elgenvalues of the sample correlation matlxand the fitted correlation matrix,
¥ = TAT are displayed in Table 2. Also displayed are standard errors from (6) and
estimated bias of the elgenvalues‘ﬂf computed with and without the assumption of
normality. See [7] for details on the estimator of bias. The estimated biases and standard
errors do not depend too much on whether the normal theory or the ADF estimators are
employed because the distribution of skull measurements does not strongly depart from
normality.

Two-sided 90% confidence intervals for each of the distinct eigenvalues of the correlation
matrix are displayed in Table 3. The limits of the intervals also serve as limits for one-
sided 95% lower and upper confidence intervals. The intervals displayed in Table 3 are the
first-order method from (41), the second-order Edgeworth method from (42), the second-
order Hall method from (44), the second-order DiCiccio and Monti method from (45), and
the second-order Tingley and Field method from (48). The intervals were computed using
normal theory (Theorem 2, Eq. (46)) and ADF (Theorem 4, Eq. (47)) estimators of unknown
quantities.

The three intervals based on the Edgeworth expansion (Edgeworth, Hall, DiCiccio) are
similar to one another and differ from the first-order intervals primarily by a shift that adjusts
for bias and skewness. The Tingley and Field intervals appear to be a compromise between
the first-order intervals and the Edgeworth-based intervals, at least when ADF estimators
are used.
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Table 3
90% Confidence intervals for the eigenvalues of the correlation matrix of skull measurements
Method Normal theory based

M /o and/3 A4 and/s

Lower Upper Lower Upper Lower Upper
First order 2.121 2.941 0.820 0.997 0.210 0.442
Edgeworth 2.028 2.848 0.827 1.004 0.249 0.482
Hall 2.028 2.848 0.825 1.006 0.248 0.483
DiCiccio 2.029 2.846 0.831 1.002 0.244 0.488
Tingley 2.096 3.078 0.790 1.002 0.171 0.450
Asymptotic distribution free
First order 2.131 2.931 0.822 0.995 0.212 0.440
Edgeworth 1.987 2.788 0.841 1.014 0.265 0.493
Hall 1.987 2.788 0.840 1.014 0.263 0.496
DiCiccio 1.970 2.797 0.845 1.010 0.256 0.508
Tingley 2.114 2.875 0.834 0.999 0.229 0.445

8. Simulation study
8.1. Edgeworth and saddlepoint approximations under normality

A five-dimensional covariance matriX,, was set equal to the fitted covariance matrix
from the skull data in49) and 50000 samples were generated from the Wishart distribution
Ws(20, X). The restricted model was fit to each sample covariance matrix and the following
functions of the eigenvalues of the correlation matrix were estimated:

/

wll . )Ll l O O O O

://;12 = 121 i j: =H'A, whereH = 8 é é 2 2 . (50)
13

Y14 M+ 22+ 23 11100

Fig. 1 displays the kernel smoothed empirical pdﬁqfl, e, @14. Also displayed are the
Edgeworth and saddlepoint approximations from Theorem 3 and (34), respectively, and the
first-order normal approximation

Vi N [y @V @0

whereV; is V of (31) in whichh is the jth column ofH in (50). The valued = 0 was

used. Vertical bars are drawn at the means of the first-order normal approximations. The
first-order normal approximations fail to account for the bias and skewness that are present
in the distributions of the estimators. The saddlepoint approximations are substantially more
accurate than the first-order normal approximations, but they are slightly less accurate than
the Edgeworth approximations. The saddlepoint approximations of Gatto and Ronchetti in

Section 5.3 also were computed but are not displayed in Fig. 1. They are more accurate
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Fig. 1. Density 0@11 ..... @14 for the skull model.

that the first-order normal approximations, but less accurate than the normal theory-based
Edgeworth and saddlepoint approximations.

Fig. 2 displays the difference between the empirical CDF and the CDFs based on the
normal theory Edgeworth approximation in Theorem 3, the normal theory saddlepoint
approximation in (36), and ADF saddlepoint in Section 5.3. No single approximation is
uniformly superior, but the Edgeworth expansion tends to have smaller errors followed in
order by the normal theory saddlepoint and ADF saddlepoint approximations.

8.2. Finite-sample coverage of confidence intervals

Random samples were drawn from six multivariate distributions, each having covari-
ance matrix equal to the fitted matrix in (49). The marginal standardized third and fourth
cumulants of the five random variables within each distribution are listed in Table 4. The
multivariate Bernoullirandom variables were generated using the algorithm of Qagqish [33].
Marginally, each of the five random variables in this distribution has a Bernoulli distribu-
tion with probability of success.P8. This is the smallest probability for which Qagish’s



R.J. Boik / Journal of Multivariate Analysis 96 (2005) 136—-171 161

Y11 J12
0
\\ - Normal Edgeworth
-1 A\ |--- Normal Saddlepoint !
2 “\ |—ADF Saddlepoint /
o 3 ‘, /
i . ;
-4 . o
5 RO
-2 -6
0 20 40 60 80 100 0 20 40 60 80 100
13 V14
4
2
0 *

5, ¢ ‘

L KX
4t ‘\
-6
-8 -4

0 20 40 60 80 100 0 20 40 60 80 100

Percentile Percentile

Fig. 2. Error in CDF of@ll, ce @14 for the skull model.

multivariate Bernoulli distribution exists, subject ¥ = T of (49). The multivariate
Bernoulli distribution does not satisfy regularity conditiorf)in Section 5.1. Therefore,
there is no assurance that the associated Edgeworth expansions are valid. The parameters of
the multivariate lognormal distributions were chosen to attain specific marginal standard-
ized third cumulants anll = X of (49). Random samples of si2é = 21, 51, 101, 201,
501, and 1001 were drawn from each distribution except lognormal 4. Random samples of
sizeN = 201, 501, 1001, and 5001 were drawn from the lognormal 4 distribution.

For each sample size, 5000 samples were drawn from the parent distribution in Table 4.
If the covariance matrix based on multivariate Bernoulli sampling was singular, then the
sample was discarded and a new sample was drawn. This occurred in less than 10% of the
samples whewv = 21 and did not occur wheN >51. For each sample, 95% one-sided
lower and upper confidence intervals for the distinct eigenvalues of the correlation matrix
were computed by the methods illustrated in Table 3. It is possible that the DiCiccio and
Monti interval in 45 cannot be computed because the inverse Box—Cox transformation fails
to exist for one or both endpoints. If an endpoint of a DiCiccio and Monti interval could
not be computed, then the endpoint was equated to the corresponding first-order endpoint
computed on the same data set.



162

Table 4
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Marginal standardized cumulants of population distributions

Distribution Variable

1 2 3 4 5
Normal
K3; 0.00 0.00 0.00 0.00 0.00
K4j 0.00 0.00 0.00 0.00 0.00
Bernoulli
K3j 0.98 0.98 0.98 0.98 0.98
K4j —1.04 —-1.04 —1.04 —1.04 —1.04
Lognormall
K3; 0.25 0.50 0.75 1.00 1.25
K4j 0.11 0.45 1.02 1.83 2.90
Lognormal2
K3j 0.50 1.00 1.50 2.00 2.50
K4j 0.45 1.83 4.25 7.86 12.85
Lognormal3
K3j 1.00 2.00 3.00 4.00 5.00
K4j 1.83 7.86 19.40 38.00 65.26
Lognormal4
K3j 2.00 4.00 6.00 8.00 10.00
K4j 7.86 38.00 102.76 214.49 384.78

K3j = (¥ —p)3/a3, K4y = (V) — p)*/a] - 3.

Minimum and maximum coverage rates were estimated empirically for each (method,
sample size) combination. For example, 5000 samples ofsize21 were drawn from the
multivariate normal distribution KL, ', X), whereX = X of (49). Empirical coverage rates
of the first-order normal-theory intervals foty, A2, 14) were(0.8258 0.9688 0.9930 for
the lower intervals and0.9856 0.8762 0.7778 for the upper intervals yielding minimum
and maximum coverage rates off@78 and 1®930. The corresponding coverage rates
for the first-order ADF method wer@®.7892 0.9572 0.9836 for the lower intervals and
(0.9762 0.8298 0.7480 for the upper intervals yielding minimum and maximum coverage
rates of 07480 and (®836.

Fig. 3 displays the minimum and maximum coverage rates when sampling from either
multivariate normal or multivariate Bernoulli distributions. If normality is satisfied, then
coverage for all confidence intervals converges tod = 0.95 asn — oo. It is apparent
in the left-hand panel of Figure 3 that the coverage rates for second-order Edgeworth-based
methods (Edgeworth, Hall, and DiCiccio) converge te & substantially faster than do the
first-order methods. Using normal-theory estimators when normality actually is satisfied
yields minimum coverage rates that are slightly closer te & than are the minimum
coverage rates of intervals based on ADF estimators. The penalty for using ADF estimators,
however, decreases rapidly mécreases. The right-hand panel of Fig. 3 shows that ADF
methods are superior to normal-theory methods and that second-order ADF methods are
superior to the first-order ADF method when sampling from the multivariate Bernoulli
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Fig. 3. Coverage when sampling from normal or Bernoulli distributions.

distribution. That is, employing skewness and bias corrections yields superior confidence
intervals even though regularity conditiori{ln Sectiorb.1is not satisfied. Under Bernoulli

sampling, the distribution &fin (6) is discrete with as many é@*ff’l) atoms. Presumably,

the probability mass is spread among these atoms in such a manner that the step sizes in
the cdf ofZ are no larger tha® (n~1). Fig. 3 also reveals that, under Bernoulli sampling,
coverage rate of the normal-theory-based intervals converges to a value smaller that 1
Overall, the three Edgeworth-based methods perform best.

Fig. 4 displays minimum and maximum confidence interval coverage when sampling
from multivariate lognormal distributions. Collectively, the four panels show that (a) if
deviation from normality is slight (lognormal 1) and sample size is small, then normal-
theory intervals are superior to ADF intervals; (b) as deviation from normality increases,
performance of normal-theory intervals degrades and ADF intervals, both first and second
order, are superior to the corresponding normal-theory intervals; (c) the performance of
second-order ADF Edgeworth-based intervals (Edgeworth, Hall, DiCiccio) is superior to
that of ADF Tingley intervals; (e) coverage of second-order ADF Edgeworth-based intervals
is superior to that of first-order ADF intervals; and (d) if deviation from normality is large
(lognormal 4), then sample si2é = 5001 is too small to ensure coverage of k, even
for second-order ADF methods.

Of the 680 000 DiCiccio and Monti confidence interval endpoints depicted in Figs. 3
and 4, 2037 endpoints could not be computed. Most of these failures (2004) were ADF
endpoints and this occurred because the ADF estimators of bias and skewness are more
variable than are the normal-theory estimators.
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Overall, the three Edgeworth-based ADF intervals in E4R),((44), (45) are recom-
mended. These methods performed substantially better than first-order methods under all
conditions; nearly as well as second-order normal-theory methods in cases where the par-
ent distribution is normal or nearly so; and substantially better than normal theory methods
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when the parent distribution is not normal. Approximal%lyf 1% of the ADF DiCiccio and

Monti endpoints could not be computed, but in these instances, second-order Edgeworth
or Hall endpoints can be substituted. If deviation from normality is large, then none of the
methods perform well. In this case, intervals based on robust estimators of the eigenvalues
likely would perform better.

Appendix A. Weights for sixth-order moments
The coefficient matrixV in Theoreml can be written as
W = D 1w*,

whereD = n @ nllz ®n’lg, W* = (W] W3 - - Wip),

(W7 w3 w3)

ce cg — 3¢5 + 2cp cg — 3c5 + 2cq

cg n® — 3nc1 + 2cg n? — (n+ 2)c1 + 2csg

4eg  A[n? — (n + 2)cq1 + 2cg] n(n?+n+2) —4n + 2)c1 + 8cg

2cg  2[n? — (n + 2)c1 + 2cg] 2(n — 3c1 + 2cg)

8cg 8(n — 3c1 + 2cg) An(n+1) — (n 4+ 5)c1 + 4esl
| 2c5 2(nc1+ 2c5 —ne2 —2c9)  (n+ L)y + 4es — (n 4 2)c2 — 3cg

c5 nc1 + 2c5 — nea — 2c9 c1+ 2c5 — 2c2 — c9

8cs  8(c1+2c5 —2cp —cg)  2[(n + 3)c1 + 8¢5 — (n + 6)c2 — Seg
dcs  4(cy + 2c5 — 2¢p — cg) 4(c1 + 2c5 — 2¢p — c9)
4c7 4(c3 + 2c7 — 2c10 — c11) 2(c3 + c4 + 4c7 — 2c10 — 4e11)

2c7 2(c3 + 2c7 — 2c10 — c11) 2(c3 + 2c7 — 2¢10 — c11)
4c7 4(cq + 2c7 — 3c11) 2(c3 + c4 + 4c7 — 2c10 — 4c11)
(Wy Wg)
cg — 3c5 + 2c6 cg — 3c5 + 2c

n — (n+ 2)c1 + 2cg
4(n — 3c1 + 2cg)

n?(n + 1) — 2(2n + 1)cy + 4cg
Ann+ 1) — (n + 5)c1 + 4csg]
2(c1 + 2c5 — 2c2 — ¢g)
ne1 + 2c5 — nea — 2c9
8(c1 + 2c5 — 2¢2 — ¢9)
2[(n + 1)c1 + 4es — (n 4+ 2)c2 — 39
4(c3 + 2c7 — 2c10 — c11)
2(ca+ 2c¢7 — 3c11)
2(c3+ c4 + 4c7 — 2c10 — 4e11)

n — 3c1 + 2cg
2[n(n + 1) — (n + 5)c1 + 4cs]
n(n+1) — (n+ 5)c1 + 4cs
n(n+3n +4) — 6(n + 3)c1 + 16¢g
2(c1 + 2¢5 — 2¢2 — ¢g)
c1+ 2c5 — 2c2 — ¢g
2[(n 4+ 3)c1 + 8cs — (n + 6)c2 — 5egl
(n +3)c1 + 8cs — (n + 6)c2 — 5cg
2(c3 + ¢4+ 4c7 — 2c10 — 4e11)
3+ c4+4c7 — 2c10 — 4e11
3c3 + ¢4 + 8c7 — 6c10 — 611
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5 — C6 5 —C6 5 — Ce6 C5 —C6
nci1 — cs nci1 — cs Cc1—C8 c1 — C8
2[(n +1)c1 — 2cg] 4(c1 —cg)  (n+ 3)c1 — 4cs 4(c1— cs)
2(c1—cg)  2(nci—cg) 2(c1 — c8) (n+1)c1 — 2cg
8(c1 — cg) 8(c1—cg) 2[(n+3)c1—4cg] 2[(n+ 3)c1 — 4cg]
_ ncp +cg — 2c5  2(cg — ¢5) 2 4 cg — 2c5 2(c2 — ¢5)
- c9 — 5 ney — cs 2 — c5 c9 — 5
A(cp 4+ c9g— 2c5) 8(co —c¢5) (n +4)co + 3cg — 8cs  4(cp + cg — 2c¢5)
4(c2 —c5) dcg—c5) 2(cz+cg—2c5) (n+2)c2+cg—4cs
2(c10+ c11— 2c7)4(c10—c¢7)  c10+3c11—4c7 2(c10+ c11 — 2c7)
2(cio—c7)  2(ci1—c7) c10+c11— 2c7 2(c11—¢7)
4(c11—c7)  Aciri—c7) 2(cio+ci1—2c7) 2(cio+ c11— 2c7)
c7 —Cq c7 — C6 c7 —C6
c3—cg c3—cg c4 — g
2(c3+ cq4 — 2c8) 4(c3 — cg) 2(c3 + c4 — 2cg)
2(c3 — cg) 2(cq — c8) c3+ cq4— 2cg
4(ca+c4—2cg)  4(ca+ca—2cg)  2(3c3+ ca — 4cg)
% " c10+ c11 — 2c5 2(c10— ¢5) 2(c11 — ¢5)
(Wio --- Wip) = €10 — 5 c11— ¢s5 c11—¢s5
2(c10+ 3c11 — 4cs) 4(c10+ c11— 2c5) 4(c10+ c11 — 2c5)
2(c10 + c11 — 2c5) 4(c11 — c5) 2(c10 + c11 — 2c5)
312+ 2 — 4er 4(c12 —¢c7) 4(c12 —¢c7)
2(c12 —¢7) c12+ ¢2 — 2c7 2(c12 —¢7)
4(c12 —c7) 4(c12 —¢c7) 3c12+ €2 — 4y
andc; fori =1,...,12 are given in Tablé.

The coefficient vectoraoo2 andwys in (16) are displayed in Table A.1.

Appendix B. Expressions forw; in Theorem 2

The quantitieso; fori = 1, 2, 3, 4, 6 can be written as follows:

Wy = w2 —21tr [F(l)’ (V ® E_1>(Ipz ~Pr)FP@® |—0—1)] + aTgAzvec(ly)

—_1

w1 = Sapvedly) — v FP vec(l p

+4tr[Pr (EV @ 1,) (1,2 = PRIN, (EV @ 1,)] - 3aToAz FY F@ vec(T, )

+3tr [F27 (1,0 Pr) FP(aal @ Tg )] +tr [AFY (V@ 271 FY]

1 — S
—3VF@ap — >V F® [a@ vec(lo 1)] + 3V F® <|0 'ol, l) F@y
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Table A.1
Coefficients for unbiased estimators@poo ,, and€Qys» , whenX = 1y

i w222 /n%? wap;/n’
. <n3+3n2+2n+12) (n+2)(n2—n+2>
(n=Han+1 (n—4gmn+1
, (n* = n®— 1202 4 81 + 12) 2<n472n379n2+8n+12)
(n— 44 (n+1)72 (n— &4 n+1)2
n(2n2-5n—1 n(n?—2n-1
n(2n2-5n—1 n(2n2—-5n-5
’ <<4><+1>> 2<<4><+1>)
n(n?—-2n+3 n(n?2=n+2
] (n4+n3—8n2—16n+4) (n4—n3—6n2—4n+4)
(n =40 +1)2 (n =440 +1)2
, (n4+n3—8n2—16n+4) (n+2)<n3—n2—8n—2)
(n =440 +1)?2 (n— 44 (n+ D)2
. <2n3+n275n+8) (n+2)<n27n+2)
(n =440 +1)2 (n =440 +1)7
. (2n3+n2—5n+8) n(2n2—n—7>
(n =440 +1)2 (n =40 +1)2
o (n3—n2—2n+4) n(n2—2>
(n—1) (1 —4)y(n+1)2 (n—2)p(n —4) (n+ 1)2
0 <n3—n2—2n+4> <n3+n2—4n—8>
(n—1)(n— 4 (n+ 1) (n =44 (n+1)?
. (5n2+5n—12) (3n2+3n-4)
(n =40 +1)2 (n =440 +1)2

(n — a)p is Pochhammer’s symbadly —a), = (n —a)(n —a+1)---(n —a+b—1).

—VF® vec[l_(;lF(l)/ (V ® E_l> FOT, - T, L FY E@ <a® I_Jl)]
—tr [F(l)/ E@ @a® A2):| + [VedVEV)]/ (|p2 — PF) F@ VEC(|—0_1>

+VF? [a@ Ty FY F@vec(Ty )|+ §tr[AlpAsly]
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— /..
—3[vec(ig )] F?' (1, —Pr)FP @@ a),
w3 = -3V FP@® a) + 3aTpAslpa + tr(TV)®,
w4 = dywz — 6V FP [a QT FO veo(VZV)] +12[veaVEV)] FP AT pa
+12aTyAslgAsl ga — 120 FP [a® Azl ga] + 3tr(ZV)*
~2VF®@a®a®a) — 6alpA FY' FP(a® a) + 4aToAs [lpa® Tya]
+3VF? [awl, FYFP@ea)|+3vF? (adel, )F?'v,
we = 10(1)%,
Pr = 3FVT, T EY a=T,"E,D{h,

20 = (1) 'Ep ®T5 'Ep) DZ b, Az = dvedas, i, ),
s

ag = (I_e_ ‘B, ®T, E, 0T, 1E(,,) D . h. andAs = dvedag, 7, #?).

The quantityPr is the projection operator that projects omoF®) along A/ (FD).

Appendix C. Expressions formz, and wgg in (37)

The quantitiesuy, andwse can be written as follows:

W2e = <m2—T1> |:6—];1tf (V2Q222V202))
ot (B2 (12— Pr) Q22 (12— Pr) B (adl @, "D 0P T, ) |
+1r [P (E @ V) (1,2 = Pr) Q22 (1,2 — Pr) (E71 @ V) P22
PV F (17 B 00 B0 T Ty Y 00 1) F2'y
—% tr{@@FOTyHF? (1,0~ Pr) Q22 (1,2 — Pr) (X7 @ V) Prza)
—3—12v’ F@ vec{l_(,_1 FO" Qs (I 02— Pr) F@ (a ® |_9_1 FD Q,, ED I_o_l) }
+1—16tr [(@@FDTy ") F@ (1,2 - Pr) Q22V202)

+év’ F@ vec|Ty FY @z (1,2 = Pr) (271 @ V) PraaFV Ty |

—%tr {Pp’ (Z‘l ® V) (1,2 —Pr) szVzﬂzz}

1 1. v —
o F@ vec{ Ty EQ @V 2000 ED T, 1}}
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and
2
wag = VOV 744V ® V) + 3 [tr(VE)] 0%,
+2 [trvE)]* - r(VE)(V ® V) panv — 30y
+3(v® V)/{ [y42 — 2(6 ® Q22) — vedQ22)6" — (6 ® 66')| ® V/sz}
x{%vec[(lpz — Pp) @ <a®l_9_1 if(l)’>] + 3v2
- vec[(l 2 —Pr)(E1e V)PF] - L (ﬁﬂ) T, ®E® T,,‘l) F<2>/v}
+2@®b) F@ (1,2 — Pr) Q22 (1,2 — Pr) F? @@ b)
+1/ Q2P (2@ V) (1,2 = Pr) Q22 (1,2 = Pr) (£ @ V) Pr€zav
+3VF® (bb’ Ty FY QpEDT, 1) F@y
+ 25V Q25V 205V 2 Qv
—6(a@b) F' (1,2~ Pr) Qa2 (1,2 — Pr) (£ @ V) Prlov
-3V F? {b ® I_,,_l FY Qo (1,2 — Pr) F? (a® b)}
+3@®b) F@' (1,2 — Pr) Q2oV2Qoov
+3VF? loal, ' FY Qan (1,0~ Pr) (2 @ V) Prodzay|
—3V' QP (E_l ® V) (| P2 PF) Q50V2Q00v

1.
_1_36\/ F@ (b @0y F 922V2922V>j|,

where
vo = (FOTy 'Ep @ FV Ty 'E,) DY) .
Vo = dveC(Vz, P2, pz) :

and the remaining terms are defined& &nd in Appendix B.

References

[1] T.W. Anderson, Asymptotic theory for principal component analysis, Ann. Math. Statist. 34 (1963) 122—148.
[2] G.J.Babu, Z.D. Bai, Edgeworth expansions of a function of sample means under minimal moment conditions
and partial Cramér’s condition, Sankh$5 (1993) 244—-258.

[3] O.E. Barndorff-Nielsen, D.R. Cox, Asymptotic Techniques for use in Statistics, Chapman & Hall, London,
1989.



170 R.J. Boik / Journal of Multivariate Analysis 96 (2005) 136—-171

[4] R.N. Bhattacharya, J.K. Ghosh, On the validity of the formal Edgeworth expansion, Ann. Statist. 6 (1978)
434-451.
[5] R.J. Boik, A local parameterization of orthogonal and semi-orthogonal matrices with applications, J.
Multivariate Anal. 67 (1998) 244-276.
[6] R.J. Boik, Spectral models for covariance matrices, Biometrika 89 (2002) 159-182.
[7] R.J. Boik, Principal Components models for correlation matrices, Biometrika 90 (2003) 679—701.
[8] J.G. Booth, P. Hall, A.T. Wood, On the validity of Edgeworth and saddlepoint approximations, J. Multivariate
Anal. 51 (1994) 121-138.
[9] G.E.P.Box, D.R. Cox, An analysis of transformations (with discussion), J. Roy. Statist. Soc. Ser. B 26 (1964)
211-252.
[10] M.W. Browne, Asymptotically distribution-free methods for the analysis of covariance structures, Brit. J.
Math. Statist. Psychol. 37 (1984) 62—83.
[11] E.A. Cornish, R.A. Fisher, Moments and cumulants in the specification of distributions, Internat. Statist. Rev.
5 (1937) 307-322.
[12] T.J. DiCiccio, A.C. Monti, Accurate confidence limits for scalar functions of vektegstimands, Biometrika
89 (2002) 437-450.
[13] G.S. Easton, E. Ronchetti, General saddlepoint approximations with applicati@nstadistics, J. Amer.
Statist. Assoc. 81 (1986) 420—-430.
[14] B. Flury, Common Principal Components and Related Models, Wiley, New York, 1988.
[15] Y. Fujikoshi, Asymptotic expansions for the distributions of some function of the latent roots of matrices in
three situations, J. Multivariate Anal. 8 (1978) 63—72.
[16] Y. Fujikoshi, Y. Asymptotic expansions for the distributions of the sample roots under nonnormality,
Biometrika 67 (1980) 45-51.
[17] R. Gatto, E. Ronchetti, General saddlepoint approximations of marginal densities and tail probabilities, J.
Amer. Statist. Assoc. 91 (1996) 666—673.
[18] P. Hall, The Bootstrap and Edgeworth Expansion, Springer, New York, 1992.
[19] P. Hall, On the removal of skewness by transformation, J. Roy. Statistic. Soc. Ser. B 54 (1992) 221—-228.
[20] D.J. Hand, F. Daly, A.D. Lunn, K.J. McConway, E. Ostrowski, A Handbook of Small Data Sets, Chapman
& Hall, London, 1994.
[21] F. Kong, B. Levin, Edgeworth expansions for the conditional distributions in logistic regression models, J.
Statist. Plan. Inference 52 (1996) 109-129.
[22] R.H. Koning, H. Neudecker, T. Wansbeek, Unbiased estimation of fourth-order matrix moments, Linear
Algebra Appl. 160 (1992) 163-174.
[23] S. Konishi, Asymptotic expansions for the distribution of a function of the latent roots of the covariance
matrix, Ann. Inst. Statist. Math. 29 (1977) 89-96.
[24] S. Konishi, Asymptotic expansions for the distribution of statistics based on a correlation matrix, Canad. J.
Statist 6 (1978) 49-56.
[25] S. Konishi, Asymptotic expansions for the distributions of statistics based on the sample correlation matrix
in principal component analysis, Hiroshima Math. J. 9 (1979) 647-700.
[26] R. Lugannini, S. Rice, Saddlepoint approximation for the distribution of the sum of independent random
variables, Advan. Appl. Probab. 12 (1980) 475-490.
[27] E.C. MacRae, Matrix derivatives with an application to an adaptive linear decision problem, Ann. Statist. 2
(1974) 337-346.
[28] J.R. Magnus, H. Neudecker, The commutation matrix: some properties and applications, Ann. Statist. 7
(1979) 381-394.
[29] J.R. Magnus, H. Neudecker, H. Matrix, Differential Calculus with Applications in Statistics and Econometrics,
revised ed, Wiley, Chichester, 1999.
[30] K.V. Mardia, Measures of multivariate skewness and kurtosis with applications, Biometrika 57 (1970)
519-530.
[31] P. McCullagh, Tensor Methods in Statistics, Chapman & Hall, London, 1987.
[32] G.M. Morant, A first study of the Tibetan skull, Biometrika 14 (1923) 193—-260.
[33] B.F. Qagish, A family of binary distributions for simulating correlated binary variables with specified marginal
means and correlations, Biometrika 90 (2003) 455—-463.
[34] N. Reid, Saddlepoint methods and statistical inference, Statist. Sci. 3 (1988) 213-238.



R.J. Boik / Journal of Multivariate Analysis 96 (2005) 136—-171 171

[35] T. Sugiyama, H. Tong, On a statistic useful in dimensionality reduction in multivariable linear stochastic
system, Comm. Statist.—Theory and Methods A5 (1976) 711-721.

[36] M. Tingley, C. Field, Small-sample confidence intervals, J. Amer. Statist. Assoc. 85 (1990) 427-434.

[37] D.L. Wallace, Asymptotic approximations to distributions, Ann. Math. Statist. 29 (1958) 635-654.

[38] S. Wang, General saddlepoint approximations in the bootstrap, Statist. Probab. Lett. 13 (1992) 61-66.

[39] C.M. Waternaux, Asymptotic distribution of the sample roots for a nonnormal population, Biometrika 63
(1976) 639-645.



