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Abstract

A new Gaussian graphical modeling that is robustified against possible outliers is proposed. The likelihood
function is weighted according to how the observation is deviated, where the deviation of the observation
is measured based on its likelihood. Test statistics associated with the robustified estimators are developed.
These include statistics for goodness of fit of a model. An outlying score, similar to but more robust than the
Mahalanobis distance, is also proposed. The new scores make it easier to identify outlying observations. A
Monte Carlo simulation and an analysis of a real data set show that the proposed method works better than
ordinary Gaussian graphical modeling and some other robustified multivariate estimators.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Independence is an important concept in statistics. Conditional independence is also important,
especially in multivariate analysis. To explore these relationships, graphical modeling [18,9,6]
has been developed. Though there exist some types of graphical notations, in this paper we focus
on conditional independence described with an undirected graph G = (V , E), where V is a vertex
set and E is an edge set. A vertex is associated with a random variable. For further discussion, we
introduce some graphical notations. If vertices � and � are connected by an edge, they are said to
be adjacent. If there is no edge between vertices, they are non-adjacent. A path is a sequence of
distinct vertices that is included in E. For three distinct subsets A, B, C ⊂ V of the vertex set, C
is said to separate A from B if every path between A and B includes vertices of C. Assume that
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random variables Yi (i ∈ V ) have a certain joint probability distribution P. If for any non-adjacent
pair �, �,

Y�@Y� | YV \{�,�},

then P is said to obey the pairwise Markov property. If for any triple A, B, C of disjoint subsets
of V , C separates A and B in G, and

YA@YB | YC,

then P is said to obey the global Markov property. It has been proved that these two Markov
properties are equivalent. (See [9] for a more detailed discussion.)

Let Y = (Y1, . . . , Yp)T be a random p-vector with a covariance matrix � = (�ij ). Under
Gaussian assumption, conditional independence is equivalent to zero partial correlation
coefficient, that is,

Yi @Yj | YV \{i,j} ⇔ �ij ·V \{i,j} = 0,

where V is an index set of all variables and �ij ·V \{i,j} is a partial correlation between Yi and Yj

given the variables YV \{i,j}, defined as

�ij ·V \{i,j} = − �ij

√
�ii�jj

,

where �ij is the (i, j)th element of the inverse matrix of �. Based on this property, Dempster [5]
introduced the covariance selection model in which certain elements of �−1 are set to zero. The
equivalence of the two Markov properties holds true under Gaussian assumption, which means
that any covariance selection model can be described with an undirected graph. In other words, we
can explore conditional independence based on partial correlation coefficient from observational
data. Then a practical procedure for statistical estimation and evaluation of covariance selection
models has been studied by many researchers [6,17,15].

However, collected data often involve several outliers. An outlier is defined as an observation
that comes from a population other than a target population. The smaller the sample size, the more
serious is the effect of outliers. The existence of outlying observations could lead to wrong analy-
sis. It is well known that a traditional covariance estimator is seriously biased by outliers and thus
correlations and partial correlations are also biased. Gaussian graphical modeling is often used for
exploring multivariate structures only from observational data without any specific knowledge.
In such a situation, biased estimates could lead to wrong models. Some robust covariance estima-
tors, e.g., minimum volume ellipsoid (MVE) and minimum covariance determinant (MCD) have
been proposed by Rousseeuw [13]. However, no one has derived these types of estimators for a
structured covariance matrix and a test statistic for overall goodness of fit, hence, it is impossible
to execute Gaussian graphical modeling procedure using these robust methods.

The main objective of the present paper is to improve a Gaussian graphical modeling procedure
via robustified maximum likelihood estimation (MLE). Recently, some researchers presented an
idea, downweighting observations with their own likelihoods [19,1,7]. We adopted this type of
robustified MLE to derive an estimating equation for partial correlations and to construct an
algorithm for obtaining estimates and test statistics.

Section 2 proposes a new procedure in detail, together with results concerning asymptotic
variance of a robustified estimator. In addition, an appropriate value of the tuning parameter that
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controls the degree of robustness is analyzed. In Section 3, we compare the proposed method
with other robust methods, MVE and MCD. In Section 4, the proposed procedure is applied to a
real data set. This application shows that our robustified procedure can construct an appropriate
model even from contaminated data. Our results are summarized in Section 5.

2. Robustifying Gaussian graphical modeling

2.1. Robust maximum likelihood method

Consider a parametric statistical model {f (y, �) : � ∈ �} for observations {yi : i = 1, . . . , n},
where f (y, �) is a probability distribution function and � is a parameter space of �. Let �(·) be
a convex, increasing, and differentiable function on R1.

For given data yi , we define a robustified log likelihood with �(·) as

L(�) = 1

n

n∑
i=1

�
{
�(yi , �)

} − b(�) (1)

with �(yi , �) = log f (yi , �), where

b(�) =
∫

�∗ {�(y, �)} dy

with

�∗(z) =
∫ z

0
exp(s)

��(s)

�s
ds.

An estimator is defined as

�̂ = argmax
�∈�

{L(�)} .

Next, we derive an estimating equation. The first differentiation of the objective function (1) to
be solved for � is

1

n

n∑
i=1

�{�(yi , �)}S(yi , �) − �
��

b(�) = 0, (2)

where

�(z) = ��(z)

�z
and S(y, �) = �

��
�(y, �).

Note that the second component of (2) is the expectation of the first component since

�b(�)

��
=

∫
� {�(y, �)} S(y, �)f (y, �) dy = E

[
� {�(y, �)} S(y, �)

]
.

Here, exchangeability between integration and differentiation is assumed. This means that the
estimating equation (2) is unbiased and thus, the resulting estimator will be consistent for �.

This method was proposed as �-likelihood by Eguchi and Kano [7]. They defined the �-
likelihood as in (1) and showed its asymptotic characteristics.
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To derive a specific estimator we choose

��(z) =
⎧⎨⎩

exp(�z) − 1

�
for � > 0,

z for � = 0.

(3)

Obviously, ��(·) is convex, increasing and differentiable. Modified likelihood (1) with function
(3) is termed �-likelihood.

The estimating equation (2) is then described as

1

n

n∑
i=1

f (yi , �)�S(yi , �) − E
[
f (y, �)�S(y, �)

]
= 0. (4)

We refer to a maximum �-likelihood estimator derived from this equation as a �-estimator and
to � as a robustness tuning parameter. A larger value of � will result in more robust estimates.
When � = 0, the weight is 1 for every observation, and no robust estimation is made. Indeed, the
�-estimator with � = 0 is nothing but a MLE.

A similar idea of downweighting with respect to the model has also been proposed by Windham
[19] and Basu et al. [1]. Windham [19] presented a procedure choosing parameter t such that∑n

i=1 St (yi)f
(1+�)
t (yi)∑n

i=1 f
�
t (yi)

=
∫

St (z)f
(1+�)
t (z) dz∫

f
�+1
t (z) dz

with a tuning parameter �, where ft (y) is a probability distribution function of y and St (y) is its
score function. Basu et al. [1] introduced a minimum divergence estimation method. They used
density power divergence with a parameter �:

d�(g, f ) =
∫ {

f (�+1)(z) −
(

1 + 1

�

)
g(z)f �(z) + 1

�
g(�+1)(z)

}
dz.

Jones et al. [8] compared the method of density power divergence with Windham’s procedure
and concluded that both the procedures show almost the same performance and the former gives
a slightly better estimator in a special case.

Minami and Eguchi [12] have already pointed out that the �-divergence is related to the density
power divergence as D�(g, f ) = (� + 1)d�(g, f ), and thus, the same estimator is derived from
these divergences. We use the �-likelihood procedure to robustify Gaussian graphical modeling.

2.2. Robustifying estimating equation via �-likelihood

Suppose that observations are generated as

yk ∼ N(µ, �) (k = 1, . . . , n)

independently over k, where yk is a p × 1 vector, µ is a p × 1 mean vector and � is a p × p

covariance matrix.
A covariance selection model is a model in which some non-diagonal elements of �−1 are

restricted to zero. Let I be an index set of (u, v) that specifies zero elements of �−1. IC denotes
the complement set of I. Let aij be an (i, j)th element of A = �−1 and Eij be a matrix having
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the (i, j)th element as 1 and the rest 0. A parametrization of �−1 is then given as

�−1 =
∑

(i,j)∈IC

aijEij . (5)

For a saturated model, Eguchi and Kano [7] showed the following proposition on robustified
estimators.

Proposition 1. For a saturated model, estimators of a mean vector µ and a covariance matrix
� satisfy the following estimating equations:

1

n

n∑
k=1

exp(�zk)(yk − µ) = 0 (6)

and

1

n

n∑
k=1

exp(�zk)
{
� − (yk − µ)(yk − µ)T

}
= �

(� + 1)(p+2)/2
�, (7)

where

zk = − 1
2 (yk − µ)T �−1(yk − µ).

Note that the robustified covariance matrix determined by (7) is positive definite since the
�-likelihood L�(�) goes to negative infinity as an eigenvalue of � tends to zero.

In addition, for any covariance selection model, they derived a corresponding result, using
differentiations of (5) in terms of aij .

Proposition 2. In a covariance selection model, the estimating equation for a mean vector µ
is the same as in the saturated model, and the �-estimator �ij (i, j) ∈ IC satisfies the following
equation:

tr[Eij (S − �)] = 0, (8)

where

S =
1
n

∑n
k=1 exp(�zk)(yk − µ)(yk − µ)T

1
n

∑n
k=1 exp(�zk) − �

(�+1)(p+2)/2

.

Then robustified parameters �uv(u, v) ∈ I are to be estimated with an algorithm given in the
next section.

2.3. Iterative algorithm

The computation of covariance selection model is carried out by the iterative proportional
fitting (IPF) algorithm of Speed and Kiiveri [15]. This algorithm is designed to solve the following
problem. Given positive definite matrices G and H, find a positive definite matrix F such that

[F ]ij = [G]ij (i, j) ∈ IC,

[F−1]uv = [H ]uv (u, v) ∈ I.
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Table 1
Algorithm for the robustified Gaussian graphical modeling

Given µ̂(m), �̂(m), z(m). Assume (u, v) ∈ I , (i, j) ∈ IC. For all element of I , repeat the procedure below.

(1) Calculate µ̂(m+1) from (6).

(2) Calculate �̂(m+1).
(a) Calculate �̂(m+1)

ij
from (8).

(b) Compute complete matrix �̂(m+1) by IPF.
(3) Calculate z(m+1).
(4) Repeat this procedure from 1 until � converges.

As described in the previous section, our robustified covariance matrix is positive definite. Hence,
substituting G and H with �̂ and �−1, respectively, we can obtain a complete robustified covariance
matrix estimator for any covariance selection model. Table 1 presents an iterative algorithm for
robustified Gaussian graphical modeling. Although we have not yet shown the convergence of
this algorithm analytically, a numerical convergence is observed.

2.4. Test statistics

In conventional Gaussian graphical modeling, we can use the naive test or the z-transformed test
for the hypothesis that a partial correlation coefficient equals zero, and the deviance test procedure
for the overall fit. In our robustified method, however, the �-estimator for a partial correlation
has a complicated distribution and thus it is difficult to derive exact test statistics. We count on
asymptotic theory to obtain approximate distribution of test statistics.

We shall here introduce the vec-operators and the duplication matrices. Let vec(A) of a p × p

matrix A denote a p2 × 1 vector formed from stacking column vectors of A and v(A) denote a
p∗ × 1 vector formed from all elements of lower triangular part of A including diagonals (thus
p∗ = p(p + 1)/2). The duplication matrix Dp is defined by the relation:

Dpv(A) = vec(A)

for any symmetric matrix A of order p. The Kronecker product A ⊗ B of matrices A and B is
defined as a partitioned matrix with the (i, j)th block equal to aijB (see, e.g. [10]).

Rewrite the estimating equation (4) as

1

n

n∑
i=1

h�(yi ) = 0, (9)

where � is a p∗ × 1 parameter vector that consists of non-duplicated elements of �−1, and

h�(yi ) = D+
p vec

[
exp(�zi)

{
�−1(yi − µ)(yi − µ)T �−1 − �−1

}
+ �

(� + 1)(p+2)/2
�−1

]
with

zi = − 1
2 (yi − µ)T �−1(yi − µ).

Here D+
p (= (DT

p Dp)−1DT
p ) denotes the Moore–Penrose generalized inverse of Dp.
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Standard asymptotic theory shows that the asymptotic variance of
√

n(̂� − �) is

E
[
h��T

]−1 V [h�] E
[
h��T

]−1
. (10)

In a covariance selection model, some elements of � are restricted to zero and they can be
generally represented as � = �(u) with a q × 1 vector u. Let � be a p × q matrix defined as

� = ��(u)

�uT
.

The asymptotic covariance matrix of
√

n(̂u − u) is then expressible in the form(
�T E

[
h��T

]
�

)−1 (
�T V [h�] �

) (
�T E

[
h��T

]
�

)−1
. (11)

First, we obtain

V [h�] = D+
p (�−1/2 ⊗ �−1/2)J (�−1/2 ⊗ �−1/2)(D+

p )T ,

where J is a p2 × p2 matrix. See Appendix A for a concrete representation of J. Second, we have

E
[
h��T

] = D+
p

[
(�−1/2 ⊗ �−1/2)

{
K+ �

2(� + 1)(p+2)/2
vec(Ip)vec(Ip)T

}
(�1/2⊗�1/2)

+ 1

(� + 1)(p+2)/2
(Ip ⊗ Ip)

]
Dp,

where K is a p2 × p2 matrix. See Appendix A for a concrete representation of K.

2.4.1. Statistical test concerning parameter restrictions
Based on the robustified estimate �̂ij (i �= j), we test the hypothesis �ij = 0 against the

alternative hypothesis �ij �= 0. For this purpose, we derive

z = �̂ij√
̂Asy-V(̂�ij )

n

, (12)

where Asy-V(�̂ij ) denotes the asymptotic variance of �̂ij obtained from (10). Then z is distributed
asymptotically according to the standard normal distribution. If |z| > 1.96, we conclude that the
null hypothesis should be rejected. When some elements of �−1 are restricted to zero, one can
use the asymptotic variance (11) to form a z-test as in (12).

2.4.2. Testing a model fit
We construct a measure for overall goodness of fit of a model. Denote

� = E[h��T ]−1V[h�]E[h��T ]−1.

We test the following hypothesis:

H0 : � = �(u) versus H1 : � has no structure.

For this, a test statistic T is defined as

T = n
{̂
� − �(̂u)

}T
{
�̂−1 − �̂−1�̂(�̂T �̂−1�̂)−1�̂T �̂−1

} {̂
� − �(̂u)

}(
= n

{̂
� − �(̂u)

}T
V̂

{̂
� − �(̂u)

}
, say

)
.
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Fig. 1. Butterfly graph.

Since
√

n(̂� − �(̂u)) = √
n(̂� − �) − √

n�(̂u − u) + op(1),
√

n(̂� − �)
L−→N(0, �),

we obtain that the null distribution of T can be approximated by a �2 variate with degree of freedom
tr(V �) when n is large enough (see [2]). Thus, one can evaluate a model fit with a �2 test.

2.5. Outlying score

With robustified estimates for a mean vector and a covariance matrix, we shall define an outlying
score

(yk − µ̂)T �̂
−1

(yk − µ̂) (13)

for each observation. Although this score is similar to the Mahalanobis distance, estimators µ̂ and
�̂ are robustified. When outliers strongly influence ordinary mean vector and covariance matrix,
our outlying score measures the degree of outlying more precisely than the Mahalanobis distance.
Note that the weight given to an observation yk in the estimating equation (4) is a decreasing
function of the outlying score.

2.6. Selection of the robustness tuning parameter

The robustness tuning parameter � plays an important role in our method. When � = 0.0, our
method is identical to the traditional MLE method. A larger value of � leads to a more robust
estimator, but to the inflation of the variance of a resultant estimator. Concerning this trade-off
problem, Basu et al. [1] mentioned “There can be no universal way of selecting an appropriate
� parameter when applying our estimation methods.’’ Here, � corresponds to the parameter � in
our procedure. Jones et al. [8] also made a similar statement.

To explore an appropriate value of �, we carry out a Monte Carlo simulation. We employ the
sample size to be n = 100 and generate 1000 data sets. Each data set is generated based on a
graph with five vertices (Fig. 1). This is well known as a butterfly graph [18,6]. Variables are
generated from a multivariate normal distribution with zero mean vector and a partial correlation
matrix in which every value of non-zero partial correlation coefficient is set to 0.25. Outliers are
generated from the same multivariate normal distribution except the mean vector and they are
mixed with probability 0.05. We make four types of means of outliers: (�1, �2, �3, �4, �5)

T =
(0, 0, 0, 0, 0)T , (1, 1, 1, 1, 1)T , (2, 2, 2, 2, 2)T , (3, 3, 3, 3, 3)T . This outlying pattern leads to de-
creasing each partial correlation coefficient, which means that a structure of the graph could be
obscured by outliers. Values of � are increased from 0.0 to 1.0 by 0.1. In this setup, we fit a
covariance selection model with a butterfly graph and compute mean, variance, and mean squared
error (MSE) of �̂12·345, the partial correlation coefficient between Y1 and Y2 conditioned on the
other variables.
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Fig. 2. Mean of �̂12·345.
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Fig. 3. Variance of �̂12·345.
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Fig. 4. Mean squared error of �̂12·345.

The result is shown in Figs. 2–4. In Fig. 2, the means of estimates are plotted for� = 0.0, . . . , 1.0
for each outlying pattern. When � = 0.0 (not robustified), the bias of estimates becomes more
serious as the outlier departs from the origin. It is seen that use of larger values of � reduces
the biases substantially. At � = 0.3 or thereabouts, the biases of estimates are 0.05 or less for
all outlying patterns. The variance of estimates �̂12·345 in Fig. 3 increases as � becomes larger.
MSEs (Fig. 4) achieve smaller values at � = 0.2 or 0.3 in most patterns. The correction of biases
decreases MSE for � = 0.0 to 0.3, whereas the lack of stability increases MSE for � > 0.3.

In this setting, i.e., a normal population contaminated with a few outliers, a better choice of a
robustness tuning parameter � appears to be 0.3 or thereabouts.

3. Comparison with other robust methods

There are many other robust alternatives for the estimation of a mean vector and a covariance
matrix in multivariate analysis [11]. One of the most commonly used estimators is the MVE
proposed by Rousseeuw [13]. However, MVE estimator is not

√
n-consistent [4]. In contrast, the

MCD estimator [13] has
√

n-consistency. Croux and Haesbroeck [3] gave an influence function
of MCD and derived its asymptotic variance. MCD estimator requires heavy computational duty
until recently. However, Rousseeuw and Van Driessen [14] proposed a new algorithm to compute
MCD, which turns out to be extremely fast, even in high dimensions.

To compare these two alternatives with the proposed method, we conducted a Monte Carlo
experiment. The setup is very similar to that in finding an appropriate value of � in the previous
section, but the value of � varies from 0.0 to 0.5 by 0.05. For the MCD method, there is the



M. Miyamura, Y. Kano / Journal of Multivariate Analysis 97 (2006) 1525–1550 1535

V

V

V
V

-0.1

0.0

0.1

0.2

Outlying Pattern

M
ea

n

5

5
5

57

7

7 79

9

9 9

(0,...) (1,...) (2,...) (3,...)

MVE
MCD50
MCD75
MCD95
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

V
5
7
9

Fig. 5. Mean of �̂12·345. Solid lines are the proposed method; the thick solid line is the case � = 0.3; dashed with one
character are alternatives, -V-: MVE, -5-: MCD50; -7-: MCD75; -9-: MCD95.

parameter 0.5���1.0 which specifies the mass of data determining the MCD. This results in
an estimator with breakdown point (1 − �). Theoretically, even for � = 0.5, that is, if half of
the observations are outliers, MCD estimator holds robustness. However, at the same time, its
efficiency is decreasing. Another default value is � = 0.75. This value yields a better agreement
with efficiency and high breakdown. In this simulation, we adapt three values � = 0.50 (MCD50),
0.75 (MCD75), and 0.95 (MCD95). The third value corresponds to the known mass of outliers in
this setup.

As in the previous section, we estimate a covariance selection model represented with a butterfly
graph. Since there is no procedure to estimate a restricted covariance matrix for alternatives, we
start the IPF algorithm with each robustified estimator. We calculate means, variances and MSEs
of �̂12·345.

The results are shown in Figs. 5–8 First, Fig. 5 shows that alternatives works as efficiently
as our method with a larger value of �. Our method has � = 0.3 or above and the alternatives
attain a partial correlation coefficient which is larger than 0.20. Variances in Fig. 6 indicate that
our method has relatively small variance when compared with the other methods. The result
of MSE (Fig. 7) shows that our method with inappropriate tuning parameters does not work.
Fig. 8 is an enlarged graph of MSE. Our method with � = 0.30 (the thick solid line) out-
performs MVE, MCD50, and MCD75. For heavy outlying patterns, MCD95 shows the best
performance. It should be noted, however, that the percentage of outlying cannot be known in
practice.
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� = 0.3; the dotted lines with one character are alternatives, -V-: MVE, -5-: MCD50; -7-: MCD75; -9-: MCD95.

In summary, this experiment shows that (i) since MSE of MVE and MCD50 are larger than the
others, these two methods are not attractive; (ii) MCD75 and MCD95 will attain a proper balance
between robustness and efficiency; and (iii) the proposed method with an appropriate value of the
tuning parameter � (e.g., � = 0.3) is better than these alternatives in terms of MSE.

4. Family height data

In this section, we consider a real example having three variables that consist of heights of a
Son (S), his Father (F), and his Mother (M). The sample size of the data is 126.

Earlier studies [16] have confirmed that there is hereditary effect of height; it is especially
stronger between a child and the same sex parent. Our aim of this analysis is to model relationships
between sons and parents.

First, we start from the standard (not robustified) Gaussian graphical modeling procedure,
namely backward stepwise selection described in [6]. Computed sample partial correlations are
shown in Table 2. The minimum estimate is 0.154, which is the partial correlation between Son and
Mother. The value does not indicate significance at � = 0.05, applying the t-distributed statistics
and z-transformed one. Next, we adopt � = 0.30 following the previous simulation result and
analyze the data set with the proposed robustified method. Table 3 shows the result. The robustified
estimates show that the minimum value is given at partial correlation between Mother and Father
and the estimate between Mother and Son is significant. Model selection procedure based on the
deviance test using the standard estimates and on the proposed test statistics using the robustified
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Table 2
Sample partial coefficients

S F M

S 1.000 0.356 0.228

F 0.317 1.000 0.249
3.707 t-value
3.397 z-value

M 0.154 0.184 1.000
1.729 2.076 t-value
1.711 2.034 z-value

Correlations (upper) and partial correlations (lower) with t- and z-values (n = 126).

Table 3
Robustified estimates (� = 0.30)

S F M

S 1.000 0.492 0.332

F 0.471 1.000 0.160
4.334 z-value

M 0.295 −0.004 1.000
2.885 −0.045 z-value

Correlations (upper) and partial correlations (lower) with z-values (n = 126).

Table 4
Overall goodness of fit

Model Test Stat. df p-value

Deviance test
S–F–M 3.035 1 0.081
F–S–M 4.352 1 0.037
S–F 11.100 2 0.004

� = 0.3
S–F–M 8.321 1 0.004
F–S–M 0.002 1 0.964
S–F 10.319 2 0.006

Results for “deviance test’’ are based on the ordinary deviance value. Results for “� = 0.3’’ are based on the proposed
test statistics.

estimates are carried out. The results are summarized in Table 4. Using the conventional procedure,
Son–Father–Mother model (Fig. 9) is accepted. On the other hand, the robustified procedure leads
to Father–Son–Mother model (Fig. 10). Table 5 shows robustified estimates of this model. The
result derived from the robustified procedure shows two things: (i) the hereditary effect between
a son and parents and (ii) heights of parents are independent. We would say that the robustified
method derives a reasonable result.
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Table 5
Robustified estimates (� = 0.30) of the selected model

S F M

S 1.000 0.492 0.332

F 0.470 1.000 0.000
4.318 z-value

M 0.293 0.000 1.000
2.862 – z-value

Correlations (upper) and Partial correlations (lower) with z-values (n = 126).

MotherFather

Son

Fig. 9. Son–Father–Mother model.

MotherFather

Son

Fig. 10. Father–Son–Mother model.

To examine these different results, we compute the proposed outlying score (Table 6). Then
ID29 is identified as the most outlying observation. Here, the son’s height is 159 cm whereas his
father and mother are 191 and 176 cm, respectively, that is, the tallest parents have a short son.
Thus, the regressions on the son of parents are not fitted, which is shown in the scatter plot of
residuals (Fig. 11). ID29 is a strong outlier and he influences the ordinary estimation and deviance
for the overall goodness of fit.

We analyze this data set again, but without ID29. Sample partial coefficients (Table 7) are similar
to the robustified estimates. The result of model selection (Table 8) shows that Father–Son–Mother
model is better than Son–Father–Mother model.

To summarize this analysis, the ordinary procedure is hardly affected by the outlying ID29
so that it models the wrong relationships. On the other hand, the robustified method succeeds to
model a reasonable relationship, Father–Son–Mother model.

5. Discussion

In this paper, we proposed robustified Gaussian graphical modeling procedure and showed
that it has two advantages when compared with some alternative robust estimators. The first is
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Table 6
Outlying scores

ID Score Son Father Mother

29 10.32 159 191 176
102 3.56 158 180 160

77 3.03 163 155 165
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

114 0.03 173 170 157
46 0.03 170 168 158

4 0.01 171 169 156

Observations are sorted by the outlying score in decreasing order. The last three columns represent raw data. Three
observations with the highest and lowest values are listed.

capability of estimating parameters with
√

n-consistency based on both a saturated model and a
restricted model, and doing statistical test of those models. As we did in Section 3, it is possible to
carry out the IPF algorithm with robustified covariance matrix by MVE or MCD. However, MVE
does not have

√
n-consistency and thus deriving its asymptotic variance may be difficult. Though

the MCD estimator has
√

n-consistency under a saturated covariance, its asymptotic behavior is
not clear under restricted covariance structures. We have derived an asymptotic variance under
both saturated and restricted models for statistical inference. The new method proposed in this
paper is thus the only one that can test goodness of fit of restricted models. The second advantage
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Table 7
Sample partial coefficients (without ID29)

S F M

S 1.000 0.439 0.303

F 0.413 1.000 0.168
5.009 t-value
4.272 z-value

M 0.259 0.041 1.000
2.962 0.453 t-value
2.804 0.455 z-value

Correlations (upper) and partial correlations (lower) with t- and z-values (n = 125).

Table 8
Deviance test (without ID29)

Model Deviance df p-value

S–F–M 8.682 1 0.003
F–S–M 0.207 1 0.649
S–F 12.262 2 0.002

of our estimator is a proper balance between robustness and efficiency. The comparative study in
Section 3 shows that MCD with highest breakdown point � = 0.50 loses efficiency. An alternative
value � = 0.75 achieves a better balance between robustness and efficiency. However, in almost
all the contamination patterns, its MSE is larger than our procedure. In conclusion, the proposed
method will give a better-robustified Gaussian graphical modeling procedure.

Choosing an appropriate value of the robustness tuning parameter � is very important in our
procedure. In this paper, we found an appropriate value with a simulation study. However, this value
would not be appropriate for some other situations. Other patterns of contamination could lead to
different appropriate values of �. We leave this as an open question. Some alternative solutions
for choosing � are (i) estimating � as well as other parameters, (ii) estimating a covariance matrix
with previously estimated �, and (iii) choosing an appropriate value by evaluating the posterior
probabilities of � with any Bayesian approach. However, these methods would require much
complicated calculations and a larger sample size to obtain stable results.
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Appendix A. Asymptotic variance of robust estimator

A.1. Variance of h�

A.1.1. First differential
For i = 1, . . . , n, yi is a p × 1 vector distributed according to a multivariate normal with a

mean vector µ and a covariance matrix �. The probability density function and its logarithm are
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given as

f (yi ) = |�−1|1/2

(2	)p/2 exp

{
−1

2
(yi − µ)T �−1(yi − µ)

}
,

log f (yi ) = −p

2
log(2	) + 1

2
log |�−1| − 1

2
(yi − µ)T �−1(yi − µ).

Let A = �−1. We consider differentiation with respect to A. The score function is then expressible
as

� log f (yi )

�A
= 1

2
A−1 − 1

2
(yi − µ)(yi − µ)T . (A.1)

We have

E

[
�A(yi )

1

2

{
A−1 − (yi − µ)(yi − µ)T

}]
= 1

2
E

[
�A(zT

i zi )
{
A−1 − A−1/2zizT

i A−1/2
}]

= 1

2
A−1/2E

[
�A(zT

i zi )
{
Ip − zizT

i

}]
A−1/2,

where zi = A1/2(yi − µ). Note that the first-order moment of zi is a null vector and zi is
independently distributed, and then we obtain

E
[
zizT

i

]
= E

[
zT
i zi

]
p

× Ip. (A.2)

It follows that

E
[
�A(yi )

{
A − A(yi − µ)(yi − µ)T A

}]
= 1

p
E

[
�A(zi )

{
p − zT

i zi

}]
A.

Assuming �(x) = exp(�x), we obtain
1

p
E

[
�A(zi )

{
p − zT

i zi

}]
= 1

p

∫
�� {log f (zi )} (p − zT

i zi )
1

(2	)p/2 exp

(
−1

2
zT
i zi

)
dzi

∝ 1

p

∫
exp

{
�

(
−1

2
zT
i zi

)}
(p − zT

i zi )
1

(2	)p/2 exp

(
−1

2
zT
i zi

)
dzi

= 1

p

∫
(p − zT

i zi )
1

(2	)p/2 exp

(
−� + 1

2
zT
i zi

)
dzi

= 1

p(� + 1)p/2

{
p − p

(� + 1)

}
= �

p(� + 1)(p+2)/2
.

Hence the estimating equation of A is

1

n

n∑
j=1

exp

{
−�

2
(yj − µ)T A(yj − µ)

} {
A − A(yj − µ)(yj − µ)T A

}
= �

(� + 1)(p+2)/2
A. (A.3)
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It is also expressive as

1

n

n∑
i=1

h�(yi ) = 0, (A.4)

where

h�(yi ) = D+
p vec

[
exp

{
−�

2
(yi − µ)T A(yi − µ)

} {
A(yi − µ)(yi − µ)T A − A

}
+ �

(� + 1)(p+2)/2
A

]
.

A.1.2. Variance of h�

Note that

h�(yi ) = D+
p vec

[
A1/2

{
a(�, yi ) × A1/2(yi − µ)(yi − µ)T A1/2

−b(�, yi ) × Ip

}
A1/2

]
, (A.5)

where

a(�, yi ) = exp

{
−�

2
(yi − µ)T A(yi − µ)

}
, (A.6)

b(�, yi ) = exp

{
−�

2
(yi − µ)T A(yi − µ)

}
− �

(� + 1)(p+2)/2
. (A.7)

First, we derive V[h�]. Since E[h�] = 0, V[h�] = E[h�h
T
�
].

Consider the following translation yi to zi ,

zi = A1/2(yi − µ) ⇒ zi
i.i.d.∼ N(0, Ip) (i = 1, · · · , n), (A.8)

then we write z for zi for convenience.
Now we have

V[h�]
= D+

p (A1/2 ⊗ A1/2)

×E

[
vec

{
a(�, zT z)zzT − b(�, zT z)Ip

}
vec

{
a(�, zT z)zzT − b(�, zT z)Ip

}T
]

×(A1/2 ⊗ A1/2)
(
D+

p

)T

. (A.9)

Next, we calculate the expectation component in (A.9), that is,

E

[
vec

{
a(�, zT z)zzT − b(�, zT z)Ip

}
vec

{
a(�, zT z)zzT − b(�, zT z)Ip

}T
]

=
∫

vec
{
a(�, zT z)zzT − b(�, zT z)Ip

}
vec

{
a(�, zT z)zzT − b(�, zT z)Ip

}T

×N(z | 0, Ip) dz.
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Since the first-order moment of z is a null vector, we only mention the second- and fourth-order
moments:⎧⎨⎩

Case (i) : (az2
j − b)2 for j = 1, . . . , p,

Case (ii) : (az2
j − b)(az2

k − b) for j, k = 1, . . . , p; j �= k,

Case (iii) : (azj zk)
2 for j, k = 1, . . . , p; j �= k.

For Case (i), we have

E
[
(az2

j − b)2
]

= E
[
a2z4

j

]
− 2E

[
abz2

j

]
+ E

[
b2

]
. (A.10)

Then the first component in (A.10) is

E
[
a2z4

j

]
=

∫
z4
j exp

(
−2�

2
z2
j

)
N(zj | 0, 1) dzj×

∫
exp

(
−2�

2
zT−iz−j

)
N(z−j | 0, Ip−1) dz−j

= 1

(2� + 1)1/2

∫
z4
j

(2� + 1)1/2

(2	)1/2 exp

(
−2� + 1

2
z2
j

)
dzj

× 1

(2� + 1)(p−1)/2

∫
(2� + 1)(p−1)/2

(2	)(p−1)/2
exp

(
−2� + 1

2
zT−j z−j

)
dz−j

= 1

(2� + 1)1/2

3

(2� + 1)2 × 1

(2� + 1)(p−1)/2
= 3

(2� + 1)(p+4)/2
, (A.11)

where z−j = [z1, . . . , zj−1, zj+1, . . . , zp]T .
And consider

ab = exp

(
−�

2
zT z

) {
exp

(
−�

2
zT z

)
− �

(� + 1)(p+2)/2

}
= exp

(
−2�

2
zT z

)
− �

(� + 1)(p+2)/2
exp

(
�

2
zT z

)
,

and then the second component in (A.10) is

E
[
abz2

j

]
=

∫
z2
j exp

(
−2�

2
z2
j

)
N(zj | 0, 1) dzj ×

∫
exp

(
−2�

2
zT−j z−j
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N(z−j | 0, Ip−1) dz−j

− �

(� + 1)(p+2)/2

∫
z2
j exp

(
−�

2
z2
j

)
N(zj | 0, 1) dzj

×
∫

exp

(
−�

2
zT−j z−j

)
N(z−j | 0, Ip−1) dz−j

= 1

(2� + 1)3/2

1

(2� + 1)(p−1)/2
− �

(� + 1)(p+2)/2

1

(� + 1)3/2

1

(� + 1)(p−1)/2

= 1

(2� + 1)(p+2)/2
− �

(� + 1)p+2 . (A.12)
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Since

b2 =
{

exp

(
−�

2
zT z

)
− �

(� + 1)(p+2)/2

}2

= exp

(
−2�

2
zT z

)
− 2�

(� + 1)(p+2)/2
exp

(
−�

2
zT z

)
+ �2

(� + 1)p+2 ,

the last component in (A.10) is

E
[
b2

]
= E

[
exp

(
−2�

2
zT z

)]
− 2�

(� + 1)(p+2)/2
E

[
exp

(
−�

2
zT z

)]
+ �2

(� + 1)p+2

= 1

(2� + 1)p/2 − 2�

(� + 1)(p+2)/2
· 1

(� + 1)p/2 + �2

(� + 1)p+2

= 1

(2� + 1)p/2 − 2�(� + 1) − �2

(� + 1)p+2

= 1

(2� + 1)p/2 − �(� + 2)

(� + 1)p+2 . (A.13)

With substitution of (A.11), (A.12) and (A.13) into (A.10), the expectation is obtained as

E

[(
a − bz2

j

)2
]

= 3

(2� + 1)(p+4)/2
− 2

(2� + 1)(p+2)/2
+ 2�

(� + 1)p+2 + 1

(2� + 1)p/2 − �(� + 2)

(� + 1)p+2

= 3 − 2(2� + 1) + (2� + 1)2

(2� + 1)(p+4)/2
− �2

(� + 1)p+2

= 4�2 + 2

(2� + 1)(p+4)/2
− �2

(� + 1)p+2 . (A.14)

For Case (ii), we have

E
[
(az2

j − b)(az2
k − b)

]
= E

[
(azj zk)

2
]

− E
[
abz2

j

]
− E

[
abz2

k

]
+ E

[
b2

]
. (A.15)

The first component is

E
[
(azj zk)

2
]

=
∫

exp
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−2�

2
zT z

)
z2
j z

2
kN(z | 0, Ip) dz

=
∫

exp

(
−2�

2
z2
j

)
N(zj | 0, 1) dzj ×

∫
exp

(
−2�

2
z2
k

)
N(zk | 0, 1) dzk

×
∫

exp

(
−2�

2
zT
−(j,k)z−(j,k)

)
N(z−(j,k) | 0, Ip−2) dz−(j,k)

= 1

(2� + 1)3/2+3/2+(p−2)/2
= 1

(2� + 1)(p+4)/2
. (A.16)
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The expectation is evaluated by substituting (A.12), (A.13) and (A.16) into (A.15). We have

E
[
(az2

j − b)(az2
k − b)

]
= 1

(2� + 1)(p+4)/2
− 2 ×

(
1

(2� + 1)(p+2)/2
− �

(� + 1)p+2

)
+ 1

(2� + 1)p/2 − �(� + 2)

(� + 1)p+2

= 1 − 2(2� + 1) + (2� + 1)2

(2� + 1)(p+4)/2
− �2 + 2� − 2�

(� + 1)p+2

= 4�2

(2� + 1)(p+4)/2
− �2

(� + 1)p+2 . (A.17)

Note that Case (iii) is equivalent to (A.16).
As a consequence, the variance of h� is a p∗ × p∗ matrix with typical elements:

E
[
(az2

j − b)2
]

= 4�2 + 2

(2� + 1)(p+4)/2
− �2

(� + 1)p+2 , (A.18)

E
[
(az2

j − b)(az2
k − b)

]
= 4�2

(2� + 1)(p+4)/2
− �2

(� + 1)p+2 , (A.19)

E
[
(azj zk)

2
]

= 1

(2� + 1)(p+4)/2
. (A.20)

When � = 0, these three values result in 2, 0 and 1, respectively. This is the well-known result
in the conventional maximum likelihood case.

A.2. Expectation of h��T

A.2.1. Second differential
The first differentiation is

h�(yi ) = D+
p vec

[
exp

{
−�

2
(yi − µ)T A(yi − µ)

} {
A(yi − µ)(yi − µ)T A − A

}
+ �

(� + 1)(p+2)/2
A

]
= D+

p vec
[
a(A)

{
A(yi − µ)(yi − µ)T A − A

}
+ bA

]
, (A.21)

where

a(A) = exp

{
−�

2
(yi − µ)T A(yi − µ)

}
,

b = �

(� + 1)(p+2)/2
.

Note that a(A) is a scalar function.
Differentiating h� with respect to A, we obtain

dh� = D+
p d vec

[
a(A)

{
A(yi − µ)(yi − µ)T A − A

}
+ bA

]
= D+

p

[
vec

{
A(yi − µ)(yi − µ)T A

}
{ da(A)} + vec

[
a(A) d

{
A(yi − µ)(yi − µ)T A

}]
− vec(A) {da(A)} − vec {a(A) dA} + b vec(dA)] . (A.22)
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First,

da(A) = d exp

(
−�

2
(yi − µ)T A(yi − µ)

)
= −�

2
a(A)(yi − µ)T (dA)(yi − µ), (A.23)

then the first component in (A.22) is

−�

2
a(A) vec

{
A(yi − µ)(yi − µ)T A

}
vec

{
(yi − µ)(dA)(yi − µ)T

}
= −�

2
a(A) vec

{
A(yi − µ)(yi − µ)T A

} {
(yi − µ)T ⊗ (yi − µ)T

}
vec(dA)

= −�

2
a(A) vec

{
A(yi − µ)(yi − µ)T A

}
vec

{
(yi − µ)(yi − µ)T

}T

vec(dA).

The second component is

a(A) vec
[
(dA)(yi − µ)(yi − µ)T A

]
+ a(A) vec

[
A(yi − µ)(yi − µ)(dA)

]
= a(A)

{
(yi − µ)(yi − µ)T A ⊗ Ip

}
vec(dA)

+a(A)
{
Ip ⊗ A(yi − µ)(yi − µ)T

}
vec(dA).

The third component is

−�

2
a(A) vec(A) vec

{
(yi − µ)T (dA)(yi − µ)

}
= −�

2
a(A) vec(A)

{
(yi − µ)T ⊗ (yi − µ)T

}
vec(dA)

= −�

2
a(A) vec(A) vec

{
(yi − µ)(yi − µ)T

}T

vec(dA).

Finally, the fourth component is

a(A)(Ip ⊗ Ip) vec(dA).

Since vec(dA) = d vec(A) = Dp dv(A), we obtain the second differential with respect to A as

h��T = �h�

�v(A)T
= D+

p C(�, A)Dp, (A.24)

where

C(�, A) = −�

2
a(A) vec

{
A(yi − µ)(yi − µ)T A

}
vec

{
(yi − µ)(yi − µ)T

}T

+�

2
a(A) vec(A) vec

{
(yi−µ)(yi − µ)T

}T +a(A)
{
(yi−µ)(yi−µ)T A ⊗ Ip

}
+a(A)

{
Ip ⊗ A(yi − µ)(yi − µ)T

}
− a(A)(Ip ⊗ Ip) + b(Ip ⊗ Ip). (A.25)
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A.2.2. Expectation of v(h��T )

Expectation of (A.24) is derived. Since E[h��T ] = D+
p E[C(�, A)]Dp, it is sufficient to derive

the expectation of (A.25).
If yi is translated to zi = A1/2(yi − µ), then zi is identically independent distributed with

standard normal. We thus use z for zi for convenience.
For the first line in (A.25),

−�

2
E

[
a(A) vec

{
A1/2zzT A1/2

}
vec

{
A−1/2zzT A−1/2

}T
]

= (A1/2 ⊗ A1/2)

{
−�

2
E

[
a(zT z) vec

(
zzT

)
vec

(
zzT

)T
]}

(A−1/2 ⊗ A−1/2). (A.26)

Since the first-order moment of z is a null vector, we only mention the fourth- and second-order
moments:{

Case (i) : z4
j for j = 1, . . . , p,

Case (ii) : z2
j z

2
k for j, k = 1, . . . , p; j �= k.

For Case (i), it follows that

−�

2
E

[
a(zT z)z4

j

]
= −�

2
× 1

(� + 1)1/2

∫
z4
j

(� + 1)1/2

(2	)1/2 exp

(
−� + 1

2
z2
j

)
dzj

× 1

(� + 1)(p−1)/2

∫
(� + 1)(p−1)/2

(2	)(p−1)/2
exp

(
−� + 1

2
zT−j z−j

)
dz−j

= −�

2
× 3

(� + 1)5/2
× 1

(� + 1)(p−1)/2
= − 3�

2(� + 1)(p+4)/2
. (A.27)

And for Case (ii),

−�

2
E

[
a(zT z)z2

j z
2
k

]
= −�

2
× 1

(� + 1)1/2

∫
z2
j

(� + 1)1/2

(2	)1/2 exp

(
−� + 1

2
z2
j

)
dzj

× 1

(� + 1)1/2

∫
z2
k

(� + 1)1/2

(2	)1/2 exp

(
−� + 1

2
z2
k

)
dzk

× 1

(� + 1)(p−2)/2

∫
(� + 1)(p−2)/2

(2	)(p−2)/2
exp

(
−� + 1

2
zT
−(i,j)z−(i,j)

)
dz−(i,j)

= −�

2
× 1

(� + 1)3/2 × 1

(� + 1)3/2 × 1

(� + 1)(p−2)/2

= − �

2(� + 1)(p+4)/2
. (A.28)

The expectation of the second line in (A.25) is

�

2
E

[
a(zT z) vec(A1/2A1/2) vec

{
A−1/2zzT A−1/2

}T
]

= (A1/2 ⊗ A1/2)

{
�

2
E

[
a(zT z) vec(Ip) vec

(
zzT

)T
]}

(A−1/2 ⊗ A−1/2). (A.29)
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The first moment of zj (j = 1, . . . , p) is zero. Hence all we have to do is considering z2
j :

E[a(zT z)z2
j ] = 1

(� + 1)3/2 × 1

(� + 1)(p−1)/2
= 1

(� + 1)(p+2)/2
.

Then,

�

2
E

[
a(zT z) vec(A1/2A1/2) vec

{
A−1/2zzT A−1/2

}T
]

= (A1/2 ⊗ A1/2)

[
�

2(� + 1)(p+2)/2

{
vec(Ip) vec(Ip)T

}]
(A−1/2 ⊗ A−1/2). (A.30)

For the third and fourth lines in (A.25) can be decomposed as like

E
[
a(zT z)

{
A−1/2zzT A1/2 ⊗ A−1/2A1/2

}]
= (A−1/2 ⊗ A−1/2)E

[
a(zT z)

(
zzT ⊗ Ip

)]
(A1/2 ⊗ A1/2)

and

E
[
a(zT z)

{
A1/2A−1/2 ⊗ A1/2zzT A−1/2

}]
= (A1/2 ⊗ A1/2)E

[
a(zT z)

(
Ip ⊗ zzT

)]
(A−1/2 ⊗ A−1/2),

respectively. Since both the expectation components are equivalent to that of (A.29), the expecta-
tions are

1

(� + 1)(p+2)/2
(Ip ⊗ Ip). (A.31)

It is easy to derive the fifth expectation:

E
[
a(zT z)

]
(Ip ⊗ Ip) = 1

(� + 1)p/2 (Ip ⊗ Ip). (A.32)

The sum of 2× (A.29), (A.32), and the expectation of the sixth line in (A.25) is

2 − (� + 1) + �

(� + 1)(p+2)/2
(Ip ⊗ Ip) = 1

(� + 1)(p+2)/2
(Ip ⊗ Ip). (A.33)

We thus obtain E[h��T ] from (A.27), (A.28), (A.30), and (A.33) as

E[h��T ]
= D+

p

[
(A1/2 ⊗ A1/2)

{
K + �

2(� + 1)(p+2)/2
vec(Ip) vec(Ip)T

}
(A−1/2 ⊗ A−1/2)

+ 1

(� + 1)(p+2)/2
(Ip ⊗ Ip)

]
Dp, (A.34)

where K is a p2 × p2 matrix with typical elements as (A.27) and (A.28). When � = 0, this
expectation results in Ip∗ (p∗ = p(p + 1)/2).
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