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a b s t r a c t

For qualitative data models, Gini–Simpson index and Shannon entropy are commonly
used for statistical analysis. In the context of high-dimensional low-sample size (HDLSS)
categorical models, abundant in genomics and bioinformatics, the Gini–Simpson index, as
extended to Hamming distance in a pseudo-marginal setup, facilitates drawing suitable
statistical conclusions. Under Lorenz ordering it is shown that Shannon entropy and
its multivariate analogues proposed here appear to be more informative than the
Gini–Simpson index. The nested subset monotonicity prospect along with subgroup
decomposability of some proposed measures are exploited. The usual jackknifing (or
bootstrapping) methods may not work out well for HDLSS constrained models. Hence, we
consider a permutation method incorporating the union–intersection (UI) principle and
Chen–Stein Theorem to formulate suitable statistical hypothesis testing procedures for
gene classification. Some applications are included as illustration.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In genomic studies, as will be illustrated later with the SARSCoV data model [1], one encounters very high-dimensional
purely qualitative categorical datamodels resting on complexmulti-dimensional multinomial models without any ordering
of categories. Although a genuine discrete multivariate analysis approach may appear to be tempting, there are some basic
hurdles. The primary impasse arises due to an enormous number of parameters and a significantly smaller sample size.
On top of that, it is very unlikely that the coordinate responses (attributes), in such high dimensions, are stochastically
independent, even approximately. On the same count, the homogeneity of the marginal multinomial laws may not be
generally tenable. Further, underlying restraints on the parameters (or probability laws) are persistent and often difficult to
put in a simple form wherein standard constrained statistical inference [2] procedures can be readily incorporated. In such
a curse of dimensionality under constrained environment, conventional statistical modeling and analysis tools may be of very
little help.
For simple (one-dimensional) multinomial models, the Gini–Simpson (GS) index [3,4] is a useful measure of (qualitative)

diversity, and this has been used in biodiversity, genetic variation and in other contexts too. The Shannon [5] entropy is
also very appropriate in this setup. To use either of these measures in the multi-dimensional case, the complexities of joint
probabilities (parameters)may create genuinehurdles for simplermodels or statistical inference. The complexity accelerates
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fast as the dimension increases, typically the case in high-dimension low-sample size (HDLSS) genomic models. Primarily due
to this awkward feature, several researchers have used the Hamming distance, a natural extension of the GS index in a
pseudo-marginal setup, for HDLSS genomic problems [6–8,1]. In Section 2, it is shown that the Shannon entropy is more
informative than the GS index in the sense of the Lorenz ordering. As such, parallel to the GS index, the extension of the
Shannon entropy in a Hamming type pseudo-marginal setup is explored.
For HDLSS genomic models, we suspect that the information might not be fully captured in a pseudo-marginal setup.

To capture greater information, some new genuine multivariate analogues of Shannon entropy are proposed in Section 3.
The nested subset monotonicity prospect along with subgroup decomposability of the proposed new measures are also
exploited in the same section. Section 4 is mainly devoted to large sample size models, albeit in a possibly high-dimensional
setup. These results may provide useful tools for genes classification in the HDLSS genomic models. Section 5 explores the
role of the Chen–Stein Theorem in the HDLSS setup. Section 6 is devoted to statistical inference problems under possibly
constrained setups. For the HDLSS genomic models, the usual jackknife variance estimators (of these measures) are not
stable [1]. Hence, we consider a modified method to construct more appropriate jackknife procedures. By the property of
nested subset monotonicity and subgroup decomposability, it is easy to see that the proposed new Hamming–Shannon
pooled measures are more informative than the pseudo-marginal type Hamming–Shannon measures. As such, the testing
procedure proposed by Sen et al. [1] for statistical comparison of different groups is further improved. Some new testing
procedures for gene classification are proposed in this section. The difficulties of HDLSS asymptotics in this HDLSS genomic
context are assessed and suitable permutation procedures are appraised along with. Specifically, the relative performance
of UI tests and conventional global alternative tests in HDLSS setups are highlighted, and the Chen–Stein methodology is
thoroughly exploited. In the final section, the disease genes for the SARSCoV dataset are identified by themethods proposed
in Sections 4–6 with the help of Chen–Stein Theorem, respectively.

2. Preliminary notion and the Lorenz ordering

For motivation, we start with a simple multinomial model relating to C (≥2) (unordered) qualitative categories, labeled
as 1, . . . , C . Letπ1, . . . , πC denote the respective cell probabilities, andwedenote byπ = (π1, . . . , πC )t . Note thatπbelongs
to the (C − 1)-simplex SC−1 = {x ∈ [0, 1]C : xt1 = 1}. Thus, we have a constrained parameter space. Unfortunately, SC−1 is
not very regular in the sense that it does not have rotation or other invariance properties, nor it is a positively homogeneous
cone. Usual measures of dispersion are therefore not appropriate in this context.
In the context ofmeasuring biodiversity, Simpson [4], apparently unaware of thework of Gini [3], defined an index IGS(π)

that is known in the literature as the GS index. It is defined as

IGS(π) =
C∑
c=1

πc(1− πc) = 1− πtπ (1)

so that 0 ≤ IGS(π) ≤ (C − 1)/C,∀π ∈ SC−1, where the lower point is attained when π is on one of the C vertices (with
no diversity) and the upper bound is attained when π = C−11, i.e., the diversity is a maximum. A standardized GS index is
defined as I∗GS(π) = C(C − 1)

−1IGS(π)with the natural range (0, 1), thus qualifying it as a measure of diversity.
For the same multinomial law, the Shannon entropy measure is defined as

IE(π) = −
C∑
c=1

πc logπc, π ∈ SC−1. (2)

It is easy to express IE(π) as
∑
r≥1 r

−1∑C
c=1 πc(1 − πc)

r
=
∑
r≥1 r

−1Hr(π), where the Hr(π) are all nonnegative (over
π ∈ SC−1), H1(π) ≥ H2(π) ≥ · · · ≥ Hr(π) ≥ · · ·, and H1(π) = IGS(π). Thus, IE(π) attains the minimum value 0 when
π is on one of the C vertices (no diversity) and maximum value log C at the centroid C−11. Thus, a standardized entropy
measure is I∗E(π) = IE(π)/ log C = (−1/ log C)

∑C
c=1 πc logπc with the natural range (0, 1). Let a = (C −1)/C . Noting that

for y ∈ (0, 1),− log(1− ay) is convex in y (for every 0 < a ≤ 1), and the fact that Hr1(π) = (
∑C
c=1 πc(1−πc))

r
≤ Hr(π) =∑C

c=1 πc(1− πc)
r ,∀r ≥ 1, it is easy to show that

I∗E(π) ≥ log(1− aI
∗

GS(π))/ log(1− a), ∀π ∈ SC−1,

where the right hand side is a convex function of I∗GS(π), and it assumes the value 0 and 1 according as I
∗

GS(π) = 0 and 1.
Note further that

Hr(π)/H1(π) =
C∑
c=1

ωc(π)(1− πc)r−1, (3)

where ωc(π) = πc(1− πc)/H1(π);
∑C
c=1 ωc(π) = 1, we obtain that Hr(π) ≤ H1(π)(1− C

−1)r−1,∀r ≥ 1, so that

I∗E(π) ≤
1

− log(1− a)

∑
r≥1

1
r
H1(π)ar−1
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Fig. 1. The Lorenz curve of I∗E(π)with respect to I
∗

GS(π).

=
H1(π)
a

{
1

− log(1− a)

∑
r≥1

1
r
ar
}

= H1(π)/a = I∗GS(π). (4)

This leads us to Fig. 1 depicting a Lorenz ordering of I∗E(π)with respect to I
∗

GS(π).
Looking at the nested monotonicity property established in Sections 3.1–3.3 [viz., (11)–(31)], we notice that a finite

projection will also be a convex function relative to the GS index. However, that curve will lie above the I∗E curve and below
the diagonal line, the difference of the two curves depict the extent of loss of the degree of convexity due to a finite-term
representation.
Side by side, we also consider the Kullback and Leibler [9] entropymeasure which is more general in the spirit of the log-

likelihood ratio measure. Let πo = C−11, the centroid of SC−1, be the maximum diversity point (as the entropy I∗E(π
o) = 1).

Then the Kullback–Leibler information I(π,πo) is defined as

C∑
c=1

πc log(πc/π oc ) = log C +
C∑
c=1

πc logπc = log C − IE(π) = log C{1− I∗E(π)}, (5)

and thus the standardizedKullback–Leibler information is directly related (and complementary) to the standardized entropy
measure I∗E(π). Thus, the Lorenz ordering also applies to the Kullback–Leibler information.

3. Nested subset monotonicity and subgroup decomposability

One of the basic properties of the GS index is its subgroup decomposability. Basically, if we have G (≥2) probability
vectors π1, . . . ,πG and we define a pooled vector π∗ =

∑G
g=1wgπg , where the wg are nonnegative weights adding up to

1, then

IGS(π∗) =
G∑
g=1

wg IGS(πg)+
C∑
c=1

G∑
g=1

wg(πgc − π
∗

c )
2, (6)

where the first term on the right hand side of (6) represents the within population component while the second one
represent the between population component. Both are nonnegative and resembles the classical ANOVA decomposition.
In the same setup, let us examine the entropy measure. Note that

IE(π∗) = −
C∑
c=1

π∗c logπ
∗

c =

G∑
g=1

wg IE(πg)+
G∑
g=1

wg

C∑
c=1

πgc log(πgc/π∗c )

=

G∑
g=1

wg IE(πg)+
G∑
g=1

wg I(πg ,π∗). (7)
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Next note that for x ∈ (0, 1), x log x is convex, so that by the Jensen inequality, for every c : 1 ≤ c ≤ C ,

G∑
g=1

wgπgc log(πgc/π∗c ) ≥ 0, (8)

where the equality sign holds only when all the πgc are equal to π∗c . Thus, the entropy measure also satisfies the subgroup
decomposability property. Using the expansion that−x log x = −x log(1− (1− x)) =

∑
r≥1 r

−1x(1− x)r , it follows from
routine computations that the between group component in (7) can be expressed as

G∑
g=1

wg

C∑
c=1

(πgc − π
∗

c )
2
+

∑
r≥2

G∑
g=1

wg [Hr(πg)− Hr(π∗)]. (9)

Again, provoking convexity, it can be shown that
∑G
g=1wgHr(πg) ≥ Hr(π

∗),∀r ≥ 2, where the equality sign holds when
all the πg are the same. This extra nonnegative set of terms explains why the entropy measure may have advantages over
the GS index.
Let us now examine the situation for multi-dimensional models. With G (≥2) groups, each having K (�1) positions, and

at each position there is a categorical response with possibly C (≥2) unordered categories, wemay denote the K ×C matrix
of the probabilities by 5g = ((πgkc)), for g = 1, . . . ,G. We construct a vec form of these matrices, and denote them by
πg , g = 1, . . . ,G, all being then CK -vectors. As such, we may define the entropy in the same way as before, and consider
the subgroup decomposability as in there. Thus, letting c = (c1, . . . , cK )t , with each ck assuming the labels 1, . . . , C , we
have a set CK of CK possible realization of c. Thus, we may let

IE(πg) = −
∑
c∈CK

πg(c) logπg(c), πg ∈ SCK−1, g = 1, . . . ,G. (10)

Note that the πg are CK -vectors, defined on SCK−1, with centroid C
−K1, so that 0 ≤ IE(πg) ≤ K log C , where the upper

bound is attained at the centroid. Thus, as an index of diversity, a standardized versionwould be I∗E(πg) = (K log C)
−1IE(πg),

where range would be [0, 1]. Even so, for large K , there is a need to incorporate underlying structural complexities for
dimensional reduction in order to have simpler statistical resolutions. Nested subset monotonicity prospect along with
subgroup decomposability are therefore exploited in this context.

3.1. Nested subgroup decomposability

Let G be the class of 2G possible subsets of {1, 2, . . . ,G}, and consider any sequence {Gr , r ≥ 0} of nested subsets of G so
that

∅ = G0 ⊆ G1 ⊆ · · · ⊆ Gr ⊆ · · · ⊆ G. (11)

Define IE(πg) as in (10) and then as in (6), let IE(Gr) be the within Gr pooled entropy, for r ≥ 0. Since IE(G0) = 0, then
provoking the convexity of x log x for ∀x ≥ 0, it follows that for a nested sequence {Gr , r ≥ 0}

0 = IE(G0) ≤ IE(G1) ≤ · · · ≤ IE(Gr) ≤ · · · ≤ IE(G), (12)

where

IE(Gr) = −
∑
c∈CK

πGr (c) logπGr (c), πGr ∈ S
a
CK−1, a = 1, . . . ,G, (13)

where a is the cardinality of the set Gr . Further, as in (7), we have for every r ≥ 0,

IE(Gr) = IEW (Gr)+ IEB(Gr), (14)

representing the ‘within’ and ‘between’ group components. Using (6)–(9) and (12), it follows then

IEB(Gr) = 0 H⇒ IEB(Gs) = 0, ∀0 ≤ s ≤ r. (15)

3.2. Nested subset decomposability

A more pertinent nested subset decomposability property related to the K positions. LetK be the set of 2K subsets of
{1, 2, . . . , K}, so that

K = {Kq = {k1, . . . , kq} : 1 ≤ k1 < · · · < kq ≤ K ; q ≤ K}. (16)

Partition c = (c1, . . . , cK )t as (ctKq , c
t
Kcq
), where ctKq = (ck1 , . . . , ckq) and c

t
Kcq
is the complementary set, for all c ∈ CK . Let

then

CKq = {cKq : Kq ⊆ K}, 0 ≤ q ≤ K . (17)
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For a givenKq ⊆ K , we let50gKq = ((π
0
g (cKq))) and π0g(cKq) be the corresponding vec form, where

π0g (cKq) =
∑

cKcq ∈CKcq

πg(c), ∀cKq ∈ CKq . (18)

Then by definition,

π0g (cKq) ≥ πg(c), ∀c ∈ CK , (19)

and by (18) and (19),

IE(π0g(cKq)) = −
∑

cKq∈CKq

π0g (cKq) logπ
0
g (cKq)

= −

∑
cK∈CK

πg(c) logπ0g (cKq), (20)

and as a result,

IE(πg)− IE(π0g(cKq)) =
∑
cK∈CK

πg(c) log{π0g (cKq)/πg(c)} ≥ 0. (21)

Thus, for any nested sequence {Ks, s ≥ 0} for which ∅ = K0 ⊆ K1 ⊆ · · · ⊆ Ks ⊆ · · · ⊆ K , we have

IE(π0g(cKs′ )) ≤ IE(π
0
g(cKs)), ∀s

′
≤ s. (22)

3.3. Compound nested subset-subgroup decomposability

If we pool the πg over the subset g ∈ Gr(⊆ G), and consider a subset Ks(⊆ K), we denote the pooled entropy by
IE(Gr ,Ks), for r, s ≥ 0. Then proceeding as in before we write

IE(Gr ,Ks) = IEW (Gr ,Ks)+ IEB(Gr ,Ks), ∀r, s ≥ 0, (23)

where both the ‘within’ and ‘between’ components are nonnegative. Further using (22) and (23), we have for all r ≥ r ′, s ≥ s′

IEW (Gr ′ ,Ks′) ≤ IEW (Gr ,Ks), (24)

IEB(Gr ′ ,Ks′) ≤ IEB(Gr ,Ks). (25)

Let IE(Gr , k) and IEB(Gr , k) be respectively the pooled and between group measures for the kth marginal laws π0gk, g ∈
Gr , k = 1, . . . , K . Then by (24) and (25),

IE(Gr ,KK ) ≥ max
1≤k≤K

IE(Gr , k)

≥
1
K

K∑
k=1

IE(Gr , k) = U
(1)
E (Gr), say, (26)

IEB(Gr ,KK ) ≥ max
1≤k≤K

IEB(Gr , k)

≥
1
K

K∑
k=1

IEB(Gr , k) = U
(1)
EB (Gr), say. (27)

Similarly, letting IE(Gr ,Kq) and IEB(Gr ,Kq) be the pooled and between group entropy measures for the q-dimensional
multinomials with k1, . . . , kq positions,

IE(Gr ,KK ) ≥ max
1≤k1≤···≤kq≤K

IE(Gr ,Kq)

≥

(
K
q

)−1 ∑
1≤k1≤···≤kq≤K

IE(Gr ,Kq)

= U(q)E (Gr), say, (28)

IEB(Gr ,KK ) ≥ max
1≤k1≤···≤kq≤K

IEB(Gr ,Kq)

≥

(
K
q

)−1 ∑
1≤k1≤···≤kq≤K

IEB(Gr ,Kq)

= U(q)EB (Gr), say; ∀r ≥ 0; q ≥ 0. (29)



1564 M.-T. Tsai, P.K. Sen / Journal of Multivariate Analysis 101 (2010) 1559–1573

It follows by similar arguments that

U(1)E (Gr) ≤ U
(2)
E (Gr) ≤ · · · ≤ U

(K)
E (Gr), (30)

U(1)EB (Gr) ≤ U
(2)
EB (Gr) ≤ · · · ≤ U

(K)
EB (Gr), (31)

for all r ≥ 0. These are termed nested subset monotonicity and subgroup decomposability property, which provides rationality
of a stepdown procedure, useful in multiple hypotheses testing problems.
Let

HE(1)B (Gr) = U
(1)
EB (Gr), r ≥ 0; (32)

HE(q)B (Gr) = U
(q)
EB (Gr)− U

(q−1)
EB (Gr), q ≥ 2, r ≥ 0. (33)

Then note that U(1)E (G1) = U
(1)
EB (G1) and HE

(1)
B (G1) is the average over the K marginal Shannon entropy measures. Similarly,

HE(q)B (Gr) is termed the qth orderHamming entropymeasure forGr , q ≥ 1. Inmany high-dimensionalmodels, for dimension
reduction, often, it is tacitly assumed that

HE(q)B (Gr) = 0, q ≥ 3, r ≥ 0, (34)

thus effectively using HE(1)B (Gr) and HE
(2)
B (Gr) for statistical modeling and analysis, retaining only themarginal and pairwise

bivariate distributions.
Finally, we may remark that the same hierarchy of decomposition applies to the GS index in the CK -contingency table

setup, where the first order term yields the classical Hamming distance [10,1]. This interpretation and link of GS index and
Hamming distance, albeit quite intuitive, apparently has not been presented in the literature. The simplicity prevailing in
the GS index case in somewhat lost in the present case, and it will be illustrated in the next section.

4. Sample measures and gene classification

There is a basic difference between the sample counterparts of GS index and Shannon entropy; the former admits
(optimal) unbiased nonparametric estimators while the latter matches the same goal only for large n. Though we are
primarily interested in (large) multi-dimensional models, it will be illustrative to discuss this salient point first for the uni-
dimensional case.
Let (n1, . . . , nC ) have a multinomial (n,π) law with π ∈ SC−1, where n =

∑C
c=1 nc . Let X1, . . . ,Xn be n independent

and identically distributed (i.i.d.) random vectors where Xi = (Xi1, . . . , XiC )t with Xij = 1 or 0, according as the ith
observation belongs to the jth cell or not, for j = 1, . . . , C, i ≥ 1. Then Xti1 = 1,∀ i ≥ 1 and

∑n
i=1 Xi = (n1, . . . , nC )t .

Let φ(Xi,Xj) =
∑C
c=1 1(Xic 6= Xjc) be a (symmetric) kernel of degree 2. It follows that

θ = Eφ(Xi,Xj) =
C∑
c=1

πc(1− πc) = 1− πtπ, (35)

the GS index. Thus the U-statistic

Un =
(n
2

)−1 ∑
1≤i<j≤n

φ(Xi,Xj)

=

C∑
c=1

nc(n− nc)/[n(n− 1)] (36)

is an optimal (unbiased) nonparametric estimator of θ , the GS index [11]. On the other hand, the Shannon entropy
−
∑C
c=1 πc logπc does not have a kernel of finite degree, forwhich the correspondingU-statisticwould be optimal. A related

(biased) estimator (von Mises functional)

Vn = −
C∑
c=1

(nc/n) log(nc/n) (37)

is, of course, asymptotically (as n → ∞) optimal, albeit for small n, the optimality property is not generally true. Further,
for n not adequately large, estimator of the sampling error of Vn poses additional complications.
Using the notation in (2)–(3), we write for anm ≥ 1,

IE(π) =
∑
1≤r≤m

1
r
Hr(π)+ Rm(π), say, (38)
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where Hr(π) =
∑C
c=1 πc(1− πc)

r for every π ∈ SC−1,

0 ≤ Rm(π) ≤
C
m

(
1−

1
C

)m
. (39)

Thus Rm(π) converges to 0, exponentially in m (→∞) and uniformly in π ∈ SC−1. Consequently, let m = mn ∼ log n, we
can make Rmn(π) = o(n

−2) as n→∞. Further, each Hr(π) admits a U-statistic, which is unbiased and optimal,

Unr =
C∑
c=1

nc(n− nc)[r]/n[r+1], r ≥ 1, (40)

where n[m] = n(n− 1) · · · (n− m+ 1) for m ≤ n, and for m > n, n[m] = 0 with probability one. However, in this way, we
end up withmn such U-statistics, wheremn ∼ 2C log n. Thus when n is large, we may have to deal with a set of U-statistics
and that would increase the variability of the estimator of IE(π) based on the first term on the right hand side of (38).
This asymptotic representation along with the fact that all the Unr are reversed martingale with respect to a common

sigma subfield imply that not only jackknifing can be used to reduce the bias of the estimator Vn but also the pseudovalues
generated by jackknifing provides a (strongly) consistent variance estimator [12]. This feature enables us to make use of
standard jackknife procedures to draw statistical conclusions (whenever n is large) based on Vn in (37) and its pseudovalues.
Based on the subgroup/subset decomposability perspective studied in Section 3, we proceed now to the general case of

K -dimensional tables relating to G groups, thus putting more emphasis on the HE(1)B (Gr) and HE
(2)
B (Gr). We may note that

the estimates of these measures have possibly unequal variability (i.e., heteroscedasticity) and non-normal distributions.
Even asymptotic normality does not preclude heteroscedasticity. As such, even in an asymptotic setup (when n→∞), we
need to estimate the mean squared errors of the estimates of HE(1)B (Gr), HE

(2)
B (Gr). Following that standard inference tools

can be used to draw statistical conclusions. The situation is quite different when the ng are not all large, and K � n. This
environment is commonly encountered in genomic studies. In the rest of this study we confine ourselves to this K � n
environment.
Let πgkc denote the cth cell probability for the kth marginal law πgk of group g (1 ≤ c ≤ C, 1 ≤ g ≤ G, 1 ≤ k ≤ K),

and let ngkc be the cell frequencies for the kth marginal table corresponding to the gth group, so that the MLE of πgkc is
π̂gkc = ngkc/ng , 1 ≤ c ≤ C , where ng =

∑C
c=1 ngkc , the same for every k (=1, . . . , K). Let π̂gk = (π̂gk1, . . . , π̂gkC )

t

for k = 1, . . . , K , 1 ≤ g ≤ G. Note that the π̂gk (for a given g) for k = 1, . . . , K are not necessarily stochastically
independent nor they are identically distributed. Suppose that Xgi,k takes on the label 1, . . . , C and we denote the (random)
label associated with Xgi,k by cgki, 1 ≤ i ≤ ng; g = 1, . . . ,G, k = 1, . . . , K . Thus, Xgi corresponds to the vector
cgi = (cg1i, . . . , cgKi)t , and if δa,b = 1 or 0, according as a = b or not, then

ng∑
i=1

δc,cgki = ngkc, c = 1, . . . , C, k = 1, . . . , K , g = 1, . . . ,G.

In the following, we study the jackknife estimator of Shannon entropy IE(πgk). The jackknife estimator is less biased than
that of based on the U-statistics, Unr . To proceed it, first consider the plug-in estimator based on the MLE of πgk

IE(π̂gk) = −
C∑
c=1

ngkc
ng
log
ngkc
ng
,

= n−1g

{
ng log ng −

C∑
c=1

ngkc log ngkc

}
, g = 1, . . . ,G; k = 1, . . . , K , (41)

where the natural assumption that x log x = 0 if x = 0 is adopted in this article, and then find out the jackknife estimator of
IE(πgk) based on IE(π̂gk). To proceed it, deleting the ith observation in the gth group and kth position, we then get

I(−i)E (π̂gk) = (ng − 1)−1
{
(ng − 1) log(ng − 1)−

C∑
c=1

(ngkc − δc,cgki) log(ngkc − δc,cgki)

}
(42)

for i = 1, . . . , ng . Thus, the corresponding pseudovalues are

IE,i(π̂gk) = ng IE(π̂gk)− (ng − 1)I
(−i)
E (π̂gk)

= ng log ng − (ng − 1) log(ng − 1)−
C∑
c=1

ngkc log ngkc

+

C∑
c=1

(ngkc − δc,cgki) log(ngkc − δc,cgki), 1 ≤ i ≤ ng . (43)
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Therefore, the jackknife estimator of IE(πgk) based on the plug-in estimator IE(π̂gk) is of the form

IEJ(π̂gk) =
1
ng

ng∑
i=1

IE,i(π̂gk)

= ng log ng − (ng − 1) log(ng − 1)−
1
ng

C∑
c=1

ngkc{(ng − ngkc) log ngkc

− (ngkc − 1) log(ngkc − 1)}, g = 1, . . . ,G; k = 1, . . . , K . (44)

And hence, its corresponding jackknife variance estimator is

σ̂ 2Jgk =
1

ng − 1

{
C∑
i=1

ngkc
ng
[ngkc log ngkc − (ngkc − 1) log(ngkc − 1)]2

−

(
C∑
i=1

ngkc
ng
[ngkc log ngkc − (ngkc − 1) log(ngkc − 1)]

)2}
, g = 1, . . . ,G; k = 1, . . . , K . (45)

With n =
∑G
g=1 ng and

∑G
g=1 ngkc replacing ng and ngkc in (41)–(44), respectively, then we can also find the jackknife

estimator IEJ(π̂∗k) of IE(π
∗

k) and its corresponding jackknife variance estimator. For the between group entropy defined in
(7) by IEB(π∗k) =

∑G
g=1wg

∑C
c=1 πgkc log(πgkc/π

∗

kc), the plug-in estimator of IEB(π
∗

k)will be biased. As such, we consider the
jackknife estimator of the between group entropy

TkB = IEJ(π̂∗k)−
G∑
g=1

wg IEJ(π̂gk), k = 1, . . . , K , (46)

where π̂∗k =
∑G
g=1wg π̂gk andwg = ng/n, g = 1, . . . ,G.

One of the scientific foci is to classify the K genes into two subsets of disease genes and non-disease genes. For each gene,
we set a hypothesis testing problem H0k vs. H1k, k = 1, . . . , K . In this marginal formulation, we have a set of K hypotheses
corresponding to K genes. The entropy TkB is a real valued statistic and is bounded between 0 and G log C . We use test
statistic TkB for testing H0k vs. H1k. Under the alternatives, its distribution tilts towards the upper endpoint, equivalently the
right-hand sided p-values. But the distribution of TkB, even under the null hypothesis, may not be the same for each k. These
distributions are discrete ones, and hence there are a set of discrete mass points, ties among the TkB cannot be neglected
with probability one. Hence the assumption that the p-values have uniform (0, 1) distribution under null hypothesis may
not be appropriate. On the other hand, using a level of significance for each marginal hypothesis testing problem, no matter
how small it is chosen, when K is indefinitely large, the family wise error rate (FWER) could be large. Thus, controlling the
FWER when K is very large may generally entail unduly conservativeness of multiple hypotheses testing schemes. As such,
we formulate some alternative procedures.

5. Chen–Stein Theorem in a UI perspective

Amultiple hypotheses testing problem, possibly in a constrained inference setup, where the component hypotheses test
statistics are unlikely to be independent is confronted here. We let

H0 =
K⋂
k=1

H0k and H1 =
K⋃
k=1

H1k, (47)

whereH0k andH1k refer to the kth gene andH1kmay as well be a restricted alternative hypothesis, for k = 1, . . . , K ; the test
statistics for H0k vs. H1k, 1 ≤ k ≤ K are denoted by Tnk (say), 1 ≤ k ≤ K , and these are generally not stochastically
independent, even under H0. Further, under H0, the distribution of Tnk may not be the same for all k, while the non-
null distributions may be even more heterogeneous. Our contention is to exploit the union–intersection (UI) principle
of Roy [13] in this complex setup, and in this respect, we incorporate a version of Chen–Stein [14] Theorem in a more
general dependence pattern [15] which suits HDLSS problems better. In the next section, the use of Hamming distance type
construction [6] will be further explored.
Arratia et al. [16] provided an updated version of the Chen–Stein Theorem. When K is large, by the results of bivariate

extreme statistics [15,17], it can be further simplified as in the following.

Theorem (Chen–Stein). Let I be an index set with cardinality K . For each i ∈ I, let ξi be an indicator (i.e., zero-one valued)
random variable such that P{ξi = 1} = 1− P{ξi = 0} = pKi, 1 ≤ i ≤ K. For each i ∈ I, let Ji be a subset of I such that ξi and
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ξj, j ∈ Ji are possibly dependent, and let Jci be the complementary subset (of Ji) so that ξi and ξj, j ∈ Jci are independent. Let
WK =

∑K
k=1 ξk and λK =

∑K
k=1 pKk = E(WK ). Further, let

b1K =
∑
i∈I

∑
j∈Ji

pKipKj, (48)

and

b2K =
∑
i∈I

∑
j(6=i)∈Ji

E(ξiξj). (49)

Finally, let ZK be a random variable having Poisson distribution with parameter λK . Then

sup
x≥0
|P{WK ≤ x} − P{ZK ≤ x}| ≤ 2(b1K + b2K )

1− e−λK

λK
. (50)

We may also remark that (1 − e−λ)/λ, λ ≥ 0 is ↘ in λ with values 1 at λ = 0 and 0 as λ → ∞. Further,
(1− e−λ)/λ ≤ min(1, λ−1), λ ≥ 0. Thus, the Chen–Stein Poisson distributional approximation holds whenever

lim
K→∞

2(b1K + b2K )(1− e−λK )/λK = 0, (51)

where λK need not be small for large K .
In order to incorporate the Chen–Stein Theorem in the contemplatedmultiple hypotheses testing problem, let us consider

the indicator variables

ξKk = 1(Tnk > cKk,α∗), 1 ≤ k ≤ K , (52)

where the critical level cKk,α∗ is so chosen that PH0k{Tnk > cKk,α∗} = α
∗, i.e., pKk = EξKk = α∗ and λK =

∑K
k=1 pKk = Kα

∗. In
the most simple setup, we choose α∗ such that

PH0{ZK ≥ 1} = 1− e
−λK = 1− e−Kα

∗

= α, (53)

where α (0 < α < 1) is the overall significance level. Thus, if K is large, typically, α∗ will be much smaller compared to
α (as α∗ = −1K log(1 − α) =

1
K

∑
∞

l=1 α
l/l). This may still result in a less powerful multiple hypotheses testing procedures.

Thus, following Sen [15], we conceive of a positive integer, say rK , such that

PH0{ZK ≥ rK } = 1− e
−λK − · · · − e−λK λ(rK−1)K /(rK − 1)! = α. (54)

This will result in a larger value of λK , i.e., α∗. The interplay of rK and power (as well as false discovery rate (FDR)) will be
illustrated later on.
The multiple hypotheses testing procedure may be formulated as follows. Consider the observed values of the test

statistics Tnk, 1 ≤ k ≤ K and compute the ξKk andWK as in (52). If

WK ≤ rK − 1, accept H0 (i.e., all the H0k), (55)
and if
WK ≥ rK , reject H0, (56)

in favor of those H1k for which the ξKk are equal to one. Thus, when H0 is rejected, there will be at least rK genes for which
H1k is accepted, and the number of rejection is random (≥rK ). When H0 is accepted, though up to rK − 1 (≥0) ξKk may be
equal to 1, those H1k are not accepted.
The crux of the problem is therefore the choice of the Tnk, 1 ≤ k ≤ K and their critical values cKk,α∗ . Excepting when

the distribution of Tnk under H0 is specified, the choice of the cKk,α∗ may be analytically harder. We shall explore suitable
permutation procedures to prescribe alternative statistical approaches. Along with the case of the Hamming distance type
of statistics, this is discussed in the next section.

6. Hamming–Shannon pooled measure and UI test

For SARSCoV sequences, observed several different demographic strata (countries), Sen et al. [1] based on the Hamming
distance statistics to study the scientific focus: The statistical comparison of different stratawith a view toward coordinating
plausible differences to pertinent environmental factors. In this section, we further improve their method for the above
mentioned scientific focus. In the meanwhile, we develop new testing procedures for another scientific focus: Gene
classification.
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6.1. The comparison of different groups

In passing, note that5g = ((πg(c), c ∈ CK)), 1 ≤ g ≤ G, the Hamming distance based on the measures incorporating
the IGS(πgk) is defined as

IGS(5g) = K−1
K∑
k=1

IGS(πgk), g = 1, . . . ,G, (57)

where πgk is the kth marginal probability vector corresponding to5g , k = 1, . . . , K , g = 1, . . . ,G. In this formulation, we
allow themarginalsπgk to be possibly different (for different k), and in that way,5g to be adaptable to heterogeneity as well
as dependence of the marginal measures. The idea of using the Hamming distance is to address the curse of dimensionality
problem through a marginal approach. A full K -variate approach when K � ng , 1 ≤ g ≤ G is infeasible. Moreover, the
dependence pattern of the K responses is neither well structured nor can be totally ignored. Further, the heterogeneity of
the responses from one position to another cannot be ruled out. The Hamming distance provides an average measure that
does not ignore dependence or possible heterogeneity. Any single measure for a K -variate response model involves loss of
information. But, realizing that the total information is not extractable statistically, this is a natural way of using pseudo-
measures that are more sensitive to group divergence. For the consistency of terminologies, we may refer to the Hamming
distance as the Hamming–GS measure in this article.
As we have shown that there is a Lorenz ordering of the two standardized measures in Section 2, and this makes it more

appealing to consider the Shannon entropy. Similar aggregations of the entropies are considered in this study, we define a
Hamming–Shannon measure as

IE(5g) = K−1
K∑
k=1

IE(πgk), g = 1, . . . ,G. (58)

These are the average of the marginal Shannon [5] entropies, which is equivalent to U(1)E (Gr) defined in expression (26)
when r = 1. We may refer to U(1)E (Gr), r ≥ 2 as the Hamming–Shannon pooled measure. Similarly, the Hamming–GS
pooled measure is defined with IE(πgk) being replaced by IGS(πgk),∀1 ≤ g ≤ G; 1 ≤ k ≤ K .
In genomic studies, it has been (at least empirically) observed that the Hamming–GS measure may vary according to the

HIV positivity status of the sequences with positivity level increasing Hamming–GS measure may also increase, through
remaining bounded by (C − 1)/C from above [6,7]. Studies made with SARSCoV genome suggest a similar pattern [18].
Parallel to the case of Hamming–GS measure, we frame the null hypothesis

H0 : IE(51) = · · · = IE(5G)
against
H1 : IE(51) ≤ · · · ≤ IE(5G),

(59)

with at least one strict inequality sign being true. The parameter space (SCK−1)
G (for 51, . . . ,5G) is denoted by Θ . The

parameter spaces, underH0 aswell asH1, in this formulation, are evenmore nonregular, complex compared to the one based
on the Hamming–GSmeasure, and are not positively homogeneous cones (subspaces) ofΘ . Therefore standard constrained
statistical inference (CSI) based on the likelihood approach prospects are bleak. In later section, we illustrate how Roy’s UI
principle based CSI methodology, developed in [19], can be more conveniently incorporated in this highly nonstandard CSI
problem. That approach does not presume that ng � K and the findings remain applicable in genomics as long as ng is not
small, irrespective of K � ng , 1 ≤ g ≤ G or not.
The CSI problem in (59) requires efficient estimators of the Hamming–Shannon measure related to functionals on

the simplex SCK−1 (not a single point on it), and hence, first we incorporate the jackknife methodology to obtain the
nonparametric estimators and their standard errors. Recall that we do not restrict ourselves to independent positions, nor
necessarily to the case of large ng . In the current SARSCoV data, all the ng are small, and hence, we intend to emphasize also
on the case where K � ng with small ng , 1 ≤ g ≤ G.
First, we consider the jackknife estimator of Hamming–Shannonmeasure IE(5g) based on the plug-in estimators IE(π̂gk).

As we have seen that the usual jackknifing variance estimator may not work out well in HDLSS setups [1], we propose a
modified method of jackknifing. Following the results of (41)–(44), the corresponding jackknife estimator of IE(5g) based
on the plug-in estimators IE(π̂gk) is of the form

IEJ(5̂g) =
1
K

K∑
k=1

IEJ(π̂gk)

= ng log ng − (ng − 1) log(ng − 1)+
1
Kng

K∑
k=1

C∑
c=1

{ngkc(ngkc − 1) log(ngkc − 1)

− (ng − ngkc)ngkc log ngkc}, g = 1, . . . ,G. (60)
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Table 1
The stability of modified jackknife variance estimator ∆̂K .

Q = 6 Q = 12 Q = 24 Q = 48 Q = 96 Q = 144 Q = 192

Taiwan 0.0109 0.0111 0.0111 0.0111 0.0112 0.0112 0.0112
Singapore 0.0169 0.0175 0.0178 0.0179 0.0181 0.0181 0.0181
Hong Kong 0.0560 0.0574 0.0586 0.0589 0.0591 0.0593 0.0592
Beijing 0.0976 0.0976 0.0977 0.0978 0.0975 0.0976 0.0976

Denote the frequency of the cell (c, d) corresponding to the genes (k, q) by ngkq,cd and denote the corresponding indicator
variables by δc,cgki and δd,dgqi respectively. Moreover, for k 6= q, (δc,cgki , δd,dgqi) can assume the values (1, 1), (1, 0), (0, 1) and
(0, 0)with respective frequencies ngkq,cd, ngkc − ngkq,cd, ngqd − ngkq,cd and ng − ngkc − ngqd + ngkq,cd. Therefore, for k 6= q, the
covariance term is

1
ng(ng − 1)

C∑
c=1

C∑
d=1

{
ngkq,cd −

ngkcngqd
ng

}
ugkcugqd.

Thus, the jackknife variance estimator of IE(5g) is

σ̂ 2Jg =
1

ng(ng − 1)K 2

K∑
k=1

K∑
q=1

C∑
c=1

C∑
d=1

{
ngkq,cd −

ngkcngqd
ng

}
ugkcugqd, g = 1, . . . ,G, (61)

where ugkc = ngkc log ngkc − (ngkc − 1) log(ngkc − 1), 1 ≤ g ≤ G; 1 ≤ k ≤ K ; 1 ≤ c ≤ C . In passing we may remark
that x log x = 0 for x = 0, or 1, and hence, whenever ngkc is 0 or 1, the corresponding term does not show up in the above
expression.
Note thatwhile the genes are not necessarily independent,we assume that theG groups are independent. As such,wemay

construct the UI test for hypothesis testing problem (59) based on the jackknife estimators in (60) and their corresponding
jackknife variance estimators in (61). Since the Shannon entropy is more informative than the GS index, the UI test based
on Hamming–Shannonmeasure should perform better than the corresponding one based on Hamming–GSmeasure for the
statistical comparison of different groups.
The jackknife variance estimator in (61) is based on the conventional jackknifing, eliminating one observation at a time,

from the gth sample (1 ≤ g ≤ G). If the K genes (positions) were independent and identically distributed, one would have
employed jackknifing across the K positions, resulting in amore precise variance estimation. However, such an independent
and identically distributed clausemay not be tenable in the genomic context. As such, we do not consider the details of such
double jackknifing. However, in the independent case, the order of the variance of IEJ(5̂g) would have been K−1, so that
∆̂Kg = K σ̂ 2Jg would behave steadily for large K . We perform the following Monte Carlo simulation study to appraise the
stability of the variance estimator for random sets (Q out of K genes), for Q = 6, 12, 24, 48, 96, 192. The jackknife variance
estimator (in (61)) for each subset, based on 10,000 replications, for each group, is presented in Table 1.
The jackknife variance estimator for each group seems to be fairly stable, thus suggesting the adaptability of double

jackknifing across the genes. However, we may not need this additional stability assumption, particularly when we
incorporate the Chen–Stein methodology.
We also intend to incorporate the underlying structural complexities for dimensional reduction. LetG∗g = {1, . . . , g}, g =

1, . . . ,G. By the property of nested subset monotonicity and subgroup decomposability discussed in Section 3, it is easy to
note that the Hamming–Shannon pooled measure IE(5G∗g ), which is a special case of U

(1)
E (Gr), r ≥ 2 defined in (26), is

more informative than the Hamming–Shannon measure IE(5g). As such, we may reformulate the problem (59) in terms of
IE(5G∗g ), g = 1, . . . ,G. For these Hamming–Shannon pooled measures IE(5G∗g ), g = 1, . . . ,G, it automatically forms the
simple ordering relationship: IE(5G∗1

) ≤ · · · ≤ IE(5G∗G
). Thus, we have no more interest in the problem of testing against

the global alternative. Instead, we may consider the hypothesis problem of testing

HS0 : IE(5G∗1
) = · · · = IE(5G∗G

)

against

HS1 : IE(5G∗1
) ≤ · · · ≤ IE(5G∗G

),

(62)

with at least one strict inequality sign being true. To find out the test statistic for it, let

Tg:g−1 = IEJ(5̂G∗g )− IEJ(5̂G∗g−1
)

=
1
K

K∑
k=1

[IEJ(π̂G∗gk
)− IEJ(π̂G∗

(g−1)k
)], g = 2, . . . ,G, (63)

where IEJ(π̂G∗gk
) is defined the same as in (44) with the pooled samples of groups 1, . . . , g instead. Note that the right hand

side of expression (63) is the jackknife estimator of IEJ(5G∗g )−IEJ(5G∗g−1
). However, due to the different sample sizes of pooled
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groups G∗g and G∗g−1, the corresponding jackknife covariance estimators will bemore complex to write in a compact form. As
the null hypothesis relates to the homogeneity of the G groups, we take advantage of the resulting permutation invariance
structure. Therefore, we proceed with this extended permutation-jackknife methodology. Let Y1 = (T2:1, . . . , TG:G−1)t
and Yi be the (i − 1)th corresponding permutation of Y1, i = 2, . . . ,N1. Consider the corresponding covariance matrix
SN1 = (N1 − 1)

−1∑N1
i=1(Yi − Ȳ)(Yi − Ȳ)

t , where Ȳ = N1−1
∑N1
i=1 Yi. Let G = {1, . . . ,G− 1}, and for every a: ∅ ⊆ a ⊆ G, let

a′ be its complement and |a| its cardinality, there being 2G−1 subsets for which 0 ≤ |a| ≤ G− 1. For each a: ∅ ⊆ a ⊆ G, we
partition (following possible rearrangement) Yi and SN1 as

Yi =
(
Yia
Yia′

)
and SN1 =

(
SN1aa SN1aa′
SN1a′a SN1a′a′

)
, (64)

and write

Yia:a′ = Yia − SN1aa′S
−1
N1a′a′

Yia′ , (65)

SN1aa:a′ = SN1aa − SN1aa′S
−1
N1a′a′

SN1a′a. (66)

Proceeding as in [19], we obtain that the UI test for testing H0 vs. H1 in (62) based on the test statistic

Q 2i =
∑

∅⊆a⊆G

{Ytia:a′S
−1
N1aa:a′

Yia:a′}1{Yia:a′ > 0, S−1N1a′a′Yia′ ≤ 0} (67)

i = 1, . . . ,N1, where 1(·) denotes the indicator function. Based on the results of Q 2i , i = 1, . . . ,N1, we can then find out the
corresponding permutation p-value for the CSI problem (62).
Similarly, let GTg = {g,G}, g = 1, . . . ,G− 1. We may be interested in the hypothesis problem of testing

HT0 : IE(5g) = IE(5GTg
)

against

HT1 : IE(5g) ≤ IE(5GTg
), g = 1, . . . ,G− 1,

(68)

with at least one strict inequality sign being true. Let Γ SE = {(51, . . . ,5G)
t
|IE(5G∗1

) ≤ · · · ≤ IE(5G∗G
)} and Γ TE =

{(51, . . . ,5G)
t
|IE(5g) ≤ IE(5GTg

), g = 1, . . . ,G − 1}. We may still refer to Γ SE and Γ
T
E as the simple ordering set and the

simple tree ordering set, respectively. However, we may also note that Γ SE is no longer a proper subset of Γ
T
E . To consider

the test statistic for problem (68), let

TG:g = IEJ(5̂GTg
)− IEJ(5̂g)

=
1
K

K∑
k=1

[IEJ(π̂GTgk
)− IEJ(π̂gk)], g = 1, . . . ,G− 1. (69)

Also let Z1 = (TG:1, . . . , TG:G−1)t , and perform the procedures mentioned above with Z1 replacing Y1. Then, we can find the
permutation p-value for hypothesis testing problem (68).

6.2. Gene classification (revisited)

The global test based on TkB defined in (46) for gene classification is introduced in Section 4. Here, we would like to
incorporate the structural information into the construction of new testing procedures for gene classification. We refer to
IE(πGTgk

) (or IE(πG∗gk
)) as the Shannon pooled measure for each k, 1 ≤ k ≤ K . And similarly, refer to IGS(πGTgk

) (or IGS(πG∗gk
))

as the GS pooled measure. To proceed it, we explain the procedure based on IE(πGTg
) in the following, and the others can be

similarly performed. Note that IEJ(πGTgk
) is more informative than IEJ(πgk). For each k (=1, . . . , K), we consider the statistics

TG:g,k = IEJ(π̂GTgk
)− IEJ(π̂gk), g = 1, . . . ,G− 1, (70)

and let Zk1 = (TG:1,k, . . . , TG:G−1,k)t . Then we proceed the UI-test statistic mentioned above specifically for the kth gene,
and denote it by Lnk, for k = 1, . . . , K . As such, we need to find a way to compute the right hand side tail probabilities of
Lnk under H0k for each k. For this, we consider all possible equally likely permutations of the observations for each k, each
having the same conditional probability 1N , where N = n!/

∏G
g=1 ng !. This enable us to find a value, say cKk,α∗ such that the

proportion of permuted values of Lnk above cKk,α∗ is just less thanα∗ = K−1α, namely PH0k{Lnk > cKk,α∗} = α
∗, k = 1, . . . , K .

In practice, to overcome the difficulty that N is too large we may choose N1, which is sufficiently large but N1 � N , instead.
Next, generate a set of (N1−1) permutations and let Zkibe the (i−1)th corresponding permutation of Zk1, i = 2, . . . ,N1. For
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this construction, we use the permutation distribution generated by the set of all possible permutations among themselves.
For each k (=1, . . . , K), we denote the observed ordered values by lk[1] ≤ lk[2] ≤ · · · ≤ lk[N1(1−α∗)] ≤ · · · ≤ lk[N1]. Also let
c0k,α∗ = lk[N1(1−α∗)], k = 1, . . . , K . Then, with Lnk and its corresponding critical value c

0
Kk,α∗ , the multiple hypotheses testing

problem H0k vs. H1K , k = 1, . . . , K considered can then be performed. If the observed value Lnk is greater than c0Kk,α∗ , we
then reject the null hypothesis H0K and classify the kth gene as the disease gene, k = 1 ≤ k ≤ K . For gene classification,
some simulation studies between the UI test and the global test proposed in Section 4 are presented in the last section.
In passing, we may also note that the choice of α∗ is crucial. Generally, we may take α∗ = α/K for a given level of

significance α. This is referred to as the one obtained by Bonferroni type method in the literature. As shown in Section 5,
the α∗ obtained by Bonferroni type method is less than that of by the more structured Chen–Stein method with rK = 1. We
also expect that the procedure based on α∗ obtained by the Chen–Stein method with rK = 2 is more powerful than that of
with rK = 1. Some numerical studies for SARSCoV RNA genomic dataset will be presented in the last section.

7. Data analysis

After multiple sequence alignment of SARS genome sequence, Sen et al. [1] found many of the deposited SARS genomes
were incomplete or large deletion. To set all the SARS genome sequences in equal position for comparison, they ended up
using 25 sequences, 12 (=n1) from Taiwan, 4 (=n2) from Singapore, 3 (=n3) from Hong Kong and 6 (=n4) from Beijing for
data analysis, with four groups: g = 1, 2, 3, 4 which represent four different geographic regions ‘‘Taiwan, Singapore, Hong
Kong and Beijing’’ respectively. Moreover, we have C = 4 and K = 192. Let θGS = (IGS(51), . . . , IGS(5G))t , and denoted
by Γ SGS = {θGS|IGS(51) ≤ · · · ≤ IGS(54)}, which is referred to as the simple ordering set in the literature. Also denoted by
Γ TGS = {θGS|IGS(5g) ≤ IGS(54), g = 1, 2, 3} which is called the simple tree ordering set in the literature, and the global
alternative set Γ GGS = {θGS|IGS(5g), g = 1, 2, 3, 4, are all not equal}. Note that the set Γ

S
GS is a proper subset of the set Γ

T
GS.

Sen et al. [1] concluded that the most likely alternative is the one of the set Γ SGS among all 24 simple ordered alternatives, 4
different simple tree ordered alternatives and the global alternative. Numerical value of IE(5̂g) ismuch larger than that of the
corresponding IGS(5̂g), 1 ≤ g ≤ G, the details are omitted here. Although the Hamming–Shannon measure IE(5g) is more
informative than the Hamming–GS measure IGS(5g), the same conclusion can be made based on the Hamming–Shannon
measure IE(5g) for this SARSCoV dataset.
In passing, we may note that the new Hamming–Shannon pooled measures both IE(5G∗g ) and IE(5GTg

) are more
informative than the Hamming–Shannon measure IE(5g). For the new Hamming–Shannon pooled measure IE(5G∗g )

developed in this paper, the most basic hypothesis testing problem is the one of testing HS0 against H
S
1 in (62). We appeal

to the same permutation subset of 99,999 without replacement data sets. For each permutation data set, we construct the
new table of ngkc , and then calculate the corresponding Q 2i . Arrange these 100,000 numerical values of Q

2
i , we find that the

one (Q 21 ) calculated from the original data set is the 8th largest one among these 100,000 values. The obtained permutation
p-value is 0.00008. Thus, for the SARSCoV dataset we may conclude that the new Hamming–Shannon pooled measure of
four different geographic regions rejects the null hypothesis HS0 . Next, consider the problem of testing H

T
0 against H

T
1 in (68).

Similar arguments as in the simple ordered alternative case, arranging those 100,000 numerical values ofQ 2i , we find that the
one (Q 21 ) calculated from the original data set is the largest one among these 100,000 values. Thus, the obtained permutation
p-value is 0.00001, which is less than that of for the problem of testing HT0 against H

T
1 . And hence, we may conclude that the

dataset supports this simple tree ordered alternative Γ TE = {(51, . . . ,54)
t
|IE(5g) ≤ IE(5GTg

), g = 1, 2, 3}.
Furthermore, for this SARSCoV dataset, we would also like to identify the disease genes by the global test and the UI

test, respectively. As mentioned in the previous section, the choice of α∗ is important for a given level of significance α.
Hence, we study the performance of the global tests and UI tests for different kinds of α∗ obtained via the Bonferroni type
method and the Chen–Stein method, respectively. By applying the Bonferroni type method, we have α∗ = α/K for a given
level of significance α. First, by applying the global test statistics TkB, k = 1, . . . , K in (46), we calculate the value of TkB
obtained from real data set and the other 99,999 additional permutation values for each k by adopting the Shannon pooled
measure and the GS pooled measure (i.e., let IGS(π̂gk) =

{
1−

∑C
c=1

ngkc (ngkc−1)
ng (ng−1)

}
, k = 1, . . . , K ; g = 1, . . . ,G, and with

IGS(π̂gk) and IGS(π̂∗k) replacing IEJ(π̂gk) and IEJ(π̂
∗

k) in TkB), respectively. The values of test statistics based on Shannon pooled
measure are larger than those of corresponding test statistics based on GS pooled measure. Note that for α = 0.05, we have
α∗ = 0.000260 and for α = 0.1, α∗ = 0.000521. Table 2 relates to corresponding gene selection outcomes. Basically, for
the global tests as well as UI tests, the GS and Shannon pooled measures yield similar results.
Using the Chen–Stein Theorem: (i) rK = 1, i.e., α∗ = −1

K log(1 − α) and (ii) rK = 2, i.e., 1 − α = (1 + Kα∗)e−kα
∗

,
with α = 0.05. For (i), the results are the same as those in Table 2. For (ii), for the global alternative as well as restricted
alternative case, the Shannon pooled measure based procedure performs better than the GS pooled method. The results are
presented in Table 3. The same differential picture holds for α = 0.10.
For this SARSCoV dataset, K = 192 is only moderate large. With the help of Chen–Stein Theorem, the UI test based on

GS pooled measure identifies the disease genes, and the UI test based on Shannon pooled measure makes no more further
improvement. However, for the other datasets, with larger K , the UI test based on Shannon pooled measure may perform
better than the GS pooled measure.
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Table 2
The relative performance of conventional global tests and UI tests.

Tests Detected genes when α = 0.05 Detected genes when α = 0.1

Global test: GS None k = 130, 183
Global test: Shannon None k = 130, 183
UI test: GS k = 130, 151, 183, 185 k = 130, 151, 183, 185
UI test: Shannon k = 130, 151, 183, 185 k = 130, 151, 183, 185

Table 3
Exploitation of the Chen–Stein Theorem.

Tests Detected genes when α = 0.05 with rK = 2

Global test: GS k = 130, 178, 183
Global test: Shannon k = 130, 151, 178, 183, 185
UI test: GS k = 65, 83, 87, 120, 121, 130, 147, 151, 178, 183, 185
UI test: Shannon k = 65, 83, 87, 120, 121, 130, 147, 151, 178, 183, 185
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Appendix

We derive the Eqs. (45) and (61) in the followings. Let then

Zgk,i = IE,i(π̂gk)− IEJ(π̂gk)

=

C∑
c=1

{
(ngkc − δc,cgki) log(ngkc − δc,cgki)−

1
ng
[ngkc(ngkc − 1) log(ngkc − 1)− (ng − ngkc)ngkc log ngkc]

}
for i = 1, . . . , ng . Then the corresponding jackknife variance estimator of IE(πgk) is

σ̂ 2Jgk =
1

ng(ng − 1)

ng∑
i=1

[IE,i(π̂gk)− IEJ(π̂gk)]2,

=
1

ng(ng − 1)

ng∑
i=1

{
C∑
c=1

Z2gk,ic +
∑

1≤c 6=d≤C

Zgk,icZgk,id

}
, g = 1, . . . ,G; k = 1, . . . , K (A.1)

where Zgk,ic is the cth term in Zgk,i. Recall that ngkc of the δc,cgki are equal to 1 while the remaining ng − ngkc are zeros. Also
simultaneously, δc,cgki and δd,dgki (for c 6= d) cannot be equal to 1; their possible values are (1, 0), (0, 1) and (0, 0) with
respective frequencies ngkc, ngkd and ng − ngkc − ngkd. Thus

ng∑
i=1

C∑
c=1

Z2gk,ic =
C∑
c=1

[
ngkc

{
(ngkc − 1) log(ngkc − 1)−

1
ng
ugkc

}2
+ (ng − ngkc)

{
ngkc log ngkc −

1
ng
ugkc

}2]

=

C∑
c=1

ngkc(ng − ngkc)
ng

u2gkc,

where ugkc = ngkc log ngkc − (ngkc − 1) log(ngkc − 1), 1 ≤ g ≤ G; 1 ≤ k ≤ K ; 1 ≤ c ≤ C . Similarly,∑
1≤c 6=d≤C

Zgk,icZgk,id = −
∑
c 6=d

ngkcngkd
ng

ugkcugkd

= −
1
ng

(
C∑
c=1

ngkcugkc

)2
+
1
ng

C∑
c=1

n2gkcu
2
gkc .

Therefore we have

σ̂ 2Jgk =
1

ng − 1

 C∑
c=1

ngkc
ng
u2gkc −

(
C∑
c=1

ngkc
ng
ugkc

)2
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=
1

ng − 1

{
C∑
i=1

ngkc
ng
[ngkc log ngkc − (ngkc − 1) log(ngkc − 1)]2

−

(
C∑
i=1

ngkc
ng
[ngkc log ngkc − (ngkc − 1) log(ngkc − 1)]

)2}
, g = 1, . . . ,G; k = 1, . . . , K . (A.2)

Moreover, for k 6= q, (δc,cgki , δd,dgqi) can be assumed the values (1, 1), (1, 0), (0, 1) and (0, 0)with respective frequencies
ngkq,cd, ngkc − ngkq,cd, ngqd − ngkq,cd and ng − ngkc − ngqd + ngkq,cd. Therefore, for k 6= q, the covariance term is

1
ng(ng − 1)

C∑
c=1

C∑
d=1

{
ngkq,cd −

ngkcngqd
ng

}
ugkcugqd.

Thus, the jackknife variance estimator of IE(5g) is

σ̂ 2Jg =
1

ng(ng − 1)K 2

K∑
k=1

K∑
q=1

C∑
c=1

C∑
d=1

{
ngkq,cd −

ngkcngqd
ng

}
ugkcugqd, g = 1, . . . ,G, (A.3)

where the ugkc are defined as before.
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