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a b s t r a c t

The tests on the homogeneity of the columns of the coefficient matrix in a multiple
multivariate linear regression with some rows of the matrix constrained by synchronized
orderings, using the test statistics obtained by replacing the unknown variance–covariance
matrix with its estimator in likelihood ratio test statistics, form a family of ad hoc tests. It
is shown in this paper that the tests in the family share the same alpha-level critical values
and follow the same distributions for computing their p-values. A sufficient condition is
established for other tests to enjoy these properties, and to be more powerful. Two such
more powerful tests are examined.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let β ∈ Rp×q and positive definite Σ ∈ Rp×p (Σ > 0) be the coefficient matrix and the variance–covariance matrix
of a multivariate multiple linear regression model. Suppose that the elements of some of the rows of β are constrained by
synchronized orderings, the monotone non-decreasing or monotone non-increasing orderings with respect to a common
partial order of column indices. For this model we consider the test of the hypothesis that the columns of β are all equal
using an ad hoc test statistic obtained by replacing the unknownΣ in a likelihood ratio test (LRT) statistic with its estimator.
The row indices of the restricted rows of β form a non-empty set H ⊂ {1, . . . , p}. With all possible H , a family of ad hoc
tests is produced.

It is shown in this paper that all members of the ad hoc test family share the same α-level critical values, and a unique
distribution can be employed for computing the p-values for all members of the family. A sufficient condition is established
for other tests to enjoy the above two properties, and to be more powerful. Two such more powerful tests are examined.

The study of the tests on the homogeneity ofmultiple parameterswith an alternative specifying an ordering dates back to
the late 50s. Bartholomew [2] derived an LRT on the homogeneity of independent normal means against a simple ordering.
Since then researchers have studied many cases of hypothesis testing under constraints. Mukerjee and Tu [5] investigated
the inferences for a polynomial regression with the regression function restricted to be monotonic. For the testing on the
restricted components of a multivariate normal mean vector Silvapulle [9] proposed a Hotelling’s T 2-type test statistic by
replacing the unknown variance–covariance matrix with its estimator. Many results of the statistical inferences on order
restricted parameters are summarized in [1,6,10].
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Sasabuchi et al. [8] extend the test in [2] to a test on vector homogeneity against vector simple ordering in which the
relation ofµi ≤ µj for vectorsµi andµj is interpreted as ‘‘componentwise less than or equal to’’. Themodel restriction in [8]
is later generalized byHu [4] fromcomponentwise simple ordering to a general vector quasi ordering. Recently, Sasabuchi [7]
explored a more powerful test than that in [8]. The work in this paper is the continuation of the research in this direction,
and extended and generalized the results in [7,4].

In the next section we give preliminaries on the problem and explain the notations. Two lemmas and two theorems are
presented in Section 3. The proofs of the lemmas, however, are placed in the appendices. In Section 4 we give the main
results on the tests. These results are directly based on the conclusions of the two theorems in Section 3.

2. Preliminaries

2.1. Order restrictions

Let ≪(i) be a partial order in Ω = {1, . . . , q}, and C(i) be either {ν ∈ Rq
: νs ≤ νt for s≪(i) t} or {ν ∈ Rq

: vs ≥ vt
for s≪(i) t}, i = 1, . . . , p. The rows matrix (β(1), . . . , β(p))

′
∈ Rp×q are under separate order restrictions if β(i) ∈ C(i) for all

i = 1, . . . , p. These separate restrictions are said to be synchronized if ≪(i), i = 1, . . . , p, are identical. Synchronized order
restrictions are essentially isotonic restrictions and antitonic restrictions with respect to a common partial order≪. For this
≪, let C+ and C− be the collections of all isotonic and antitonic vectors, and C(i) be either C+ or C−. With H , a non-empty
subset of {1, . . . , p},

CH = {(β(1), . . . , β(p))
′
∈ Rp×q

: β(i) ∈ C(i) for all i ∈ H} (1)

is the collection of all matrices with some rows, the rows specified by H , constrained by synchronized orderings. Here C+

and C− are convex cones in Rq, and CH is a convex cone in Rp×q. When H = {i}, the notation CH is simplified as Ci. Suppose
that H is partitioned by H+ and H− such that C(i) = C+ for i ∈ H+, and C(i) = C− for i ∈ H−. For f , g ∈ Rp define f ≼ g if
fi ≤ gi for all i ∈ H+ and fi ≥ gi for all i ∈ H−. Then ≼ is a quasi order for vectors in Rp, and

CH = {(β(1), . . . , β(p))
′
∈ Rp×q

: β(i) ≼ β(j) for all i ≪ j}.
Thus the restriction β ∈ CH is a special case of multivariate isotonic restriction.

Restrictions β ∈ CH are frequently encountered in statistics. For example, suppose a survey is conducted among the
students in 4th and 5th grades in districts I and II. The means of the age, the household income, the height and the time for
non-academic activities (NAA) in school are listed in matrix β = (βij)4×4 = (β(1), . . . , β(4))

′
∈ R4×4.

4th grade 5th grade 4th grade 5th grade
District I District I District II District II

Age β11 β12 β13 β14

Household income β21 β22 β23 β24

Height β31 β32 β33 β34

Time for NAA β41 β42 β43 β44

It is reasonable to assume that β11 ≤ β12, β11 ≤ β14, β13 ≤ β12 and β13 ≤ β14. Define ≪ in Ω = {1, 2, 3, 4} by
1 ≪ 2, 1 ≪ 4, 3 ≪ 2 and 3 ≪ 4, and let C+ be {ν ∈ R4

: νs ≤ νt for s ≪ t}. The assumption becomes β(1) ∈ C+. Since the
height and the age are positively correlated, the time for non-academic activities and the age are negatively correlated, and
the household income and the age are uncorrelated, we may also impose the restrictions β(3) ∈ C+ and β(4) ∈ C− while no
restriction is imposed on β(2). Thus the restriction is expressed as β ∈ CH where H = {1, 3, 4}.

One can change the signs of some of the variables to make synchronized orderings identical. But to avoid variables such
as negative age, negative income, or negative time for non-academic activities, we kept two opposite cone structures for the
restrictions in this paper, which did not create any difficulties in mathematical processing.

2.2. A multivariate model

Let the columns of data matrix Y = (Y1, . . . , Yn) ∈ Rp×n be p-variate independent normal vectors with a common
variance–covariance matrix Σ . The distribution of Y is denoted by Y ∼ Np×n(E(Y ), Σ). This notation, proposed by Hu [3],
has many convenient properties. For example, with A ∈ Rq×p and B ∈ Rq×n,

Y ∼ Np×n(E(Y ), Σ) ⇒ AY + B ∼ Nq×n(AE(Y ) + B, AΣA′).

The structure of E(Y ) is dictated by the specifications of themodel for data. For the example described in Section 2.1, suppose
data matrix Y ∈ R4×1000 is obtained from the observations on the four variables, the age, the household income, the height
and the non-academic time in school, of 1000 students. According to multivariate analysis of variance (MANOVA),

Y ∼ N4×1000(βX ′, Σ), X =

1n1 0 0 0
0 1n2 0 0
0 0 1n3 0
0 0 0 1n4

 and
4

i=1

ni = 1000.
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In this paper we consider multivariate multiple linear regression

Y ∼ Np×n(βX ′, Σ) (2)

where the known matrix X ∈ Rn×q has full column rank. Let

m(Y ) = YX(X ′X)−1 and v(Y ) = Y [I − X(X ′X)−1X ′
]Y ′. (3)

It can be shown that m(Y ) is the maximum likelihood estimator (MLE) and an unbiased estimator (UE) for β; v(Y )/n is the
MLE for Σ , and v(Y )/(n − q) is an UE for Σ .

2.3. Projections

Let V ∈ Rp×p be a positive definite matrix (V > 0). For A and B in Rp×q

⟨A, B⟩V = tr[(AX ′)′V−1BX ′
] (4)

defines an inner product of A and B. With respect to the induced norm ∥ · ∥V , CH in (1) is closed. Thus for A ∈ Rp×q there
exists a unique matrix in CH that minimizes the distance to A over all matrices in CH . This matrix, called the projection of A
onto CH , is denoted by PV (A|CH). It is known, see Lemma 1.1 in [11], that A∗

= PV (A|CH) if and only if

A∗
∈ CH , ⟨A − A∗, A∗

⟩V = 0 and ⟨A − A∗, B⟩V ≤ 0 for all B ∈ CH . (5)

This projection plays an important role in restricted statistical inference. For example, ifΣ in (2) is known, then PΣ (m(Y )|CH)
is the restricted MLE of β under β ∈ CH . We say that β = (β1, . . . , βq) ∈ Rp×q is homogeneous if β1 = · · · = βq, i.e., β ∈ L
where

L = {x1′

q : x ∈ Rp
}.

This L is a linear space inside CH . The restricted MLE of β under β ∈ L, if Σ is known, is PΣ (m(Y )|L).

2.4. An ad hoc test

Model (2) under β ∈ CH generalized the settings in [7] in three aspects. MANOVA is generalized to be multivariate
regression; identical simple ordering is generalized to be synchronized quasi ordering; restrictions on all rows are
generalized to be that on some rows. It can be shown that with model (2) under β ∈ CH for the test on H0 : β ∈ L,

∥PΣ (m(Y )|L) − PΣ (m(Y )|CH)∥2
Σ

is an LRT statistic and the null hypothesis is rejected for large values of the statistic if Σ is known. When Σ is unknown,
conventionally we replace Σ in the LRT statistic with its estimator to get an ad hoc test statistic. But the test statistics
obtained by replacing Σ with its MLE and UE are proportional to that by replacing Σ with v(Y ) in (3). Thus

TH(Y ) = ∥Pv(Y )(m(Y )|L) − Pv(Y )(m(Y )|CH)∥2
v(Y ) (6)

is proposed as a test statistic. The notation TH(Y ) is simplified as Ti(Y ) when H = {i}. Let D be a non-singular p × p matrix.
One can show that with transformed data DY

TH(DY ) = ∥Pv(Y )(m(Y )|L) − Pv(Y )(m(Y )|D−1CH)∥2
v(Y ). (7)

3. On the distributions of TH (Y )

Denote the distribution of TH(Y ), when Y ∼ Np×n(βX ′, Σ), by TH(β, Σ). On this distribution we list two lemmas and
place the proofs in the appendices.

Lemma 1. The following statements are true.

(a) If β ∈ L, then TH(β, Σ) = TH(0, Σ).
(b) If ∅ ≠ H∗ ⊂ H, then TH(β, Σ) ≤ TH∗

(β, Σ) stochastically.
(c) Ti(0, Σ) = Ti(0, I) for all Σ > 0 and all i = 1, . . . , p.

Proof. See Appendix A. �

Lemma 2. For i0 ∈ H there exists {Σ [N] > 0 : N} such that TH(0, Σ [N]) → Ti0(0, I) in distributions as N → ∞.

Proof. See Appendix B. �

Based on the results of two lemmas we establish two theorems directly related to the properties of the tests.
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Theorem 1. For all non-empty H, all t ≥ 0, and all i = 1, . . . , p,

sup{P(TH(β, Σ) > t) : β ∈ L, Σ > 0} = P(Ti(0, I) > t).

Proof. If the theorem is true for i ∈ H , then with H = {1, . . . , p} we see that Ti(0, I) = Tj(0, I) for all i and j. Consequently,
the theorem holds for all i. Assume that i ∈ H . By (a)–(c) of Lemma 1,

sup{P(TH(β, Σ) > t) : β ∈ L, Σ > 0} = sup{P(TH(0, Σ) > t) : Σ > 0}
≤ sup{P(Ti(0, Σ) > t) : Σ > 0}
= P(Ti(0, I) > t).

Let {Σ [N] > 0 : N} be produced in Lemma 2 for i ∈ H . Then

sup{P(TH(β, Σ) > t) : β ∈ L, Σ > 0} = sup{P(TH(0, Σ) > t) : Σ > 0}
≥ P(TH(0, Σ [N]) > t)
→ P(Ti(0, I) > t).

Conclusion sup{P(TH(β, Σ) > t) : β ∈ L, Σ > 0} = P(Ti(0, I) > t) follows. �

Theorem 2. Let T∗(Y ) be a statistic with the distribution denoted by T∗(β, Σ) when Y ∼ Np×n(βX ′, Σ). If TH(β, Σ) ≤

T∗(β, Σ) ≤ Ti0(β, Σ) stochastically for some i0 = 1, . . . , p, then for all t ≥ 0 and all i = 1, . . . , p,

sup{P(T∗(β, Σ) > t) : β ∈ L, Σ > 0} = P(Ti(0, I) > t).

Proof. Under the condition of this theorem,

sup{P(TH(β, Σ) > t) : β ∈ L, Σ > 0} ≤ sup{P(T∗(β, Σ) > t) : β ∈ L, Σ > 0}
≤ sup{P(Ti0(β, Σ) > t) : β ∈ L, Σ > 0}.

But by Theorem 1, sup{P(TH(β, Σ) > t) : β ∈ L, Σ > 0} = P(Ti(0, I) > t) and sup{P(Ti0(β, Σ) > t) : β ∈ L, Σ > 0} =

P(Ti(0, I) > t). Therefore, sup{P(T∗(β, Σ) > t) : β ∈ L, Σ > 0} = P(Ti(0, I) > t). �

4. Main results on the tests

The tests on H0 : β ∈ L versus H1 : β ∈ CH using the proposed test statistics TH(Y ) form a family of ad hoc tests. The
members of the family are indexed by H .

4.1. α-level critical values

The test has α-level critical value tα determined by

α = sup{P(TH(β, Σ) > tα) : β ∈ L, Σ > 0}.

By Theorem 1, this equation is equivalent to

α = P(Ti(0, I) > tα)

which is free ofH . Therefore, all tests in the family share the same α-level critical values. The complexity of the computation
for the α-level critical values is greatly reduced by using the second equation since it does not involve unknown β ∈ L and
unknown Σ > 0.

4.2. p-values

Let tob be the observed value of the test statistic. The observed significance level, or p-value, is given by

p-value = sup{P(TH(β, Σ) > tob) : β ∈ L, Σ > 0}.

By Theorem 1, this equation is equivalent to

p-value = P(Ti(0, I) > tob)

which is free of H . Therefore, all tests in the family follow the same distribution Ti(0, I) for computing observed significance
levels. The fact that this distribution does not involve unknown parameters allows us to estimate the p-values using the
Monte Carlo method by simulating the observations from Ti(0, I).
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4.3. More powerful tests

Let T∗(Y ) be a statistic satisfying the conditions in Theorem 2. Then the test using T∗(Y ) as a test statistic has the same
α-level critical values as that for the members of the ad hoc test family since

α = sup{P(T∗(β, Σ) > tα) : β ∈ L, Σ > 0},

by Theorem 2, is equivalent to

α = P(Ti(0, I) > tα).

This test also follows the distribution Ti(0, I) for computing p-values since

p-value = sup{P(T∗(β, Σ) > tob) : β ∈ L, Σ > 0},

by Theorem 2, is equivalent to

p-value = P(Ti(0, I) > tob).

Moreover, the test using T∗(Y ) is more powerful than that of using TH(Y ) since

P(TH(β, Σ) > tα) ≤ P(T∗(β, Σ) > tα)

for all β ∈ CH and all Σ > 0 by the condition of Theorem 2.
We now give two examples of such T∗(Y ). The first one is Ti0(Y )where i0 ∈ H . The second one is min{Ti(Y ) : i ∈ H}. Both

statistics satisfy the conditions for T∗(Y ) in Theorem 2, and hence both produce the tests more powerful than that of using
TH(Y ). It is interesting to notice that the first statistic only takes one restricted row into the consideration while the second
one does consider every rows under the restriction. Therefore the second statistic, by our intuition, is more appropriate. The
power of this test, however, is less than or equal to that of the test using the first test statistic.
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Appendix A. Proof of Lemma 1

Proof. (a): From (3), m(Y − βX ′) = m(Y ) − β and v(Y − βX ′) = v(Y ). By (5), β ∈ L implies that Pv(Y )(m(Y ) − β|L) =

Pv(Y )(m(Y )|L) − β and Pv(Y )(m(Y ) − β|CH) = Pv(Y )(m(Y )|CH) − β . So,

TH(Y − βX ′) = ∥Pv(Y−βX ′)(m(Y − βX ′)|L) − Pv(Y−βX ′)(m(Y − βX ′)|CH)∥2
v(Y−βX ′)

= ∥Pv(Y )(m(Y ) − β|L) − Pv(Y )(m(Y ) − β|CH)∥2
v(Y )

= ∥Pv(Y )(m(Y )|L) − Pv(Y )(m(Y )|CH)∥2
v(Y )

= TH(Y ).

But TH(Y − βX ′) ∼ TH(0, Σ) and TH(Y ) ∼ TH(β, Σ), (a) follows.
(b): Note that L ⊂ CH ⊂ CH∗

and L is a linear space. Let S be the inner product ⟨Pv(Y )(m(Y )|L) −

Pv(Y )(m(Y )|CH), Pv(Y )(m(Y )|CH) − Pv(Y )(m(Y )|CH∗
)⟩v(Y ). By (5),

S = ⟨Pv(Y )(m(Y )|L) − Pv(Y )(m(Y )|CH), Pv(Y )(m(Y )|CH) − m(Y )⟩v(Y )

+ ⟨Pv(Y )(m(Y )|L),m(Y ) − Pv(Y )(m(Y )|CH∗
)⟩v(Y ) − ⟨Pv(Y )(m(Y )|CH),m(Y ) − Pv(Y )(m(Y )|CH∗

)⟩v(Y )

= 0 + 0 − ⟨Pv(Y )(m(Y )|CH),m(Y ) − Pv(Y )(m(Y )|CH∗
)⟩v(Y )

≥ 0.

Then

TH∗
(Y ) = ∥Pv(Y )(m(Y )|L) − Pv(Y )(m(Y )|CH∗

)∥2
v(Y )

= TH(Y ) + ∥Pv(Y )(m(Y )|CH) − Pv(Y )(m(Y )|CH∗
)∥2

v(Y ) + 2S
≥ TH(Y ).

But TH(Y ) ∼ TH(β, Σ) and TH∗
(Y ) ∼ TH∗

(β, Σ). (b) follows.
(c): For Y ∼ Np×n(0X ′, Σ), let G be the elementary matrix obtained by interchanging the ith row and the pth row of Ip, and
(GΣG)−1/2

= QR be the QR decomposition such that Q is orthogonal and R is upper-triangular with all diagonal elements
being positive numbers. DefineD = GRG. ForA ∈ Rp×q, the ith rowofD−1A = (GRG)−1A = GR−1GA is the ith rowofA divided
by the last diagonal element of R. Therefore A ∈ Ci if and only if D−1A ∈ Ci. By (7), Ti(DY ) = Ti(Y ) where Ti(Y ) ∼ Ti(0, Σ)
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and Ti(DY ) ∼ Ti(0,DΣD′) with

DΣD′
= (GR)(GΣG)(R′G)

= GQ ′(QR)(GΣG)(QR)′QG
= GQ ′(GΣG)−1/2(GΣG)(GΣG)−1/2QG
= I.

(c) follows. �

Appendix B. Proof of Lemma 2

Proof. Without loss of generality assume that C(i0) = C+. Let u = (u1, . . . , up)
′ with ui =


1, i ≠ i0 and C(i) = C+

0, i = i0
−1, i ≠ i0 and C(i) = C−

and ei0

be the i0th column of Ip. Define D[N]
= Ip − N · ue′

i0
. Clearly, D[0]

= Ip,D[m]D[N]
= D[m+N], and (D[N])−1

= D[−N]. With
Σ [N]

= D[−N](D[−N])′ and Z ∼ Np×n(0, I), TH(D[−N]Z) ∼ TH(0, Σ [N]) and Ti0(Z) ∼ Ti0(0, I). It suffices to show

TH(D[−N]Z) → Ti0(Z) with probability 1. (B.1)

By (7), for (B.1) we only need

Pv(Y )(m(Y )|D[N]CH) → Pv(Y )(m(Y )|Ci0) with probability 1. (B.2)

But the sequence {Pv(Y )(m(Y )|D[N]CH) : N} lies in a bounded set since by (5)

∥Pv(Y )(m(Y )|D[N]CH)∥2
v(Y ) = ∥m(Y )∥2

v(Y ) − ∥m(Y ) − Pv(Y )(m(Y )|D[N]CH)∥2
v(Y )

≤ ∥m(Y )∥2
v(Y ).

Thus (B.2) is equivalent to that every convergent subsequence converges to Pv(Y )(m(Y )|Ci0), i.e.,

Pv(Y )(m(Y )|D[Nk]CH) → A∗
⇒ A∗

= Pv(Y )(m(Y )|Ci0). (B.3)

Note that Pv(Y )(m(Y )|D[Nk]CH) ∈ Ci0 since D[N]A does not change the i0th row of A, and that ⟨m(Y ) − Pv(Y )(m(Y )|D[Nk]CH),

Pv(Y )(m(Y )|D[Nk]CH)⟩v(Y ) = 0. By letting k → ∞ we have A∗
∈ Ci0 and ⟨m(Y ) − A∗, A∗

⟩v(Y ) = 0. By (5) for (B.3) we need to
show that

⟨m(Y ) − A∗, B⟩v(Y ) ≤ 0 for all B ∈ Ci0 . (B.4)

For B = (B(1), . . . , B(p))
′
∈ Ci0 let B[m]

= B + ei0v
′/m where v = (v1, . . . , vq)

′ is an interior point of C(i0), i.e., v ∈ C(i0) and
vi ≠ vj for i ≠ j and i ≪ j. Then B[m]

→ B as m → ∞. If

∃{Nkm} such that B[m]
∈ D[Nkm ]CH for allm = 1, 2 . . . , (B.5)

then by (5)

⟨m(Y ) − Pv(Y )(m(Y )|D[Nkm ]CH), B[m]
⟩v(Y ) ≤ 0.

Let m → ∞. We obtain (B.4). To establish the lemma we prove (B.5). For each fixed positive integer m write B[m]
=

D[N]
· (D[−N]B[m]) where

D[−N]B[m]
= (Ip + Nue′

i0)(B + ei0v
′/m) = B + ei0v

′/m + Nu(B(i0) + v/m)′

denoted by (A(1), . . . , A(p))
′ has A(i0) = B(i0) + v/m ∈ C(i0). For i ≠ i0 and C(i) = C+, A(i) = B(i) + N(B(i0) + v/m) where

N(B(i0) + v/m) is an interior point in C+ = C(i) that dominates B(i) when N is sufficiently large. Thus A(i) ∈ C(i) when N
is sufficiently large. For i ≠ i0 and C(i) = C−, A(i) = B(i) + N(−B(i0) − v/m) where N(−B(i0) − v/m) is an interior point
in C− = C(i) that dominates B(i) when N is sufficiently large. Thus A(i) ∈ C(i) when N is sufficiently large. Therefore there
exists Nkm such that D[−Nkm ]B[m]

∈ CH . So B[m]
= D[Nkm ](D[−Nkm ]B[m]) ∈ D[Nkm ]CH . (B.5) is established. �
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