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1. Introduction

Several kinds of shape constraints play an important role in many areas of research. Some of them can be characterized
by a linear transformation of the variables. Symmetry is one example for such a shape constraint. For example, many objects
or parts of objects are symmetric with respect to reflection or rotation. Symmetry can be used in image compression and
also in image analysis to detect certain objects. If symmetry of a certain object is violated one can sometimes deduce some
results from it. Usually, parts of the human body are (nearly) symmetric, e.g. the left hand is symmetric to the right hand,
the left part of the face to the right part and so on. This is usually also true for the thermographic distribution of those parts.
If in a thermographic image of both hands this symmetry is severely violated, this can be a hint to some inflammation in
this part. Problems of this and similar type make testing for symmetry to a problem of considerable interest. The method of
testing described below is not only restricted to symmetry but can be generalized to other shape constraints characterized
by a linear transformation of the variables. Technically, modeling the object of interest as a multivariate function and using
linear transformations, we end up with the problem of testing for shape constraints of a multivariate function.

Whereas several results exist which discuss the symmetry of density functions (see e.g. Ahmad and Li [1], Cabafia and
Cabaiia [6] and Dette et al. [9] among many others) only few authors have considered testing for symmetry of a regression
function so far. Recent results have been presented in [5,2], where both are for the case of bivariate functions in direct
regression models and for symmetry with respect to some known axis.
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In some cases, it is not possible to observe the object of interest directly. This leads to an inverse problem. Testing for
symmetry in inverse regression problems can be of even higher interest than testing for symmetry in direct regression
models. The reason is as follows. Whereas, at least in bivariate settings, symmetry in direct regression models can
approximately be recognized by simply looking at the data, symmetrical structures in the true object can lack any symmetry
in the observed (indirect) data. Consider, for example, the well known convolution problem which commonly appears in
image analysis where the true object is distorted by a so called point-spread function we can easily find situations (e.g. for
asymmetric point-spread functions or if the point-spread function has a different axis of symmetry than the true object)
where the symmetry is not visible in the image. To the best of our knowledge there are no methods for testing for symmetry
in inverse regression problems so far. An equivalent statement is more than ever true for other shape constraints of this
type.

In the following we will develop a testing procedure for equality of a d-variate function under two different linear
transformations. One example will be the reflection symmetry with respect to a (d — 1)-dimensional hyperplane. Although
we motivate the problem by the case of a symmetry constraint, the theoretical results and their proofs will be formulated as
general as possible. Since the parameter of the linear transformations is unknown we estimate it in a first step by minimizing
an L,-criterion function. If the true function really fulfills the shape constraint, we derive, under some regularity conditions,
consistency with parametric rate of the estimator and show that it is asymptotically normally distributed. In a second
step, we use the minimized criterion function as test statistic for the shape constraint and show that it is asymptotically
normal. Since the problem under consideration is closely related to certain semi-parametric problems we will use similar
techniques as Hardle and Marron [11]. However note the important differences, that our problem is inverse and our
regression function is multivariate. In nonparametric regression tests based on such asymptotic distributions usually do
not perform satisfactorily in finite samples because the convergence is very slow and there is the problem of dealing with a
bias term. To avoid this problem we propose a bootstrap test based on residual bootstrap and investigate the finite sample
performance of this test in a simulation study.

The rest of the paper is organized as follows. In Section 2 we describe the model and define the estimator for the
hyperplane as well as the test statistic. The asymptotic behavior of both is considered in Section 3 while we show the finite
sample performance in Section 4. Finally all proofs are deferred to the Appendix.

2. The model and test statistic

We consider the nonparametric inverse regression model
Y =¥mX;) +oe (1)

withx; = (r1/(may,), ..., rd/(ndand))T, rj=—nj,...,njand an; —> 0,j = 1,...,dsuch that with increasing sample size
we have observations on the whole R For the sake of simplicity we assume in the following that nj = nand a,; = a, such

thatx, = (r1, ..., r4)"/(na,) and for fixed n we have observations on the compact set I, = [—1/a,, 1/a,]¢.In (1) mis a two
times continuously differentiable regression function, and ¥ is an operator which maps m to the convolution m * i with a
known convolution function v. Finally, with r = (1, ..., a), {&r}rc(—n..ne are independent identically distributed errors
with E[g,] = 0, E[¢2] = 1and E[¢}] < 00.1fj = (j1,...,j4),j =j1 + - -- +js and m is j times continuously differentiable
according to Bissantz and Birke [3]

M (x) = Z wr j(X) Yy .
re{—n,...,n}d
with
1 (—iw)eio’ x=x0)/h
wr’J(X) (2n)d/2(nh’an)d /[_]’”d ¢1//(a)/h) w ( )

Y1t
o).
write in the following ¥ m = g.In (3) & denotes the Fourier transform of a function f.

We consider linear transformations Ty, Sy : R? — R? parameterized by 8 € B C R? with B compact which are two times
continuously differentiable with respect to 8 and for which T(,” and S, 1 exist. The testing problem we will consider is if for
some set Ay

is an appropriate estimate for m. If j = 0 we write m® (x) = Mm(x) and wr,0(X) = wy(X). As an abbreviation we

m(z) = m(T,S, 'z) forallz € A (4)

or equivalently

m(Tyx) = m(Syx) forallx € A =T, 'Ay. (5)
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Fig. 1. Solid line: Symmetry axis gy (left) and transformed symmetry axis Tg]gg = go (right), rectangle with dashed line: Ay (left) and A (right), o

respectively x: z respectively TgSo’lz, z € Ag (left)and x = To’lz respectively <_01 ? X = S()’lz, x € A(right).

To this end we will use

L(O) = /(m(Tgx)—m(ng))zdx (6)
A

to check whether m exhibits such a structure on Ay. The parameter ¢ of the true linear transformation minimizes this
criterion function. In the following we will assume without loss of generality that A = T, 144 is independent of 6 and that
Ay C Dforall & € Bwith D independent of 6.

Example. To illustrate the above definitions with our example of reflection symmetry, for every fixed € R mirroring m at
the corresponding hyperplane can be realized by some linear functional Ty S, 1 where T, contains the shift of the hyperplane

and the rotation and S, !'is mainly the inverse of Ty concatenated with the mirroring at the (xs, . . ., X4)-hyperplane. To be
even more precise we discuss reflection symmetry for the casesd = 2 and d = 3.
d = 2: Here, the hyperplane reduces to a straight line parameterized by

go = {(cos 6y, sin6;)" A + 6, (—sin(6y), cos(61))" |1 € R}

with 6 = (01, ;)T € R? unknown such that mirroring z € R? at that straight line can be obtained by transforming z to

—1, _ [ cosb, sin 6, 0
Ty'z= (— sinf; cos 91) z- <92) ’ (7)
mirroring at go = {(1,0)" A|» € R} which gives
_ 1 0 _
S, Iz = (0 _1) T, 1z (8)

and transforming back, which finally yields
TyS, 'z.

The set A can e.g. be some rectangle [ay, bq] X [az, b2], a; < by, a; < b, around the x;-axis while Ay = Ty (A) is the rotated
and shifted rectangle. As a consequence, A and Ay have the same Lebesgue measure. For an illustration also see Fig. 1.
d = 3: Here, the hyperplane is given by the plane

po = {(cos by, 0, sin 01)TA + (— sin 8 sin B,, cos 65, cos 6 sin 02)T,u + 65(sin 0 cos G5, — sin B, cos B, cos b,)}

with 8 = (01, 65, 63)T unknown. We define T, and Sy as follows. For z € R? let

cos 64 0 —sin 6, 0
T,'z = (sin6;sin6, cos6, cosbsing, |z— (0

sinfycosf, —sinf, cosb;cosb, 63
and
1 0 0
S,'z=(0 1 0 |1,'2
0 0 -1

Then, mirroring z at py can be realized by the concatenation TS, 1z.



M. Birke, N. Bissantz / Journal of Multivariate Analysis 109 (2012) 236-253 239

Since m is not known, we estimate the criterion function (6) as
A N . 2
L,(0) = / (M(Tyx) — M(Spx))” dx (9)
A

and find the estimator of ¢ by minimizing i,, )

D = arg min ir,(O),
6By xBy

where By C R%1 is the compact set of all possible rotation angles and B; C R the compact set of all possible shifts. If i1 is
continuously differentiable, we can equivalently solve

1,(0) = grad L,(0) = 0 (10)
to find .

3. Asymptotic inference

Throughout the rest of the article let us denote |y|* = ]_[f:1 lyj|¥ fory € R? and k € RY. The first important assumption
for all results in this section is

Assumption 1. Let L(0) be locally convex near the true parameter © in (5), that is for every § > 0 exists a constant « (§) > 0
such that L(#) — L(¥}) > «(§) forall |6 — ¢ > &

To consider asymptotic theory, we further assume that ¥ is ordinary smooth, i.e. we consider mildly ill-posed problems in
model (1). This can be summarized in the following assumption.

Assumption 2. The Fourier transform @, satisfies

dw < K1h7ﬁ

1
»/[71.11‘1 |®y ()]

|60|2j -2 2j+2
—— dw ~ kh™% || 3128
1.1 | Py (w)]? [-1,1

for some § > 0 and k1, k € R\ {0}, jsuchthatj; 4+ ---+j; < 2.

Assumption 3. The Fourier transform &, of m satisfies fRd |®m ()] |w]¥dw < oo for any multiindex k with ky+- - -+ky <'s
for some s > max{f + 1, 3} and m is at least two times continuously differentiable.

Assumption 4. The convolution g = Km of m with y satisfies fRd lgW)| ly|*dw < oo for any multiindex k with ky + - - - +
kg < r forsomer > 0.

Assumption 5. The bandwidth h fulfills h — 0, (logn)/4/n?h?ad = o(1), nlay"*h2A+4+4/2 5 oo, nday®/>n2p+2s+d/2-2 —
0(1) and néa,™? = o(hPHs+d-1),

Assumption 1 is e.g. fulfilled for functions m # 0 for which ¢ is unique and (5) holds. In contrast to this, Assumption 1 does
not hold if m = 0. Note, that in general, m = c for some constant ¢ would also be a counter example for Assumption 1
but is completely excluded in this setting because we need L,-integrability for m on RY. The conditions on m for a unique
¥ of course strongly depend on the particular form of the linear transformations Ty and Sy and we therefore restrict our
discussion to the case of reflection symmetry for d = 2. In this case we have T, and Sy like in (7) and (8) and local convexity
is e.g. given for the function

exp (—12(cos(0.3)x + sin(0.3)y — 0.1)* — 3(cos(0.3)y — sin(0.3)x + 0.1))
+0.5 - exp (—3(cos(0.3)x + sin(0.3)y — 0.1)* — 9(cos(0.3)y — sin(0.3)x — 0.4)°) .

This function has only one axis of symmetry and therefore L(#) = 0 has as unique solution ¥ which is the parameter of this
symmetry axis. For all other possible values € R? we have L(§) > 0. Because we only consider § from some compact set
B and continuity we have L(6) — L(1%) > «(8) for all |0 — ¢|| > §. Local convexity of L(9) is not given for the function

exp(—12(cos(0.3)x + sin(0.3)y — 0.1)2 — 3(cos(0.3)y — sin(0.3)x + 0.1)?)

which has two axes of symmetry and although ||#; — ®,|| > § for the parameters 1, ¥, € R? of the two symmetry axes
and some § > 0 we have L(¢1) — L(¥;) = 0 < «(8) for any choice of k.

Assumption 3 is, for example fulfilled, if for grad(m) (and hence also for the products and sums in the integral) the k-th
derivative exists for all k1 +- - - +k; < B.Note also, that in Assumption 5 a, cannot be seen as regularization parameter since



240 M. Birke, N. Bissantz / Journal of Multivariate Analysis 109 (2012) 236-253

itis determined by the underlying design. Therefore, all conditions have to be read as conditions on hy,, s, 8 and r dependent
on the rate of a,,.

Under the above conditions we can now discuss the asymptotic properties. We first consider the consistency and the
asymptotic distribution of the estimator 1.

Theorem 1. Under Assumptions 1-5 there is D Ly forn — oo.

Theorem 2. Under Assumptions 1-5, if m is continuously differentiable, D is defined by (10) and ¢ is the true parameter in (5),
we have

Jndad (19 - 19) 2 N0, 02h (@) E @) (h~ ()T
with
2

= @ri)

2
>(6) / op(u)oy(u) du
Rd

fd /d o1, e (@)e ™™ Vdydeo
R R

9 ~1 (0 ~1 (0 -1 9 -1 !
op(u) = ((@Te)) (Ty " (w) — MgNy (@&)) (Ty (W) — NoM, (aeTe) Sy (W) — (8059) (Sg (“)))
x (grad m(u))’

3 B 3 E) T
h9) = Z/A (grad m(Tgx)ﬁTgx — grad m(ng)a—QS(;x) <grad m(Tgx)ﬁT(gx — grad m(ng)ﬁs(;x) dx.

The second point of interest is to test whether the image obeys a structure like in (5). We use the test statistic

N . N 2
L,(9) = / (M(Tyx) — M(S;x))” dx (11)
A
which has the following asymptotic distribution.

Theorem 3. Under Assumptions 1-5, if ¥ is the true parameter in (5), we have

. A 202 TSyx\ |
-1/2 _ 28 | : 2 D
o, (Ln(ﬂ) 7(271)%%2“%% /A/[q,”d |w|“" |sin ( p )‘ dwdx | = N (0, 1)

&y TS 2
/sin @ X sin T 20X dx| d(w, n).
A h h

It can be shown similarly as in the proof of Theorem 4 in the Appendix, that the effective rate of convergence is n¢h2#+4/2¢3%/?,

with

_ 320 281,28
T K422 in2d 24P g2 | o || (]

4. Simulations
4.1. Simulation framework

In this section we present the results of a simulation study. To this end we generate observations according to model (1),
i.e.

Yo = ¥YMXps) +08¢s)-

In our simulations, the noise terms are i.i.d. normally distributed with variance 1 and X 5 = (% %) ,(r,s) € {—n,—n+

1,...,n—1, n}? are the coordinates of a grid with equidistant stepsize in both coordinates and with a, = 1.In the following
we use the parameter values n = 50 and o (in dependence of the underlying function m) such that o makes up for 1/10-th
and 1/25-th of the maximum of the signal ¥'m, which amounts to signal-to-noise ratios - defined as the mean signal of
the image divided by o - of 210 and ~4, respectively. These values amount to rather poor signal-to-noise ratios, and in a
practical application, S/N will frequently be larger and our simulations be expected to be conservative with respect to the
performance of our method.
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We consider two different “true” images m; and m, from which the data is generated. These images represent the cases
of having a unique axis of symmetry (image m;) and of not having any axis of symmetry at all (image m,). The images are
generated from the following bivariate functions (with (x;, y;) € R?).

my(x, y) = exp(—=3- (4-x* + (yr + 0.1)%) + 0.5 - exp(—=3 - (X + 3 - (yr — 0.4)%))
my(x, y) = 0.5-exp(=5- ((x; — 0.3)> +5- (y; +0.3)*+)) + 0.5 - exp(=5 - ((x; + 0.2)> + 5 - (y; — 0.3)%))
+0.5-exp(=5 - ((x + 0.5)2 +5 - (y; + 0.6)%)),

where
X\ _ [cos() —sin(a) b n -6
ye)  \sin(e)  cos(w) y 0
are the coordinates of a coordinate system which is rotated by an angle « = —0.3 with respect to the original coordinate

system of y in counterclockwise direction and shifted (along the transformed y;-axis) by § = 0.1. Hence, image m, is
symmetric with respect to an axis of symmetry which passes the x-axis at x = 0.1 and is tilted away to the right from the
y-axis by an angle of —0.3 rad., thatis ¥ = (@, §)T = (0.3, 0.1)T.

In accordance with model (1) for the observations, we do not assume to be able to observe m; directly, but that at our
disposal are only observations of the convolution of m;, i = 1, 2 with a convolution function v given by

A
YY) = 5 " €Xp (—A -vx>+0.25 ~y2)

(with A = 5). Fig. 2 shows the images of m; and m,, their convolutions with ¥ and typical examples for estimates 1,
and m,.

The convolution function i is symmetric with respect to the x- and y-axis of the (original) coordinate system, that is
symmetric with respect to axes which are different to the axes of symmetry of m;. In consequence, the convolved (observed)
image ¥m, does not have any axis of axial symmetry. Note that this implies that testing for symmetry of m can in general
not be substituted by testing for symmetry of ¥ m, except under specific, strong assumptions on the symmetry properties
of m and . Instead, it is required that the observed image is deconvolved in a first step, with the symmetry test being
performed in a subsequent second step.

In our simulations we use the spectral cut-off estimator (2) with equal bandwidths in both coordinate axes. From a visual
inspection of 5 randomly selected noisy images and the associated estimates m we chose h ~ 0.05. This bandwidth was
kept fixed in all subsequent simulations.

4.2. Critical functions and the distribution of estimated parameters and test statistics

In this section we describe the performance of the estimators for the symmetry axis parameters § and «, and the
properties of the underlying criterion function (9), which can, as already pointed out in Section 3, be used as test statistic
for symmetry of the regression function, for the two different images considered here.

Fig. 3 shows the critical function L, (8, ) both for the case of univariate estimation of the shift § resp. the angle « (where
the other parameter is assumed to be known) and for bivariate estimation of the pair (8, o). For m;, the criterion function
for the selection of the shift only (top right panel) does not come close to the minimal value it attains for the symmetric
function m, at all, but the situation is different for the estimation of the rotation angle, where the minimal values differ less
strongly. Now consider the bivariate estimation of shift and rotation angle. For m,, a complicated pattern appears without
a distinct minimum.

Next, Fig. 4 shows the simulated distribution of the estimated parameters for rotation and shift for the various simulation
setups. For m,, which does not have an axis of symmetry at all, the critical function still shows clear minima of the criterion
function if only one of the parameters was estimated. This is reflected in the right column of Fig. 4 for the estimated
parameter, that is the value where the minimum is attained.

Finally, consider Fig. 5, which compares the simulated distributions of the test statistic for the case of one parameter es-
timated under Hy (i.e. for m;) with the results under H; (i.e. for m;,). In the latter case the distributions are shifted to signifi-
cantly larger mean values, which reflects the fact that there exists no axis of symmetry. Moreover, their shape appears more
symmetric than under Hy, where it is (much) more skewed to the right, similar to other L,-based test statistics (e.g. [8,4,2]).

4.3. Testing for symmetry

In the final part of our simulations let us now turn to a more precise analysis of the performance of our proposed test for
symmetry. Since the convergence of L,-tests is known to be slow and the asymptotic distribution apparently depends on
unknown parameters we use bootstrap quantiles as critical values for the test.

Hence, our testing procedure consists of two main parts. In the first bootstrap part we determine a bootstrap
approximation to the distribution of the test statistics. In more detail, this consists of three steps: (1) to estimate the
distribution of residuals, (2) to determine a “true image” g from which the bootstrap data are generated, and (3) to perform
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the true axis of symmetry and the dashed line the estimated symmetry axis. Note that m, is not symmetric to any axis, hence the full line is missing.
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S/N = 25. Left column: L, () for « = —0.3 assumed to be known, middle column: L,(«) for § = 0.1 assumed to be known, right column: L, (8, «).
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2 °
g] 2 2 3
iy 2

e
3 g "
g | - g 21
2 s 2
e
=3
1 2
= 2 = 8
s s g s
& =3
=~ 2
S 2 g

s 2
sl 8- =
o - e — = © o - = e —
00400 1004 2004 3004 0002 0.003 0.004 0.005 0e+00 1004 20-04 3004 -26-04 0e+00 2e-04 4e-04 Be-04 Be-04 1e-03
min (L) min (L) min (L) min (L)

Fig. 5. Distribution of the test statistics under Hy : m = m; ((a) and (c)) resp. H; : m = m; ((b) and (d)). (a) and (b): only shift estimated, (c) and (d): only
rotation angle estimated for sample size parameter n = 50, and signal-to-noise ratio S/N = 25.

the bootstrap replications of the test statistic. The subsequent, second test decision part of the procedure is performed by
computation of the test statistic for the original (observed) data and a decision based on this test statistic and the bootstrap
approximation to its distribution. We now describe all steps in detail.

A. Bootstrap part of the testing procedure:

1. Estimation of the distribution of residuals: In our simulations we use a residual bootstrap as follows. In the first step we
determine the empirical distribution of the residuals as the centered distribution of differences between the observations
and an estimate ¥ of ¥m. Then, in each of the bootstrap replications, we draw residuals from this distribution and
generate bootstrap data as the sum of a suitable “true bootstrap image” g and these residuals.

2. Determination of a “true image” mg: The “true bootstrap image” mg is generated as follows such that it obeys a known
axis of symmetry and closely resembles the true (unknown) function m, assuming Hy to be true.

Step 2.1—Estimating m: Determination of an estimate m of m as described above.

Step 2.2—Estimation of symmetry axis parameter: Minimization of the criterion function yields estimates § and/or & of
the symmetry axis parameter(s) of .

Step 2.3—Backshift and rotation of m: We shift and rotate m back by the estimated parameters § and/or & (and, if
applicable, the known true values of the other parameter). Under Hy, and if no noise would be present in the observed
data, the new image t would now be symmetric with respect to the y-axis.

Step 2.4—Symmetrization: To ensure symmetry, we average the image over both sides of the y-axis, that is according
to the scheme m(x, y) = 3 (M(x,y) + m(—x,y)) for all (x, ).

Step 2.5—Backrotation and shifting of the image to the estimated symmetry axis: The image m is rotated and shifted such
that it is symmetric with respect to the axis with the estimated parameters 5 and/or @, or - if applicable - the known
values of shift and rotation, respectively. We call the resulting image mg.

3. Bootstrap replications: In the final step of the bootstrap part of the testing procedure we generate bootstrap data from
the model Y = wip(x;) + &5, where & are drawn independently from the empirical distribution of the residuals
& = Yy —¥m(X,). From each set of bootstrap data the image is estimated and the minimal value of the criterion function,
that is the test statistics, determined. In our simulations we always use B = 200 bootstrap replications. The | B(1 — «) |-th
order statistic of all those bootstrap test statistics gives the critical value for the test.

Test decision part of the testing procedure:
In the second part of the testing procedure we use once more the estimate m of m described above. From this estimate

we determine the test statistics in (&, S), that is the minimal value of the criterion function (11). The test decision by itself is
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Table 1

Estimated rejection probabilities of the test for axial symmetry from 200 simulations each
in case of estimating the axis-shift § (with & known) under Hy : m = m; and under an
alternative m = « - my + (1 — k) - my, respectively.

Hypothesis/Nominal level S/N =10 S/N =25
5% 10% 20% 5% 10% 20%
Ho: m=m 5.5% 10.5% 21.5% 6.5% 11.0% 20.5%
Hi, k = 0.1 8.0% 12.0% 23.5% 8.5% 17.0% 27.0%
Hy, k =0.2 10.5% 20.0% 33.0% 54.0% 70.5% 81.5%
Hy, k =04 57.0% 71.5% 82.0% 100% 100% 100%
Table 2

Estimated rejection probabilities of the test for axial symmetry from 100 simulations each in
case of estimating both the axis-shift § and the angle of rotation «, and under an alternative
m =k -my + (1 — k) - my, respectively.

Hypothesis/Nominal level S/N =10 S/N =25

5% 10% 20% 5% 10% 20%
Hy: m=m 0% 2% 7% 6% 12% 20%
Hy, k =0.4 3% 5% 15% 8% 19% 39%
Hy, k =1.0 9% 19% 50% 78% 87% 96%

then to reject the null hypothesis of m obeying an axial symmetry to level «, if the test statistics for the original set of data
is larger than the (1 — «)-quantile of the bootstrap distribution of the test statistics.
In the following, we consider the functions

me(x,y) = kmy(x,y) + (1 —k)mi(x,y), « =0,0.1,0.2,0.4,1

to analyze the sensitivity of our test to small deviations from symmetry. Tables 1 and 2 summarize the simulated levels and
power of the test for axial symmetry for the case of an unknown shift parameter § only (with & known), and for the case
that both parameters are unknown. The results demonstrate the substantial additional difficulty of disproving the existence
of any axis of symmetry if both § and « are unknown. Slightly acceptable results for the moderate sample size of n = 50
only appear for a comparable large deviation from symmetry (i.e. x = 1). This effect is to a large part due to the complicated
shape of the critical function in this case (cf. Fig. 3) with several local minima. If only the shift parameter is unknown, the test
already performs well for small deviations from symmetry (e.g. « = 0.2 for a signal-to-noise ratio of S/N = 25 orx = 0.4
for S/N = 10).
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Appendix. Proofs

Theorem 4.
d
) 2d02 l_[ (z(jk + lgk) + 1)_1
dp2j+2B+d/2 3d/2 A @)y ) _ k=1 D i)
nh a, fB[m x) —mP(x)]" dx P TR S N0, s9)

forj = 0]7 oo 7jk) Wlth]] +--- +jk <2and

254 d sin? (—“”_’”)

o — i Api+4ii+1 2ji+2p dn

sV = llmllah Ii—1, (0D - ) do; dn;.
2(27)2 n [l n // (—1,11(@)I—1, 1y () || (0 — m)? 1 ANt
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Proof. In the following we write the L2-distance as a quadratic form and some bias terms and apply a central limit theorem
by de Jong [7]. There is
2
~ (3 . 2 N .
/[mm ® —mPx)] dx = / (Z w,,j(x)s,> dx + 2/ (Z w,,j(x)s,> E[RP (0] — mY (x))dx
B B r B r
+ f E[MY ()] = m? (x))?dx
B
=19 +1P +19.

Using the definition of w, j(x) and Parseval’s equality we obtain

19 1 oo S (@) Zela) el de
1 (Zn)dnz‘jhzﬁda%d Rd |(p'/f( w/h)|?
2
1 / / —iwTx I[ 1,14 (w) iw! x¢/h
- e (—iwy —=——= e xihe do| dx
(zn)dn2dh21+da%d (B/h)C ¢1//( /h) Z r
) )
=17y — I,
We write
[©) i) =2 | xTa(z
L5 = Zag,)ugu +8TA0z = 11 + 11 1.2
with
a¥ — 1 I[ 11]d(w) ol xu/h —iw x”/hda)
WU (2m)dn2dhAtdg2d Ra |<D./, (w/h)|?
AY = (a P ) 1<uv<@nt1)ds &L% = ag'y)v foru # v, Elg)u =0
X) = X(—n,..,—n)> -+ s 5‘(2n+1)d = X(n,...,n)
&' =1 Banpnyd) = (Ecnnys -+ Em) € REMD
Forl('] , We obtain
I a(w)
E19 ) = 02y ad, = / dae(@)
Iy, 1 1 Z (zn)dn2dh2j+da2d Z | |(plﬂ(w/h)|2
__9¢ (2n + 1)¢ / B 2 -1, ﬂd(a)) Jenp@)
- (27r)dn2dhzf+d(12d |(p1//(w/h)|2
o2 d
2n+1) 24+2p
K2(2ﬂ)dn2dh2j+2ﬁ+da%d p |CU| I[_l,l]d (a))da)
. a?@n+ 1) d 1 — 0o 1
= Kzndnzdh2j+2/3+da%d ik 26k + B + 1 - ndh2j+2ﬂ+da%d
Ha(e) I[ 11]d(0))
Var(l = a¥v &= ——7—————— / ——dw
( 1‘1'1) Z( u ”) ’u4( ) (2n)2dn4dh4f+2da4d Z | |d)'/f(w/h)|2

pa(e)(2n + 1) (/ " 2 -1.1p0(@) )

(ZJT)Zdn4dh4]+2da4d |¢‘/f (a)/h)|2

pa(e)(2n + 1) Ny 5\ 1
1c4(27r ) 2dndd pi+4p+2d gdd J |l -1 (@)|"do ) =0 m

: )
= 0 —_—_— .
(nldh4j+4ﬁ+da3d
We now check the assumptions of Theorem 5.2 in [7] for I; 1 ». First of all we calculate the variance

o (n)? = Var@AV%) = 20t @9)? = 20* Y (a,
u#v
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4 2
- Z o 1O o o g,
(277 )2dn4dp4i+2dgld " Py (/M)

2 12 (@) oy it 2
~ LI giwy/he—ionz/hg,, ) dydz
(271)2‘1"2‘1’14102‘1 In/h JIn/h |<1>1/f(60/h)|2
2
/ ei@=m"ugy,
I"/h

204 21120 I[ 1.1 (a))I[ 1.1 ) |el(wl—m)/(han) _ e—i(w1—m)/(han)|2
= 2d2dp4 2d ||| 2 2 H dedn
2m)* n*hYaz? Jpd Jpd [Py (@/M)]*|Py (n/W)|*

dwdn

- ‘ //wafmﬁf e L
<2n>2dn2dh4fa,%d I @y (/MPID, (/W]

lor — mi|?
(e 2
o f/ o el 6. |
= A Toa @)y a0 | ] len| P25y P2 —————dwdn
K4(2n)2dn2dh4j+4ﬁa%d pd Jad [-1.1] [-1.1] ll] lwr — mi?
in2 ((@r=n
254 d ~ sin (h )
= A R () (o ot X L gy d
K4(27t)2dn2dh4f+4/3a2dH/R/1; (—1,11(@DI—1, 11 (mD) || (o —m)? 1 dn
Z(4JI+4ﬂH-2) 2 [ w—m

264hE 1h p1/h o sin (T)
= A (272424 A B2d 2d || o dandn

(2m)*n>¢h¥ a; —1/h J=1/n (w0 —m)

2]‘[c,a4
=1
- K4(2n)2dn2dh4j+4ﬂ+da3d
using that
' 1h 1/ ~ sin? (“” ’”)
lim a,h®t4rt! / / |y P ———— doyd = G,
n—00 1/hJ—1/m (w1 —m)

following from the integrability of sinc? by some slightly tedious algebra. In the following, we check the assumptions (1)-(3)

of Theorem 5.2 in [7] to show the asymptotic normality of I?)l 9

(1) We have uniformly over all s € {—n, ..., n}¢
Z |a® )2 = . / lon|? Ir—1 e (@)_1 12 (1)
o TS (2n)4dn4dh4j+2da4d el rd Jrd |q§1ﬁ (w/h)|2|q)1//(7]/h)|2

x el@=m"xe/hg=itw=m"xs/hge, i
/ // lwn|? g (@)—1 ¢ (M)
Q)M th e Jy Jga Jod [Py (@/W)*| Dy (n/M)]?
X ei(“)”’)T”e’i<”’")T"5/hda)dndu
_ 1 / onl? [—1,1¢ (@)1 10 (M)
R4 JRd

T (m)Mn3dpdtdg3d |y (@/h)[2| @y (n/h)[?
d_sin (—‘”2_"”)
x — T I eriemnxs/hggdy
w, — 1y

v=1

d
1 9

_ j

= (2m)Mp3pdtap g3 E/R/R|wv77v| Ir—q, 15 (@)1, 132 (1)

Wy —Ny
511'1( )
hap o N\T
X e i(wy—1v) XS‘U/hd(,()vdT]U.

Wy — Ny
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Since | sin((w, — 1,)/(hay))/(@, — n,)| < (ha,)~" we obtain
. 1
()2 —

Z |ar,s| =0 <n3dh4j+4ﬁ+2da4d>

re{—n,...n}d n

and therefore with « (n) = (logn)'/4

1/4
S Jal =0 (M) = o(1)
d

o (m)? n¢hdad

re{—n,...,n}

2

(2) Since k(n) — oo and ¢, are independent identically distributed with E[ef] = 0“ < oo, it immediately follows that

Ele;Hler] > k()] = o(1).
(3) For estimating the eigenvalues y, of A9 we use Gerschgorin’s Theorem and obtain uniformly overall's € {—n, ..., n}¢
ps <Y lad)
re{—n,...,n}d

ol o1 (@) ry

—iw! xs/h
oy wmp® ¢ e

1
(2m)?dndhFad /,;n

) d /1/(han) / _— . iy x5, /h
= . ey [T (@) e s Nde, du,.
@) 275400 Ly S |

It now follows by similar but tedious calculations as above, that this term is of order O(log n/n%alh¥+2f) and

1 2
——  max = 0 (ha, logn) = o(1).
0'(1’1)2 se{—n,..., n}d’us ( n 08 ) ()

It now remains to discuss the remainder terms For I; , we get

Lo =op(l1.1)

since it consists of the tails of the integral in I 1, before Parseval’s equality was used, and the upper respective lower bound
of the integral tails asymptotically diverge to £=o00. This means, that I; ; is asymptotically negligible.
Since the bias of MY is uniformly of order o(h*7~') on B (see e.g. [3]) we have with condition 5

. 1
Ir=0h*% %) =0 (4 , 3d 2)
ndh26+2+d/2g3 /

and by applying the Cauchy-Schwarz inequality also
1 ; 1
I — O S — hs_]_] =0\ ———> . g
2 (nd/Zhﬂﬂ*d/“aﬁd/‘l) o( ) <ndh25+zf'+d/2aﬁd/2>

A.1. Proof of Theorem 1

Since L(0) is locally convex near ¢, for every ¢ > 0 exists a constant K, > 0 with
P(1Dn — Ol > &) < P(L(Dp) — L) > K,) < P(L() — LI > Ke/2) + PULE®) — L(D)| > K /2)

since f}n minimizes i(@) and the assertion follows if we show that i(@) — L(0) stochastically converges to 0 uniformly in 6.
To this end note that

L) — LO)| = f (M(Tyx) — M(Spx))*dx — / (m(Tyx) — m(Spx))*dx
A A
<cC ( / (M(Tpx) — m(Tyx))%dx + / (M(Spx) — m(ng))zdx)
A A
< 2C | (m@z) —m@2)%dz < 2C/(ﬁ1(z) — m(z))%dz.
Ap D

Therefore we have for any § > 0and § = §/(2C)
P(sup [L(6) — L()| > 3) < P (/(fn(z) — m@)dz > 5) .
0 D

But the right probability converges to 0 because of Theorem 4. O
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A.2. Proof of Theorem 2

Note, that 7,1(5‘) = 0. With this and a first order Taylor expansion of 7,1 in ¢ we write

—hE)D —0) =1() (12)

for some &, with ||, — ¢ < ||z§ — ©¥||. Theorem 2 now follows after we have shown the following two Lemmata
Lemma 1. Under the assumptions of Theorem 2 we have
ndadl,(9) 3 ¥ (0, Z(9))
with X (0) and o4 (u) defined as in Theorem 2.
Lemma 2. Under the assumptions of Theorem 2 we have
R > h(®).

Proof of Lemma 1. We write

3 3 T
Amo(X) = (grad m(Tyx)@Tgx — grad m(ng)£59x>

and
@) = 2 [ [0 = S5%0] A (K + R
A
= Z (2 / (we(TyX) — we(SyX)) Am,z?(x)dx) Zy + Rn 1
re{—n,...,n}d A
= Z Ur(ﬁ)sr + Rn,] + Rn,2 = in(l?) + 2Rn,] + 2Rn,2
re{—n,...,n}d
with

a T
x — grad m(Syx) £59 x) dx € R?
o=v

x) dx
o=0

This means, that in(ﬁ) consists of a sum of weighted independently distributed random variables for which we determine
the asymptotic distribution by using Lemma 3.1 in [10] and remainders R, ; and R, , for which we show that they are

asymptotically negligible. We will first consider the asymptotic distribution of In. To this end we have to check the condition

ur(9) =2 / (we(TyX) — wr(SpX)) (grad m(TyX) %Te
A

0=y

Rn1 = / [M(Tyx) — M(Syx)] <grad(ﬁ1 — m)(TyX) %Te x — grad(f — m)(SyX) %sg
A

0=0

Rnz = /(E[rﬁ(TﬁX)] — E[(SyX)]) Am,» (X)dx.
A

max  |cTv (D))
.n}d

oz =0(1) (13)
( » ch,(ﬁ)v,Tc(ﬁ))

for every c € R. Note that from (4) we have
grad m(Syx) = grad m(Tyx)MyN;!
grad m(TyXx) = grad m(Sﬁx)NﬂMﬂ_l.

Therefore we get

lcTvr(9)]

2/ 1 / (e~ Tyx—x)/h _ efiw(sﬂxfx.)/h)mdwCTAm » (X)dx
A (nhay)? Jpa Dy (w/h) '

2 : : . I_ w
< - / |efla)T§u _ e*la)slyul |ela)x,-/h| [ ]~1]d( ) dw |CTAm,,5(hu)| du
(nan)® J Jg2 [Py (@/h)]
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< 4 d/ I[_l,l]d(w) da)[|cTAmY19(hu)|du
(nan)® Jez [Py (w/h)| Ja

0 1
ndhfad

2
4 ST i T 17 d(w)
E T 2 - E : —io! (Tyx—x0)/h _ p=io’ (Spx—xp)/hy 11U g T 4
) = a2 (/A € ‘ @y (i) ”"“"”")

_ 4 I (@) 1 / —iwT (Tyx—u)/h T
= 7(nan)dh2d /Rd (/Rd 703\,,(0)/}1) c ( A e v A,y (X)(grad m(Tyx))" dx

, 9 T
- /e"“’r(s""‘”/“ (NﬁMf —T, x) (grad m(Syx)) T dx |dw
A a0 o9

x du(1+ o(1))

4 Iy a(hw) 4 / —ioT (Tyx—u) T
= 7(nan)d /Rd (/Rd 7@1& @ c / e 4 Am.s (X)(grad m(Tyx))' dx

, 3 T
- fe"“’r(sl”““) (N,;Ml;] %Tg x) (grad m(ng))de> dw)
A -

x du(1+ o(1)).
With Assumption 3 the integral on the r.h.s. of the equation exists, and we have

S Tu)? =

~ (nay)*

and

2

X 8S
- ==
o= 200

2

X 8S
— =79
0=0 20

If h :
Co = f / MCT /e_""T(Tﬁ"_“)Am_@(x)(grad m(Tyx))" dx
ri\Jrd Py (@) A

_ /e—in(Sl;x—u) (NgM;l iT@
A 96

This yields by

2

X aS
36"

T
x> (grad m(ng))de)da)) du.
9=

=0

max  |cTv ()]
re{—n,....n}d

n 12
(Z chr(ﬁ)vrTc(l‘}))

1
=0 ((nan)d/Zhﬁ> =o(1)

and the Cramér-Wold device the asymptotic normality of L,(z?). We will now discuss the remainder terms. Using the
Cauchy-Schwarz inequality we get

1/2
Rut < (/ [(Tyx) —nﬁ(ng)]zdx>
A
T R r a
x) (grad(m — m)(Tyx)) — <—S@
=0

/‘ a
X ng
A a0 - a0

We apply Theorem 4 and obtain R, ; = Op(1/n%a;/>h2b+1+4/2) = op(l/nd/zaﬁd/‘lhﬁ”/“) since nd/2@ "/ pp+1/2+d/4 5 oo by
Assumption 5. Now it remains to estimate

1/2

T 2
x) (grad(im — m)(Sﬂx))T> dx

0=">

1 g o Iy (@)
Ry = ——— om0 Tyx—x0)/h _ g—io! Sgx—xx)/hy T-LINE) § -0 oy g oy
"2 7 (27naghyd Z/A Rd( )%(w/h) A5 (X)dXg (Xr)
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: / T Tox/h _ i Syx/hy ioTu/h 1,14 (@)
= — (e~ Tox/h _ gmiwSox/hyglotu/h 11— 7 4oy Ay 9 (X)dxXg (W) du
Q) Ji1/an.1/ant Ja Jra Dy (w/h) "

+0 ( dl d) / (e—inTﬁx/h . e—inSﬁx/h)einu/h Ii—q 170 (@) dw A 5 (X)dX
ndad | Ju Jpa Dy (w/h)

1 . .
= i / / d(e—'w”ﬁ"/h — e—'w*ﬁ"/h)qu(w/h)l[,md(w)dem,,y(x)dx
AJR

1 T T T Ii_q.1p0(@)
_ (e iw' Tyx/h __ e iw Slyx/h) </ el U/hg(u)du> > demy (X)dx
(2mh)? /A /Rd ((=1/an,1/an]d) @y (w/h) ’

410 ( dl d) / (efinrﬁx/h . e*inslyx/h)einu/h Iy (@) dw Ay (X)dX
n an A JR d)‘// (a)/h)

1
(1] [2] [3]
= Rn,2 + Rn,Z + Rn,ZO ( ) .

ndadhd
There is
[1] [1.1] [1.2]
Rn,2 = Rn,Z - Rn.Z
with
1 T w _
Rg,'z]] = 2xh)y /A /d e Ve, <E) I_1 10 (@)dwAp o (T 'y)dy
y YR
1 il (5T w _
Ry,izj = (znh)d/ /de w Goly Wi, (ﬁ) -1 (@)dw A 5 (Ty 'y)dy.
Ay JR
Since m(z) = m(Tﬁsglz) itis easy to show that @, = @m(.[-ﬁsgl‘) and

. T _
Dpyiryss1y (@/M) = /m i e Vi m(Ty S, 'v)dv

P P T o Nap—1 B
— / el (SpTy u)/hm(u)du — p i by (I—NyMy )/h/ el Ny My u/hm(u)du
R? R4

—iwTho (—NoM=1 _
= e~ by (I=NyMy )/"q§m ((N§M1,1)Ta>/h).
Furthermore

e—in(S,gT];Iy)/h _ einbly(I—leMl;I)/he—ia)TNﬁMgly/h'

Substituting this in R,[:'ZZ] we obtain
1 il -1 w
[1.2] —iw" (SyT, h -1
RUZ = W/A fRde T (E)I[_md(w)dmm,ﬁ(rﬂ y)dy
D)

! Ny My T (NyM; D)o .
= W/ /de i((Ny My )" @) y/h(pm (Z 1[71,1]d(w)dem,ﬁ(Tg ]y)dy
Ay JR

_ plt1]
- Rn,2

with (NyM;; ")Tw = 1. Therefore Rﬁ”z =0.

1 1 1 |I[_1 1d ()]
IR2 ) < 7/ ||u||r|g(u)|du/ lewll” ’ de
n2l = 0B e e Ul i llw/hll? |y (/)]

X /
A 0=0

<0 i lul"lgldu [ [l@)’l_; (@)
- hd+ﬂ R4 R4 (=11

X| dx

0=0

B
x — grad m(Syx) @59

d
d m(T; —T;
grad m(Tyx) 29 10
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ad 0
x/ grad m(Tyx) —Ty X — grad m(SyXx) —Sy X| dx
A 30 lo—y 30 lo—y
—of %
=0 (j5i7)
and
|R[3]| < EC/ grad m(TyXx) iT X — grad m(Syx) iS X| dx
n2l = pp J, 90, 8077

()

Altogether this yields with the assumptions n®/2d}, % /h¢ — 0 and n%2a¥*hé+# — oo
R =0+0 a 0 ! 0] 7‘1 = 71 O
| n,2| =0+ hd+F + h7 ndaghd =0 nd/2ag/2 .

Proof of Lemma 2. First of all note that ||§, — ¢ < ||1§n — ¢|| and therefore &, N ¥ forn — oo.

h(E) — h(®) = (h(E) — hE)) + () — h(@®).
With the above remark and the continuity of h it is immediately clear that the second part stochastically converges to 0. For

the first part it suffices to show that sup, Ih(6) — h(6)||m stochastically converges to 0 where || - || denotes the maximum
norm of a matrix. We have

1/ 0~ d
5 <£ln<9> - ﬁl(e?))

= f(Am,e(X) — A (X)) (A (X) — Am,e(x))dx+/Am,e(x)T(Azﬁ,e(x) — Amp(X))dx
A A

1 .
E(h(G) —h())

+ /(Am,e(x) — A o))" A g (X)dx + /(T?I(Tex) — m(TyX) — (M(SyX) — M(SpX)))
A A

d d d d
X <£ Ap o (X) — @Amﬂ (X)> ax + /A(m(Tex) — m(SpX)) <% Ap o (X) — @Am,e (X)> ax

+ /A(ﬁz(Tgx) — m(Tyx) — (M(Spx) — m(ng)))%Amig(x)dx.
There is
Am o) (Ao (X) = Amo (X)) = (@;(X) 1< j<k
%Aﬁ],e(x) - %Am.ﬂ(x) = (hij(X))1<ij<k

with

a0 = 33 (im(ux)i(ux) = Lm0 (5% ) 2 10, (iﬁzmx) - im(%x))
Y — £ \ 9x; 36 T ox 96, ") 96; 3xs 3xs

»

-y (im(nmi(mx) — (s (5% ) 2 (5,
s 36 77 axs a0, ) ag

=1 t=1

d d
x | —m(Sex) — —m(Spx)
0X;s 0Xs

©
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hij(x) = i o* (Tox) iﬁ1(T X) im(T x)) o (Spx) iﬁ1(5 X) im(S X)
W 36,00, " \axs T axg 0 36,00, \axg T kg
2 2

+ Xd:i: i(T X) i(T X) (Lﬁi(T X) — 9 m(T, x))
36, "o Ut VT axox, !

0X;0X;

006; a6 0X;0X; 0Xs0X;

d d d
= Y i)+ Yy B
s=1

s=1 t=1

0 0 92 92
— — (59X)s — (SpX)¢ (77?1(56)() - m(SeX)>:|

From the definition of Ty and Sy it is immediately clear, that terms like |0 /30 Tyx|| are uniformly bounded over 6 and x € B.
By applying the Cauchy-Schwarz inequality several times it therefore suffices to show that

/(ﬁ(TeX) — m(Tyx))*dx = op(1), /(rﬁ(SeX) — m(Spx))%dx = op(1),
A A

q . 9 2
/ (m(Tex)— —m(bx)) dx = 0p(1),
A aX,' 3X1'

3 3 2
f m(Spx) — —m(Spx) | dx =o0p(1), 1<i<d
4 \ 0X; dX;

1

32 FE 2
(T, — T dx = 1),
/A <8x,-8xjm( 20 = g 9x>) x = 0p(1)

32 92 2
m(Syx) — m(Sex) | dx =0p(1), 1<i,j<d
/A<8xiaxj (500 = o ms, )) b1, 1<ij<

uniformly over 6. We obtain for example, ifmax{|82/89,-80j(T9x)s|, |82/80,-80j(59x)5|} < CforsomeC > 0

/ (T30 — m(Ty%) — (F(Ss%) — MG (x, i, )ldx
A

< C/ [M(Tyx) — m(Tyx) — (M(SeX) — m(Spx))| ‘aﬁ?(Te)X) — im(Té)X) ax
A 0Xs 0Xg

+Cf|ﬁ1(TeX) — m(Tyx) — (M(SpX) — m(SpX))| ‘aﬁi(SQX) — im($aX) dx
A 90X 0Xg

172 3 3 2
=G ( (m(z) — m(z))2dz> (/ <—ﬁ1(z) — —m(z)) dzz)
Ag g \ 0Zs 0z;
1/2 P 3 2 1/2
<G ( f (M (2) _m(z))zdz> ( / (—n%(z) - —m(z)) dz) = op(1)
D D aZs 825

by using Theorem 4. The other terms are estimated similarly. O

1/2

A.3. Proof of Theorem 3
We use the decomposition
L) =L@) — @ - H'h@) — @ - HThE @ - D)
and immediately see from the previous proof that the second term on the right is 0 and the last term on the right is of order

Op(n9a=) = op((n?h*+4/2¢)/*)=1)_ Therefore it suffices to show the weak convergence of the first term to the desired
distribution. It is

2
Ly(®) = / (Z(wr(sm—w,(mx))e,) dx
A\ r
+2 / (Z(wr(sm - wrmx))sr) (Z(w«sﬁx) - ws(TwX))‘I’m(Xs)> dx.
A r S
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As in the proof of Theorem 4 one easily sees that the last two terms on the right are of order op (n@h2+4/2g2%/?)=1) We get

INOEDS / (We(SpX) = we(TyX))2dxer + ) [ (We(SyX) — we(TyX)) (ws(SyX) — ws(TyX))dXerEs.
r YA r#s YA

The rest of the proof now follows along the lines of the proof of Theorem 4 when considering Il(j) .

References

[1] LA. Ahmad, Q. Li, Testing symmetry of an unknown density function by kernel method, Nonparametr. Stat. 7 (1997) 279-293.
[2] M. Birke, H. Dette, K. Stahljans, Testing symmetry of a nonparametric bivariate regression function, J. Nonparam. Statist. 23 (2) (2011) 547-565.
[3] N. Bissantz, M. Birke, Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators, J. Multivariate
Anal. 100 (2009) 2364-2375.
[4] N.Bissantz, H. Dette, K. Proksch, Model checks in inverse regression models with convolution-type operators, Technical Report SFB 823.
[5] Bissantz, Holzmann, Pawlak, Testing for image symmetries—with application to confocal microscopy, IEEE Trans. Inform. Theory 55 (2010)
1841-1855.
[6] A.Cabafia, M. Cabaiia, Tests of symmetry based on transformed empirical processes, Canad. J. Statist. 28 (2000) 829-839.
[7] P.de Jong, A central limit theorem for generalized quadratic forms, Probab. Theory Related Fields 75 (1987) 261-277.
[8] H. Dette, A consistent test for the functional form of a regression based on a difference of variance estimators, Ann. Statist. 27 (1999) 1012-1040.
[9] H. Dette, S. Kusi-Appiah, N. Neumeyer, Testing symmetry in nonparametric regression models, Nonparametr. Stat. 14 (5) (2002) 477-494.
[10] R.L. Eubank, Nonparametric Regression and Spline Smoothing, second ed., in: Statistics: Textbooks and Monographs, vol. 157, Marcel Dekker, Inc.,
New York, 1999.
[11] W. Hardle, ].S. Marron, Semiparametric comparison of regression curves, Ann. Statist. 18 (1990) 63-89.



	Testing for symmetries in multivariate inverse problems
	Introduction
	The model and test statistic
	Asymptotic inference
	Simulations
	Simulation framework
	Critical functions and the distribution of estimated parameters and test statistics
	Testing for symmetry

	Acknowledgments
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	References


