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a b s t r a c t

We propose a test for shape constraints which can be expressed by transformations of the
coordinates ofmultivariate regression functions. Themethod ismotivated by the constraint
of symmetry with respect to some unknown hyperplane but can easily be generalized
to other shape constraints of this type or other semi-parametric settings. In a first step,
the unknown parameters are estimated and in a second step, this estimator is used in
the L2-type test statistic for the shape constraint. We consider the asymptotic behavior
of the estimated parameter and show that it converges with parametric rate if the shape
constraint is true. Moreover, we derive the asymptotic distribution of the test statistic
under the null hypothesis and furthermore propose a bootstrap test based on the residual
bootstrap. In a simulation study, we investigate the finite sample performance of the
estimator as well as the bootstrap test.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Several kinds of shape constraints play an important role in many areas of research. Some of them can be characterized
by a linear transformation of the variables. Symmetry is one example for such a shape constraint. For example, many objects
or parts of objects are symmetric with respect to reflection or rotation. Symmetry can be used in image compression and
also in image analysis to detect certain objects. If symmetry of a certain object is violated one can sometimes deduce some
results from it. Usually, parts of the human body are (nearly) symmetric, e.g. the left hand is symmetric to the right hand,
the left part of the face to the right part and so on. This is usually also true for the thermographic distribution of those parts.
If in a thermographic image of both hands this symmetry is severely violated, this can be a hint to some inflammation in
this part. Problems of this and similar type make testing for symmetry to a problem of considerable interest. The method of
testing described below is not only restricted to symmetry but can be generalized to other shape constraints characterized
by a linear transformation of the variables. Technically, modeling the object of interest as a multivariate function and using
linear transformations, we end up with the problem of testing for shape constraints of a multivariate function.

Whereas several results exist which discuss the symmetry of density functions (see e.g. Ahmad and Li [1], Cabaña and
Cabaña [6] and Dette et al. [9] among many others) only few authors have considered testing for symmetry of a regression
function so far. Recent results have been presented in [5,2], where both are for the case of bivariate functions in direct
regression models and for symmetry with respect to some known axis.

∗ Corresponding author.
E-mail addresses:melanie.birke@uni-bayreuth.de (M. Birke), nicolai.bissantz@rub.de (N. Bissantz).

0047-259X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2012.03.008

http://dx.doi.org/10.1016/j.jmva.2012.03.008
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
mailto:melanie.birke@uni-bayreuth.de
mailto:nicolai.bissantz@rub.de
http://dx.doi.org/10.1016/j.jmva.2012.03.008


M. Birke, N. Bissantz / Journal of Multivariate Analysis 109 (2012) 236–253 237

In some cases, it is not possible to observe the object of interest directly. This leads to an inverse problem. Testing for
symmetry in inverse regression problems can be of even higher interest than testing for symmetry in direct regression
models. The reason is as follows. Whereas, at least in bivariate settings, symmetry in direct regression models can
approximately be recognized by simply looking at the data, symmetrical structures in the true object can lack any symmetry
in the observed (indirect) data. Consider, for example, the well known convolution problem which commonly appears in
image analysis where the true object is distorted by a so called point-spread function we can easily find situations (e.g. for
asymmetric point-spread functions or if the point-spread function has a different axis of symmetry than the true object)
where the symmetry is not visible in the image. To the best of our knowledge there are nomethods for testing for symmetry
in inverse regression problems so far. An equivalent statement is more than ever true for other shape constraints of this
type.

In the following we will develop a testing procedure for equality of a d-variate function under two different linear
transformations. One example will be the reflection symmetry with respect to a (d− 1)-dimensional hyperplane. Although
wemotivate the problem by the case of a symmetry constraint, the theoretical results and their proofs will be formulated as
general as possible. Since the parameter of the linear transformations is unknownwe estimate it in a first step byminimizing
an L2-criterion function. If the true function really fulfills the shape constraint, we derive, under some regularity conditions,
consistency with parametric rate of the estimator and show that it is asymptotically normally distributed. In a second
step, we use the minimized criterion function as test statistic for the shape constraint and show that it is asymptotically
normal. Since the problem under consideration is closely related to certain semi-parametric problems we will use similar
techniques as Härdle and Marron [11]. However note the important differences, that our problem is inverse and our
regression function is multivariate. In nonparametric regression tests based on such asymptotic distributions usually do
not perform satisfactorily in finite samples because the convergence is very slow and there is the problem of dealing with a
bias term. To avoid this problem we propose a bootstrap test based on residual bootstrap and investigate the finite sample
performance of this test in a simulation study.

The rest of the paper is organized as follows. In Section 2 we describe the model and define the estimator for the
hyperplane as well as the test statistic. The asymptotic behavior of both is considered in Section 3 while we show the finite
sample performance in Section 4. Finally all proofs are deferred to the Appendix.

2. The model and test statistic

We consider the nonparametric inverse regression model

Yr = Ψm(xr)+ σεr (1)

with xr = (r1/(n1an1), . . . , rd/(ndand))
T , rj = −nj, . . . , nj and anj → 0, j = 1, . . . , d such that with increasing sample size

we have observations on the whole Rd. For the sake of simplicity we assume in the following that nj = n and anj = an such
that xr = (r1, . . . , rd)T/(nan) and for fixed nwe have observations on the compact set In = [−1/an, 1/an]d. In (1)m is a two
times continuously differentiable regression function, and Ψ is an operator which mapsm to the convolutionm ∗ψ with a
known convolution function ψ . Finally, with r = (r1, . . . , rd), {εr}r∈{−n,...,n}d are independent identically distributed errors
with E[εr] = 0, E[ε2r ] = 1 and E[ε4r ] < ∞. If j = (j1, . . . , jd), j = j1 + · · · + jd and m is j times continuously differentiable
according to Bissantz and Birke [3]

m̂(j)(x) =


r∈{−n,...,n}d

wr,j(x)Yr (2)

with

wr,j(x) =
1

(2π)d/2(nhjan)d


[−1,1]d

(−iω)je−iωT (x−xr)/h

Φψ (ω/h)
dω (3)

is an appropriate estimate for ∂ j1+···+jd

∂x
j1
1 ...∂x

jd
d

m. If j = 0 we write m̂(0)(x) = m̂(x) and wr,0(x) = wr(x). As an abbreviation we

write in the following Ψm = g . In (3)Φf denotes the Fourier transform of a function f .
We consider linear transformations Tθ , Sθ : Rd

→ Rd parameterized by θ ∈ B ⊂ Rd with B compact which are two times
continuously differentiable with respect to θ and for which T−1

θ and S−1
θ exist. The testing problem we will consider is if for

some set Aθ

m(z) = m(TθS−1
θ z) for all z ∈ Aθ (4)

or equivalently

m(Tθx) = m(Sθx) for all x ∈ A = T−1
θ Aθ . (5)
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To this end we will use

L(θ) =


A
(m(Tθx)− m(Sθx))2 dx (6)

to check whether m exhibits such a structure on Aθ . The parameter ϑ of the true linear transformation minimizes this
criterion function. In the following we will assume without loss of generality that A = T−1

θ Aθ is independent of θ and that
Aθ ⊂ D for all θ ∈ Bwith D independent of θ .

Example. To illustrate the above definitionswith our example of reflection symmetry, for every fixed θ ∈ Rd mirroringm at
the corresponding hyperplane can be realized by some linear functional TθS−1

θ where Tθ contains the shift of the hyperplane
and the rotation and S−1

θ is mainly the inverse of Tθ concatenated with the mirroring at the (x2, . . . , xd)-hyperplane. To be
even more precise we discuss reflection symmetry for the cases d = 2 and d = 3.

d = 2: Here, the hyperplane reduces to a straight line parameterized by

gθ =

(cos θ1, sin θ1)T λ+ θ2 (− sin(θ1), cos(θ1))T |λ ∈ R


with θ = (θ1, θ2)

T
∈ R2 unknown such that mirroring z ∈ R2 at that straight line can be obtained by transforming z to

T−1
θ z =


cos θ1 sin θ1

− sin θ1 cos θ1


z −


0
θ2


, (7)

mirroring at g0 =

(1, 0)T λ|λ ∈ R


which gives

S−1
θ z =


1 0
0 −1


T−1
θ z (8)

and transforming back, which finally yields

TθS−1
θ z.

The set A can e.g. be some rectangle [a1, b1] × [a2, b2], a1 < b1, a2 < b2 around the x1-axis while Aθ = Tθ (A) is the rotated
and shifted rectangle. As a consequence, A and Aθ have the same Lebesgue measure. For an illustration also see Fig. 1.

d = 3: Here, the hyperplane is given by the plane

pθ = {(cos θ1, 0, sin θ1)Tλ+ (− sin θ1 sin θ2, cos θ2, cos θ1 sin θ2)Tµ+ θ3(sin θ1 cos θ2,− sin θ2, cos θ1 cos θ2)}

with θ = (θ1, θ2, θ3)
T unknown. We define Tθ and Sθ as follows. For z ∈ R3 let

T−1
θ z =

 cos θ1 0 − sin θ1
sin θ1 sin θ2 cos θ2 cos θ1 sin θ2
sin θ1 cos θ2 − sin θ2 cos θ1 cos θ2


z −

 0
0
θ3


and

S−1
θ z =

1 0 0
0 1 0
0 0 −1


T−1
θ z.

Then, mirroring z at p0 can be realized by the concatenation TθS−1
θ z.
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Sincem is not known, we estimate the criterion function (6) as

L̂n(θ) =


A


m̂(Tθx)− m̂(Sθx)

2 dx (9)

and find the estimator of ϑ by minimizing L̂n(θ)

ϑ̂ = arg min
θ∈B0×B1

L̂n(θ),

where B0 ⊂ Rd−1 is the compact set of all possible rotation angles and B1 ⊂ R the compact set of all possible shifts. If m̂ is
continuously differentiable, we can equivalently solve

l̂n(θ) = grad L̂n(θ) = 0 (10)

to find ϑ̂ .

3. Asymptotic inference

Throughout the rest of the article let us denote |y|k =
d

j=1 |yj|kj for y ∈ Rd and k ∈ Rd. The first important assumption
for all results in this section is

Assumption 1. Let L(θ) be locally convex near the true parameter ϑ in (5), that is for every δ > 0 exists a constant κ(δ) > 0
such that L(θ)− L(ϑ) > κ(δ) for all ∥θ − ϑ∥ > δ

To consider asymptotic theory, we further assume that Ψ is ordinary smooth, i.e. we consider mildly ill-posed problems in
model (1). This can be summarized in the following assumption.

Assumption 2. The Fourier transformΦψ satisfies
[−1,1]d

1
|Φψ (ω)|

dω ≤ κ1h−β


[−1,1]d

|ω|
2j

|Φψ (ω)|2
dω ∼ κh−2β


[−1,1]d

|ω|
2j+2β

for some β > 0 and κ1, κ ∈ R \ {0}, j such that j1 + · · · + jd ≤ 2.

Assumption 3. The Fourier transformΦm ofm satisfies


Rd |Φm(ω)| |ω|
kdω < ∞ for anymultiindex kwith k1+· · ·+kd ≤ s

for some s > max{β + 1, 3} and m is at least two times continuously differentiable.

Assumption 4. The convolution g = Km ofmwith ψ satisfies


Rd |g(y)| |y|kdω < ∞ for any multiindex kwith k1 + · · · +

kd ≤ r for some r > 0.

Assumption 5. The bandwidth h fulfills h → 0, (log n)1/4/ndh2dadn = o(1), nda3d/2n h2β+4+d/2
→ ∞, nda3d/2n h2β+2s+d/2−2

=

O(1) and ndar+d/2
n = o(hβ+s+d−1).

Assumption 1 is e.g. fulfilled for functionsm ≠ 0 for which ϑ is unique and (5) holds. In contrast to this, Assumption 1 does
not hold if m ≡ 0. Note, that in general, m ≡ c for some constant c would also be a counter example for Assumption 1
but is completely excluded in this setting because we need L2-integrability for m on Rd. The conditions on m for a unique
ϑ of course strongly depend on the particular form of the linear transformations Tθ and Sθ and we therefore restrict our
discussion to the case of reflection symmetry for d = 2. In this case we have Tθ and Sθ like in (7) and (8) and local convexity
is e.g. given for the function

exp

−12(cos(0.3)x + sin(0.3)y − 0.1)2 − 3(cos(0.3)y − sin(0.3)x + 0.1)2


+ 0.5 · exp


−3(cos(0.3)x + sin(0.3)y − 0.1)2 − 9(cos(0.3)y − sin(0.3)x − 0.4)2


.

This function has only one axis of symmetry and therefore L(θ) = 0 has as unique solution ϑ which is the parameter of this
symmetry axis. For all other possible values θ ∈ R2 we have L(θ) > 0. Because we only consider θ from some compact set
B and continuity we have L(θ)− L(ϑ) > κ(δ) for all ∥θ − ϑ∥ > δ. Local convexity of L(θ) is not given for the function

exp(−12(cos(0.3)x + sin(0.3)y − 0.1)2 − 3(cos(0.3)y − sin(0.3)x + 0.1)2)

which has two axes of symmetry and although ∥ϑ1 − ϑ2∥ > δ for the parameters ϑ1, ϑ2 ∈ R2 of the two symmetry axes
and some δ > 0 we have L(ϑ1)− L(ϑ2) = 0 < κ(δ) for any choice of κ .

Assumption 3 is, for example fulfilled, if for grad(m) (and hence also for the products and sums in the integral) the k-th
derivative exists for all k1+· · ·+kd ≤ β . Note also, that in Assumption 5 an cannot be seen as regularization parameter since
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it is determined by the underlying design. Therefore, all conditions have to be read as conditions on hn, s, β and r dependent
on the rate of an.

Under the above conditions we can now discuss the asymptotic properties. We first consider the consistency and the
asymptotic distribution of the estimator ϑ̂ .

Theorem 1. Under Assumptions 1–5 there is ϑ̂n
P

→ ϑ for n → ∞.

Theorem 2. Under Assumptions 1–5, if m̂ is continuously differentiable, ϑ̂ is defined by (10) and ϑ is the true parameter in (5),
we have

ndadn

ϑ̂ − ϑ


D
→ N (0, σ 2h−1(ϑ)Σ(ϑ)(h−1(ϑ))T )

with

Σ(θ) =
σ 2

(2π2κ)d


Rd


Rd

∥ω∥
β I[−1,1]d(ω)e

−iωT ydydω
2 

Rd
σθ (u)σθ (u)Tdu

σθ (u) =


∂

∂θ
Tθ


(T−1
θ (u))− MθN−1

θ


∂

∂θ
Sθ


(T−1
θ (u))− NθM−1

θ


∂

∂θ
Tθ


(S−1
θ (u))−


∂

∂θ
Sθ


(S−1
θ (u))

T

× (gradm(u))T

h(θ) = 2

A


grad m(Tθx)

∂

∂θ
Tθx − gradm(Sθx)

∂

∂θ
Sθx


gradm(Tθx)
∂

∂θ
Tθx − grad m(Sθx)

∂

∂θ
Sθx
T

dx.

The second point of interest is to test whether the image obeys a structure like in (5). We use the test statistic

L̂n(ϑ̂) =


A


m̂(Tϑ̂x)− m̂(Sϑ̂x)

2 dx (11)

which has the following asymptotic distribution.

Theorem 3. Under Assumptions 1–5, if ϑ is the true parameter in (5), we have

σ−1/2
n


L̂n(ϑ̂)−

2σ 2

(2π)dndh2β+dadn


A


[−1,1]d

|ω|
2β
sinωT Sϑx

h

2 dωdx


D
→ N (0, 1)

with

σn =
32σ 4

κ4(2π)2dn2dh2d+4βa2dn


R2d

|ω|
2β

|η|2β


A
sin

ωT Sϑx

h


sin

ηT Sϑx

h


dx
2 d(ω, η).

It can be shown similarly as in the proof of Theorem4 in theAppendix, that the effective rate of convergence is ndh2β+d/2a3d/2n .

4. Simulations

4.1. Simulation framework

In this section we present the results of a simulation study. To this end we generate observations according to model (1),
i.e.

Y(r,s) = Ψm(x(r,s))+ σε(r,s).

In our simulations, the noise terms are i.i.d. normally distributed with variance 1 and x(r,s) =
 r
n ,

s
n


, (r, s) ∈ {−n,−n +

1, . . . , n−1, n}2 are the coordinates of a gridwith equidistant stepsize in both coordinates andwith an = 1. In the following
we use the parameter values n = 50 and σ (in dependence of the underlying functionm) such that σ makes up for 1/10-th
and 1/25-th of the maximum of the signal Ψm, which amounts to signal-to-noise ratios – defined as the mean signal of
the image divided by σ – of ≈10 and ≈4, respectively. These values amount to rather poor signal-to-noise ratios, and in a
practical application, S/N will frequently be larger and our simulations be expected to be conservative with respect to the
performance of our method.
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We consider two different ‘‘true’’ imagesm1 andm2 from which the data is generated. These images represent the cases
of having a unique axis of symmetry (image m1) and of not having any axis of symmetry at all (image m2). The images are
generated from the following bivariate functions (with (xt , yt) ∈ R2).

m1(x, y) = exp(−3 · (4 · x2t + (yt + 0.1)2))+ 0.5 · exp(−3 · (x2t + 3 · (yt − 0.4)2))

m2(x, y) = 0.5 · exp(−5 · ((xt − 0.3)2 + 5 · (yt + 0.3)2+))+ 0.5 · exp(−5 · ((xt + 0.2)2 + 5 · (yt − 0.3)2))
+ 0.5 · exp(−5 · ((xt + 0.5)2 + 5 · (yt + 0.6)2)),

where
xt
yt


=


cos(α) − sin(α)
sin(α) cos(α)

 
x
y


+


−δ
0


are the coordinates of a coordinate system which is rotated by an angle α = −0.3 with respect to the original coordinate
system of y in counterclockwise direction and shifted (along the transformed yt-axis) by δ = 0.1. Hence, image m1 is
symmetric with respect to an axis of symmetry which passes the x-axis at x = 0.1 and is tilted away to the right from the
y-axis by an angle of −0.3 rad., that is ϑ = (α, δ)T = (−0.3, 0.1)T .

In accordance with model (1) for the observations, we do not assume to be able to observe mi directly, but that at our
disposal are only observations of the convolution ofmi, i = 1, 2 with a convolution function ψ given by

ψ(x, y) =
λ

2
· exp


−λ ·


x2 + 0.25 · y2


(with λ = 5). Fig. 2 shows the images of m1 and m2, their convolutions with Ψ and typical examples for estimates m̂1
and m̂2.

The convolution function ψ is symmetric with respect to the x- and y-axis of the (original) coordinate system, that is
symmetric with respect to axeswhich are different to the axes of symmetry ofm1. In consequence, the convolved (observed)
image Ψm1 does not have any axis of axial symmetry. Note that this implies that testing for symmetry of m can in general
not be substituted by testing for symmetry of Ψm, except under specific, strong assumptions on the symmetry properties
of m and ψ . Instead, it is required that the observed image is deconvolved in a first step, with the symmetry test being
performed in a subsequent second step.

In our simulations we use the spectral cut-off estimator (2) with equal bandwidths in both coordinate axes. From a visual
inspection of 5 randomly selected noisy images and the associated estimates m̂ we chose h ≈ 0.05. This bandwidth was
kept fixed in all subsequent simulations.

4.2. Critical functions and the distribution of estimated parameters and test statistics

In this section we describe the performance of the estimators for the symmetry axis parameters δ and α, and the
properties of the underlying criterion function (9), which can, as already pointed out in Section 3, be used as test statistic
for symmetry of the regression function, for the two different images considered here.

Fig. 3 shows the critical function Ln(δ, α) both for the case of univariate estimation of the shift δ resp. the angle α (where
the other parameter is assumed to be known) and for bivariate estimation of the pair (δ, α). For m2 the criterion function
for the selection of the shift only (top right panel) does not come close to the minimal value it attains for the symmetric
functionm1 at all, but the situation is different for the estimation of the rotation angle, where the minimal values differ less
strongly. Now consider the bivariate estimation of shift and rotation angle. For m2, a complicated pattern appears without
a distinct minimum.

Next, Fig. 4 shows the simulated distribution of the estimated parameters for rotation and shift for the various simulation
setups. Form2, which does not have an axis of symmetry at all, the critical function still shows clear minima of the criterion
function if only one of the parameters was estimated. This is reflected in the right column of Fig. 4 for the estimated
parameter, that is the value where the minimum is attained.

Finally, consider Fig. 5, which compares the simulated distributions of the test statistic for the case of one parameter es-
timated under H0 (i.e. form1) with the results under H1 (i.e. form2). In the latter case the distributions are shifted to signifi-
cantly larger mean values, which reflects the fact that there exists no axis of symmetry. Moreover, their shape appears more
symmetric than under H0, where it is (much) more skewed to the right, similar to other L2-based test statistics (e.g. [8,4,2]).

4.3. Testing for symmetry

In the final part of our simulations let us now turn to a more precise analysis of the performance of our proposed test for
symmetry. Since the convergence of L2-tests is known to be slow and the asymptotic distribution apparently depends on
unknown parameters we use bootstrap quantiles as critical values for the test.

Hence, our testing procedure consists of two main parts. In the first bootstrap part we determine a bootstrap
approximation to the distribution of the test statistics. In more detail, this consists of three steps: (1) to estimate the
distribution of residuals, (2) to determine a ‘‘true image’’ m̂B fromwhich the bootstrap data are generated, and (3) to perform
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Fig. 2. True images and typical examples for the observed image and associated selected axis for m1 (top panels) and m2 (bottom panels). Left column:
true functions, middle column: true function convolved with Ψ , right column: reconstructions from data with n = 50, S/N = 25. The full line indicates
the true axis of symmetry and the dashed line the estimated symmetry axis. Note thatm2 is not symmetric to any axis, hence the full line is missing.

Fig. 3. True (noiseless) criterion function Ln for the translation axis for m1 (top panels) and m2 (bottom panels) for n = 50 and signal-to-noise ratio
S/N = 25. Left column: Ln(δ) for α = −0.3 assumed to be known, middle column: Ln(α) for δ = 0.1 assumed to be known, right column: Ln(δ, α).
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Fig. 4. Distribution of the estimated symmetry parameters for m1 ((a) and (c)) and m2 ((b) and (d)). (a) and (b): only shift estimated, (c) and (d): only
rotation angle estimated for sample size parameter n = 50, and signal-to-noise ratio S/N = 25.

Fig. 5. Distribution of the test statistics under H0 : m = m1 ((a) and (c)) resp. H1 : m = m2 ((b) and (d)). (a) and (b): only shift estimated, (c) and (d): only
rotation angle estimated for sample size parameter n = 50, and signal-to-noise ratio S/N = 25.

the bootstrap replications of the test statistic. The subsequent, second test decision part of the procedure is performed by
computation of the test statistic for the original (observed) data and a decision based on this test statistic and the bootstrap
approximation to its distribution. We now describe all steps in detail.
A. Bootstrap part of the testing procedure:

1. Estimation of the distribution of residuals: In our simulations we use a residual bootstrap as follows. In the first step we
determine the empirical distribution of the residuals as the centered distribution of differences between the observations
and an estimate Ψ m̂ of Ψm. Then, in each of the bootstrap replications, we draw residuals from this distribution and
generate bootstrap data as the sum of a suitable ‘‘true bootstrap image’’ m̂B and these residuals.

2. Determination of a ‘‘true image’’ m̂B: The ‘‘true bootstrap image’’ m̂B is generated as follows such that it obeys a known
axis of symmetry and closely resembles the true (unknown) functionm, assuming H0 to be true.

Step 2.1—Estimating m: Determination of an estimate m̂ of m as described above.
Step 2.2—Estimation of symmetry axis parameter: Minimization of the criterion function yields estimates δ̂ and/or α̂ of

the symmetry axis parameter(s) of m̂.
Step 2.3—Backshift and rotation of m̂: We shift and rotate m̂ back by the estimated parameters δ̂ and/or α̂ (and, if

applicable, the known true values of the other parameter). Under H0, and if no noise would be present in the observed
data, the new image m̌would now be symmetric with respect to the y-axis.

Step 2.4—Symmetrization: To ensure symmetry, we average the image over both sides of the y-axis, that is according
to the scheme m̃(x, y) =

1
2


m̌(x, y)+ m̌(−x, y)


for all (x, y).

Step 2.5—Backrotation and shifting of the image to the estimated symmetry axis: The image m̃ is rotated and shifted such
that it is symmetric with respect to the axis with the estimated parameters δ̂ and/or α̂, or – if applicable – the known
values of shift and rotation, respectively. We call the resulting image m̂B.

3. Bootstrap replications: In the final step of the bootstrap part of the testing procedure we generate bootstrap data from
the model Y ∗

r = Ψ m̂B(xr) + ε∗
r , where ε∗

r are drawn independently from the empirical distribution of the residuals
ε̂r = Yr−Ψ m̂(xr). From each set of bootstrap data the image is estimated and theminimal value of the criterion function,
that is the test statistics, determined. In our simulationswe always use B = 200 bootstrap replications. The ⌊B(1 − α)⌋-th
order statistic of all those bootstrap test statistics gives the critical value for the test.

Test decision part of the testing procedure:
In the second part of the testing procedure we use once more the estimate m̂ of m described above. From this estimate

we determine the test statistics L̂n(α̂, δ̂), that is the minimal value of the criterion function (11). The test decision by itself is
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Table 1
Estimated rejection probabilities of the test for axial symmetry from 200 simulations each
in case of estimating the axis-shift δ (with α known) under H0 : m = m1 and under an
alternative m = κ · m2 + (1 − κ) · m1 , respectively.

Hypothesis/Nominal level S/N = 10 S/N = 25
5% 10% 20% 5% 10% 20%

H0 : m = m1 5.5% 10.5% 21.5% 6.5% 11.0% 20.5%
H1, κ = 0.1 8.0% 12.0% 23.5% 8.5% 17.0% 27.0%
H1, κ = 0.2 10.5% 20.0% 33.0% 54.0% 70.5% 81.5%
H1, κ = 0.4 57.0% 71.5% 82.0% 100% 100% 100%

Table 2
Estimated rejection probabilities of the test for axial symmetry from 100 simulations each in
case of estimating both the axis-shift δ and the angle of rotation α, and under an alternative
m = κ · m2 + (1 − κ) · m1 , respectively.

Hypothesis/Nominal level S/N = 10 S/N = 25
5% 10% 20% 5% 10% 20%

H0 : m = m1 0% 2% 7% 6% 12% 20%
H1, κ = 0.4 3% 5% 15% 8% 19% 39%
H1, κ = 1.0 9% 19% 50% 78% 87% 96%

then to reject the null hypothesis of m obeying an axial symmetry to level α, if the test statistics for the original set of data
is larger than the (1 − α)-quantile of the bootstrap distribution of the test statistics.

In the following, we consider the functions

mκ(x, y) = κm2(x, y)+ (1 − κ)m1(x, y), κ = 0, 0.1, 0.2, 0.4, 1

to analyze the sensitivity of our test to small deviations from symmetry. Tables 1 and 2 summarize the simulated levels and
power of the test for axial symmetry for the case of an unknown shift parameter δ only (with α known), and for the case
that both parameters are unknown. The results demonstrate the substantial additional difficulty of disproving the existence
of any axis of symmetry if both δ and α are unknown. Slightly acceptable results for the moderate sample size of n = 50
only appear for a comparable large deviation from symmetry (i.e. κ = 1). This effect is to a large part due to the complicated
shape of the critical function in this case (cf. Fig. 3) with several localminima. If only the shift parameter is unknown, the test
already performs well for small deviations from symmetry (e.g. κ = 0.2 for a signal-to-noise ratio of S/N = 25 or κ = 0.4
for S/N = 10).
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Appendix. Proofs

Theorem 4.

ndh2j+2β+d/2a3d/2n



B


m̂(j)(x)− m(j)(x)

2
dx −

2dσ 2
d

k=1
(2(jk + βk)+ 1)−1

κπdndh2j+2β+da2dn

 D
→ N (0, s(j))

for j = (j1, . . . , jk) with j1 + · · · + jk ≤ 2 and

s(j) =
2σ 4

κ2(2π)2d
lim
n→∞

d
l=1

anh4βl+4jl+1


I[−1,1](ωl)I[−1,1](ηl)|ωlηl|
2jl+2βl

sin2

ωl−ηl
an


(ωl − ηl)2

dωl dηl.
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Proof. In the following we write the L2-distance as a quadratic form and some bias terms and apply a central limit theorem
by de Jong [7]. There is

B


m̂(j)(x)− m(j)(x)

2
dx =


B


r
wr,j(x)εr

2

dx + 2

B


r
wr,j(x)εr


(E[m̂(j)(x)] − m(j)(x))dx

+


B
(E[m̂(j)(x)] − m(j)(x))2dx

= I(j)1 + I(j)2 + I(j)3 .

Using the definition ofwr,j(x) and Parseval’s equality we obtain

I(j)1 =
1

(2π)dn2dh2j+da2dn


Rd

|ω|
2j I[−1,1]d(ω)

|Φψ (ω/h)|2

r
eiω

T xr/hεr


2

dω

−
1

(2π)dn2dh2j+da2dn


(B/h)c




Rd
e−iωT x(−iω)j

I[−1,1]d(ω)

Φψ (ω/h)


r

eiω
T xr/hεrdω


2

dx

= I(j)1.1 − I(j)1.2.

We write

I(j)1.1 =


u

a(j)u,uε̃
2
u + ε̃T Ã(j)ε̃ = I(j)1.1.1 + I(j)1.1.2

with

a(j)u,v =
1

(2π)dn2dh2j+da2dn


Rd

|ω|
2j I[−1,1]d(ω)

|Φψ (ω/h)|2
eiω

T x̃u/he−iωT x̃v/hdω

Ã(j) = (ã(j)u,v)1≤u,v≤(2n+1)d , ã(j)u,v = a(j)u,v for u ≠ v, ã(j)u,u = 0

x̃1 = x(−n,...,−n), . . . , x̃(2n+1)d = x(n,...,n)

ε̃T = (ε̃1, . . . , ε̃(2n+1)d) = (ε(−n,...,−n), . . . , ε(n,...,n)) ∈ R(2n+1)d .

For I(j)1.1.1 we obtain

E[I(j)1.1.1] = σ 2

u

a(j)u,u =
σ 2

(2π)dn2dh2j+da2dn


r


Rd

|ω|
2j I[−1,1]d(ω)

|Φψ (ω/h)|2
dω

=
σ 2(2n + 1)d

(2π)dn2dh2j+da2dn


Rd

|ω|
2j I[−1,1]d(ω)

|Φψ (ω/h)|2
dω

∼
σ 2(2n + 1)d

κ2(2π)dn2dh2j+2β+da2dn


Rd

|ω|
2j+2β I[−1,1]d(ω)dω

=
σ 2(2n + 1)d

κ2πdn2dh2j+2β+da2dn

d
k=1

1
2(jk + βk)+ 1

= O


1
ndh2j+2β+da2dn



Var(I1.1.1) =


u


a(j)u,u

2
µ4(ε) =

µ4(ε)

(2π)2dn4dh4j+2da4dn


r


Rd

|ω|
2j I[−1,1]d(ω)

|Φψ (ω/h)|2
dω
2

=
µ4(ε)(2n + 1)d

(2π)2dn4dh4j+2da4dn


Rd

|ω|
2j I[−1,1]d(ω)

|Φψ (ω/h)|2

2

dω

∼
µ4(ε)(2n + 1)d

κ4(2π)2dn4dh4j+4β+2da4dn


Rd

|ω|
2j+2β

|I[−1,1]d(ω)|
2dω

2

= O


1
n3dh4j+4β+2da4dn


= o


1

n2dh4j+4β+da3dn


.

We now check the assumptions of Theorem 5.2 in [7] for I1.1.2. First of all we calculate the variance

σ(n)2 = Var(ε̃T Ã(j)ε̃) = 2σ 4tr(Ã(j))2 = 2σ 4

u≠v

(a(j)u,v)
2
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=
2σ 4

(2π)2dn4dh4j+2da4dn


r≠s


Rd

|ω|
2j I[−1,1]d(ω)

|Φψ (ω/h)|2
eiω

T xr /he−iωT xs/hdω
2

∼
2σ 4

(2π)2dn2dh4ja2dn


In/h


In/h


Rd

|ω|
2j I[−1,1]d(ω)

|Φψ (ω/h)|2
eiω

T y/he−iωT z/hdω
2

dydz

=
2σ 4

(2π)2dn2dh4ja2dn


Rd


Rd

|ω|
2j
|η|2j

I[−1,1]d(ω)I[−1,1]d(η)

|Φψ (ω/h)|2|Φψ (η/h)|2


In/h

ei(ω−η)T udu
2 dωdη

=
2σ 4

(2π)2dn2dh4ja2dn


Rd


Rd

|ω|
2j
|η|2j

I[−1,1]d(ω)I[−1,1]d(η)

|Φψ (ω/h)|2|Φψ (η/h)|2

d
l=1

|ei(ωl−ηl)/(han) − e−i(ωl−ηl)/(han)|2

|ωl − ηl|2
dωdη

=
2σ 4

κ4(2π)2dn2dh4j+4βa2dn


Rd


Rd

I[−1,1]d(ω)I[−1,1]d(η)

d
l=1

|ωl|
2jl+2βl |ηl|

2jl+2βl
| sin


ωl−ηl
han


|
2

|ωl − ηl|2
dωdη

=
2σ 4

κ4(2π)2dn2dh4j+4βa2dn

d
l=1


R


R
I[−1,1](ωl)I[−1,1](ηl)|ωlηl|

2jl+2βl
sin2


ωl−ηl
han


(ωl − ηl)2

dωl dηl

=
2σ 4h

d
l=1
(4jl+4βl+2)

κ4(2π)2dn2dh4j+β+2da2dn

d
l=1

 1/h

−1/h

 1/h

−1/h
|ωlηl|

2jl+2βl
sin2


ωl−ηl
an


(ωl − ηl)2

dωl dηl

=

2
d

l=1
Clσ

4

κ4(2π)2dn2dh4j+4β+da3dn

using that

lim
n→∞

anh4βl+4jl+1
 1/h

−1/h

 1/h

−1/h
|ωlηl|

2jl+2βl
sin2


ωl−ηl
an


(ωl − ηl)2

dωl dηl = Cl,

following from the integrability of sinc2 by some slightly tedious algebra. In the following, we check the assumptions (1)–(3)
of Theorem 5.2 in [7] to show the asymptotic normality of I(j)1.1.2.

(1) We have uniformly over all s ∈ {−n, . . . , n}d
r∈{−n,...,n}d

|a(j)r,s|
2

=
1

(2π)4dn4dh4j+2da4dn


r∈{−n,...,n}d


Rd


Rd

|ωη|2j
I[−1,1]d(ω)I[−1,1]d(η)

|Φψ (ω/h)|2|Φψ (η/h)|2

× ei(ω−η)T xr/he−i(ω−η)T xs/hdωdη

∼
1

(2π)4dn3dh4j+da3dn


An


Rd


Rd

|ωη|2j
I[−1,1]d(ω)I[−1,1]d(η)

|Φψ (ω/h)|2|Φψ (η/h)|2

× ei(ω−η)T ue−i(ω−η)T xs/hdωdηdu

=
1

(2π)4dn3dh4j+da3dn


Rd


Rd

|ωη|2j
I[−1,1]d(ω)I[−1,1]d(η)

|Φψ (ω/h)|2|Φψ (η/h)|2

×

 d
ν=1

sin

ων−ην
han


ων − ην

 e−i(ω−η)T xs/hdωdη

=
1

(2π)4dn3dh4j+4β+da3dn

d
ν=1


R


R

|ωνην |
2jI[−1,1]d(ων)I[−1,1]d(ην)

×

 sin

ων−ην
han


ων − ην

 e−i(ων−ην )T xs,ν/hdωνdην .
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Since | sin((ων − ην)/(han))/(ων − ην)| ≤ (han)−1 we obtain
r∈{−n,...,n}d

|a(j)r,s|
2

= O


1
n3dh4j+4β+2da4dn


and therefore with κ(n) = (log n)1/4

κ(n)
σ (n)2


r∈{−n,...,n}d

|ar,s|2 = O

(log n)1/4

ndhdadn


= o(1)

(2) Since κ(n) → ∞ and εr are independent identically distributed with E[ε2r ] = σ 2 < ∞, it immediately follows that

E[ε2r I{|εr| > κ(n)}] = o(1).

(3) For estimating the eigenvalues µr of Ã(j) we use Gerschgorin’s Theorem and obtain uniformly over all s ∈ {−n, . . . , n}d

µs ≤


r∈{−n,...,n}d

|a(j)r,s|

∼
1

(2π)2dndh2jadn


An


Rd

|ω|
2j I[−1,1]d(ω)

|Φψ (ω/h)|2
eiω

T ue−iωT xs/hdω
 du

=
1

(2π)2dndh2j+2β+da2dn

d
ν=1

 1/(han)

−1/(han)


R

|ων |
2jν+2βν I[−1,1]d(ων)e

iωνuν e−iωνxs,ν/hdωνduν .

It now follows by similar but tedious calculations as above, that this term is of order O(log n/ndadnh
2j+2β) and

1
σ(n)2

max
s∈{−n,...,n}d

µ2
s = O (han log n) = o(1).

It now remains to discuss the remainder terms For I1.2 we get

I1.2 = oP(I1.1)

since it consists of the tails of the integral in I1.1, before Parseval’s equality was used, and the upper respective lower bound
of the integral tails asymptotically diverge to ±∞. This means, that I1.2 is asymptotically negligible.

Since the bias of m̂(j) is uniformly of order o(hs−j−1) on B (see e.g. [3]) we have with condition 5

I3 = o(h2s−2j−2) = o


1

ndh2β+2j+d/2a3d/2n


and by applying the Cauchy–Schwarz inequality also

I2 = O


1

nd/2hβ+j+d/4a3d/4n


o(hs−j−1) = o


1

ndh2β+2j+d/2a3d/2n


. �

A.1. Proof of Theorem 1

Since L(θ) is locally convex near ϑ , for every ε > 0 exists a constant Kε > 0 with

P(|ϑ̂n − ϑn| > ε) ≤ P(L(ϑ̂n)− L(ϑ) > Kε) ≤ P(|L̂(ϑ̂n)− L(ϑ̂n)| > Kε/2)+ P(|L̂(ϑ)− L(ϑ)| > Kε/2)

since ϑ̂n minimizes L̂(θ) and the assertion follows if we show that L̂(θ)− L(θ) stochastically converges to 0 uniformly in θ .
To this end note that

|L̂(θ)− L(θ)| =


A
(m̂(Tθx)− m̂(Sθx))2dx −


A
(m(Tθx)− m(Sθx))2dx


≤ C


A
(m̂(Tθx)− m(Tθx))2dx +


A
(m̂(Sθx)− m(Sθx))2dx


≤ 2C


Aθ
(m̂(z)− m(z))2dz ≤ 2C


D
(m̂(z)− m(z))2dz.

Therefore we have for any δ̃ > 0 and δ = δ̃/(2C)

P(sup
θ

|L̂(θ)− L(θ)| > δ̃) ≤ P


D
(m̂(z)− m(z))2dz > δ


.

But the right probability converges to 0 because of Theorem 4. �
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A.2. Proof of Theorem 2

Note, that l̂n(ϑ̂) = 0. With this and a first order Taylor expansion of l̂n in ϑ we write

− ĥ(ξn)(ϑ̂ − ϑ) = l̂n(ϑ) (12)

for some ξn with ∥ξn − ϑ∥ ≤ ∥ϑ̂ − ϑ∥. Theorem 2 now follows after we have shown the following two Lemmata

Lemma 1. Under the assumptions of Theorem 2 we have
ndadn l̂n(ϑ)

D
→ N (0,Σ(ϑ))

withΣ(θ) and σθ (u) defined as in Theorem 2.

Lemma 2. Under the assumptions of Theorem 2 we have

ĥ(ξn)
P

→ h(ϑ).

Proof of Lemma 1. We write

∆m,θ (x) =


grad m(Tθx)

∂

∂θ
Tθx − gradm(Sθx)

∂

∂θ
Sθx
T

and

l̂n(ϑ) = 2

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
∆m,ϑ (x)dx + Rn,1

=


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
2

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(wr(Tϑx)− wr(Sϑx))∆m,ϑ (x)dx


Zr + Rn,1

=


r∈{−n,...,n}d

vr(ϑ)εr + Rn,1 + Rn,2 = l̃n(ϑ)+ 2Rn,1 + 2Rn,2

with

vr(ϑ) = 2

A
(wr(Tϑx)− wr(Sϑx))


grad m(Tϑx)

∂
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Tθ


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x − gradm(Sϑx)
∂

∂θ
Sθ


θ=ϑ

x
T

dx ∈ Rd

Rn,1 =


A


m̂(Tϑx)− m̂(Sϑx)

 
grad(m̂ − m)(Tϑx)

∂

∂θ
Tθ


θ=ϑ

x − grad(m̂ − m)(Sϑx)
∂

∂θ
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θ=ϑ

x

dx

Rn,2 =


A


E[m̂(Tϑx)] − E[m̂(Sϑx)]


∆m,ϑ (x)dx.

This means, that l̂n(ϑ) consists of a sum of weighted independently distributed random variables for which we determine
the asymptotic distribution by using Lemma 3.1 in [10] and remainders Rn,1 and Rn,2 for which we show that they are
asymptotically negligible. Wewill first consider the asymptotic distribution of l̃n. To this endwe have to check the condition

max
r∈{−n,...,n}d

|cTvr(ϑ)| 
r∈{−n,...,n}d

cTvr(ϑ)vTr c(ϑ)

1/2 = o(1) (13)

for every c ∈ Rd. Note that from (4) we have

grad m(Sϑx) = gradm(Tϑx)MϑN−1
ϑ

grad m(Tϑx) = gradm(Sϑx)NϑM−1
ϑ .

Therefore we get
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dωcT∆m,ϑ (x)dx


≤

2
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 du
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≤
4

(nan)d


R2

I[−1,1]d(ω)

|Φψ (ω/h)|
dω

A

cT∆m,ϑ (hu)
 du

= O


1
ndhβadn


and


r∈{−n,...,n}d

(cTvr(ϑ))2 =
4

(2πnhan)2d

r


A


Rd
(e−iωT (Tϑ x−xr)/h − e−iωT (Sϑ x−xr)/h)

I[−1,1]d(ω)

Φψ (ω/h)
dωcT∆m,ϑ (x)dx

2

=
4

(nan)dh2d


Rd


Rd

I[−1,1]d(ω)

Φψ (ω/h)
cT


A
e−iωT (Tϑ x−u)/h∆m,ϑ (x)(grad m(Tϑx))Tdx

−


A
e−iωT (Sϑ x−u)/h


NϑM−1

ϑ

∂

∂θ
Tθ


θ=ϑ

x −
∂

∂θ
Sθ


θ=ϑ

x
T

(grad m(Sϑx))Tdx


dω

2

× du(1 + o(1))

=
4

(nan)d


Rd


Rd

I[−1,1]d(hω)
Φψ (ω)

cT


A
e−iωT (Tϑ x−u)∆m,ϑ (x)(grad m(Tϑx))Tdx

−


A
e−iωT (Sϑ x−u)


NϑM−1

ϑ

∂

∂θ
Tθ


θ=ϑ

x −
∂

∂θ
Sθ


θ=ϑ

x
T

(grad m(Sϑx))Tdx


dω

2

× du(1 + o(1)).

With Assumption 3 the integral on the r.h.s. of the equation exists, and we have
r∈{−n,...,n}d

(cTvr(ϑ))2 =
4Ca

(nan)d

with

Ca =


Rd


Rd

I[−1,1]d(hω)
Φψ (ω)

cT


A
e−iωT (Tϑ x−u)∆m,ϑ (x)(grad m(Tϑx))Tdx

−


A
e−iωT (Sϑ x−u)


NϑM−1

ϑ

∂

∂θ
Tθ


θ=ϑ

x −
∂

∂θ
Sθ


θ=ϑ

x
T

(gradm(Sϑx))Tdx


dω

2

du.

This yields by

max
r∈{−n,...,n}d

|cTvr(ϑ)|
n
r
cTvr(ϑ)vTr c(ϑ)

1/2 = O


1
(nan)d/2hβ


= o(1)

and the Cramér–Wold device the asymptotic normality of l̃n(ϑ). We will now discuss the remainder terms. Using the
Cauchy–Schwarz inequality we get

Rn,1 ≤


A


m̂(Tϑx)− m̂(Sϑx)

2 dx1/2

×


A


∂

∂θ
Tθ


θ=ϑ

x
T 

grad(m̂ − m)(Tϑx)
T

−


∂

∂θ
Sθ


θ=ϑ

x
T 

grad(m̂ − m)(Sϑx)
T2

dx

1/2

.

We apply Theorem 4 and obtain Rn,1 = OP(1/nda3d/2n h2β+1+d/2) = op(1/nd/2a3d/4n hβ+d/4) since nd/2a3d/4n hβ+1/2+d/4
→ ∞ by

Assumption 5. Now it remains to estimate

Rn,2 =
1

(2πnanh)d

r


A


Rd
(e−iωT (Tϑ x−xr)/h − e−iωT (Sϑ x−xr)/h)

I[−1,1]d(ω)

Φψ (ω/h)
dω∆m,ϑ (x)dxg(xr)
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=
1

(2πh)d


[−1/an,1/an]d


A


Rd
(e−iωT Tϑ x/h − e−iωT Sϑ x/h)eiω

T u/h I[−1,1]d(ω)

Φψ (ω/h)
dω∆m,ϑ (x)dxg(u)du

+O


1
ndadn


A


Rd
(e−iωT Tϑ x/h − e−iωT Sϑ x/h)eiω

T u/h I[−1,1]d(ω)

Φψ (ω/h)
dω∆m,ϑ (x)dx

=
1

(2πh)2


A


Rd
(e−iωT Tϑ x/h − e−iωT Sϑ x/h)Φm(ω/h)I[−1,1]d(ω)dω∆m,ϑ (x)dx

−
1

(2πh)2


A


Rd
(e−iωT Tϑ x/h − e−iωT Sϑ x/h)


([−1/an,1/an]d)c

eiω
T u/hg(u)du


I[−1,1]d(ω)

Φψ (ω/h)
dω∆m,ϑ (x)dx

+O


1
ndadn


A


Rd
(e−iωT Tϑ x/h − e−iωT Sϑ x/h)eiω

T u/h I[−1,1]d(ω)

Φψ (ω/h)
dω∆m,ϑ (x)dx

= R[1]
n,2 + R[2]

n,2 + R[3]
n,2O


1

ndadnhd


.

There is

R[1]
n,2 = R[1.1]

n,2 − R[1.2]
n,2

with

R[1.1]
n,2 =

1
(2πh)d


Aϑ


Rd

e−iωT y/hΦm

ω
h


I[−1,1]d(ω)dω∆m,ϑ (T−1

ϑ y)dy

R[1.2]
n,2 =

1
(2πh)d


Aϑ


Rd

e−iωT (Sϑ T
−1
ϑ y)/hΦm

ω
h


I[−1,1]d(ω)dω∆m,ϑ (T−1

ϑ y)dy.

Sincem(z) = m(TϑS−1
ϑ z) it is easy to show thatΦm = Φm(Tϑ S

−1
ϑ ·)

and

Φm(Tϑ S
−1
ϑ ·)
(ω/h) =


R2

eiω
T v/hm(TϑS−1

ϑ v)dv

=


Rd

eiω
T (Sϑ T

−1
ϑ u)/hm(u)du = e−iωT bϑ (I−NϑM

−1
ϑ )/h


Rd

eiω
TNϑM

−1
ϑ u/hm(u)du

= e−iωT bϑ (I−NϑM
−1
ϑ )/hΦm


(NϑM−1

ϑ )Tω/h

.

Furthermore

e−iωT (Sϑ T
−1
ϑ y)/h

= eiω
T bϑ (I−NϑM

−1
ϑ )/he−iωTNϑM

−1
ϑ y/h.

Substituting this in R[1.2]
n,2 we obtain

R[1.2]
n,2 =

1
(2πh)d


Aϑ


Rd

e−iωT (Sϑ T
−1
ϑ y)/hΦm(Tϑ S

−1
ϑ ·)

ω
h


I[−1,1]d(ω)dω∆m,ϑ (T−1

ϑ y)dy

=
1

(2πh)d


Aϑ


Rd

e−i((NϑM
−1
ϑ )Tω)T y/hΦm


(NϑM−1

ϑ )Tω

h


I[−1,1]d(ω)dω∆m,ϑ (T−1

ϑ y)dy

= R[1.1]
n,2

with (NϑM−1
ϑ )Tω = η. Therefore R[1]

n,2 = 0.

∥R[2]
n,2∥ ≤

1
2πdhd+β


([−1/an,1/an]d)c

1
∥u∥r

∥u∥
r
|g(u)|du


Rd

∥ω∥
β 1
∥ω/h∥β

|I[−1,1]d(ω)|

|Φψ (ω/h)|
dω

×


A

grad m(Tϑx)
∂

∂θ
Tθ


θ=ϑ

x − grad m(Sϑx)
∂

∂θ
Sθ


θ=ϑ

x
 dx

≤ O


arn
hd+β


Rd

∥u∥
r
|g(u)|du


Rd

∥ω∥
β I[−1,1]d(ω)
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×


A

grad m(Tϑx)
∂

∂θ
Tθ


θ=ϑ

x − gradm(Sϑx)
∂

∂θ
Sθ


θ=ϑ

x
 dx

= O


arn
hd+β


and

|R[3]
n,2| ≤

2
hβ

C

A

gradm(Tϑx)
∂

∂θ
Tθ


θ=ϑ

x − grad m(Sϑx)
∂

∂θ
Sθ


θ=ϑ

x
 dx

= O


1
hβ


.

Altogether this yields with the assumptions nd/2ar+d/2
n /hd

→ 0 and nd/2ad/2n hd+β
→ ∞

|Rn,2| = 0 + O


arn
hd+β


+ O


1
hβ


O


1
ndadnhd


= o


1

nd/2ad/2n


. �

Proof of Lemma 2. First of all note that ∥ξn − ϑ∥ ≤ ∥ϑ̂n − ϑ∥ and therefore ξn
P

→ ϑ for n → ∞.

ĥ(ξn)− h(ϑ) = (ĥ(ξn)− h(ξn))+ (h(ξn)− h(ϑ)).

With the above remark and the continuity of h it is immediately clear that the second part stochastically converges to 0. For
the first part it suffices to show that supθ ∥ĥ(θ)− h(θ)∥M stochastically converges to 0 where ∥ · ∥M denotes the maximum
norm of a matrix. We have

1
2
(ĥ(θ)− h(θ)) =

1
2


∂

∂θ
l̂n(θ)−

∂

∂θ
l(θ)


=


A
(∆m̂,θ (x)−∆m,θ (x))T (∆m̂,θ (x)−∆m,θ (x))dx +


A
∆m,θ (x)T (∆m̂,θ (x)−∆m,θ (x))dx

+


A
(∆m̂,θ (x)−∆m,θ (x))T∆m,θ (x)dx +


A
(m̂(Tθx)− m(Tθx)− (m̂(Sθx)− m(Sθx)))

×


∂

∂θ
∆m̂,θ (x)−

∂

∂θ
∆m,θ (x)


dx +


A
(m(Tθx)− m(Sθx))


∂

∂θ
∆m̂,θ (x)−

∂

∂θ
∆m,θ (x)


dx

+


A
(m̂(Tθx)− m(Tθx)− (m̂(Sθx)− m(Sθx)))

∂

∂θ
∆m,θ (x)dx.

There is

∆m,θ (x)T (∆m̂,θ (x)−∆m,θ (x)) = (ai,j(x))1≤i,j≤k

∂

∂θ
∆m̂,θ (x)−

∂

∂θ
∆m,θ (x) = (hi,j(x))1≤i,j≤k

with

ai,j(x) =

d
s=1

d
t=1


∂

∂xs
m(Tθx)

∂

∂θi
(Tθx)s −

∂

∂xs
m(Sθx)

∂

∂θi
(Sθx)s


∂

∂θj
(Tθx)t


∂

∂xs
m̂(Tθx)−

∂

∂xs
m(Tθx)


−

d
s=1

d
t=1


∂

∂xs
m(Tθx)

∂

∂θi
(Tθx)s −

∂

∂xs
m(Sθx)

∂

∂θi
(Sθx)s


∂

∂θj
(Sθx)t

×


∂

∂xs
m̂(Sθx)−

∂

∂xs
m(Sθx)


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hi,j(x) =

d
s=1


∂2

∂θi∂θj
(Tθx)s


∂

∂xs
m̂(Tθx)−

∂

∂xs
m(Tθx)


−

∂2

∂θi∂θj
(Sθx)s


∂

∂xs
m̂(Sθx)−

∂

∂xs
m(Sθx)



+

d
s=1

d
t=1


∂

∂θi
(Tθx)s

∂

∂θj
(Tθx)t


∂2

∂xs∂xt
m̂(Tθx)−

∂2

∂xs∂xt
m(Tθx)


−
∂

∂θi
(Sθx)s

∂

∂θj
(Sθx)t


∂2

∂xs∂xt
m̂(Sθx)−

∂2

∂xs∂xt
m(Sθx)



=

d
s=1

I [1]s (x, i, j)+

d
s=1

d
t=1

I [2]s,t (x, i, j).

From the definition of Tθ and Sθ it is immediately clear, that terms like ∥∂/∂θTθx∥ are uniformly bounded over θ and x ∈ B.
By applying the Cauchy–Schwarz inequality several times it therefore suffices to show that

A
(m̂(Tθx)− m(Tθx))2dx = oP(1),


A
(m̂(Sθx)− m(Sθx))2dx = oP(1),

A


∂

∂xi
m̂(Tθx)−

∂

∂xi
m(Tθx)

2

dx = oP(1),
A


∂

∂xi
m̂(Sθx)−

∂

∂xi
m(Sθx)

2

dx = oP(1), 1 ≤ i ≤ d


A


∂2

∂xi∂xj
m̂(Tθx)−

∂2

∂xi∂xj
m(Tθx)

2

dx = oP(1),


A


∂2

∂xi∂xj
m̂(Sθx)−

∂2

∂xi∂xj
m(Sθx)

2

dx = oP(1), 1 ≤ i, j ≤ d

uniformly over θ . We obtain for example, if max{|∂2/∂θi∂θj(Tθx)s|, |∂2/∂θi∂θj(Sθx)s|} ≤ C for some C > 0
A
|(m̂(Tθx)− m(Tθx)− (m̂(Sθx)− m(Sθx)))I [1]s (x, i, j)|dx

≤ C

A
|m̂(Tθx)− m(Tθx)− (m̂(Sθx)− m(Sθx))|

 ∂∂xs m̂(Tθx)−
∂

∂xs
m(Tθx)

 dx
+ C


A
|m̂(Tθx)− m(Tθx)− (m̂(Sθx)− m(Sθx))|

 ∂∂xs m̂(Sθx)−
∂

∂xs
m(Sθx)

 dx
= C2


Aθ
(m̂(z)− m(z))2dz

1/2


Aθ


∂

∂zs
m̂(z)−

∂

∂zs
m(z)

2

dzz

1/2

≤ C2


D
(m̂(z)− m(z))2dz

1/2


D


∂

∂zs
m̂(z)−

∂

∂zs
m(z)

2

dz

1/2

= oP(1)

by using Theorem 4. The other terms are estimated similarly. �

A.3. Proof of Theorem 3

We use the decomposition

L̂n(ϑ̂) = L̂n(ϑ)− (ϑ − ϑ̂)T l̂n(ϑ̂)− (ϑ − ϑ̂)T ĥ(ξn)(ϑ − ϑ̂)

and immediately see from the previous proof that the second term on the right is 0 and the last term on the right is of order
OP(n−da−d

n ) = oP((ndh2β+d/2a3d/2n )−1). Therefore it suffices to show the weak convergence of the first term to the desired
distribution. It is

Ln(ϑ) =


A


r
(wr(Sϑx)− wr(Tϑx))εr

2

dx

+ 2

A


r
(wr(Sϑx)− wr(Tϑx))εr


s
(ws(Sϑx)− ws(Tϑx))Ψm(xs)


dx.
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As in the proof of Theorem 4 one easily sees that the last two terms on the right are of order oP((ndh2β+d/2a3d/2n )−1). We get

Ln(ϑ) =


r


A
(wr(Sϑx)− wr(Tϑx))2dxεr +


r≠s


A
(wr(Sϑx)− wr(Tϑx))(ws(Sϑx)− ws(Tϑx))dxεrεs.

The rest of the proof now follows along the lines of the proof of Theorem 4 when considering I(j)1 .
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