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In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that
are often subjected to upper and lower detection limits, and hence these responses are
either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC)
models are routinely used to analyze these longitudinal data, with normality assumptions
for the random effects and residual errors. However, the derived inference may not be
robust when these underlying normality assumptions are questionable, especially the
presence of outliers and thick-tails. Motivated by this, Matos et al. (2013) recently proposed
an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t
distribution, with closed-form expressions at the E-step. In this paper, we develop influence
diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on
the conditional expectation of the complete data log-likelihood. This partially eliminates
the complexity associated with the approach of Cook (1977, 1986) for censored mixed-
effects models. The new methodology is illustrated via an application to a longitudinal HIV
dataset. In addition, a simulation study explores the accuracy of the proposed measures in
detecting possible influential observations for heavy-tailed censored data under different
perturbation and censoring schemes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In AIDS research, the study of the human immunodeficiency virus (HIV) dynamics has received significant attention in the
biomedical literature allowing us to understand the pathogenesis of HIV, and assess the effectiveness of the anti-retroviral
(ARV) therapy. Most of the clinical trials on ARV therapy assess the rates/changes of viral loads/HIV-1 RNA copies (the amount
of actively replicating virus) collected longitudinally over time. The viral load is considered a key primary endpoint because
its monitoring is mostly available, a failure in the treatment can be defined virologically, and a new regimen of therapy is
recommended as soon as virological rebound occurs [21]. Since the individual viral load trajectories yield large between-
subject variations, statistical modeling often focus in formulating the correct linear and nonlinear mixed-effects models
(LME/NLME) to estimate these trajectories, and quantify within- and between-subject variations [31,32,25].
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The statistical modeling of viral load can be challenging. First, depending on the diagnostic assays used, the viral load mea-
sures may be subjected to upper or lower detection limits (hence, left or right censored), below and above which they are not
quantifiable [30]. Under non-trivial censoring proportions, considering ad-hoc alternatives [ 12] might lead to bias in fixed ef-
fects and variance components estimates. As alternatives to these crude imputation techniques, Vaida and Liu [28] proposed
expectation-maximization (EM) schemes for LME/NLME with censored responses (henceforth LMEC/NLMEC). However, all
these methods assume normality of the between-subject random effects and within-subject errors. Even though normality
is mostly a reasonable model assumption, it may lack robustness in parameter estimation under departures from normality,
namely, presence of heavy tails and outliers [24]. Censored HIV viral loads do exhibit heavy-tailed behavior [13]. This is
also revealed from the raw histogram and Q-Q plots of viral loads from our motivating example (see Fig. 2, panels a and b
in Section 5.1). Although popular data transformations (say, Box—Cox) might render normality, or close to normality with
reasonable empirical results, various issues still persist with these transformations [13]. Hence, an appropriate theoretical
but ‘robust’ framework that avoids data transformation is desirable. A variety of proposals (both classical and Bayesian) ex-
ist in this direction that uses the univariate or multivariate Student’s-t distribution [24,17,18] in the context of LME/NLME
models. Some Bayesian propositions in the context of heavy-tailed LMEC/NLMEC models include Lachos et al. [ 13] who advo-
cated the use of the normal/independent density [ 14], while Bandyopadhyay et al. [3,2] studied the LMEC model considering
both skewness and heavy-tails. Very recently, Matos et al. [20] proposed a full maximum-likelihood (ML) based inference
using a computationally convenient exact ECM algorithm for the LMEC/NLMEC models using the multivariate Student’s-t
distribution (henceforth, the t-LMEC/NLMEC model). Here, the E-step yields closed-form expressions, and all parameters
are updated in the M-step by considering the random components and the censored observations as missing data.

A vast majority of model development in the literature for LMEC/NLMEC models focus on estimating the mean function.
Hence, developing influence diagnostics is a key in assessing the effect of a single observation on the predicted scores for
other observations, and consequently the overall parameter estimates, all based on the mean function. Although diagnostics
for the traditional normality based LME and LMEC [19] models exist, those for heavy-tailed LMEC/NLMEC models are not
well developed. Influence analysis is generally conducted using two primary approaches. The first one is the case-deletion
approach [7] based on the well-known Cook’s distance. Under normality assumptions for LME, [4,11,27] focused on case-
deletion diagnostics for fixed effects, while Christensen et al. [6] considered a one-step approximation to Cook’s distance
for the variance components. The other approach is the computationally attractive local influence approach [8], which is
a general technique used to assess the stability of the estimation outputs with respect to the model inputs. For elliptical
mixed-effects models, this method had been discussed in the literature by [5,16,36,15,22,26], among others.

Developing influence diagnostics for LMEC/NLMEC models in the spirit of [7,8] leads to the underlying observed log-
likelihood functions involving intractable integrals. This renders the direct application of Cook’s approach to be very difficult
if not impossible, since the measures involve first and second derivatives of these functions. In this context, Zhu and Lee [36]
and Zhu et al. [37] developed an unified approach for performing local influence and case-deletion diagnostics, respectively,
for general missing data models based on the Q -function, i.e., the conditional expectation of the complete-data log likelihood
at the E-step in the EM algorithm. This was extended to generalized linear and NLME models by [ 15,34], respectively. This Q -
function approach produces result similar to those obtained using the Cook’s approach. Recently, Matos et al. [ 19] used this
Q-function approach for developing influence diagnostics for LMEC/NLMEC models. Stemming from the same difficulty with
intractable integrals (for example, the pdfs of truncated multivariate Student’s-t distributions) in implementing the Cook’s
diagnostics for the t-LMEC/NLMEC model of [20], we develop case-deletion and influence diagnostics measures using the
approach of [37] (see also [15]).

The rest of this paper is organized as follows. Section 2 develops the t-LMEC model specification and an EM-type
algorithm for ML estimation. Section 3 presents the global and local influence approaches for the t-LMEC model. For local
influence, various perturbation schemes for both subject- and observation-level diagnostics are considered. In Section 4, the
t-NLMEC model is defined. The methodology is illustrated in Section 5 using a motivating HIV dataset. Section 6 presents a
simulation study evaluating the efficiency of our method in detecting outliers under various degrees of data perturbation
and censoring. Finally, Section 7 presents some concluding remarks, with some possible directions for future research.

2. Censored linear mixed effect model

Ignoring censoring for the moment, the t-LME model of [20] is specified as:
Vi =XiB +Zb; + €, (M
where

bi) id., O (P 2Y,), iz1....n
€; nj+q 0/'\o 0_2[ni ) ) — Loy Iy

which implies that, marginally,

b t,0,D,v) and ", (0,0, v), i=1,....n, )

where t,(p, X, v) denotes the pdf of a multivariate Student’s-t distribution with location vector g, scale matrix X and
degrees of freedom v. The subscript i refers to the subject index; I, denotes the p x p identity matrix; y; = (¥i1, . . . ,y,-”i)T



106 L.A. Matos et al. / Journal of Multivariate Analysis 141 (2015) 104-117

is a vector of observed continuous responses for subject i of dimension n; x 1; X; is the n; x p design matrix associated with
the p x 1 vector of fixed-effects B; Z; is the n; x q design matrix corresponding to the g x 1 vector of random effects b;; €; is
the (n; x 1) vector of random errors and the random effects dispersion matrix D = D(«) depends on unknown parameters
a. Following Matos et al. [20], we consider the case where the response Y is not fully observed for all i, j. Consequently,
the observed data for the ith subject is (Q;, C;), where Q; is the vector of censoring level and C; is the vector of censoring
indicators such that

i = ij if Cij =1,
yi=Q; ifC;=0. (3)
For simplicity, we assume that the data are left censored. Extensions to other arbitrary censoring patterns are immediate.

2.1. The likelihood function

The first step is to treat separately the observed and censored components of y;. Let y be the n{-vector of observed
outcomes and y{ be the n{-vector of censored observations for subject i with (n; = n? 4n{) such that G; = 0 for all elements
iny?, and 1 for all elements iny{. After reordering, y;, Q;, X;, and X; can be partitioned asy; = vec(y?, y), Qi = vec(Q/, Q}),

00 y0C
X[ = (X0,X%) and %; = (’;fw;gc ) where vec(-) denotes the function which stacks vectors or matrices of the same
i i

number of columns. Using properties of multivariate Student’s-t distribution (see [1]), we have y} ~ tno (X?B, £°, v), and
YEIVE, ~ tae (1$°, S°, v + nf), where

1250

nO =X B+ EOET W - XB). SP = <7" + Q(V?)>

%, 4
v+ n? ! (4)

with T€0 = X€ — T3 and Q(y?) = (y° — X°B) " °~ ' (y? — X°B). Therefore, the likelihood for subject i is

L(OlY) = [(QiIC:. 0) = (¥} < QCly’ = Q. O (v = Q16).
= Ty (QF1 . S°, v + 1)t (@ X2, T2, v) = L,

where T,(-|p, X, v) denotes the cumulative distribution function (cdf) of the multivariate Student’s-t distribution with
parameters g, X and v. The log-likelihood function for the observed data is given by £(0]y) = Z?:l log L;, and the estimates
obtained by maximizing the log-likelihood function £(#|y) are the maximum likelihood estimates (MLEs).

2.2. The EM algorithm

The observed log-likelihood function involves complex expressions, making it very difficult to work directly with £(0]y),
either for the ML estimation, or the corresponding influence analysis. As mentioned above, Matos et al. [20] developed an EM-
type algorithm for the t-LMEC/NLMEC models by treatingy = (y/,...,y,)".b=(b/,....b) ", andu = (uy, ..., u;)"
as hypothetical missing data, and augmenting those to the observed data vector (Q, C), where Q = vec(Qy, ..., Qy), and
C = vec(Cy, ..., Cy). Thus, the resulting complete dataisy. = (CT,Q",y",b",u") ", and the EM-type algorithm is applied
to the complete data log-likelihood function £.(f]y.) = Z?:l £;(0]y.), where

1 U
6(6ly0) = —3 [milogo + —5 (i — XiB — Zb) (¥ — X — Ziby) +log DI + ub/ Dby | + h(ulv) +C.

where C is a constant that does not depend on the vector parameter # and h(u;|v) is the pdf of a Gamma(v/2, v/2)

distribution. Given a current value F") of 8, the Q function (the conditional expectation of the complete data log-likelihood
function) is given by

Q019" = Z Q(0/6") = Z Qu(B. 00" + ZQz @8, (5)
=1 =1

where

- (k)

n; 1 ~ —~
Qi(B.o" 0" =~ logo” — o5 [0l 2BV X @ ~ zab]”) 431"
o?

XX ﬂao]

— (k)

=k — W — ~
and Qli(a@(k)) = —1log|D|—Jtr (ubi2 ) Here,a' tr(uyi —2uyb; " Z] +ub? ' Z,TZ,-);uyi2 = E{uyy; 1Q;, G, };

"(k) - (/) (k) (k)T SE) ~ ()T k (K0T T )
Xﬂ uy() +A()Xﬂ ﬂ XT)T b —

~ (k) ~
} A + (k)(uyl — (k)ﬂ
—~ ~( k T ( ) ~ k T
} = 4k)(“y1(k) k)X ﬂ() ybi(k) = E{u,ylb |Q, Cl, } = ( yl (k)ﬂ({) X )(Dl , With Ai =

(k)

ub.2 = E{ubb/|Q;, C;, 6
A(k)
E{u;b;|Q;, C;, 6
k)~ ~
"D~ 1 4 777) " and @ = A,
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It is easy to observe that the E-step reduces to the computation of uyi2 =E {u,—y,—yiT |Q;, Ci,'0\}, uy; = E{u;yi|Q;, C,-,'0\}, and
U; = E{uj|Q;, C;, 8). These expected values are available in closed form using Propositions available in [20].
Next, the conditional maximization step (CM-step) maximizes Q(0|§<<)) conditionally with respect to € to obtain new

. k+1
estimates /é( )

-1
n
A(I+1) ~ (k)
( (Z“")XTX) SoxT (@~ zub]”). ©)
i=1

~ (k1 1< )T T~ ()T k
02( ) _ < Z [algk) 2/3< ) XT (k) Z,ub(k)) —I—afk)ﬁ( ) XTX .3( >] @)
i=1

(k)
(k+1) Z b2 (8)

as follows:

where N = Z" 1 Ny, and the scale matrix D is unstructured with & the upper triangular elements of D. The algorithm is

I
iterated until the distance involving two successive evaluations of the log-likelihood |E(§< - /£(§(<)) — 1| is sufficiently
small. Here, we do not focus on the ML estimation, and the interested might refer to [20] for further details. In the following

section, we derive influence diagnostic measures, given the ML estimate 6.

3. Influence analysis

Influence diagnostics are routinely used in statistical modeling to identify aberrant observations and assess their impact
on model fitting and parameter estimation. Recognizing the difficulties following the Cook’s [7,8] approach (described in
Section 1), we use the Q-function of [37] to develop case-deletion measures, leading to the influence measures for the
t-LMEC model.

3.1. Global influence

The case-deletion approach is a commonly used scheme to study the effects of deleting the ith case/observation from
the dataset. Henceforth, the subscript ‘[i]’ will denote the original dataset with the ith case deleted. Consequently, the log-
likelihood function corresponding to the remaining data is denoted by £(8|Y,;;). In order to assess the influence of the ith

-~ -~ -~ -~ AT —~ R .
case on the ML estimate 6, we need to compare the difference between ;) and 6, where 0y = (B, o2, otEir])T is the
maximizer of the function Qy;;(0|0) = E{£(8]Y.i;)|Q. C, 8}, with  being the ML estimate of §. An observation is regarded as
influential if its deletion generates considerable influence on model estimates. In other words, if 8y is fairly far from 6, then

the ith observation could considered as influential. Note that, since the estimatora[i] is needed for every case, this scheme
requires a considerable computational effort, particularly for large sample sizes. For that reason, a one-step approximation
(see [9,37]) is used to reduce the burden. This approximation follows:

-~1 -~ o T A~
Oy =0 +{—Q(016)) 7' Q11 (616), 9)
where Q(’é@) = 3233(3@ ] o—p represents the Hessian matrix, and Qm (0|0) aQ[g;m) 0=5" i =1,...,n, with its elements
given by
Lo o~ 1
Quip(010) = 9Qiy(616)/9B = = Evp, (10)
o
. o~ A~ 1
Qo2 (010) = 9Q;;y(016)/00° = —ﬁfzm, (11)
(o}
Qi (010) = 9Q(616)/der, (12)
where Eyy = 3. X7 (@, —Zjub;— X, B) and Exy = 3. (n— L), with A; = tr(uy? —2uyb,Z) +ub’Z'Z))—2B ' X/ (@ —
1(i] i A \UYj— ZUD — Ui & 2(i] i\ =5 ) g V; yb;Z, °Z; Z, ; (]

Z,-Lﬁ);) + ﬂj’ﬁTXjTXj’ﬁ. Finally, the elements of Qjjjq (816) are of the form

Qe (016) = —thr[D D(r) — —11‘)(”])—1@]_
J#
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It is necessary to compute the Hessian matrix ('2'(0@ = ZLI 3%Qi(0 |§) / 90960 to develop case-deletion, local influence
and any particular perturbation schemes, following [36]. The Hessian matrix 32Q;(6|0)/ 9090 has the following elements:

82Q:(00) 1o Q@0 1 -~
W = —;X u; X, W = _;Xl‘ (uy; — Ziub; — uiXif),
0>Qi(01) 32Q:;000) 1 2
ToBoa, " doraor 2ot T g2k

20.(1H 2
°Q610) _ 0 0 Qlw'o) 1t (A(sr)) — ftr(B(sr)ubz)

9020, s 0oty 2

where A(sr) = D™'[D(s)D~'D(r) — ij(s r] and B(sr) = D '[D(s)D'D(r) + D(r)D~'D(s) — D(s, r)]D~", with D(r) =

oD/da;,D(s, 1) = BZD/aaSBar, r,s =1,...,p% p* = dim(x) andl = 1, ..., n. After some rearrangement and eval-
uatmg these derivatives at § = 0 we obtain the Hessian matrix Q(0|0) (see Appendlx A1) as block diagonal of the form
Q(0|0) = dlag(Qﬂ(0|0) Qaz(0|0) Qa(0|0)) (the normal case givenin[19]), whereQﬁ(0|0) —x Z, 1XTu Xi, Qaz(0|0)

b/2(02)? and O, (0]0) = " 02Qi(016)/dasday, withX = (X, ..., X)Tandb = Y"1 (n; — 2A ;/o2). Using (9), the next
result proposes the one-step pseudo approximation ofa[i] = @TIJ o2, EZ[T,-J)T, i=1,...,nIts proofis straightforward and

is therefore omitted.

Proposition 1. The one-step pseudo approximation for the parameter estimates of the t-LMEC model with the ith case deleted is
given by

-1
n

Al -~ -

By=8+ (E XiTuin) Ep
i=1

=) Eai
Fa=r(1+52)
&y =@+ (~G010)) Qe 016)
where Eqjij, Eypiy and Qjije (616) are as in (10)-(12) respectively, b = >, (ni—ZAi/o:\z) and Qy; 010) = P 92Q:(818) /9asda,.

Note that Proposition 1 allows a straightforward influence assessment via the case-deletion approach for the t-LMEC
model. One needs to compute the ML estimate 6 for the complete data, the ML estimate 8};; with the ith case deleted, and
compare both estimates using some metric such as the Cook’s or likelihood distance. If the difference between them is fairly
large, then the ith case is regarded as influential. The generalized Cook distance [36] is defined as

GDi(0) = (0 — 0) (-0 (016)}0y — 0), i=1,....n, (13)

Substituting (9) into (13), we have the approximation GD} (8) = Q;;(8) " {—.(8]8)}~'Q(8). i=1,....n.Since G.(8]6)
is a diagonal matrix, this approximation can be written as GD} (§) = Y \_, GD! (6x), where 8 = (61, ...,6,)" (for details
see [33]). Consequently, for our t-LMEC model we have

GD; (9) = GD; (B) + GD} (o) + GD} (). (e

3.2. Local influence

In this section, we consider local influence analysis [8] focusing on the following perturbation schemes: the case-weight,
scale matrix and response perturbation. Here, we consider both subject-level and observation-level diagnostics. The subject-
level diagnostics identify if a subject is considered influential or not, and is carried out considering a perturbation function
for the ith subject. However, in modeling longitudinal data, we have two level of responses, namely, the subject-level and
observation level, and intuitively, an influential subject may/may not contain influential observations [23]. Hence, exploring
atypical observations at both levels are warranted. The observation-level diagnostics consider a perturbation in the jth
observation of the ith subject.

The theoretical developments in this section proceed in the framework of [8,36]. Let® = (w1, ..., a)g)T be a perturbation
vector varying in an open region 2 C R® and ¢.(0, w|y.), the complete-data log-likelihood with respect to the perturbed
model induced by . We assume there exists @y € €, such that ¢.(0, woly.) = £.(0]y.) for all . The Q-displacement

function fy (w) is defined as fy () = 2 [Q (5@) -Q (a(w) |§>] where a(w) is the maximum of the function Q (6, w@) =
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E[£.(0, w|y.)|Q, C,a]. The local behavior of the Q-displacement function can be analyzed by using the normal curvature
Cp.a of (@) = (@7, fo (@) at wy in the direction of some unit vector d. It follows that

. . v~ )1
Cpa = —2d"0,d and  — G, = Al {—Q(0|0)] Auy.

50i0) = 20D, — Q0.0 ; — (AT T
whereQz(0|0)A_ 20307 |6=92and Ay = =557 lo=p(w)- For our t-LMEC model, we C(;n51deAr Ay, = (Ag, A 02, A,) ', where
920(0.0[0 320(0.0/0 . 22Q(0.0[0
Ag = %IW A= %MO and Ay = (AJ;, ..., AL ", with Ay, = %M, r=1,...,p"%

3.2.1. Subject-level diagnostics

Case weight perturbation
We consider an arbitrary attribution of weights for the expected value of the complete-data log-likelihood function
(perturbed Q -function), which may capture departures in general directions, by writing

Q6. w[f) = E[L:(8. 0lyo)Q. C. 0] = Y wiE[Li(Blyo)|Q. €. 8] = > txQi(6]6).
i=1 i=1

Here,w = (w1, ..., w,) " isannx 1vectorandw, = (1, ..., 1)". Note that the local influence analysis for this perturbation

scheme is equivalent to the case-deletion approach discussed in Section 3.1 (see Appendix A.2). Under this perturbation
901 (010 00

scheme, we have Ag = LX"D(ey, ..., €), A2 = —55n" + - Lm' A, = [F’Qgér' )., anér‘ )] for/r\ = ],../.\,p*,

wheren = (nq,...,n,)" . m= (A, ... ﬁ)T, D(eq, ..., €)isa block diagonal matrix, with ¢; = 1ly; — Zub; — U;X; 8 and

900 _ _1t{p-1D(r) — D~'D(r)Dub?]

Scale matrix perturbation
In order to study the effects of perturbation on the scale matrix ¥; = azlni + ZDZI-T, we consider D(w;) = w; D, or

() = wi’]az, fori = 1,...,n. The non-perturbed model arises when @, = (1, ..., 1)". The perturbed Q-function
follows (5), with D(w;) and o%(w;) in place of D and o2, respectively. Considering a perturbation on D (matrix of random
effects), we have Ay =0, A2 = 0and Ay, = [g1. ..., g ], where g; = tr(D~'D(r)D~'ub?), r = 1,..., p*. Perturbation

on o? (the random error variance) yields Ag = X D(ey, ..., €,), A,2 = 5zm' and A, = 0.
Response perturbation
A general way for perturbing the response variables Q;,i = 1,...,n, j = 1,...,n;, is introduced by considering

Qj(w) = Qj + w;s;j, where s;; is a known constant. Hence, for the t-LMEC model, the perturbed response is obtained as
yu(w) < Qj lfCU = 1,and y;j(w) = Q; if G = 0, where y,j(a)) = yjj — w;Sjj. Agam the perturbed Q-function follows( ) w1th

uy;, uy and uyb replaced by ly;, = uy; — w;sill;, “Ym) = uyl - a),(uy,s +s; uyT) + a) S s and uybw = uyb — w;S; ub
respectively, where s; = (Si1, ..., smi) . The vector wy = O represents no perturbatlon. Finally, we have Ag = —aiz
(X[ @St ... X] isal, Ay2 = — L [(UY1 — Ziuby — D X:1B) Tsi, ..., (WY — Zyby — 1 XnB) Ts,]. and A, = 0.

3.2.2. Observation-level diagnostics

We proceed as above considering a perturbation vector ® = (@, ..., wg)T, where w; = (wj1, ..., wmi)T, and noting
that all the previous results for the subject-level diagnostics hold for the observation-level cases as well. Also, we denote
W= (Ui, ..., Uin) T Vi = (i, ..., Vi) T and 8 = (it -+, iny) |-

Case weight perturbation
In this case, we have A,g =1L Slu, . ], with uy = Xy (y; — ZULﬁJ,- —’LT,-XijE); A2 = —z(y%[vh ooy Vo] with vy =

~T ~ ~ T -~ .
1— Au and Aj = tr(uyu 2uyb,JZT + ubfZUTZ,]) —28 XJ(qu — Zjub;) +u; 8 X;X,-jﬂ and A, = —31[g1, ..., ga], with
gi= tr(D D(r)D~ ](D—ubz)) r=1,...,p"%
Scale matrix perturbation

Similar to the subject-level, we consider perturbations on D and o2. Consequently, for D we have that Ag=0,A,2=0
and Ay, = 1[g1,.... &l withg; = tr(D'D(r)D~'ub?), r = 1,...,p" In addition, a perturbation on o' generates
Aﬁ = (%[ll], ..., u,],with ujj = Xlgr(@ij—z,’jubi—ﬁix,jﬂ); A2 =[vq,...,v,], with Vi = Z(T%A,‘j aﬂdA,‘j = tr(uyﬁ—Zﬁ,Xuﬂ—l—
) ~T A ~ T -~
ub?Z;Z;) — 2B X/ (iy; — Zyub) + ui X XyBand A, = 0.
Response perturbation

Finally, for the response perturbation case, we have Ag = —aiz[ul, oo W], withuy = Xu ;A2 = —ﬁ[vl, N /A8
with v = (@Y — Zzub; — UX;B) and A, = 0.

As the reader can note, it is impossible to give details for all perturbation schemes that would be of interest. However, if we
can find an appropriate w such that the perturbed complete data log-likelihood function £, (6, @|y.) is smooth enough and
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the pertinent derivatives in the diagnostic measures are well-defined, we can conduct the local influence analysis without
much difficulty. .

In order to quantify the influence of a case in the data, we follow the method based on the function M(0); = 3", _, k&2,
where & = & /(¢ + -+ + &) and et = (e, ..., eig)T with {(&, &), k = 1, ..., g} the eigenvalue-eigenvector pairs of

—2('2}1,0, where ¢; > --- > ¢ > {41 = -+ = 0 and the eigenvectors {&;, k = 1, ..., g} are orthonormal (for details see
[19]). The Ith case may be regarded as influential if M (0); is larger than the benchmark (cut-off). .

Based on the work of [36], we use the following conformal normal curvature BfQ,d(O) = CfQ,d(O)/tr[—ZQwo], whose
computation is quite simple and also has the property that 0 < By, 4(f) < 1. Let d, be a basic perturbation vector with Ith
entry as 1and all other entries as zero. Zhu and Lee [36] showed that for all /, M(0),; = By, 4. Thus, we can obtain M(0), via

By, .a;- Following [15], we consider our benchmark as M(0) + c*SM(0), where M (0) and SM(0) are the mean and standard
error of {M(0), : | = 1, ..., g} respectively; and c* is a selected constant. The choice of c* is subjective. In this paper, we
will consider ¢* = 4; following [26,35].

4. Censored nonlinear mixed effects model
In this section, we develop the censored nonlinear mixed effects model under the Student’s-t distribution (henceforth,

t-NLMEC). Similar to the t-LMEC model, we denote the number of subjects by n, and the number of measurements on
the ith subject by n;. Ignoring censoring for the moment, let us consider x; the vector incorporating explanatory variables

(covariates), the longitudinal time component tj;, ﬁij = (B> - - > ﬂsij)T and g = (B1, ..., ﬂp)T(p > s). The Student’s-t
nonlinear mixed effect model (t-NLME model) can be written as

Vi = ni(ty, By) + €&, B = d(xy, B, by), (15)
where y; = (V1. . ... Yin;) |, With y; the response for subject i at time t;;, i(ty, 8;) = ((tin, Bi) " - . .. N(tin» Bin)) ', With
n(-) being a nonlinear (known) but differentiable function of vector-valued mixed-effects parameters ﬂij, €= (€1,..., e,-nl.)T
is the random error vector, d(-) is an s-dimensional linear function, and b; = (by;, ..., bq,»)T is the vector of random effects

(q < s). The joint distribution of (b;, €;) follows (1). From [20], the marginal distribution is given by
n o]
F0) =TT [ [ om0 it s B 5. 70 )00 0.1 "D) x G2, v/2) b,
i=1 /0 JRI

where G(-|a, b) denotes the density of a Gamma(a, b) distribution with mean a/b. The marginal distribution f (y|#) does not
have a closed form because the model function is not linear in the random effects. However, in order to use all the theory
on influence diagnostics developed above for the LMEC model, we use the following approximation proposed by [20] which
linearizes the t-NLMEC likelihood in terms of b; and S.

Proposition 2. Let Bi and E be expansion points in the neighborhood of b; and B, respectively. Then, the t-NLME model as defined
in (1) and (15) has the following t-LME form

Vi=WB+Hb+e i=1,...,n, (16)
where §i = yi — 7i(B, B0, b 140, D, v), €% 1,0, 071y, v), By = DAL Ly, Dl d b))
7(B, b)) = milty, d(xy, B, by)) — Hib; — W;B.

Proof. See [20].

For the censored case, this model (16) is a t-LMEC model with the same structure as (1)-(3). The model matrices in (16)
depend on the current parameter value, and need to be recalculated at each iteration. The algorithm iterates between the
L-, E- and CM-steps until convergence. Moreover, the influence diagnostics for t-LMEC discussed earlier in Section 3 can be
incorporated along with the approximation in (16) to obtain approximate influence diagnostics for t-NLMEC.

The approximation (16) was initially proposed in [19] in the context of censored nonlinear mixed effects models. In
particular, simulation studies in that paper revealed that this approximation can efficiently detect outliers contaminating
the generated data. More recently, Wang and Lin [29] used this approximation to implement an efficient ECM algorithm
for carrying out ML estimation in Student’s-t nonlinear mixed-effects models for multi-outcome longitudinal data with
missing values. Consequently, we conclude that this approximation is robust, stable, and we do not anticipate any severe
consequences in inference when applied to other types of (censored) non-linear models.

|ﬂi:Ei and

5. Application
5.1. AIEDRP dataset

In this section, we consider an AIDS case study from the AIEDRP program [28]. This program is a multicenter observational
study of patients with acute and early HIV infection, covering areas such as the evaluation of immune responses to HIV,
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Fig. 1. AIEDRP data. Individual profiles (in log,, scale) for HIV viral load at different follow-up times. Trajectories for some influential individuals are
indicated in different colors.
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Fig. 2. Plots of raw density histogram (Panel a) and Q-Q plot (Panel b) of viral load.

assessment of thymic function and T-cell turnover during the infection and assessment of transmission and prevalence of
HIV resistance. The purpose of the study is to design new vaccines knowing the implications of new antiviral treatments.
This dataset has been previously analyzed by some authors in the context of censored non-linear mixed effect models using
the Student’s-t distribution, see for instance [20] and more recently [10].

In order to illustrate the proposed influence analysis, we consider 320 untreated individuals with HIV infection (see [28]
for more details). The dataset consists of 830 observations, with 185 (22%) lying above the limit of assay quantification. The
individual profiles are shown in Fig. 1. As was proposed in [28], we consider a right-censored five-parameter NLMEC model
as follows:

A2
1+ exp((tj — A3)/Aa)

where yj; is the log,, of the viral load for subject i at time t;;. The parameters Ay; and A, represent the subject-specific
random setpoints value and decrease from the maximum HIV RNA, respectively. In the absence of treatment (following
acute infection), the HIV RNA varies around a setpoint, which may differ among individuals; hence the setpoint is chosen to
be subject specific. The location parameter A5 indicates the time point at which half of the change in HIV RNA is attained,
A4 is a scale parameter modeling the rate of decline and Xs; allows for increasing HIV RNA trajectory after day 50. The
reparameterization given by 8y; = log(Aq;) = B1 + b1i; Bx = log(Ar), k = 2, 3, 4, and As; = B5 + by; is adopted to assure
positive values for the model parameters. Fig. 2 (Panels a and b) presents raw histogram and Q-Q plot of the log viral load
measures, respectively. These plots reveal that viral loads exhibit heavy-tail behavior, and presence of possible outliers.
Hence, to accommodate these features, we fit the t-NLMEC model defined in (15) considering the structure given in (17).

Yij = A+

+ Asi(tj — 50) + €, (17)

5.2. ML estimates using EM algorithm

The model fitting uses the approximated ML method given in Proposition 2 and the ECM algorithm presented in
Section 2.2. The degrees of freedom v is assumed to be known. Using the AIC criterion, we choose v = 10 which maximizes
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Table 1
ML estimates and model comparison criteria for normal and t-NLMEC models. SE are the
estimated asymptotic standard errors.

Parameter N-NLMEC t-NLMEC
MLE SE MLE SE
B 1.6093 0.0137 1.6109 0.0133
B 0.1449 0.0953 0.1636 0.0854
B 3.5256 0.0237 3.5233 0.0207
Ba 1.0599 0.2666 0.9910 0.2450
Bs —0.0035 0.0015 —0.0031 0.0015
2
o 0.2621 0.2053
on 0.01766 0.01611
o 0.00017 0.00014
o) 0.00005 0.00005
v 10
log-like —783.8905 —781.8017
AIC 1585.7812 1581.6034
BIC 1628.2740 1624.0963
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Fig. 3. Plot of the profile log-likelihood versus the degrees of freedom v (Panel a), and estimated weight #i; for the t-NLMEC fit (Panel b), with the influential
observations numbered.

the profile log-likelihood (see, Fig. 3, Panel a). This reveals that a fit using a normality-based LMEC model might be
inadequate. Further model comparison between the normal and t-NLMEC models using the AIC/BIC criteria presented in
Table 1 show that the t-NLMEC model provided a much improved model fit than the normal one.

Because we currently focus on exploring influence diagnostics, details on the estimation and interpretation of the
parameter estimates 8 are omitted for brevity. From Fig. 3 (Panel b), we observe that the t-NLMEC model insulates the
overall parameter estimation by assigning smaller weights i; to the possible influential observations, which are described
later in more details.

5.3. Global influence

In order to evaluate the effect on the ML estimates when some observation is deleted, we analyze the GD,.1 (6) plot in
Fig. 4 (Panel a). The plot reveals that two cases (#195, #259) are potentially influential on the parameter estimates. Fig. 4
(Panels b-d) present plots of GD} (B), GD; (¢'?) and GD] () respectively, using Proposition 1. From these figures, we infer
that subject #195 is influential for 8, #9 and #230 are influential for o2, and #259 is influential for «.

5.4. Local influence

Next, we focus on the local influence analysis for the dataset based on M(0), with interest focusing on 6. We study
both the subject-level and observation-level diagnostics. It is important to stress that in local influence analysis, there are
no general rules so far for selecting the benchmark [15]. Hence, we follow the criterion suggested by [15], i.e M(0); >
M(0) + 3.55M(0),i =1, ..., 320, to discriminate whether an observation is influential or not.
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Fig. 4. Global influence. Approximate generalized Cook’s distance GD; () (Panel a), GD; for subset B (Panel b), GD; for subset o2 (Panel c), and GD; for
subset & (Panel d). The influential observations are numbered.

5.4.1. Subject-level diagnostics

Fig. 5 presents the index plots of M(0) under the perturbation schemes discussed in Section 3.2.1. We find that
subjects #195 and #259 appears influential under case weight perturbation scheme. Moreover, subjects #133 and #159
are potentially influential under perturbation on D. For perturbation on o2, we find that observations #166, #195 and
#259 appear as influential. Finally, for response variable perturbation, observations #174, #175 and #176 are considered
as potentially influential. To assess the individual impact of these possible influential observations on the ML estimates,
we refitted the t-NLMEC model multiple times by removing one of the following observations: 9, 133, 166, 174, 175, 176,
195, 230 and 259, identified as possibly influential, each time. Table 2 presents the % relative changes (RC) in the parameter
estimates presented in Table 1 compared to the parameter estimates obtained after removing the influential observations.

Specifically, the RC measure is defined as RG; = ’%@ ,whereé = B4, ..., Bs, ol « andg[i] denotes the ML estimate of §

with the ith observation removed. From Table 2, we observe that these observations generate greater changes in the RC, in
particularly for parameters f,, o1 and ;. These findings are in agreement with the results shown in Fig. 4.

5.4.2. Observation-level diagnostics

Using the perturbation schemes described in Section 3.2.2, Fig. 6 presents the observation-level diagnostics for the
dataset. Note that, in the case weight and o2 perturbation schemes, the observations #402, #403, #404, #410 (subject
#174), #412 (subject #175), #422 (subject #176) and #512, #513, #514 and #515 (subject #203) can be considered
influential. For perturbation on D, we find that all observations between #680 and #693 can be considered influential.
Note, these observations correspond to subject #259, which was considered as possibly influential using the diagnostic
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Fig. 5. Index plot of M(0) for assessing local influence on # under case weight perturbation (Panel a), perturbation on D (Panel b), perturbation on o2
(Panel c), and perturbation on the response variable (Panel d). The influential observations are numbered.

tools proposed previously (see Sections 5.3 and 5.4.1). Finally, in the case of the perturbation on the response variable,
we find that observations #44 (subject #22), #182 and #186 (subject #80), #420 (subject #175), #529 (subject #208), #596
(subject #226), #604 (subject #227) and #6 16 (subject #229) appear as influential. All these observations with the exception
of observation #181 corresponds to the last time observed for the subjects.

6. Simulation studies

In order to assess the finite sample performance of the proposed diagnostic measures for identifying outliers, we conduct
a simulation study focusing on subject-level diagnostics. We consider the non-linear mixed-effects model given by

B1+ bin
— + €ij,
14 exp(—[t; — (B2 + bi)1/B3)

where t; = 100, 267, 433, 600, 767, 933, 1100, 1267, 1433, 1600 for all i. The random effects b; = (b;1, bz) T, and the error
term €; = (€1, . .., €10) | are non-correlated with

b;\ ind. 0 D 0 .
(ﬂ) t2 ((0), (0 02110)’8>’ i=1,...,15.

We set the fixed-effects ,BT = (B1, P2, B3) = (200, 700, 350), the between-subject covariance matrix D = (jz _52) ,and

Vi i=1,...,50,j=1,...,10, (18)

the within-subject variance o2 = 25. Under this model we consider the following perturbation schemes:
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Table 2

RC (in %) for the AIEDRP study.
Dropped RG, RG, RG, RG, RC;, RC RGg,, RGs,, RGs,,

9 0.0124 0.9169 0.0170 0.9082 0.0000 2.8738 0.8690 0.0000 20.0000

133 0.1862 8.8020 0.0426 2.6438 3.2258 0.5845 3.5382 0.0000 20.0000
166 0.0062 6.6626 0.1334 3.1887 0.0000 2.4355 1.1173 0.0000 20.0000
174 0.0931 6.9071 0.1845 2.8355 0.0000 15100 1.1794 21.4286 0.0000
175 0.0621 17726 0.0993 3.0071 3.2258 0.6332 0.8070 7.1429 20.0000
176 0.1800 7.7017 0.0511 2.9162 0.0000 1.0229 1.1794 0.0000 20.0000
195 0.2421 9.4743 0.1760 2.7447 0.0000 0.2923 0.3724 0.0000 0.0000
230 0.0621 47066 0.0284 0.7164 0.0000 2.8251 1.0552 0.0000 0.0000
259 0.2111 7.7017 0.1306 4.0464 3.2258 1.1203 6.2073 35.7143 0.0000

(a) Replace the fixed effects 8 by 28 to generate the responses of the 1st subject y;,
(b) Replace g by 38 and,
(

c) Replace 8 by 48.

The diagnostic measures were computed for 500 simulated datasets under various censoring proportions, say 0%, 5%,
10%, 20% and 30%. Table 3 reports (in percentage) the number of times the measures correctly identifies y; as the most

influential.

As expected, the percentage of correctly detecting atypical observations increases for increasing perturbation rates (i.e.,
for 38 or 48) as compared to 28, and with increased rate of censoring. Interestingly, the % of correct detection when the
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Table 3

Simulation study: The values in the table denotes the % of correctly identifying the influential observations using case-deletion, case weight, o> perturbation
and matrix D perturbation from 500 simulated datasets under the t-NLMEC model specified in (18).

% of censoring

0% 5% 10% 20% 30%
Case-deletion measure (GD;)
Pert. 28 66.8 66.8 74.8 75.8 81.8
Pert. 38 83.0 83.4 85.8 91.6 94.8
Pert. 48 93.0 93.2 94.2 97.4 98.4
Case-weight perturbation
Pert. 28 66.8 66.8 74.8 75.8 81.8
Pert. 38 83.0 83.4 85.8 91.6 94.8
Pert. 48 93.0 93.2 94.2 97.4 98.4
Perturbation on o2
Pert. 28 13.0 144 18.8 19.2 15.2
Pert. 38 3.60 3.60 4.60 6.00 6.00
Pert. 48 0.40 0.60 0.80 1.00 0.60
Perturbation on D
Pert. 28 83.8 83.6 83.2 83.0 84.8
Pert. 38 95.0 94.6 94.0 94.8 97.4
Pert. 48 97.2 97.8 97.6 98.8 99.0

influence analysis is focused on o2 is not appealing, with a lower percentage of correct detection when the perturbation
rate increases. However, higher % of correct detection when the influence analysis is focused on D is detected. A possible
explanation for this fact is that a perturbation on the fixed-effects of one subject contributes to increasing the between-
subject variance, but the within-subject variance remains the same.

7. Conclusions

This article proposes diagnostic tools for detecting outliers and/or influential observations in the context of linear and
non-linear mixed-effects censored model where the joint distribution of the random effects and random errors follow the
Student’s-t distribution. The results presented here supplement the robust likelihood-based inference developed by [20]
for LMEC/NLMEC models, appropriate for longitudinal HIV data. Our proposed estimation method relies on the Q-function
and the corresponding ECM algorithm. The NLME formulation is mathematically (and computationally) feasible through a
linearization. The methodology is implemented using the R software (codes available upon request from the corresponding
author), providing practitioners with a convenient tool for further applications in their domain.

For ease of implementation, our current proposal considers an independent within-subject covariance structure, viz.
azlnl.. Nevertheless, it can be extended to different unstructured covariance matrices (such as AR(1), or ante-dependence)
following the work of [23]. This issue is currently under investigation, and we plan to tackle it in a future paper.
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Appendix
Al Q@@ is a block-diagonal matrix
From the EM-algorithm, we have 8Q(§|§) / 80| 05 =0 Consequently, for a t-LMEC model:
n — n e
D OX@y; - zuby) =) uX X,
i=1 i=1
n . — o — n ~T ~ ~T ~
Y (nio? — tr(uy? — 2uybZ] +ub’Z[Z)) = Y (2B X/ (@y; — Zuby) —UB XX,

i=1 i=1

9Q(0]0)/a = 0,
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Finally, from above,

392Qi(0]0) 1ot~ o~
W = —FX,-T(in — Zjub,- — u,-X,-ﬂ) =0

and hence, the matrix Q(’O\l’é) is block-diagonal.

A.2. Equivalence of GD} and the local influence based on the case weights scheme

. A A _1
For the ith subject, the normal curvature is given by G; = ZA;r {—Q(0|0) } A;,i=1,...,n,where for the case weights
20. D) o RPN
perturbation A; = MI(F% = %ZW). Since Q (0]6) = 0, we can show that

100w
_ 0Q:(0/6)

0 @10) = —Q00) = - 27
Then, A; = —0Oy;(816) and, as a result, G; = 20;;(9]6) {—Q‘@@)]_] 011 (016).

Hence, from GD}(0) = Qy @)T{—Q@@)}—l@ﬂ(a), i = 1,...,n, we have that GG = 2GD/, and consequently GD} is
equivalent to the local influence based on the case weights scheme.
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