
Journal of Multivariate Analysis 141 (2015) 104–117

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Influence assessment in censored mixed-effects models using
the multivariate Student’s-t distribution
Larissa A. Matos a, Dipankar Bandyopadhyay b,∗, Luis M. Castro c,
Victor H. Lachos a

a Departamento de Estatística, IMECC-UNICAMP, Campinas, São Paulo, Brazil
b Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, United States
c Departamento de Estatística, Universidad de Concepción, Chile

a r t i c l e i n f o

Article history:
Received 4 November 2013
Available online 26 June 2015

AMS subject classifications:
62E99
62E05
62F99
62H99

Keywords:
Censored data
Case-deletion diagnostics
ECM algorithm
Linear mixed-effects model
Multivariate Student’s-t distribution
Non-linear mixed-effects model

a b s t r a c t

In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that
are often subjected to upper and lower detection limits, and hence these responses are
either left- or right-censored. Linear and non-linearmixed-effects censored (LMEC/NLMEC)
models are routinely used to analyze these longitudinal data, with normality assumptions
for the random effects and residual errors. However, the derived inference may not be
robust when these underlying normality assumptions are questionable, especially the
presence of outliers and thick-tails.Motivated by this,Matos et al. (2013) recently proposed
an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t
distribution,with closed-formexpressions at the E-step. In this paper,wedevelop influence
diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on
the conditional expectation of the complete data log-likelihood. This partially eliminates
the complexity associated with the approach of Cook (1977, 1986) for censored mixed-
effects models. The newmethodology is illustrated via an application to a longitudinal HIV
dataset. In addition, a simulation study explores the accuracy of the proposed measures in
detecting possible influential observations for heavy-tailed censored data under different
perturbation and censoring schemes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In AIDS research, the study of the human immunodeficiency virus (HIV) dynamics has received significant attention in the
biomedical literature allowing us to understand the pathogenesis of HIV, and assess the effectiveness of the anti-retroviral
(ARV) therapy.Most of the clinical trials onARV therapy assess the rates/changes of viral loads/HIV-1RNAcopies (the amount
of actively replicating virus) collected longitudinally over time. The viral load is considered a key primary endpoint because
its monitoring is mostly available, a failure in the treatment can be defined virologically, and a new regimen of therapy is
recommended as soon as virological rebound occurs [21]. Since the individual viral load trajectories yield large between-
subject variations, statistical modeling often focus in formulating the correct linear and nonlinear mixed-effects models
(LME/NLME) to estimate these trajectories, and quantify within- and between-subject variations [31,32,25].

∗ Correspondence to: Division of Biostatistics, University of Minnesota SPH, A460 Mayo MMC 303, 420 Delaware Street SE, Minneapolis, MN 55455,
United States.

E-mail address: dbandyop@umn.edu (D. Bandyopadhyay).

http://dx.doi.org/10.1016/j.jmva.2015.06.014
0047-259X/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2015.06.014
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2015.06.014&domain=pdf
mailto:dbandyop@umn.edu
http://dx.doi.org/10.1016/j.jmva.2015.06.014


L.A. Matos et al. / Journal of Multivariate Analysis 141 (2015) 104–117 105

The statisticalmodeling of viral load can be challenging. First, depending on the diagnostic assays used, the viral loadmea-
suresmay be subjected to upper or lower detection limits (hence, left or right censored), below and abovewhich they are not
quantifiable [30]. Under non-trivial censoring proportions, considering ad-hoc alternatives [12]might lead to bias in fixed ef-
fects and variance components estimates. As alternatives to these crude imputation techniques, Vaida and Liu [28] proposed
expectation–maximization (EM) schemes for LME/NLME with censored responses (henceforth LMEC/NLMEC). However, all
these methods assume normality of the between-subject random effects and within-subject errors. Even though normality
is mostly a reasonable model assumption, it may lack robustness in parameter estimation under departures from normality,
namely, presence of heavy tails and outliers [24]. Censored HIV viral loads do exhibit heavy-tailed behavior [13]. This is
also revealed from the raw histogram and Q–Q plots of viral loads from our motivating example (see Fig. 2, panels a and b
in Section 5.1). Although popular data transformations (say, Box–Cox) might render normality, or close to normality with
reasonable empirical results, various issues still persist with these transformations [13]. Hence, an appropriate theoretical
but ‘robust’ framework that avoids data transformation is desirable. A variety of proposals (both classical and Bayesian) ex-
ist in this direction that uses the univariate or multivariate Student’s-t distribution [24,17,18] in the context of LME/NLME
models. SomeBayesian propositions in the context of heavy-tailed LMEC/NLMECmodels include Lachos et al. [13]who advo-
cated the use of the normal/independent density [14], while Bandyopadhyay et al. [3,2] studied the LMECmodel considering
both skewness and heavy-tails. Very recently, Matos et al. [20] proposed a full maximum-likelihood (ML) based inference
using a computationally convenient exact ECM algorithm for the LMEC/NLMEC models using the multivariate Student’s-t
distribution (henceforth, the t-LMEC/NLMEC model). Here, the E-step yields closed-form expressions, and all parameters
are updated in the M-step by considering the random components and the censored observations as missing data.

A vast majority of model development in the literature for LMEC/NLMEC models focus on estimating the mean function.
Hence, developing influence diagnostics is a key in assessing the effect of a single observation on the predicted scores for
other observations, and consequently the overall parameter estimates, all based on themean function. Although diagnostics
for the traditional normality based LME and LMEC [19] models exist, those for heavy-tailed LMEC/NLMEC models are not
well developed. Influence analysis is generally conducted using two primary approaches. The first one is the case-deletion
approach [7] based on the well-known Cook’s distance. Under normality assumptions for LME, [4,11,27] focused on case-
deletion diagnostics for fixed effects, while Christensen et al. [6] considered a one-step approximation to Cook’s distance
for the variance components. The other approach is the computationally attractive local influence approach [8], which is
a general technique used to assess the stability of the estimation outputs with respect to the model inputs. For elliptical
mixed-effects models, this method had been discussed in the literature by [5,16,36,15,22,26], among others.

Developing influence diagnostics for LMEC/NLMEC models in the spirit of [7,8] leads to the underlying observed log-
likelihood functions involving intractable integrals. This renders the direct application of Cook’s approach to be very difficult
if not impossible, since themeasures involve first and second derivatives of these functions. In this context, Zhu and Lee [36]
and Zhu et al. [37] developed an unified approach for performing local influence and case-deletion diagnostics, respectively,
for generalmissing datamodels based on theQ -function, i.e., the conditional expectation of the complete-data log likelihood
at the E-step in the EM algorithm. Thiswas extended to generalized linear andNLMEmodels by [15,34], respectively. ThisQ -
function approach produces result similar to those obtained using the Cook’s approach. Recently, Matos et al. [19] used this
Q -function approach for developing influence diagnostics for LMEC/NLMECmodels. Stemming from the same difficultywith
intractable integrals (for example, the pdfs of truncated multivariate Student’s-t distributions) in implementing the Cook’s
diagnostics for the t-LMEC/NLMEC model of [20], we develop case-deletion and influence diagnostics measures using the
approach of [37] (see also [15]).

The rest of this paper is organized as follows. Section 2 develops the t-LMEC model specification and an EM-type
algorithm for ML estimation. Section 3 presents the global and local influence approaches for the t-LMEC model. For local
influence, various perturbation schemes for both subject- and observation-level diagnostics are considered. In Section 4, the
t-NLMEC model is defined. The methodology is illustrated in Section 5 using a motivating HIV dataset. Section 6 presents a
simulation study evaluating the efficiency of our method in detecting outliers under various degrees of data perturbation
and censoring. Finally, Section 7 presents some concluding remarks, with some possible directions for future research.

2. Censored linear mixed effect model

Ignoring censoring for the moment, the t-LME model of [20] is specified as:

yi = Xiβ + Zibi + ϵi, (1)

where
bi
ϵi


ind.
∼ tni+q


0
0


,


D 0
0 σ 2Ini


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
, i = 1, . . . , n,

which implies that, marginally,

bi
iid
∼ tq(0,D, ν) and ϵi

ind.
∼ tni(0, σ

2Ini , ν), i = 1, . . . , n, (2)

where tp(µ, 6, ν) denotes the pdf of a multivariate Student’s-t distribution with location vector µ, scale matrix 6 and
degrees of freedom ν. The subscript i refers to the subject index; Ip denotes the p × p identity matrix; yi = (yi1, . . . , yini)

⊤
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is a vector of observed continuous responses for subject i of dimension ni × 1; Xi is the ni × p design matrix associated with
the p× 1 vector of fixed-effects β; Zi is the ni × q design matrix corresponding to the q× 1 vector of random effects bi; ϵi is
the (ni × 1) vector of random errors and the random effects dispersion matrix D = D(α) depends on unknown parameters
α. Following Matos et al. [20], we consider the case where the response Yij is not fully observed for all i, j. Consequently,
the observed data for the ith subject is (Qi, Ci), where Qi is the vector of censoring level and Ci is the vector of censoring
indicators such that

yij ≤ Qij if Cij = 1,

yij = Qij if Cij = 0. (3)

For simplicity, we assume that the data are left censored. Extensions to other arbitrary censoring patterns are immediate.

2.1. The likelihood function

The first step is to treat separately the observed and censored components of yi. Let yoi be the no
i -vector of observed

outcomes and yci be the n
c
i -vector of censored observations for subject iwith (ni = no

i +nc
i ) such that Cij = 0 for all elements

in yoi , and 1 for all elements in yci . After reordering, yi,Qi,Xi, and6i can be partitioned as yi = vec(yoi , y
c
i ),Qi = vec(Qo

i ,Q
c
i ),

X⊤

i = (Xo
i ,X

c
i ) and 6i =


6oo
i 6oc

i
6co
i 6cc

i


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number of columns. Using properties of multivariate Student’s-t distribution (see [1]), we have yoi ∼ tnoi (X
o
i β, 6oo
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yci |y
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i β). Therefore, the likelihood for subject i is

Li(θ|y) = f (Qi|Ci, θ) = f (yci ≤ Qc
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where Tp(·|µ, 6, ν) denotes the cumulative distribution function (cdf ) of the multivariate Student’s-t distribution with
parametersµ, 6 and ν. The log-likelihood function for the observed data is given by ℓ(θ|y) =

n
i=1 log Li, and the estimates

obtained by maximizing the log-likelihood function ℓ(θ|y) are the maximum likelihood estimates (MLEs).

2.2. The EM algorithm

The observed log-likelihood function involves complex expressions, making it very difficult to work directly with ℓ(θ|y),
either for theMLestimation, or the corresponding influence analysis. Asmentioned above,Matos et al. [20] developed anEM-
type algorithm for the t-LMEC/NLMEC models by treating y = (y⊤

1 , . . . , y⊤
n )⊤, b = (b⊤

1 , . . . , b⊤
n )⊤, and u = (u1, . . . , un)

⊤

as hypothetical missing data, and augmenting those to the observed data vector (Q, C), where Q = vec(Q1, . . . ,Qn), and
C = vec(C1, . . . , Cn). Thus, the resulting complete data is yc = (C⊤,Q⊤, y⊤, b⊤,u⊤)⊤, and the EM-type algorithm is applied
to the complete data log-likelihood function ℓc(θ|yc) =

n
i=1 ℓi(θ|yc), where

ℓi(θ|yc) = −
1
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where C is a constant that does not depend on the vector parameter θ and h(ui|ν) is the pdf of a Gamma(ν/2, ν/2)
distribution. Given a current valueθ(k)

of θ, the Q function (the conditional expectation of the complete data log-likelihood
function) is given by
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It is easy to observe that the E-step reduces to the computation of uy2i = E{uiyiy⊤

i |Qi, Ci,θ}, uyi = E{uiyi|Qi, Ci,θ}, andui = E{ui|Qi, Ci,θ}. These expected values are available in closed form using Propositions available in [20].
Next, the conditional maximization step (CM-step) maximizes Q (θ|θ(k)

) conditionally with respect to θ to obtain new
estimatesθ(k+1)

as follows:
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=
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where N =
n

i=1 ni, and the scale matrix D is unstructured with α the upper triangular elements of D. The algorithm is

iterated until the distance involving two successive evaluations of the log-likelihood |ℓ(θ(k+1)
)/ℓ(θ(k)

) − 1| is sufficiently
small. Here, we do not focus on the ML estimation, and the interested might refer to [20] for further details. In the following
section, we derive influence diagnostic measures, given the ML estimateθ.
3. Influence analysis

Influence diagnostics are routinely used in statistical modeling to identify aberrant observations and assess their impact
on model fitting and parameter estimation. Recognizing the difficulties following the Cook’s [7,8] approach (described in
Section 1), we use the Q -function of [37] to develop case-deletion measures, leading to the influence measures for the
t-LMEC model.

3.1. Global influence

The case-deletion approach is a commonly used scheme to study the effects of deleting the ith case/observation from
the dataset. Henceforth, the subscript ‘[i]’ will denote the original dataset with the ith case deleted. Consequently, the log-
likelihood function corresponding to the remaining data is denoted by ℓ(θ|Yc[i]). In order to assess the influence of the ith
case on the ML estimateθ, we need to compare the difference betweenθ[i] andθ, whereθ[i] = (β⊤

[i],
σ 2

[i],α⊤

[i])
⊤ is the

maximizer of the function Q[i](θ|θ) = E{ℓ(θ|Yc[i])|Q, C,θ}, withθ being the ML estimate of θ. An observation is regarded as
influential if its deletion generates considerable influence on model estimates. In other words, ifθ[i] is fairly far fromθ, then
the ith observation could considered as influential. Note that, since the estimatorθ[i] is needed for every case, this scheme
requires a considerable computational effort, particularly for large sample sizes. For that reason, a one-step approximation
(see [9,37]) is used to reduce the burden. This approximation follows:

θ1
[i] =θ + {−Q̈ (θ|θ)}−1Q̇[i](θ|θ), (9)

where Q̈ (θ|θ) =
∂2Q (θ|θ)
∂θ∂θ⊤


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
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It is necessary to compute the Hessian matrix Q̈ (θ|θ) =
n

i=1 ∂2Qi(θ|θ)/∂θ∂θ⊤ to develop case-deletion, local influence
and any particular perturbation schemes, following [36]. The Hessian matrix ∂2Qi(θ|θ)/∂θ∂θ⊤ has the following elements:

∂2Qi(θ|θ)
∂β∂β⊤

= −
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i uiXi,
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2σ 4
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2
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2
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2
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i ),

where A(sr) = D−1
[Ḋ(s)D−1Ḋ(r) − D̈(s, r)] and B(sr) = D−1

[Ḋ(s)D−1Ḋ(r) + Ḋ(r)D−1Ḋ(s) − D̈(s, r)]D−1, with Ḋ(r) =

∂D/∂αr , D̈(s, r) = ∂2D/∂αs∂αr , r, s = 1, . . . , p∗, p∗
= dim(α) and i = 1, . . . , n. After some rearrangement and eval-

uating these derivatives at θ = θ, we obtain the Hessian matrix Q̈ (θ|θ) (see Appendix A.1) as block-diagonal of the form
Q̈ (θ|θ) = diag(Q̈β(θ|θ), Q̈σ 2(θ|θ), Q̈α(θ|θ)) (the normal case given in [19]), where Q̈β(θ|θ) = −

1σ 2

n
i=1 X

⊤

i uiXi, Q̈σ 2(θ|θ) =

b/2(σ 2)2 and Q̈α(θ|θ) =
n

i=1 ∂2Qi(θ|θ)/∂αs∂αr , with X = (X⊤

1 , . . . ,X⊤
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i=1(ni − 2Ai/

σ 2). Using (9), the next

result proposes the one-step pseudo approximation ofθ[i] = (θ⊤

[i],
σ 2

[i],α⊤

[i])
⊤, i = 1, . . . , n. Its proof is straightforward and

is therefore omitted.

Proposition 1. The one-step pseudo approximation for the parameter estimates of the t-LMEC model with the ith case deleted is
given by

β1
[i] =β +


n

i=1

X⊤

i uiXi

−1

E1[i]

σ 21
[i] = σ 2


1 +

E2[i]
b


α1

[i] =α + {−Q̈α(θ|θ)}−1Q̇[i]α(θ|θ)
where E1[i], E2[i] and Q̇[i]α(θ|θ) are as in (10)–(12) respectively, b =

n
i=1(ni−2Ai/

σ 2) and Q̈[i](θ|θ) =
n

i=1 ∂2Qi(θ|θ)/∂αs∂αr .

Note that Proposition 1 allows a straightforward influence assessment via the case-deletion approach for the t-LMEC
model. One needs to compute the ML estimateθ for the complete data, the ML estimateθ[i] with the ith case deleted, and
compare both estimates using somemetric such as the Cook’s or likelihood distance. If the difference between them is fairly
large, then the ith case is regarded as influential. The generalized Cook distance [36] is defined as

GDi(θ) = (θ[i] −θ)⊤{−Q̈ (θ|θ)}(θ[i] −θ), i = 1, . . . , n, (13)

Substituting (9) into (13), we have the approximation GD1
i (θ) = Q̇[i](θ)⊤{−Q̈ (θ|θ)}−1Q̇[i](θ), i = 1, . . . , n. Since Q̈ (θ|θ)

is a diagonal matrix, this approximation can be written as GD1
i (θ) =

p
k=1 GD

1
i (θk), where θ = (θ1, . . . , θp)

⊤ (for details
see [33]). Consequently, for our t-LMEC model we have

GD1
i (θ) = GD1

i (β) + GD1
i (σ

2) + GD1
i (α). (14)

3.2. Local influence

In this section, we consider local influence analysis [8] focusing on the following perturbation schemes: the case-weight,
scalematrix and response perturbation. Here, we consider both subject-level and observation-level diagnostics. The subject-
level diagnostics identify if a subject is considered influential or not, and is carried out considering a perturbation function
for the ith subject. However, in modeling longitudinal data, we have two level of responses, namely, the subject-level and
observation level, and intuitively, an influential subject may/may not contain influential observations [23]. Hence, exploring
atypical observations at both levels are warranted. The observation-level diagnostics consider a perturbation in the jth
observation of the ith subject.

The theoretical developments in this section proceed in the framework of [8,36]. Letω = (ω1, . . . , ωg)
⊤ be a perturbation

vector varying in an open region � ⊂ Rg and ℓc(θ, ω|yc), the complete-data log-likelihood with respect to the perturbed
model induced by ω. We assume there exists ω0 ∈ �, such that ℓc(θ, ω0|yc) = ℓc(θ|yc) for all θ. The Q -displacement
function fQ (ω) is defined as fQ (ω) = 2


Q
θ|θ− Q

θ(ω)|θ, whereθ(ω) is the maximum of the function Q (θ, ω|θ) =
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E[ℓc(θ, ω|yc)|Q, C,θ]. The local behavior of the Q -displacement function can be analyzed by using the normal curvature
CfQ ,d of α(ω) = (ω⊤, fQ (ω))⊤ at ω0 in the direction of some unit vector d. It follows that

CfQ ,d = −2d⊤Q̈ωod and − Q̈ω0 = 1⊤

ω0


−Q̈ (θ|θ)−1

1ω0 ,

where Q̈ (θ|θ) =
∂2Q (θ|θ)
∂θ∂θ⊤

|θ=θ and1ω =
∂2Q (θ,ω|θ)

∂θ∂ω⊤
|θ=θ(ω). For our t-LMECmodel, we consider1ω0 = (1⊤

β , 1⊤

σ 2 , 1⊤

α )⊤,where

1β =
∂2Q (θ,ω|θ)

∂β∂ω⊤
|ωo , 1σ 2 =

∂2Q (θ,ω|θ)
∂σ 2∂ω⊤

|ωo and 1α = (1⊤

α1, . . . , 1⊤

αp∗)
⊤, with 1αr =

∂2Q (θ,ω|θ)
∂αr ∂ω⊤

|ωo , r = 1, . . . , p∗.

3.2.1. Subject-level diagnostics
Case weight perturbation

We consider an arbitrary attribution of weights for the expected value of the complete-data log-likelihood function
(perturbed Q -function), which may capture departures in general directions, by writing

Q (θ, ω|θ) = E[ℓc(θ, ω|yc)|Q, C,θ] =

n
i=1

ωiE[ℓi(θ|yc)|Q, C,θ] =

n
i=1

ωiQi(θ|θ).
Here,ω = (ω1, . . . , ωn)

⊤ is an n×1 vector andωo = (1, . . . , 1)⊤. Note that the local influence analysis for this perturbation
scheme is equivalent to the case-deletion approach discussed in Section 3.1 (see Appendix A.2). Under this perturbation
scheme, we have 1β =

1
σ 2 X⊤D(ϵ1, . . . , ϵn), 1σ 2 = −

1
2σ 2 n⊤

+
1

2σ 4 m⊤, 1αr = [
∂Q1(θ|θ)

∂αr
, . . . ,

∂Qn(θ|θ)
∂αr

] for r = 1, . . . , p∗,
where n = (n1, . . . , nn)

⊤,m = (A1, . . . , An)
⊤,D(ϵ1, . . . , ϵn) is a block-diagonal matrix, with ϵi = uyi − Ziubi −uiXiβ and

∂Qi(θ|θ)
∂αr

= −
1
2 tr[D

−1Ḋ(r) − D−1Ḋ(r)D−1ub2
i ].

Scale matrix perturbation
In order to study the effects of perturbation on the scale matrix 6i = σ 2Ini + ZDZ⊤

i , we consider D(ωi) = ω−1
i D, or

σ 2(ωi) = ω−1
i σ 2, for i = 1, . . . , n. The non-perturbed model arises when ωo = (1, . . . , 1)⊤. The perturbed Q -function

follows (5), with D(ωi) and σ 2(ωi) in place of D and σ 2, respectively. Considering a perturbation on D (matrix of random
effects), we have 1β = 0, 1σ 2 = 0 and 1αr =

1
2 [g1, . . . , gn], where gi = tr(D−1Ḋ(r)D−1ub2

i ), r = 1, . . . , p∗. Perturbation
on σ 2 (the random error variance) yields 1β =

1
σ 2 X⊤D(ϵ1, . . . , ϵn), 1σ 2 =

1
2σ 4 m⊤ and 1α = 0.

Response perturbation
A general way for perturbing the response variables Qij, i = 1, . . . , n, j = 1, . . . , ni, is introduced by considering

Qij(ω) = Qij + ωisij, where sij is a known constant. Hence, for the t-LMEC model, the perturbed response is obtained as
yij(ω) ≤ Qij if Cij = 1, and yij(ω) = Qij if Cij = 0, where yij(ω) = yij −ωisij. Again, the perturbed Q -function follows (5), withuyi, uy2i and uybi replaced by uyiω = uyi − ωisiui,

uy2iω =
uy2i − ωi(uyis⊤i + siuy⊤

i ) + ω2
i sis

⊤

i and uybiω = uybi − ωisiub⊤

i ,
respectively, where si = (si1, . . . , sini)

⊤. The vector ω0 = 0 represents no perturbation. Finally, we have 1β = −
1

σ 2

[X⊤

1 u1s1, . . . ,X⊤
n unsn], 1σ 2 = −

1
σ 4 [(uy1 − Z1ub1 − u1X1β)⊤s1, . . . , (uyn − Znubn − unXnβ)⊤sn], and 1α = 0.

3.2.2. Observation-level diagnostics
We proceed as above considering a perturbation vector ω = (ω1, . . . ,ωg)

⊤, where ωi = (ωi1, . . . , ωini)
⊤, and noting

that all the previous results for the subject-level diagnostics hold for the observation-level cases as well. Also, we denote
ui = (ui1, . . . , uini)

⊤, vi = (vi1, . . . , vini)
⊤ and gi = (gi1, . . . , gini)

⊤.
Case weight perturbation

In this case, we have 1β =
1

σ 2 [u1, . . . ,un], with uij = X⊤

ij (uyij − Zijubi −uiXijβ); 1σ 2 = −
1

2σ 2 [v1, . . . , vn] with vij =

1 −
1

σ 2 Aij and Aij = tr(uy2ij − 2uybijZ⊤

ij +
ub2

i Z
⊤

ij Zij) − 2β⊤

X⊤

ij (uyij − Zijubi) +uiβ⊤

X⊤

ij Xijβ and 1αr = −
1
2 [g1, . . . , gn], with

gij = tr(D−1Ḋ(r)D−1(D −
ub2

i )), r = 1, . . . , p∗.
Scale matrix perturbation

Similar to the subject-level, we consider perturbations on D and σ 2. Consequently, for Dwe have that 1β = 0, 1σ 2 = 0
and 1αr =

1
2 [g1, . . . , gn], with gij = tr(D−1Ḋ(r)D−1ub2

i ), r = 1, . . . , p∗. In addition, a perturbation on σ 2 generates

1β =
1

σ 2 [u1, . . . ,un], withuij = X⊤

ij (uyij−Zijubi−uiXijβ); 1σ 2 = [v1, . . . , vn],with vij =
1

2σ 4 Aij andAij = tr(uy2ij−2uiXijβ+ub2
i Z

⊤

ij Zij) − 2β⊤

X⊤

ij (uyij − Zijubi) +uiβ⊤

X⊤

ij Xijβ and 1α = 0.
Response perturbation

Finally, for the response perturbation case, we have 1β = −
1

σ 2 [u1, . . . ,un], with uij = X⊤

ij ; 1σ 2 = −
1

σ 4 [v1, . . . , vn],
with vij = (uyij − Zijubi −uiXijβ) and 1αr = 0.

As the reader cannote, it is impossible to give details for all perturbation schemes thatwould be of interest. However, ifwe
can find an appropriate ω such that the perturbed complete data log-likelihood function ℓc(θ, ω|yc) is smooth enough and
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the pertinent derivatives in the diagnostic measures are well-defined, we can conduct the local influence analysis without
much difficulty.

In order to quantify the influence of a case in the data, we follow the method based on the functionM(0)l =
r

k=1 ζ̃kε
2
kl,

where ζ̃k = ζk/(ζ1 + · · · + ζr) and ε2
k = (ε2

k1, . . . , ε
2
kg)

⊤ with {(ζk, εk), k = 1, . . . , g} the eigenvalue–eigenvector pairs of
−2Q̈ω0 , where ζ1 ≥ · · · ≥ ζr > ζr+1 = · · · = 0 and the eigenvectors {εk, k = 1, . . . , g} are orthonormal (for details see
[19]). The lth case may be regarded as influential ifM(0)l is larger than the benchmark (cut-off).

Based on the work of [36], we use the following conformal normal curvature BfQ ,d(θ) = CfQ ,d(θ)/tr[−2Q̈ω0 ], whose
computation is quite simple and also has the property that 0 ≤ BfQ ,d(θ) ≤ 1. Let dl be a basic perturbation vector with lth
entry as 1 and all other entries as zero. Zhu and Lee [36] showed that for all l,M(0)l = BfQ ,dl . Thus, we can obtainM(0)l via
BfQ ,dl . Following [15], we consider our benchmark as M(0) + c∗SM(0), where M(0) and SM(0) are the mean and standard
error of {M(0)l : l = 1, . . . , g} respectively; and c∗ is a selected constant. The choice of c∗ is subjective. In this paper, we
will consider c∗

= 4; following [26,35].

4. Censored nonlinear mixed effects model

In this section, we develop the censored nonlinear mixed effects model under the Student’s-t distribution (henceforth,
t-NLMEC). Similar to the t-LMEC model, we denote the number of subjects by n, and the number of measurements on
the ith subject by ni. Ignoring censoring for the moment, let us consider xij the vector incorporating explanatory variables
(covariates), the longitudinal time component tij, βij = (β1ij, . . . , βsij)

⊤ and β = (β1, . . . , βp)
⊤(p > s). The Student’s-t

nonlinear mixed effect model (t-NLME model) can be written as
yi = ηi(tij, βij) + ϵi, βij = d(xij, β, bi), (15)

where yi = (yi1, . . . , yini)
⊤, with yij the response for subject i at time tij, ηi(tij, βij) = (η(ti1, βi1)

⊤, . . . , η(tini , βini))
⊤, with

η(·) being a nonlinear (known) but differentiable function of vector-valuedmixed-effects parametersβij, ϵ = (ϵi1, . . . , ϵini)
⊤

is the random error vector, d(·) is an s-dimensional linear function, and bi = (b1i, . . . , bqi)⊤ is the vector of random effects
(q ≤ s). The joint distribution of (bi, ϵi) follows (1). From [20], the marginal distribution is given by

f (y|θ) =

n
i=1


∞

0


Rq

φni(yi, ηi(tij, d(xij, β, bi)), u−1
i σ 2Ini)φq(bi; 0, u−1

i D) × G(ui|ν/2, ν/2)dbidui,

where G(·|a, b) denotes the density of a Gamma(a, b) distribution with mean a/b. The marginal distribution f (y|θ) does not
have a closed form because the model function is not linear in the random effects. However, in order to use all the theory
on influence diagnostics developed above for the LMECmodel, we use the following approximation proposed by [20] which
linearizes the t-NLMEC likelihood in terms of bi and β.

Proposition 2. Letbi andβ be expansion points in the neighborhood of bi andβ, respectively. Then, the t-NLMEmodel as defined
in (1) and (15) has the following t-LME form

yi = Wiβ +Hibi + ϵi, i = 1, . . . , n, (16)

whereyi = yi −ηi(β,bi), bi
ind
∼ tq(0,D, ν), ϵi

ind
∼ tni(0, σ

2Ini , ν),Hi =
∂ηi(tij,d(xij,β,bi))

∂b⊤
i

|bi=bi , Wi =
∂ηi(tij,d(xij,β,bi))

∂β⊤
i

|βi=βi
andη(β,bi) = ηi(tij, d(xij,β,bi)) −Hibi − Wiβ.

Proof. See [20].

For the censored case, this model (16) is a t-LMEC model with the same structure as (1)–(3). The model matrices in (16)
depend on the current parameter value, and need to be recalculated at each iteration. The algorithm iterates between the
L-, E- and CM-steps until convergence. Moreover, the influence diagnostics for t-LMEC discussed earlier in Section 3 can be
incorporated along with the approximation in (16) to obtain approximate influence diagnostics for t-NLMEC.

The approximation (16) was initially proposed in [19] in the context of censored nonlinear mixed effects models. In
particular, simulation studies in that paper revealed that this approximation can efficiently detect outliers contaminating
the generated data. More recently, Wang and Lin [29] used this approximation to implement an efficient ECM algorithm
for carrying out ML estimation in Student’s-t nonlinear mixed-effects models for multi-outcome longitudinal data with
missing values. Consequently, we conclude that this approximation is robust, stable, and we do not anticipate any severe
consequences in inference when applied to other types of (censored) non-linear models.

5. Application

5.1. AIEDRP dataset

In this section,we consider anAIDS case study from theAIEDRPprogram [28]. This program is amulticenter observational
study of patients with acute and early HIV infection, covering areas such as the evaluation of immune responses to HIV,
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Fig. 1. AIEDRP data. Individual profiles (in log10 scale) for HIV viral load at different follow-up times. Trajectories for some influential individuals are
indicated in different colors.
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Fig. 2. Plots of raw density histogram (Panel a) and Q–Q plot (Panel b) of viral load.

assessment of thymic function and T-cell turnover during the infection and assessment of transmission and prevalence of
HIV resistance. The purpose of the study is to design new vaccines knowing the implications of new antiviral treatments.
This dataset has been previously analyzed by some authors in the context of censored non-linear mixed effect models using
the Student’s-t distribution, see for instance [20] and more recently [10].

In order to illustrate the proposed influence analysis, we consider 320 untreated individuals with HIV infection (see [28]
for more details). The dataset consists of 830 observations, with 185 (22%) lying above the limit of assay quantification. The
individual profiles are shown in Fig. 1. As was proposed in [28], we consider a right-censored five-parameter NLMEC model
as follows:

yij = λ1i +
λ2

1 + exp((tij − λ3)/λ4)
+ λ5i(tij − 50) + ϵij, (17)

where yij is the log10 of the viral load for subject i at time tij. The parameters λ1i and λ2 represent the subject-specific
random setpoints value and decrease from the maximum HIV RNA, respectively. In the absence of treatment (following
acute infection), the HIV RNA varies around a setpoint, which may differ among individuals; hence the setpoint is chosen to
be subject specific. The location parameter λ3 indicates the time point at which half of the change in HIV RNA is attained,
λ4 is a scale parameter modeling the rate of decline and λ5i allows for increasing HIV RNA trajectory after day 50. The
reparameterization given by β1i = log(λ1i) = β1 + b1i; βk = log(λk), k = 2, 3, 4, and λ5i = β5 + b2i is adopted to assure
positive values for the model parameters. Fig. 2 (Panels a and b) presents raw histogram and Q–Q plot of the log viral load
measures, respectively. These plots reveal that viral loads exhibit heavy-tail behavior, and presence of possible outliers.
Hence, to accommodate these features, we fit the t-NLMEC model defined in (15) considering the structure given in (17).

5.2. ML estimates using EM algorithm

The model fitting uses the approximated ML method given in Proposition 2 and the ECM algorithm presented in
Section 2.2. The degrees of freedom ν is assumed to be known. Using the AIC criterion, we choose ν = 10 which maximizes
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Table 1
ML estimates and model comparison criteria for normal and t-NLMEC models. SE are the
estimated asymptotic standard errors.

Parameter N-NLMEC t-NLMEC
MLE SE MLE SE

β1 1.6093 0.0137 1.6109 0.0133
β2 0.1449 0.0953 0.1636 0.0854
β3 3.5256 0.0237 3.5233 0.0207
β4 1.0599 0.2666 0.9910 0.2450
β5 −0.0035 0.0015 −0.0031 0.0015
σ 2 0.2621 0.2053
α11 0.01766 0.01611
α12 0.00017 0.00014
α22 0.00005 0.00005
ν 10

log-like −783.8905 −781.8017
AIC 1585.7812 1581.6034
BIC 1628.2740 1624.0963

a b

Fig. 3. Plot of the profile log-likelihood versus the degrees of freedom ν (Panel a), and estimatedweight ûi for the t-NLMEC fit (Panel b), with the influential
observations numbered.

the profile log-likelihood (see, Fig. 3, Panel a). This reveals that a fit using a normality-based LMEC model might be
inadequate. Further model comparison between the normal and t-NLMEC models using the AIC/BIC criteria presented in
Table 1 show that the t-NLMEC model provided a much improved model fit than the normal one.

Because we currently focus on exploring influence diagnostics, details on the estimation and interpretation of the
parameter estimates β are omitted for brevity. From Fig. 3 (Panel b), we observe that the t-NLMEC model insulates the
overall parameter estimation by assigning smaller weights ûi to the possible influential observations, which are described
later in more details.

5.3. Global influence

In order to evaluate the effect on the ML estimates when some observation is deleted, we analyze the GD1
i (θ) plot in

Fig. 4 (Panel a). The plot reveals that two cases (#195,#259) are potentially influential on the parameter estimates. Fig. 4
(Panels b–d) present plots of GD1

i (β),GD1
i (σ

2) and GD1
i (α) respectively, using Proposition 1. From these figures, we infer

that subject #195 is influential for β,#9 and #230 are influential for σ 2, and #259 is influential for α.

5.4. Local influence

Next, we focus on the local influence analysis for the dataset based on M(0), with interest focusing on θ. We study
both the subject-level and observation-level diagnostics. It is important to stress that in local influence analysis, there are
no general rules so far for selecting the benchmark [15]. Hence, we follow the criterion suggested by [15], i.e M(0)i >
M(0) + 3.5SM(0), i = 1, . . . , 320, to discriminate whether an observation is influential or not.



L.A. Matos et al. / Journal of Multivariate Analysis 141 (2015) 104–117 113

a b

c d

Fig. 4. Global influence. Approximate generalized Cook’s distance GD1
i (θ) (Panel a), GD1

i for subset β (Panel b), GD1
i for subset σ 2 (Panel c), and GD1

i for
subset α (Panel d). The influential observations are numbered.

5.4.1. Subject-level diagnostics
Fig. 5 presents the index plots of M(0) under the perturbation schemes discussed in Section 3.2.1. We find that

subjects #195 and #259 appears influential under case weight perturbation scheme. Moreover, subjects #133 and #159
are potentially influential under perturbation on D. For perturbation on σ 2, we find that observations #166, #195 and
#259 appear as influential. Finally, for response variable perturbation, observations #174, #175 and #176 are considered
as potentially influential. To assess the individual impact of these possible influential observations on the ML estimates,
we refitted the t-NLMEC model multiple times by removing one of the following observations: 9, 133, 166, 174, 175, 176,
195, 230 and 259, identified as possibly influential, each time. Table 2 presents the % relative changes (RC) in the parameter
estimates presented in Table 1 compared to the parameter estimates obtained after removing the influential observations.

Specifically, the RC measure is defined as RCδ =

δ−δ[i]δ
, where δ = β1, . . . , β5, σ

2, α andδ[i] denotes the ML estimate of δ

with the ith observation removed. From Table 2, we observe that these observations generate greater changes in the RC, in
particularly for parameters β2, α12 and α22. These findings are in agreement with the results shown in Fig. 4.

5.4.2. Observation-level diagnostics
Using the perturbation schemes described in Section 3.2.2, Fig. 6 presents the observation-level diagnostics for the

dataset. Note that, in the case weight and σ 2 perturbation schemes, the observations #402,#403,#404,#410 (subject
#174), #412 (subject #175), #422 (subject #176) and #512,#513,#514 and #515 (subject #203) can be considered
influential. For perturbation on D, we find that all observations between #680 and #693 can be considered influential.
Note, these observations correspond to subject #259, which was considered as possibly influential using the diagnostic
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a b

c d

Fig. 5. Index plot of M(0) for assessing local influence on θ under case weight perturbation (Panel a), perturbation on D (Panel b), perturbation on σ 2

(Panel c), and perturbation on the response variable (Panel d). The influential observations are numbered.

tools proposed previously (see Sections 5.3 and 5.4.1). Finally, in the case of the perturbation on the response variable,
we find that observations #44 (subject #22), #182 and #186 (subject #80), #420 (subject #175), #529 (subject #208), #596
(subject #226), #604 (subject #227) and#616 (subject #229) appear as influential. All these observationswith the exception
of observation #181 corresponds to the last time observed for the subjects.

6. Simulation studies

In order to assess the finite sample performance of the proposed diagnostic measures for identifying outliers, we conduct
a simulation study focusing on subject-level diagnostics. We consider the non-linear mixed-effects model given by

yij =
β1 + bi1

1 + exp(−[tij − (β2 + bi2)]/β3)
+ ϵij, i = 1, . . . , 50, j = 1, . . . , 10, (18)

where tij = 100, 267, 433, 600, 767, 933, 1100, 1267, 1433, 1600 for all i. The randomeffects bi = (bi1, bi2)⊤, and the error
term ϵi = (ϵi1, . . . , ϵi10)

⊤ are non-correlated with
bi
ϵi


ind.
∼ t12


0
0


,


D 0
0 σ 2I10


, 8


, i = 1, . . . , 15.

We set the fixed-effects β⊤
= (β1, β2, β3) = (200, 700, 350), the between-subject covariance matrix D =


4 −2

−2 25


,and

the within-subject variance σ 2
= 25. Under this model we consider the following perturbation schemes:
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a b

c d

Fig. 6. Index plot of M(0) for assessing local influence on θ under case weight perturbation (Panel a), perturbation on D (Panel b), perturbation on σ 2

(Panel c), and perturbation on the response variable (Panel d). The influential observations are numbered.

Table 2
RC (in %) for the AIEDRP study.

Dropped RCβ1
RCβ2

RCβ3
RCβ4

RCβ5
RCσ 2 RCα11 RCα12 RCα22

9 0.0124 0.9169 0.0170 0.9082 0.0000 2.8738 0.8690 0.0000 20.0000
133 0.1862 8.8020 0.0426 2.6438 3.2258 0.5845 3.5382 0.0000 20.0000
166 0.0062 6.6626 0.1334 3.1887 0.0000 2.4355 1.1173 0.0000 20.0000
174 0.0931 6.9071 0.1845 2.8355 0.0000 1.5100 1.1794 21.4286 0.0000
175 0.0621 1.7726 0.0993 3.0071 3.2258 0.6332 0.8070 7.1429 20.0000
176 0.1800 7.7017 0.0511 2.9162 0.0000 1.0229 1.1794 0.0000 20.0000
195 0.2421 9.4743 0.1760 2.7447 0.0000 0.2923 0.3724 0.0000 0.0000
230 0.0621 4.7066 0.0284 0.7164 0.0000 2.8251 1.0552 0.0000 0.0000
259 0.2111 7.7017 0.1306 4.0464 3.2258 1.1203 6.2073 35.7143 0.0000

(a) Replace the fixed effects β by 2β to generate the responses of the 1st subject y1,
(b) Replace β by 3β and,
(c) Replace β by 4β.

The diagnostic measures were computed for 500 simulated datasets under various censoring proportions, say 0%, 5%,
10%, 20% and 30%. Table 3 reports (in percentage) the number of times the measures correctly identifies y1 as the most
influential.

As expected, the percentage of correctly detecting atypical observations increases for increasing perturbation rates (i.e.,
for 3β or 4β) as compared to 2β, and with increased rate of censoring. Interestingly, the % of correct detection when the
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Table 3
Simulation study: The values in the table denotes the % of correctly identifying the influential observations using case-deletion, caseweight,σ 2 perturbation
and matrix D perturbation from 500 simulated datasets under the t-NLMEC model specified in (18).

% of censoring
0% 5% 10% 20% 30%

Case-deletion measure (GDi)

Pert. 2β 66.8 66.8 74.8 75.8 81.8
Pert. 3β 83.0 83.4 85.8 91.6 94.8
Pert. 4β 93.0 93.2 94.2 97.4 98.4

Case-weight perturbation
Pert. 2β 66.8 66.8 74.8 75.8 81.8
Pert. 3β 83.0 83.4 85.8 91.6 94.8
Pert. 4β 93.0 93.2 94.2 97.4 98.4

Perturbation on σ 2

Pert. 2β 13.0 14.4 18.8 19.2 15.2
Pert. 3β 3.60 3.60 4.60 6.00 6.00
Pert. 4β 0.40 0.60 0.80 1.00 0.60

Perturbation on D
Pert. 2β 83.8 83.6 83.2 83.0 84.8
Pert. 3β 95.0 94.6 94.0 94.8 97.4
Pert. 4β 97.2 97.8 97.6 98.8 99.0

influence analysis is focused on σ 2 is not appealing, with a lower percentage of correct detection when the perturbation
rate increases. However, higher % of correct detection when the influence analysis is focused on D is detected. A possible
explanation for this fact is that a perturbation on the fixed-effects of one subject contributes to increasing the between-
subject variance, but the within-subject variance remains the same.

7. Conclusions

This article proposes diagnostic tools for detecting outliers and/or influential observations in the context of linear and
non-linear mixed-effects censored model where the joint distribution of the random effects and random errors follow the
Student’s-t distribution. The results presented here supplement the robust likelihood-based inference developed by [20]
for LMEC/NLMEC models, appropriate for longitudinal HIV data. Our proposed estimation method relies on the Q -function
and the corresponding ECM algorithm. The NLME formulation is mathematically (and computationally) feasible through a
linearization. The methodology is implemented using the R software (codes available upon request from the corresponding
author), providing practitioners with a convenient tool for further applications in their domain.

For ease of implementation, our current proposal considers an independent within-subject covariance structure, viz.
σ 2Ini . Nevertheless, it can be extended to different unstructured covariance matrices (such as AR(1), or ante-dependence)
following the work of [23]. This issue is currently under investigation, and we plan to tackle it in a future paper.
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Appendix

A.1. Q̈ (θ|θ) is a block-diagonal matrix

From the EM-algorithm, we have ∂Q (θ|θ)/∂θ

θ=θ = 0. Consequently, for a t-LMEC model:

n
i=1

X⊤

i (uyi − Ziubi) =

n
i=1

uiX⊤

i Xiβ,

n
i=1

(ni
σ 2 − tr(uy2i − 2uybiZ⊤

i +
ub2

i Z
⊤

i Zi)) =

n
i=1

(2β⊤

X⊤

i (uyi − Ziubi) −uiβ⊤

X⊤

i Xiβ),

∂Q (θ|θ)/∂α = 0,
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Finally, from above,

∂2Qi(θ|θ)
∂β∂σ 2

= −
1
σ 4

X⊤

i (uyi − Zjubi −uiXiβ) = 0

and hence, the matrix Q̈ (θ|θ) is block-diagonal.
A.2. Equivalence of GD1

i and the local influence based on the case weights scheme

For the ith subject, the normal curvature is given by Ci = 21⊤

i


−Q̈ (θ|θ)−1

1i, i = 1, . . . , n, where for the caseweights

perturbation 1i =
∂2Qi(θ,ω|θ)

∂θ∂ω
|ω=ω0 =

∂Qi(θ|θ)
∂θ

. Since Q̇ (θ|θ) = 0, we can show that

Q̇[i](θ|θ) = −Q̇i(θ|θ) = −
∂Qi(θ|θ)

∂θ
.

Then, 1i = −Q̇[i](θ|θ) and, as a result, Ci = 2Q̇[i](θ|θ) −Q̈ (θ|θ)−1
Q̇[i](θ|θ).

Hence, from GD1
i (θ) = Q̇[i](θ)⊤{−Q̈ (θ|θ)}−1Q̇[i](θ), i = 1, . . . , n, we have that Ci = 2GD1

i , and consequently GD1
i is

equivalent to the local influence based on the case weights scheme.
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