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1. INTRODUCTION AND PRELIMINARIES 

In this paper we study stochastic processes of the form 

X(f) = ,_s, . . . J‘yms,cx,, . . . . x,) Wdx,) . . . M(dX”), TV T, (1.1) 

where A4 is a symmetric a-stable (SC&), 0 < a c 2, independently scattered 
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random measure on (R, A?) with a Radon control measure m (i.e., nz is finite 
on compact subsets of R), and [fr, t E T} is a family of real measurable 
functions R” + R symmetric with respect to permutations of their 
arguments and vanishing on the diagonals. Such processes can be regarded 
as an extension of both SC& processes (to which they reduce when n = 1). 
and multiple Gaussian integrals, which corresponds to the case a = 2. 

Stochastic processes of the form (1.1) can exhibit long range dependence 
and high variability, and they are useful for modeling of various natural 
phenomena (see Taqqu [Taq87] and references therein). It is therefore of 
interest to study properties of their sample path. This paper is a first step 
in that direction. 

Multiple stable intergrals defining the stochastic process {X(t), r E 2”) 
have been a focus of many studies in recent years (see, for example, 
[RW86, MT86, KW87, KS88b]). S amorodnitsky and Szulga [SSSS] 
proposed a series representation for multiple stable integrals, later 
improved and generalized by Samorodnitsky and Taqqu [ST91, ST90]. 

Let M be a SaS random measure on (R, $Y) with a Radon control 
measure m. The product random measure M(“) on (R”, !J#‘“) is defined as the 
product of the marginal random measures on measurable rectangles, and it 
can be extended to an LP-valued, 0 < p < a, vector measure on symmetric 
measurable subsets of R” which either do not intersect the diagonals, or 
include them fully (see Krakowiak and Szulga [KS88b] and Samorod- 
nitsky and Taqqu [ST91 I). Let now f be a symmetric, vanishing on the 
diagonals, separable Banach-space valued Bore1 function on R”. We sat 
that f is M’“‘-integrable if there is a sequence of simple functions of the 
type 

P’= T ai lA,ck,, 
i= 1 

(1.2) 

where 

1. A,(k), . ..) A,,(k) are disjoint symmetric Bore1 subsets of R” with 
finite m(“) = m x m x . . . xm measure and which do not intersect the 
diagonals; 

2. the a,(k)% are Banach-valued coefficients, such that fck) -+ f as 
k + co in measure m(“); 

3. the sequence I,(f’k’l,), k = 1,2, . . . . converges in probability for 
any symmetric Bore1 subset C of R” which does not intersect the diagonals, 
where, as usual, for simple functions, 

I,(f’k’l,) = 3 ai M(“)(Ai(k)n C). 
i= 1 
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In this case we define 

I,(f) := Jm ...Jm f(x,, . . . . x,) M(dx,). ..M(dx,) =,plit I,(fik)), (1.3) 
-co --m 

where plim denotes limit in probability. The integral I,(f) is uniquely 
defined, i.e., the above limit does not depend on the choice of simple func- 
tions satisfying 1-3. Because we have not found a proof of this fact in the 
literature, we shall give an argument to that effect in the Appendix. 

We now quote two results from Samorodnitsky and Szulga [SS89] and 
Samorodnitsky and Taqqu [ST901 which play a major role in the present 
work. 

Let S be a real separable Banach space. S is said to be of the 
Rademacher-type (R-type) p if the random series Cj”=r sjxj converges a.s. 
for every sequence {xj}~= I of elements of S satisfying c;, llxi\l p < co, 
where aI, Ed, . . . are i.i.d. Rademacher random variables, i.e., P(.sj = 1) = 
P(aj = -1) = f. Recall that every Banach space has R-type at least 1 and 
no Banach space can have R-type p > 2; every Hilbert space is of R-type 2, 
implying that R” equipped with the maximum norm, n c co, is of R-type 2 
as well, since the R-type does not change when the norm is replaced by an 
equivalent one. 

Given a separable Banach space S of R-type p, let f: R” + S be a 
symmetric, vanishing on the diagonals, strongly measurable function, and 
let m be a Radon Bore1 measure on R. This ensures that m is a-finite. The 
following notation will be used throughout the paper. We denote by + a 
measurable function: R + (0, GO) satisfying: 

. 
I 

+co 

_ m Icl(xY m(dx) = 1, (1.4) 

. El, E2, ... is an i.i.d. Rademacher sequence, 

l r , ,  r , ,  .  .  .  is the sequence of jump times of a Poisson process with 
unit rate, 

l Y,, Y,, . . . are i.i.d. real-valued random variables with common 
distribution mJdx) = $(x)’ m(dx). 

All three sequences of random variables are always assumed independent. 
For an x > 0 we denote 

1 In x 
ln+x= o 

if x> 1, 
if x< 1. 
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THEOREM 1.1 (i ) Let M be a SC& random measure on (R, r?B) with u 
Radon control measure m, 0 -C a< p. Suppose that the function f satisfies 

Then the series 

s,(f) = c zia f  f  El, . &jn r,; ‘la . . ’ r, ‘I* II/ ( Yj, ) - ’ 
jl = J jn = J 

' Ic/( yjn)-' f( yj,, ..', yjn) (1.6) 

converges a.s., where 

C,= jOax-‘sinxdx)-‘, 
( 

the multiple integral 

I,(f) = j- -.. jm f(xJ, .  .  .  .  X,) M(dx,) 
-cc --r* 

exists and 

I , ( f )  p S,(f). 

(1.7) 

. Wdxn ) 

(ii) If S= R, then Z,,(f) exists if and only if S,(f) converges, and 

Zn(f) A S,(f). 

Remarks. l By convergence of a multiple series Ciqj= J ... 

c;= 1 a(jJ, ***, j,), we always mean that the limit lim,, o. C,T=, ... 
Cz= J a(jJ, . . . . j,) exists. 

. Since p < 2, the Gaussian case a = 2 is explicitly excluded from the 
theorem. In fact the series representation (1.6) does not hold when a = 2 
even if n= 1. 

l Bold letters denote vectors. We write Z,(f) if f is real, and I,(f) if 
f  is a vector. 

l The function tj in (1.4) plays a double role in Theorem 1.1 and 
throughout the paper. First, it effectively reduces a a-finite control measure 
m to a probability measure mJdx) = $(x)” m(dx), from which we can 
generate the random vectors needed in the series expansion (1.6). Second, 
and more important: Note that for a given $I condition (1.5) is only a suf- 
ficient condition for existence of the integral I,(f) and for convergence of 
the series S,(f). An appropriate choice of $ can weaken the restrictions on 
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f even in the case where m is the Lebesgue measure on [0, 11. It has been 
demonstrated in Samorodnitsky and Taqqu [ST903 that in the case n = 2 
an appropriate choice of $ makes the sufficient condition (1.5) also 
necessary; and the right choice of $ depends on the functionf! 

To shorten the notation we will write 

N, = { 1, 2, . ..}“. 

[aj]=uj,uj,-~uj”, 

f(Yj) = f( Yj,) . ..) Yj”) 

for j = (jr, . . . . j,). Also, I,(f) = JR, f&M(“) and 

S,(f)=C~‘” C [Ej][rj]-“* [Icl(Yj)]-’ f(Yj). 
jcNn 

Thus, with a real-valued stochastic process {X(t), t E T) as in (1.1 ), we 
conclude immediately that 

pm t E T> 9 {ul-A tE T}. (1.8) 

We call { S,(f,), t E T} the series representation of the stochastic process 
{X(t), t E T}. The series representation is very important in our study of 
the sample path properties of the process (X(t), t E r} for it shows that the 
properties of the integrands {ft(x,, . . . . x,), t E T}, x1, . . . . x, E R, as functions 
on T, have impact on the sample path properties of {X(t), t E T}. This 
phenomenon has been observed and studied by Rosinski [Ros86, Ros89] 
in the case of stable and infinitely divisible processes; some of the ideas 
used in the present paper originate from the papers of Rosinski. 

In Section 2 we find conditions for a stochastic process of the form (1.1) 
to have “smooth’ sample paths, more generally, for the sample paths of the 
process to belong to a given vector space. The case of bounded sample 
paths is handled in Section 3, in which we also study the tail behavior of 
the distribution of supts T IX(t)1 for bounded stochastic processes of the 
form (1.1). Finally, Section 4 states zero-one laws for stochastic processes 
of the form (1.1) with n = 2. These zero-one laws complement the results of 
Section 2. 

2. PROCESSES WITH SAMPLE PATHS IN A VECTOR SPACE 

Let (X(t), t E T} be a stochastic process of the form (1.1) and let V be a 
vector space of real-valued functions on T. We study, in this section, 
whether {X(t), t E T} has a version with all sample paths belonging to I’. 
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This question is of interest because path properties can be typically 
formulated in terms of vector subspaces V of R*. Much is known in the 
case of Gaussian and stable processes. Our results shed some light in the 
case of multiple stable integrals (1.1). 

In order to make our discussion meaningful and to avoid obvious 
measurability problems, we introduce some assumptions. 

From now on, the parameter space T is assumed to be a separable 
metric space. We extend the notion of separable representation, introduced 
by Rosinski [Ros89] to multiple stochastic integrals. Let m’“‘= 
m x . . x m. An integral representation (1.1) of (X(t), t E T} is said to be 
separable if there is a countable subset T,, c T and a Bore1 measurable 
symmetric set N, c R” which does not include the diagonals, such that 
m(“)(N,) =O, and for every (xi, . . . . x,) #N, and for every t E T, they is a 
sequence {t,>i”=l c To such that f,(xi , . . . . x,) = limj, ~ ft,(xl, . . . . x,). 
Separability of the integral representation ( 1.1 ), as pointed out in [Ros89] 
for the case n = 1, is an assumption which can always be made, although 
at this point we shall have to allow the integrand to take values in the 
extended real line R = R u ( - cc } u ( + co }. Since the infinite values will 
be taken on a set of measure 0 for each fixed t E T, this will not change the 
validity of the equality (1.1). 

Indeed, m(n), if restricted to the Bore1 subsets of the lower-triangular 
space L” = {(xi, . . . . x,) E R”: xi < x2 < $. . <x,} is a a-finite measure, so 
letting riz’“’ be a probability measure on the Bore1 subsets of L”, equivalent 
to the measure m’“‘, we may regard {f,, t E T} as a stochastic process 
indexed by T with tic”) as underlying probability measure. By Doob’s 
theorem (see [Doo53, Theorem 2.4, Chap. II]), there is a countable subset 
T,, c T, a measurable set M0 c L” with &“‘(M,) = 0 (and, therefore, with 
m(“)(M,) = 0,) and a family of measurable functions {g,, t E T}, g,: L” + W 
such that for every t E T, 

m(“‘{ (Xl) . ..) x,) EL”: f,(x, 9 . ..Y x,) z g,(x,, . . . . x,,> = 0, (2.1) 

and for every t E T and every (x,, . . . . x,) $ Me there is a sequence 
{ tj},“= i c T,, such that 

gtb, 3 . . .T  4 = lim gt,(x,, . . . . x,); 
j  - co 

g,, at this point, is defined only on L”. We further extend g, to the whole 
of R” by setting g,(xi, . . . . xn) =gl(x(ij, . . . . x,,,), where x(i), . . . . xc,) is an 
increasing rearrangement of x1, . . . . x, if the numbers xi, . . . . x, are all 
different, otherwise we define g,(x,, . . . . x,) = 0. Then (2.1) extends to R”, so 
that we obtain 

X(t) = Ja . . . Jrn g,(xl, . ..) x,) M(dx,) . . . M(dx,), fE T. (2.2) 
--m --m 
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The integral representation (2.2) is separable by construction, with 

No= {<Xl, . . . . x,)ER”:x~#x~ if i#j, (X(I), . . . . x~~,)EM~}. 

This completes the argument. 
We may and will assume, therefore, that the integral representation (1.1) 

is, to start with, separable. 
As in [CR73, Ros89], we consider the following vector spaces V of 

functions on T: 

(a) space of bounded functions on T, 

(b) space of continuous functions on T, 

(c) space of uniformly continuous functions on T, 

(d) space of Lipschitz continuous functions on T, 

and, if T= R, 

(e) space of functions without oscillatory discontinuities on T, 

(f) space of functions of locally bounded variation on T, 

(g) space of absolutely continuous functions on T, 

(h) space of everywhere differentiable functions on T. 

This list can be continued. In fact, we consider any function space V 
which satisfies the following condition: 

Condition 2.1. There exists a linear measurable subspace f of R” such 
that for every separable stochastic process { Y(t), t E T}, there is an event 
Sz, with P(s2,) = 1, such that for the countable subset TO c T in the 
definition of separability, 

{ox {Y(t), t~T}~V}d{o: {Y(t),t~T,,}~~}c!2;. 

For example, if T = [0, 1 ] and V= space of continuous functions on T, 
then we can take TO = rationals and p= space of uniformly continuous 
functions on T,,. Cambanis and Rajput [CR731 showed that the function 
spaces V in (a)-(h) all satisfy Condition 2.1. 

We are now ready to state our first theorem. It gives necessary condi- 
tions for a stochastic process of the type (1.1) to have a version with 
sample paths in a function space. 

THEOREM 2.1 Let {X(t), t E T} be a separable stochastic process with a 
separable representation (1.1) and let V be one of the vector spaces (ak(h) 
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above (or any other vector space satisfying Condition 2.1). If there is an event 
0, with P(s2,) = 1 such that, for every w  E Q,, 

then there is a Bore/ measurable set S, c R” such that d”(R”\S,) = 0 and 
for every (x,, . . . . x,) E S,, 

{ml, ‘.‘? x,), t E T} E v. 

Proof: It is sufficient to suppose Condition 2.1 holds. We apply first this 
condition to the stochastic process {X(t), t E 5”). Setting 0, = 8, n 52,) 
we obtain P(sZ,) = 1 and for every w  E Q2, {X(t, w), t E TO} E I? Using 
Theorem 1.1, we conclude that 

z(t)= 1 CEjICrjI-“” C@/(Yj)I-‘ft(YjL tE To, 
jEN. 

satisfies 
P(o: {Z(t, w), tE T,} E P) = 1, (2.3) 

since X 2 Z and T, is countable. Now let E”, = -.sr, Ej = sj, j > 2. Clearly, 
Rademacher sequence independent of the sequences rr, r,, . . . 
. . . . Therefore, 

Z(t)= 1 CEjlCrjl-“” C~(yj)l-‘ft(yjX tE To, 
jeN, 

is a version of {Z(t), t E T,}, and hence 

P(o: ($(t, co), t E T,} E P) = 1. 

Since P is a linear space, we conclude by (2.3) and (2.4) that 

P(o: {Z(t, w) - i?(t, co), t E T,} E P) = 1. 

But for each t E T,, 

Z(t)-Z(t)=2&,r;“al+G(Y,)-’ C [Ej][fj]-“‘[$(Yj)]-’ 
jeN,-l 
j,P 2 

x.ft(y~~ yj,, ..*9 yjn-,)* 

Thus, with 

(2.4) 

Z,(t)= C CEjICrjI-“’ C$‘(Yj)I-‘fr(Y,, Yjlv-., Y,.-,), te To, 
jsN.-l 

j, 2, 2 
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we obtain 

P(w: {Z1(t, co), tE To) E P)= 1. (2.5) 

Repeating the procedure which led us from (2.3) to (2.5) n - 1 times, we 
conclude 

P(o: (.A( Y,(o), Y2(0), . ..1 m(w)), t E To} E P) = 1. (2.6) 
Let 

sz= {(Xl, .*., x,) E R”: (ft(x,, . . . . x,), t E T,) E P>. 

Since each Yi has distribution rn$, relation (2.6) implies mr’(R”\S,) = 0 
and thus 

m’“‘(R”\S,) = 0. (2.7) 

We now apply Condition 2.1 to (fi( .), t E T} regarded as a separable 
stochastic process on the probability space (R”, a’“, m:‘). We may assume 
without loss of generality, that the countable set r, here is the same as 
before (take the union of the two sets, if necessary), and we replace, in this 
case, Q, by S,. Set S,, = S, n Sz. Then m’“)(R”\S,) = 0, and since So c S,, 
we conclude that for every (x1, . . . . x,) E So, {ft(x,, . . . . x,), t E T} E V. This 
completes the proof of the theorem. 1 

Remarks. l Since f is symmetric and vanishes on diagonals, the 
measurable set S,, in Theorem 2.1 can always be chosen to be symmetric 
and to include all the diagonals. 

l In the case n = 2 the statement of Theorem 2.1 remains true if we 
replace the assumption P(sZ,) = 1 by P(Q,) > 0, since our process satisfies 
an appropriate zero-one law. See Section 4 for more details. 

Note the relation between the two notions of separability 
appeiring in Theorem 2.1. We should understand it as follows: (X(t), t E T} 
is separable, {X(t), t E T} z {Z,(f,), t E T}, where the equality is in terms 
of finite-dimensional distribution, and the integral representation defined 
by the functions {fr, t E T} is separable. 

Theorem 2.1 provides a necessary condition for a stochastic process of 
the type (1.1) to have almost all sample paths in a vector space V. We now 
focus on sufficient conditions and assume that the space V satisfies the 
following: 

Condition 2.2. V is a normed space of real-valued functions on T such 
that all evaluations x,: V-t R defined by x,(x) = (x), are continuous. 

The following result ensures that the multiple integral I,(f) of a function 
f taking values in V may be regarded as the vector of the multiple integrals 
of the evaluations Z,(f,) of this function. 

683/37/l-9 
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PROPOSITION 2.1. Let f he u symmetric, vanishing on the diagonals, 
measurable function from R” to a vector space V satisfving Condition 2.2 and 
suppose that the multiple integral I,(f) exists. Then for each t E T the evalua- 
tion f, := n,(f) is M’“‘-integrable, and for each t E T, 

Z,,(f,) = (W)),, a.s., (2.8 1 

where (I,,(f)), = n&(f)) for each t E T. 

Proof Suppose first that f is a simple function, i.e., 

f(x 1, . . . . x,) = 5 a(i) l((x,, . . . . x,) E 41, (2.9) 
i= 1 

where a(l), . . . . a(N) E V, and A,, . . . . A, are disjoint symmetric Bore1 sets in 
R” with finite m’“’ measure and which do not include the diagonals. Then 

Zn(fi) = i (a(i)), M(“‘(Ai) = ; a(i) M’“‘(A,) = (I,(f)),. 
i= I i=l > f 

Thus (2.8) holds for simple functions f. 
Now let f be M’“‘-integrable. Then, by definition, there is a sequence of 

simple functions {fck’},“_ r as in (2.9) converging to f in measure m’“‘, such 
that {I,(f’k’l,), k = 1, 2, . ..} converges to I,(fl.) in probability for each 
symmetric Bore1 set C of R”. 

Now, for every tET,m(“){x: lif’k)(x)-f(x)I/y>&l} -+O,Vs,, implies 
m(“){x: 1 f i”‘(x) - ft(x)l > Q) + 0, VE*, by Condition 2.2, and hence the 
sequence {f i”‘)p=, converges to f, in measure m’“‘. Similarly, the sequence 
((I,(f’k’lc)),, k = 1, 2, . ..} converges in probability to (I,(fl,)),. 

Since fck’l, is a simple function, (2.8) holds for each f(“‘l, and t E T. 
Letting k -+ 00, we infer that for each t E T, f, is MC”)-integrable and 
Z,(f,) = (I,(f)), a.s. I 

The following result gives sufficient conditions for a stochastic process of 
the type (1.1) to have almost all its sample paths in a Banach space with 
special properties. 

THEOREM 2.2. Let V be a separable Banach space with norm 11 )I y of 
R-type p satisfying Condition 2.2, and let (X(t), t E T} be a stochastic 
process given in the form of a multiple SaS integral with a separable 
representation (1.1 ), 0 < CI < p. Suppose that there is a Bore1 measurable 
set S, c R” such that m’“)(R”\S,j) = 0, and for every (x,, . . . . X,)E So, 

{fAXI 3 ...9 x,), t E T) E V, and that there is a function $ as in (1.4) such that 

I IIf@ ,, . . ..x.)ll~ In+ IMX 19 *.., x,)ll Y n-1 
R” Ic/(x,).-.mJ > 

m(dx,)...m(dx,)< co, 

(2.10) 
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where 

g-(X1, . ..) X,)E&, 

otherwise. 

(2.11) 

Then there is a version of (X(t), t E T} with all sample paths in V. 

Proof Let f be as in (2.11). Separability of V and Condition 2.2 imply 
that f=R” + V is a Bore1 measurable function (see [Ros86, p. 61). 
Applying Theorem 1.1, we conclude that f is MC”‘-integrable. Therefore, 
I,(f) is well defined and since f is V-valued, so is I,(f). Thus I,(f) is the 
version we are looking for, since, by Proposition 2.1, {(I,(f)),, t E T} is a 
version of {X(t), t E T) = {I,(f,), t E T}. This completes the proof. B 

Remarks. l The restriction that the space V must be of R-type p, 
0 < a < p, disappears if 0 < a < 1, since every Banach space is of R-type 1. 
On the other hand, if V is of R-type 1, then the theorem applies only when 
0 c a < 1. Unfortunately, many Banach spaces of interest are of R-type 1. 
This is the case for example of the Banach spaces that are among the 
spaces (a)-(h) listed in the beginning of this section. 

l The results of this section do not provide a condition which is 
both necessary and sufficient for the sample paths of a process of type (1.1) 
to belong to a vector space. 

l There are many unsolved questions even in the case of single 
stable integrals (i.e., n = 1 in (1.1)). Although much is known for a < 1, 
general conditions for regularity are largely unknown when a > 1: one has 
results only for specific fs and specific path properties. The multiple 
integration case (i.e., n > 1 in (1.1)) which we are considering here, is 
naturally even more complicated. 

3. BOUNDEDNESS 

Since the space of bounded functions is not separable (even on a 
countable set), Theorem 2.2 cannot be used to study stochastic processes 
of the type (1.1) with a.s. bounded sample paths. Nevertheless, one has 

THEOREM 3.1. Let {X(t), t E T} be a separable stochastic process 
represented in the form of a multiple SaS integral with a separable represen- 
tation (1.1). 

(i) Suppose that {X(t), t E T} is a.s. bounded. Then 

I f *(xl, . . . . x,X m(dxl) .--m(dx,) < CO, (3.1) 
R” 

where f *(xi, . . . . X") :=S~PIE7-Iftb1'-~,X,N. 
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(ii) Let 0 <r < 1, and suppose that there is a function $ satisfying 
(1.4) such that 

s Rnf*(xl ,..., x,)' In, ~(~~l..~~f;.)))~~‘m(dx,)...m(d.~~)<~. 
! 

(3.2 1 n 
Then {x(t), t E T} is U.S. bounded. 

Proof By the separability assumptions, we may and will assume that 
the set T is countable. We identify it with the set of positive integers and 
denote our process {X(k), k = 1, 2, . ..}. 

(i) We know that sup, IX(k)1 < cc a.s. But we shall, at first, make a 
stronger assumption, namely lim,, co X(k) =0 as. We view then X = 
{X(k), k = 1, 2, . ..} as random vector in the separable Banach space c0 of 
sequences converging to zero, equipped with the supremum norm 11. IIa). 
Clearly, as m + co XC”’ + X in c0 a.s., where 

Xc”) = (X( 1 ), . . . . x(m), 0, 0, . ..}. 

Obviously, X’“’ = I,(f’“‘), m = 1, 2, . . . . where 

m = 1, 2, . . . . 

f’“’ = (j-r, . ..) “6, 9 0, 0, 0, . . . 1, 

is regarded as a c,-valued function. 

m = 1, 2, . . . 

It follows from [KS88a] that the random vectors Xc”‘, m = 1,2, . . . 
belong to the same Marcinkiewicz-Paley-Zygmund class, and so for this 
sequence of random vectors, convergence in probability implies con- 
vergence in L’ for every 0 <r < u. We conclude that for any O< r < a, 
lim m+O E [IX-X’“‘II’, =0 and El/XII’, < co. Moreover, it follows by 
Proposition 5.l(ii) of [KS88b] that for any m = 1,2, . . . . 

E IIX’“‘II’, 2 G,, 
r/a 

max Ifi(x,, . . . . x,Ja m(dx,)-..m(dx,) 9 (3.3) 

where C,, is a positive constant depending only on a and r. Letting 
m + co, we obtain 

> 
da 

co > E IlXll’, >, C,, f*(x,, . . . . x,)“m(dx,)--am(dx,) . (3.4) 

Let US now return to our original assumption sup, IX(k)1 < ~0 a.s. and 
drop the requirement lim, -t o. X(k) = 0 a.s. Let { ak, k = 1,2, . . . } belong to 
co, and sup, lakl < 1. Then {a,X(k), k= 1,2, . ..} belongs to co a.s., so (3.4) 
gives 
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E(SUP IX/cl 1’ 2 E(SUP b!Jkl) 
k k 

> 

r/e 
2 c,, sup b,fk(x,, . . . . x,)1” m(dx,)-“m(dx,) (3.5) 

and we know also that 

Vr E (0, a). (3.6) 

By taking ak = 1 for k < N and 0 otherwise, and letting N 4 co, (3.5) 
implies 

> 

r/a 
E(lsup I X(k)1 )’ > c,, j-*(x1) . ..) XX m(dx,) . . . m(dx,) . (3.7) 

k 

Now, (3.1) will follow if we establish E(supk IX(k)l)‘< co. Assume, to the 
contrary, that for some 0 < r < a, E(supk IX(k)l)’ = 00. Choose 0 < K, < 
K2< ‘.. such that 

m-n;;, I-w)l)‘2.L j= 1, 2, . . . 
. I 

Choose now ak = j-1’(2r’ if K,- r < k < K,, j = 1, 2, . . . . K,, = 0. Then 
E(maxkGK, la,X(k)l)‘> jr’* for every j= 1, 2, . . . . so that E(supk lakX(k)l)’ 
= co, contradicting (3.6). This proves that E(supk IX(k)l)‘< co for every 

0 < r < a, and thus the proof of part (i) is complete. 
(ii) Let again {a,, k= 1,2, . ..} belong to cO, and sup, la,\ < 1. Set 

fit@ 
x )= {akfkh . . . . %I), k= 1, 2, . ..} if f*(X1, . . . . X,)< Co, 

1, ‘e.3 n 
0 otherwise. 

(3.X) 

Clearly g is a measurable function R” + c,, and by (3.2), for every 
k = 1, 2, a.., q(g) = ak fk m’“‘-almost everywhere. Since ))g(Xr , . . . . X,)/loo < 
f*b,, . . . . x,) for every (x,, . . . . x,), we obtain 

s n-1 

llg(xI, . . . . x,)lI~ 
( 
-In+ i$: :‘:IL;3c)l\) m(dx,) ~~*m(dx,)<al 

R” n 

Theorem 1.1 applies since 0 < a < 1 and every Banach space is of 
R-type p = 1. Hence g is M’“’ integrable and I,(g) is a well-defined 
co-valued variable. By Proposition 2.1 we have { a,X(k), k = 1,2, . ..} 1 
(ln(g)k, k = 1, 2, . ..>. and it follows as in the proof of part (i) that 
E sup, IakX(k)l’< cc for any 0 <I c a, and, thus, alSO E sup, IX(k)l’< co. 
Hence (X(k), k = 1,2, . ..} is a.s. bounded. This completes the proof. 1 



128 ROSINSKI, SAMORODNITSKY, AND TAQQU 

COROLLARY 3.1. Under the conditions of Theorem 3.1, Part (i), for etler5 
O<r<cc, 

(s > 

l/l 
(~sup IX(t)l’)“‘>C,,, J*(x,r . . ..x.)“m(dx,)~~~m(dx,) > 

(ET 

where C,., is a positive constant depending only on c( and r. 

Proof Follows immediately from the proof of part (i) of 
Theorem 3.1. 1 

Remark. In the same spirit, we may give asymptotic lower bounds 
for the P(sup. t T 1X( t)l > A). Specifically, let {X(t), t E T} be a separable 
stochastic process represented in the form of a multiple SaS integral with 
a separable representation (1.1) satisfying the following property: there is a 
function I,/I satisfying (1.4) such that, for every t E T, (To is the countable 
subset of T appearing in the definition of a separable representation), we 
have 

s If,h T . . . . xJY ( 
Ifr(xl~-~~xJl 

R" 
In+ Il/(xl). . .+(x,) > 

n-lm(dx,)...m(dx )<oo n 5 (3.9) 

if n 2 3, or 

if n = 2. Then 

lim inf 
A.” 

P(sup W(t)1 > A) i-.m (In A)‘-’ taT 

2n(n!)“-2~n-1C~ 
s 

f*(x,,...,x,)“m(dx,)---m(dx,), (3.11) 
R" 

where C, is given by (1.7) and f* is defined as SUP,,~ Ift(x,, . . . . x,J. 
Moreover, when 0 < a < 1, then 

lim 
II” 

2.-rm (In A)n-l P(sup W(t)1 > A) ,ET 

= n(n!)“-’ a”-‘Ci 
5 R” j-*(x1, -*., x,)’ m(dx,) ..-m(dx,). (3.12) 

These statements follow firectly from Samorodnitsky and Taqqu [ST90]. 
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4. ZERO-ONE LAWS 

Sample path properties of some stochastic processes can satisfy various 
zero-one laws: see [Kal70] for Gaussian processes, [DK74] for stable 
processes, and [Jan841 and [Ros90] for infinitely divisible processes. In 
this section we establish some zero-one laws for stochastic processes of the 
form (1.1) with n = 2. We restrict ourselves to the case n = 2 because we use 
here a result of de Acosta [DeA76] on quadratic forms in Gaussian 
vectors. We believe that similar zero-one laws hold for n > 3. 

THEOREM 4.1. Let (X(t), t E 7’) be a separable stochastic process with a 
separable representation (1.1) and with n = 2. Let V be a vector space of 
functions over T satisfying Condition 2.1. Then 

P{(X(t),tET}EV}=Oorl. 

Before proving this theorem, we collect a number of facts which will be 
used in the proof. 

Focus first on the ScrS random measure M in (1.1). We assume for sim- 
plicity m(( - co, 0)) = 0, and by denoting M(t) := M( [0, t]), we may regard 
M as a SC& process with independent increments on R+. (The case 
m(( - TX), 0)) > 0 can be treated similarly, by considering M as consisting of 
two independent components {M,(t) = M( [0, t]), t > O> and {M2(t) = 
M([-t,O)), t>O).) It is well known that {M(t), t>,O) has a version in 
the separable space O[O, + co) equipped with the Skorokhod topology. It 
follows from [LeP80, Ka173], that such a version is given in particular by 
the series 

M(t) = (gaC,)“* f Gjr,““II/( Yj)-’ lCo,rj(Yj), t B 0, (4.1) 
j=l 

which converges uniformly in t on finite intervals. Here the T’s and Yis 
are as in Section 1, the G,‘s are i.i.d. standard normal random variables 
independent of the Tj’s and Y;s and %?a = (E I%i ( “) - l. 

Thus, (M(t), t > O> can be regarded as a random vector taking values in 
the space O[O, + co) equipped with the Skorohod topology. Moreover, 
all finite-dimensional projections of (M(t), t 2 0} are SC&. Therefore, 
(M(t), t >,O} is a SaS vector in O[O, + cc), as the Skorohod Bore1 
a-algebra coincides with the cylindrical a-algebra. 

Assume now that the random vector {M(t), t > 0} is defined on the 
product of two probability spaces, (Qi, 4, Pi) and (a,, 4, PI), and let 
the Gaussian sequence G,, G,, . . . live on (SL I, Fi, Pi), while the sequences 
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Z,, Z,, . . . and Y,, Yz, live on (Q,, 4, P2). Arguing as above, we con- 
clude that, for a fixed ~,EQ,, (M(t), t30, ’ is a zero-mean Gaussian ran- 
dom vector on O[O, + co), defined on the probability space (Q,, 9i, P,). 

We will need the following extension of the above mentioned result of 
deAcosta [DeA76]. 

LEMMA 4.1. Let (E, 68) be a measurable vector space, and let G be a 
zero-mean Gaussian vector in E. Let {A(‘), i= 1, 2, . ..}. be a sequence of 
measurable bilinear forms on E 2 taking values in a topological vector space 
E, . Let S be a measurable subspace of E, . Then 

P( lim A”‘(G, G) exists and belongs to S) = 0 or 1. 
i-m 

Proof Mimic the proofs of Theorems 3.1 and 3.2 in [DeA76]. 1 

Proof of Theorem 4.1. In view of Condition 2.1, we must prove 

P((X(t), tE To}~ p)=O or 1. (4.2) 

For each t E To, there is a sequence (f I”, i = 1,2, . ..} of simple symmetric 
functions as described in Section 1 such that, as i + co, I,(f I”) +X(t) in 
probability. As a matter of fact one can choose these functions to be sup- 
ported by the finite unions of disjoint rectangles. Moreover, choosing, if 
necessary, a subsequence, we may and will assume that Iz(f I’)) + X(t) a.s. 
as i+co for any tETo. 

Now, each Z2(fu)) is clearly a measurable bilinear form in 
{M(s), s 2 O}. Applyifng Lemma 4.1 with E, = RTo we conclude 

P({X(t), tE To}c P191)=Oor 1 a.s. (4.3) 

which is a zero-one law for the (conditional) Gaussian measures. 
To establish (4.2), we must remove the conditioning. Set 

A={~,EQ,:P((X(~),~ET,,}E~‘IF~)=~}, 

and observe that 

(4.4) 

We want to apply the Hewitt-Savage zero-one law to the event A in order 
to show P,(A) =0 or 1. Recall that Zi, Z,, . . . and Y,, Y,, . . . live on 
(Q,, 4, P2). In fact, A~a((e,, Y,), (e2,.Y,), . ..). where e,,e,, . . . . are i.i.d. 
exponential random variables such that Zj = e, + e2 + . . . ej. Let rc be an 
arbitrary permutation of the numbers { 1, . . . . k} and 
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j=l 

+ (~~c~)l’~ f Gjri”“$(Yj)-’ I(-m,rl(Yj) 
j=k+l 

for t 2 0. For fixed o2 E A, {M,(t), t 2 0} is again a Gaussian vector on 
D[O, + co), and it is easy to check that the laws of {M(t), t 2 0} and 
{M,(t), t > 0} are equivalent. Therefore, P( {limi, o. Z2(fji)), t E T,} E 
P/5z)= 1 implies P({limi+m Z~)(fj’)), t E To) E PI 4) = 1, where Zp’(fj”) 
is obtained by replacing {M(r), t 2 0} by {M,(t), t 2 0} in the bilinear 
form Z(fi”). Thus, the event A is invariant under the permutations rc of the 
above kind. By the Hewitt-Savage zero-one law, P,(A) = 0 or 1, and hence 
by (4.41, 

P({X(t), tE To}e P)=P,(A)=Oor 1. 

This completes the proof. 1 

The following proposition complements a result of Krakowiak and 
Szulga [KS88a, Theorem 2.111 about the equivalence of different modes of 
convergence of sequences to a double SuS integral. Its proof uses the 
techniques developed in the proof of Theorem 4.1. 

PROPOSITION 4.1. Let f’“‘, m = 1, 2, . . . . be a sequence of symmetric, 
vanishing on the diagonals, Banach space-valued simple functions as in (1.2), 
and assume that 

Then 

P(I,(f’“‘), m = 1, 2 ) . . . converges) > 0. 

P(I,(f’“‘), m = 1, 2, . . . converges) = 1. 

ProoJ Let m = 1,2, . . . be arbitrary. We can choose a sequence of simple 
functions g (m*k), k = 1, 2, . ..) each one of the type sym (c,‘?=, ajl((xi, X~)E 
Zy)x Zy))), defined as in the proof of Theorem 4.1, such that It(g(m7k)) + 
I,(f(“)) a.s. as k + 03. Let now {k,, m = 1, 2, . ..} be a sequence of positive 
integers such that C,“= i d,,, < co, where for m = 1,2, . . . . 

d,,, = inf(s > 0: P( IjI,(g (m*km)) - I,(f’“‘)ll > E) < E). 

Then, by the Borel-Cantelli lemma, 

P( lim ((I,(g’“,km’) - I,(f’“‘)ll + 0) = 1. (4.5) 
m-cc 

Now P(I,(f (“‘), m = 1, 2, . . . converges) > 0 implies P(12(g(m*km1), m = 1, 2, . . . 
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converges) > 0. But each Iz(gc’i’,Xm’ ) is a measurable quadratic form in 
{M(t), t 2 O}. Applying Lemma 4.1 and arguing as in the proof of 
Theorem 4.1, we conclude 

P(IZ(g”‘i3km’), m = 1, 2, . . . . converges) = 1. (4.6 I 

Now (4.5) and (4.6) imply 

P(IJf’“‘), m = 1, 2, . . . . converges) = 1, 

proving the proposition. i 

A. APPENDIX 

As indicated in the introductory Section 1, we shall now show that I,(f) 
is uniquely defined by (1.3). The argument, in the case S = R, is similar to 
the one given in Dunford and Schwartz [DSSS, Chap. IV.101, for the case 
of Banach space-valued vector measures. Simply, we treat M(“) as an 
L4(Q)-valued vector measure, 0 <q < ~1. The fact that L4(Q) is not a 
Banach space if q < 1 is not relevant here, since all we need is the fact 
which follows from Theorem 5.4 of Krakowiak and Szulga [KS88c], that 
the semivariation /M(“)I, delined by 

IM(“)Jq (C) = sup 2 u,M’“‘(Ajn C) 
Y l/q 

j= 1 II I 
is finite for every symmetric Bore1 set C of finite m’“’ measure which does 
not intersect the diagonals. The above supremum is taken over all possible 
finite disjoint partitions {Ai};, i of R”, Als being Bore1 symmetric sets, and 
all real sequences (a,),k= t with lajl d 1, k B 1. We are now ready to give the 
proof of uniqueness of I,(f). 

Case S = R. Suppose that f (k’ and g (k) , k = 1, 2, . . . . satisfy conditions 
l-3 of Section 1. Then as k -+ co, hck) - gck’ + 0 in m’“’ and Z,(/~‘~rl~) con- 
verges in probability to some random variable X(C) for any symmetric set 
C of R” which does not intersect the diagonals. We need to prove that 
X(C) = 0 as. To this end we may assume that Zzck) + 0, m(“)--a.e. By 
Egoroffs theorem there is a partition Co, C,, . . . of the set C into symmetric 
Bore1 sets of finite m’“’ measure which do not intersect the diagonals and 
such that hck) + 0 uniformly on each Ci, i > 1, and m’“‘(C,) = 0. Since for 
every simple function Zrck’ and i > 1, 



PATH PROPERTIES OF STOCHASTIC PROCESSES 133 

and the right side tends to zero as k -+ co, we get that X( CJ = 0 for every 
i 2 1. On the other hand, by the Vitali-Hahn-Saks theorem X(C) = 
Cz 0 X( Ci) in Lq(8), hence X(C) = X( C,) = plim, _ o. Z,,(h(“)l c,,) = 0. 

General case (S is a separable Banach space). Let hck’ = fck) - gck), 
where, as before, f(“) and gck’ are two sequences of simple functions satis- 
fying conditions l-3 of Section 1. Then, as above, we have hck) + 0 in RI(“) 
and ln(h(k)lC) --) X(C) in probability. Let x’ E S’. Then I,( (x’, hck’) 1,) = 
(x’, I,(hck)l =) ) --) (x’, X(C) ), and since (x’, hck’ ) + 0 in m’“’ we obtain 
by the case S = R that (x’, X(C) ) = 0 a.s. Hence X(C) = 0 a.s. by the weak 
* separability of S’ which concludes the proof. 
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