
JOURNAL OF MULTIVARIATE ANALYSIS 38, 3650 (1991) 

Rates of Convergence in 
Multivariate Extreme Value Theory 

E. OMEY 

EHSAL, Stormstraat 2, 1000 Brussels, Belgium 

AND 

S. T. RACHEV* 

University of California, Santa Barbara, California 93106 

Communicated by the Editors 

We discuss rates of convergence for the distribution of normalized sample 
extremes to the appropriate limit distribution. We show that the rate of 
convergence depends on that of the corresponding dependence functions and that 
of the marginals. The univariate results are well known by now, so we restrict our 
attention to dependence functions (Sections 2 and 3). In the linal section of the 
paper we obtain a Berry-Es&en type result for multivariate extremes. ‘i‘l 1991 

Academic Press, Inc. 

1. INTRODUCTION 

Let X, = W,, 1, Xn,2r . . . . X+), n = 1, 2, . . . . denote a sequence of inde- 
pendent random vectors (T.v.%) in Rk with a common distribution function 
(d.f.) F. Define the sample maxima as M, = (A#,,. , , M,,*, . . . . M,,J where 
M,,i = max(X,+, 1 6 m < n} for each i= 1, 2, . . . . k. For many d.f.‘s there 
exist normalizing constants a,, > 0 and b,.i~ R (i = 1, 2, . . . . k) such that 

M -b 
n := Mn,, -bn,, Mn.k - bn,k 

5 . . . . A Y,  (1.1) 
a, a,, 1 an,k > 

where Y = ( Y,, . . . . Y,) is a r.v. with nondegenerate marginals. The d.f. H of 
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Y is a so-called max-extreme value d.f. Its marginal H, must be one of the 
three extreme-value types q,(x) = exp( -x-Or) (x > 0, a > 0), ul,(x) = 
q,( -x-l) or n(x) = cpi(e-“). Th e necessary and sufficient conditions on F 
for the convergence in (1.1) are well known, see, e.g., [9, 12, 13, 141. 

The uniform rate of convergence in the univariate case ,of (1.1) was 
considered by Fisher and Tippet [7], Anderson [l], Hall and Wellner 
[lo], Smith [Zl], Davis [6], Cohen [4, 51, Resnick [19], Balkema and 
deHaan [2]. For other related results we refer to [9, 11, 16, 173. The 
common feature of all estimates obtained by the above authors is that they 
are precise up to an O-term. We shall only quote the following result from 
the seminal paper of Smith [21]: suppose g is regularly varying with index 
p> 1, and 

lim SUP g(x) IF(x) - cp,b)l < ~0, 
.Y - m 

then 

A, := sup Iwf,In 6 x) - cp,(x)l = OWg(n)). 
XE R 

Zolotarev [22] and Zolotarev and Rachev [23] used the theory of 
probability metrics to obtain the exact form of the O-term in the Smith 
theorem. Using the Bergstrom [3] convolution method adapted for the 
maxima of i.i.d. random variables Zolotarev and Rachev [23] obtained the 
estimate 

A, < C max(p,, p,, p:l+ l))nl -r, l<r<2, 

where C is an absolute constant depending only on r, p, := p,(F, cpl) := 

SUP X,,, x’ IF(x) - cp,(x)l is the Kolmogorov weighted semimetric. Omey 
and Rachev [15] extended the above estimate for r > 2 and considered 
asymptotic expansions for P(M,& <x), see further Lemma 1.4. 

. The present paper deals with the (uniform) rate of convergence in (1.1) 
and we extend the univariate results of [ 15, 231 to the multivariate case. 
In order to formulate our results, recall the following definition of a 
dependence function, due to Frechet [S]. 

DEFINITION 1.1. Let F(x) be a k-dimensional d.f. with marginals 
F, , J-2, . . . . Fk and let D(x) be a k-dimensional d.f. on the unit cube [0, I]“ 
and with uniformly distributed marginals. The function D (or DF) is called 
a dependence function if 

f’(x) = D(F,(x,), -.., F&k)) for all x E I?. 
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If F has continuous marginals, then F has a unique dependence function. 
The following classical result motivates the use of dependence functions in 
the present context. 

THEOREM 1.2 [9, Theorem 4.2.31. Suppose Y is u nondegenerate T.V. 
with d$ H. Then (1.1) holds if and only if each marginal in (1.1) converges 
(in distribution) to a nondegenerate r.v. and for each u E [0, 1 Ik, 

lim P(u:‘“, u:/~, . . . . u:lu) = D,(u,, . . . . u,), (1.2) 
n-cc 

where D denotes a dependence function of F and D, the dependence function 
of H. Moreover, D, satisfies DL(u:IS, . . . . uki”) = D,(u,, .,., uk) for all s > 0. 

In order to investigate the rate of convergence in (1.1) wesplit the 
problem into two independent parts. Note that, first, the rate of convergence 
(1.1) depends on that of the convergence of all marginals. Second, 
it depends on the rate of convergence in (1.2). To see that we prove 
the following estimates in terms of the uniform metric p(U, V) := 
supxERk IF,(x)- F,(x)l, where F, is the d.f. of U. 

LEMMA 1.3. 

+ SUP ID”@:‘“, . . . . u;‘“) - D,(q, . . . . uk)(. 
UE [O,l]k 

Proof: Using the definition of D and D,, we have 

-H(X) 

= D”(F,(a,, 1 x1 + b,, 11, . . . . Fk-,(%kxk + bn,k)) - &#&(X1), . . . . Hk(Xk)). 

Hence, by the triangle inequality we have 

P (=$ y) Gu>;-Jlc ID”(u:? . . . . U:+D&b . . . . uk)l 

+ SUP ID,F';(a,,,x, +&,.I), . . . . ~,t(~n,kXn +bn,k)) 
XEjWk 

- D,(H,(x, ), -.., Hk(Xk))l. 
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Since D, has uniform marginals, the second term in the above inequality 
is not greater than SUP,,~~ C:= i IF;(asixi + b,;) - Hi(x This proves 
the lemma. 1 

The rate of convergence in univariate extreme value theory has been 
studied extensively. Smith [21] relates uniform rates of convergence to 
slow variation with remainder. In his paper he considers domain of attraction 
of q,(x) and I++~(x). Balkema and de Haan [2] obtain uniform rates of 
convergence to the limit d.f. n(x). A typical result is the following: 

LEMMA 1.4. Suppose that X,, X2, . . . . X,, are i.i.d. random variables and Y 
has d$ qi(x)=exp(-x-‘) (x20). Let M,=max(X,,...,X,). (i) For each 
r>l, p,(X,, Y)<cc ifand only iflimsum,,,n’-’ p(n-‘M,, Y)<co, 
where p,(U, V) :=sup, 1x1’ IF,(x)-F,(x)l. (ii) If 1 <rd2, then there 
exists a constant C= C(r) < 682, such that p(n-‘AI,, Y) 6 C max{p(X,, Y), 
p,(X,, Y), [p,(X,, Y)]“cr-l)}n’-‘for all n32. 

Proof (i) This is [15, Corollary 2.21. (ii) This is [23, Theorem 21. 1 

Lemma 1.4 (ii) may be viewed as the analogue of the Berry-Es&en 
theorem in the extreme-value setting. For corresponding results in the 
summation-setting we refer to [20] and the references there. The paper is 
organized as follows. In Section 2 we restrict attention to rates of 
convergence for dependence functions. In Section 3 some examples are 
given. In Section 4 we generalize Lemma 1.4 to dimension k > 2 and to all 
values of r > 1. 

2. RATES OF CONVERGENCE FOR DEPENDENCE FUNCTION 

From Lemma 1.3 we see that it will be useful to estimate the rate of 
convergence to zero of 

r,, := sup ID”(u:‘“, . . . . uL”‘)- D,(u,, . . . . uk)l. 
“E [O, Ilk 

In order to formulate our results we require r, in a more suitable form. 
Recall that the marginals of D,, and D are uniformly distributed. By using 
the transformation x = -l/log u for each of the marginals we can rewrite 
rn as 

r, = sup IP(nxi, . . . . nxk) - G(x,, . . . . x,)1, (2.1) 
x E co, cc y 

where each of the marginals of K and G has the d.f. cp,(x)=e-“” (x>O) 
and G is simple max-stable (cf. [ 123). In estimating rn we shall formulate 
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the results in terms of the metric pti which is defined below. Let V and W 
denote two nonnegative r.v. in lRk and let II/ : [0, co)” + [0, co) denote a 
continuous function, increasing to infinity in each component. We define 
the weighted Kolomogorov metric, 

P~W?W := SUP ~~x)I~"(x)-~w(x)l. 
x t [O. XI )k 

Let q(x) = ti(x, x, . . . . x), llx/l = min(x,, . . . . xk) and p,(V, W) = 
sup,, co,llk cp( llxll) IF,(x) - E;y(x)I < p,(V, W). We shall often refer to the 
following inequalities. For a, b > 0 

n/a-b1 min(a”-‘, b”-‘)< la”-b”l <n(a-b)max(a”-i, bnpl). (2.2) 

If F is a d.f. with marginals F,(x) = vi(x), then automatically 

F(x)dcp,(llx/l). (2.3) 

For the function p(x) defined above denote g(u) := SUP,~~ (~i(xu)/cp(x)), 
~20. If g(u)< co for all a>0 we define R(n) :=ng(l/(n- 1)) (n > 2). 
Finally, let V be a r.v. with d.f. K and W a r.v. with d.f. G (cf. (2.1)). In the 
next theorem we give a sharp estimate for r, in (2.1). 

THEOREM 2.1. (i) Assume p@(V, W)< co, then for each n>,2 we have 
r,<R(n) pJV, W). (ii) Zf pJV, W)< co, then for each n ~2, we have 
rn Q R(n) p,(V, WI. 

ProojI We only prove (i), (ii) can be proved in a similar way. Using 
(2.2) and G(x) = G”(nx) we have IK”(nx) - G(x)1 6 n IK(nx) - G(nx)l 
max(K”- ‘(nx), G”-‘(nx)). Using (2.3) for K and G we have 

IK”tnx)-G(x)l~nlK(nx)-G(nx)l cP;pl(nIlxll). (2.4) 

Hence 

This proves the theorem. 1 

If, for example, q(x) = xr, (r 2 l), then g(u) = u’B(r), where B(r) = (r/e)r. 
If, more generally, p(x) E RI/,, r 2 1, we have g(l/n) N B(r)(l/cp(n)) as 
n + co [ 151. Obviously, Theorem 2.1 is only useful if lim,, m (C&X)/X) = co. 
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The next theorem shows that the conditions imposed in Theorem 2.1 are 
almost necessary. 

THEOREM 2.2. Assume that cp E RV,, r> 1 and that lim,,, (&x)/x) 
= co. Then 

(i) pJV, W) < co holds if and only if lim sup,, no (cp(n)/n)r, < co, 
and 

(ii) limllxII - cp(ljxll) 1 K(x) - G(x)1 = 0 if and only if lim 
.+m(cp(nYn)rn=O. 

Proof: (i) If p,(V, W) < co, the result follows as in Theorem 2.1. To 
prove the “if” part we use (2.2) to obtain nlK(x)- G(x)1 min(K’-l(x), 
G”-‘(x)) < rn. Now suppose llxll >N; choose n such that n < llxll < 
n + 1. Obviously K”-‘(x) > K‘-‘( llxll 1) > K’-‘(nl) and G”-‘(x) 2 
G”-‘(nl), where 1 = (1, . . . . 1)~ I?“. Since lim,, co r,=O it follows that 
lim, + m K”-‘(nl)=lim,,, G”-‘(nl) = G(1) > 0. Hence 

cp( llxll) /K(x)- G(x)1 < '@ + ') 4'(n)rn 
1 

‘P’P’min(K”P1(nl), G”-‘(nl))’ cp(n) n 

Since cp E RF’,, we have rp(n + 1) N q(n) (n + co). Hence supll,,, ,N cp( llxll) 
JK(x) - G(x)1 < 00 and consequently pJV, W) < a3. 

(ii) If lim, ~ o. (cp(n)/n)r, = 0 it follows as in the proof of part (i) that 
limllxll + m cp( llxll) IK(x) - G(x)1 = 0. To prove the “only if” part, choose N 
such that cp(llxll) I&x)-G( x )I < E for all llxll> N. Now proceed as in the 
proof of Theorem 2.1. If n llxll > N, from (2.4) we obtain 

IK’Ynx)-G(x)1 <.zng (2.5) 

On the other hand, if nllxll <A we use (2.3) to see that 11U”(nx)- 
G”(nx)l < 2cp~-‘(llxll n) < 2q,(A/(n - 1)). Combining the two estimates we 
find that 

co(n) lim sup - 
“-CC n r.~&B(r)+li~~~p2(p,(~))(B(n)/n). 

Since v(x) E RVr and since cpr( l/n) tends to zero exponentially fast we 
obtain lim sup, _ o. (p(n)/n)r, <E B(r). Now let E JO to obtain the desired 
result. i 

Remark. Theorem 2.1 is also applicable for O-regularly varying functions 
cp (i.e., functions for which lim sup, _ m (cp(xt)/cp(t)) < cc for all x > 0). Also 
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exponential types of functions q(x) are allowed. If, for example, q(x) = xf 
exp(cx”) (s, c > 0) then it can be proved that g(l/n) is of the form 
n*exp(-nP) (O-C/?< l), [15, p. 6041. 

3. EXAMPLES 

In this section we illustrate the previous results for some well known 
bivariate d.f. 

3.1. Morgenstern-type distributions. Here F(x, y) = F,(x) F,(y) 
(1 + cr(l -F,(x)) (1 -F,(y))), where F, and Fz are (nondegenerate) d.f. in 
R and 0 < 01< 1. Obviously D,(u, u) = uv( 1 + a( 1 - a)( 1 - v)) and D,(u, a) 
= uv. Moreover, jD(u, u) - UUI < a( 1 - a)( 1 - u). An appeal to Theorem 2.1 
shows that $(x, v) =xy, p#‘, W)<cr. Since q(x) =x2 it follows that 
rn < n-‘B(2) p,(V, W). 

3.2. ~arshaI~-OIkin distribution. Let F(x, y) = 1 - e --’ -e-! + 
e --x-J-L max(x, y) (i>O). It is easily seen that D(u, v)= u+u-- 1 + 
(1 -u)(l -u)(l -max(u, u))“. Again D,(u, u) = uu and pJV, W) < co, 
where $(x, y) = xy. It follows that r, <n-‘B(2) p,(V, W). 

3.3. Let (X, Z) denote a random vector with Z= -X. Then 
F(x,z)=P(X<x, Z<z}=F,(x)-F,(-z) and F,(x)=F,(x), F2(z)= 
l-F,(-z). Hence F(x,y)=F,(x)+F,(y)-1 so that D(u,u)=u+v--1. 
It easily follows that also here D,(u, u) = uu and that r, <n-‘B(2) 
P#, W wih Ii/(x, Y) = XY. 

4. BERRY-E&EN-TYPE OF RESULT FOR THE MAX-SCHEME 

As we announced in the Introduction, we prove a general Berry-Esseen- 
type result for the max-scheme, hereby generalizing Lemma 1.4(ii) to 
dimension k > 2 and all r > 1. Let Y denote a r.v. in Rk and supose the d.f. 
H of Y is simple stable, i.e., each marginal Hi(x) is equal to q,(x) = 
exp 1x-l (x>O). In the sequel we frequently use properties of the 
probability metrics v,, pr, and L defined below. 

Define v,(X’, X”) = SUP~,~ h’ p(X’ v hY, X” v hY), where X’ v Y 
denotes a r.v. with d.f. F,(x) .Fy(x). Also define p,(X’, X”)= sup, Ilxll’ 
~F,~(x)-F,~~(x)( where, as before, llxll =min(lx,l,..., lx,J). Finally, the Levy 
metric L(X’, X”) is defined as usual: L(X’, X”) = inf (s > 0: F,,(x - ~1) - 
E < F,.(x + cl) + E}, where 1 = (1, 1, . . . . 1) E [Wk. We summarize some of the 
properties of these metrics. In the lemma below, Y and Y’ are i.i.d. simple 
max-stable r.v. independent of the non-negative r.v.‘s X’ and X”. 



CONVERGENCE IN MULTIVARIATE THEORY 43 

LEMMA 4.1. (i) For any 6 > 0, r > 0 we have 

p(X’ v 6Y, X” v 6Y) d F’v,(X’, XN)) (4.1) 

p(X’ v 6Y, X” v 6Y) < B(r) 6-‘p,(X’, X”), (4.2) 

v,(X’, X”) 6 B(r) p,(X’, X”), (4.3) 

where B(r) = (r/e)l. 

(ii) For any X we have p(X, Y) < (1 + M(2)) L(X, Y). 

(iii) For any 6 > 0 we huue L(X’, Y”) < p(X’ v 6Y, X” v 6Y) +k6. 

(iv) For any 6 > 0, p(X’, Y) < c,p(X’ v 6Y, Y’ v 6Y) + c,6, where 

Cl := 1 +kB(2) and c2 = c,k. 

(v) If Z and W are independent of X’ and X”, then 

p(X’ v z, X” v Z) < p(Z, W) p(X’, X”) + p(X’ v w, X” v W). (4.4) 

(vi) For any c>O, v,(cX’, cX”) < crv,(X’, X”), und pl(cX’, cX”) < 
c’p,(X’, X”). 

Remarks. (1) It is not difficult to see that v, and pr are max-ideal 
metric of order r, i.e., v,(X’ v Z, X” v Z) < v,(X’, X”) and v, is 
homogeneous of order r. 

(2) The result of Lemma 4.l(iv) is often called the max-smoothing 
inequality. The problem of extending it to max-stable sequences is open 
(cf. [ll]). 

(3) Expression (v) is a type of “convolution” inequality for the max- 
scheme. The convolution method goes back to Bergstrom [3]. 

(4) Since Y is concentrated on R:, there is no loss of generality in 
assuming X’, X”, are nonnegative r.v.‘s, see further the statement of 
Theorem 4.2. 

Proof: (i) Inequality (4.1) follows immediately from the definition of v,. 
As to (4.2) note that IFx, v sy(x) - F,. v Jx)l < IF,,(x) - F,.(x)1 I;;l(x/S). 
Since F,(x/6) < FY,( Ilxll/S) d B(r)( l/x11/6)‘, we obtain IF,, v ,&x) - 
F x,, v &v(x)1 <B(r) 6-‘p,(X’, X”) and (4.2) follows. Finally, (4.3) follows 
from (4.2) and the definition of v,. 

(ii) Since all marginals of Y have he same d.f. cpl(x), we have 
p(X, Y) d (1 + k sup, q;(x)) L(X, Y). Since q;(x) ,< B(2), we obtain the 
proof of (ii). 

(iii) Let L(X’, X”) > y, then there exists x0 E R”, such that IF,.(x) - 
F,..(x)J > y for x0 d x d x,, + yl. It follows that p(X’ v 6Y, X” v 6Y) 2 
IFdxo + ~1) - F,Jx, + yl)l F,,(x + ~1) a YF&, + ~1) 2 yf’&ljO 
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Using Frtchet’s inequality we obtain p(X’ v SY, X” v 6Y) > y 
max(O, CF=, Fy,(y/6) -k + 1). Since F,;(x) = Ed’/.‘> 1 - l/x, we have 
p(X’ v SY, X” v SY’) > y max(O, 1 - k6/y). Hence y < p(X’ v SY, 
X” v 6Y) + k6. Now let y t L to obtain the proof of the desired result. 

(iv) Combine parts (ii) and (iii). 

(v) For any xe[Wk we have Fx~Vz(x)-Fxt.,z(x)=(Fx,(x)- 
F,.(x))(l;,(x) - F&x)) + FJx)(F&x) - F,..(x)) and the result follows. 

(vi) Use the definition of vr and pr. 1 

We are now ready for the proof of the main theorem of this section. 

THEOREM 4.2. Assume X,, X,, . . . . X, is a sequence of i.i.d. T.V. in rW: and 
assume that Y is simple stable and independent of the Xi. If p,(X,, Y) < 00 
for some r> 1, then there exists a constant A such that p(n’M,, Y) 6 
An’-‘for all n > 1, where M, = X, v X, v . . . v X,. Here A depends on r, 
k, v,(X1, Y), p,(X,, Y), p(X,, Y) and will be determined in the course of the 
proof: 

Proof Let Y, Y,, Y,, . . . . Y, be i.i.d. simple max-stable random vectors 
and let N, = V:= r Y 1. Then N, 5 nY and using Lemma 4.l(iii) we obtain 
that 

p(n-‘M,, Y) = p(n-‘M,, n-‘N,) 

< c,p(~‘M,, v 6Y, n-IN, v 6Y) + c,6 (4.5) 

for any 6 > 0. The next proposition is crucial in the proof of the theorem. 

PROPOSITION 1. For each 6>0, we have p(n-‘M, v SY, n~‘N, v 6Y) 
< x4=, Ii, where 

I, :=p 
( 

n-l c Xi, n-‘Y, p(n~‘X, v 6Y, n’Y, V 6Y) 
i=2 > 

m+l 

Z, := C p n-l + Xj,n~’ 
j=2 ( 

n 

i=j+l ” .I 
Y, 

i=/+ 1 

( 

j-l 

p n-I V Yivn~‘XjvbY,n-li=l 
i=l 

\Il Yi v SY) 

m+l 

I,:= 1 p 
( 

n~‘Xjvn-’ \j Y;, n~lY, v n-l 
j=l r=m+2 

\(i yi) 
r=m+2 

( 

??7+1 

Z4:=p n-l V Y,vn-’ (I X,,n-lm+lYjvnel 
j=l j=m+2 j= I i=i+2 yj>. 

Here, l<m<n-1 andVj’=, Z,:=O. 
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Proof of Proposition 1. The representation 

m+l 

F;t(nx) -Fi(nx) = 1 (F”-j-‘(nx) Gj-‘(nx) - Gj(nx) F”-‘(x)) 
j= 1 

+F”-“-1 (nx) G”+‘(nx) - G”(nx), 

implies that 

p(n-‘M, v 6Y, Y v 6Y,) 
m+l J--1 

< 1 p n-l V Yivnpl i XivdY, 
j=l ( i=l i = j 

n-li?lYivnel + Xiv6Y) 
i=J+l 

( 

m+l 

+p n-l V Y,vn-’ \j Xjv6Y, 
j= 1 j=m+2 

m+l 

n-l V Y,vn-’ 
j=l 

Q Y,v6Y)=:T1+T2. 
j=m+2 

Using (4.4) with Z :=n-’ Vy=j+l Xi and W :=n-’ V;,,,, Yi we readily 
obtain that 

m+l j-l 

T,,<Z,+Z,+ 1 p n-’ V Yivn-‘X,vn-’ q YiV 6Y, 
j=l i=l i=j+l 

n-’ Q v n-l 
j=l 

(J Y,dY). 
i=j+l 

Since 

” j-l n m+l n 

V yi= V Yi V V Yi= V Yi V V Yj, 
i=l i= 1 i=j+l i= 1 i=m+2 
i#j i#j 

we obtain 

??I+1 

Tl<Z,+Z2+ c p nelXjv n-l 
j=l 

or T, < I, + Z2 + Z3. Finally, it is easy to see that T, < Z4, which proves the 
proposition. m 

In the next proposition we estimate Z3 and Z,. We shall use Proposition 1 
with m = [n/2], the integer part of n/2. 
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PROPOSITION 2. For ail n 2 3, I, < ~‘~v’(X,,Y)~‘~’ and I, d 
2’V’(Xi, Y)n’-‘. 

Proof of Proposition 2. (i) Obviously, 

m+l 

I,= C p 
j=l ( 

n-‘X,v 
n-m-l 

n 
Y,n-‘Y, v n-m-1 Y 

n ) 

Using (4.1), we obtain 

Using Lemma 4.1 (vi) and m = [n/2], we arrive at 

Z3<4’$v’(XlrYl)n1p’. 

(ii) Obviously, 

I,=p n-l 
( 

(j 
j=mf2 

X,vcY,K’ \j YjvqY). 
j=m+2 

Using (4.1) we obtain 

Since v’ is max-ideal of order t we obtain Z4 d (m + l)-’ (n-m - 1) 
vr(Xl, Y,). Hence I,,<2’n1-‘v’(X,, Yl). 

We are now able to prove the theorem in the case where 1~ r < 2. 

Proof of Theorem 4.2 in the Case Where 1~ r < 2. We prove the result by 
induction. Suppose we know that 

p k-’ + Xj,k-’ c Y, <Ak’-‘, 
> 

k = 1, 2, . . . . n- l,n>3, (4.6) 
i= 1 i=l 

where A will be determined later. We have to prove that (4.6) also holds 
for k=n. In order to do so, we first estimate I, and I, and we choose 
6 = Bn-‘, where B will be determined later. First consider I,. Using 
(4.6) and (4.2) we obtain Z,dA(n-l)‘-’ 6-‘v’(n-‘X,,n-‘Y,). Using 
Lemma 4.1 (vi) and the choice of 6, we obtain 

I, < AB-‘($)‘v’(X1, Y,)n’-‘. (4.7) 
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As to I2 we have 

Using(4.6)and(4.1)again,weobtainZ2d~i”=+,’ A(n-j)1p’((j-l)/n+6)p’ 
v’(n~1X~,n~1Yj).Hence,Z~6A4’~1v’(Xl,Y,)n1~’~J”;=,(j-1+B)~’and 
this implies that 

z <A4’-‘V’(X,, Y,) I-, 
2’ B’-‘(r-l) n . (4.8) 

Now combine the estimates (4.7), (4.8) and those of Proposition 2 to 
obtain p(n-‘M, v 6Y, n-‘N, v 6Y) 6 C,n’-‘, where 

A4’-’ 
B’p1(r-l)+4’ 3 0 1 

2 +2’ v,(X,, Y). 

Using (4.5) we obtain p(n-‘M,,, Y) < c1 C,n’-‘+ c2Bnp1 and hence 
(1 <r<2), 

p(n-‘M,, Y) d (cl C, + c2B3’-2)n1-‘. (4.9) 

Now we shall choose A and B to ensure (4.6) remains valid for k =n. 
Obviously, k = 1 and k = 2 in (4.6) show that A > p(X,, Y,) and 
A > 2’p(X,, Yr). A close examination of (4.9) shows that cl C+ c2B3’-* = 
aA/B’+~A/B’~‘+y+~B,wherea=c,(~)‘v’(X,,Y,),~=c,(4’-‘v’(X,,Y,)/ 
(r-l)), ~=c,(4’f+2’) v’(X1,Y1), and ~=c,3’-~. Now choose B 
sufficiently large to ensure that a/B’- P/B’+’ <i. Then choose A large 
enough so that A >,max(2’p(X,, Y,) 2(y +2B). It follows from (4.9) that 
(4.6) holds for k = n. 

Remark. Since 1 < r < 2 we have a/B’ + b/B’- ’ < (ct + p)/B’- l. Now 
choose B = (2(cr + /?)) 1’(‘p1). It is easy to see that B=w(v,(X,, Y1))‘/(‘--l), 
where o depends only on r and k. As for A we can take 

A=A*=max(2’p(Xl,Yl),o,v,(Xl,Yl)+w2vf~(r-’)(Xl,Y,)), (4.10) 

where o 1, w2 only depend on r and k. It follows that A < C max(p(X,, Y r ), 
v r (Xl, Y,), v~‘(‘-~)(X,, Yl)), where C only depends on r and k. r 

Proof of Theorem 4.2 in Case r > 2. If r > 2, then p’ (Xl, Y) < co implies 

683/38/l-4 
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that p*(X,, Y)<max(p,(X,, Y), p(X,, Y))< m and (4.6) holds with r=2, 
all k > 1, with A = A* (cf. (4.10)): 

p(n+M,, Y) 6 A*n -l, na 1. (4.11) 

Choose m so that 1 <m 6 n - 1. Obviously we have 

&,(nx) - FC(nx) = (F;f;“(nx) - FGp”(nx))(F,“,(nx) - F,“(nx)) 

+F~~“(nx)(F,“,(nx)-F,“(nx))+F,“(nx)(F;I,”(nx)-F~-“(nx)). 

Using IF;,-F,“I <mIFx,--F,I and (cf. (2.3)) F{(nx 
B(r)(n’/k’) /IxII’, we obtain that 

( 

n-m II - m 
pW’M,, Y)<p n-l V Xi, n-l V yi 

i=l r=l > 

.p n-’ c Xi,np’ c Y, 
1=l i=l 

I= Fy( (n/k 1 llxll ) d 

+B(r)Pr(X,,Y,) 

If m = [n/2], n > 2, (4.12) and (4.11) show that 

A* 

(4.12) 

pW’M,, Y)<p(m-‘M,, Y)k+B(r)p,((X,, Y,) 3’n’-‘). (4.13) 

Let N> 3 denote an integer to be determined later. Using (4.11) we have 

p(kPIMk, Y)&&4*N’2k1-‘, k = 1, 2, . . . . N. (4.14) 

NOW we prove the result of the theorem by induction. Suppose that 

p(kP’Mk, Y)<Kk’-‘, k = 1, 2, . . . . n-l,n>N, (4.15) 

where K will be determined later. We have to show that (4.15) also holds 
for k =n. Using (4.13) and (4.15),we obtain 

p(n-‘M,, Y)GKmld’$+B(r)p,(X,, Y)3’n’-’ 

(4.16) 
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Now choose N sufficiently large to ensure that N> 3 and 4.6’-‘A* < 
N-2; i.e., take N= [4.6’p’A*] + 3. Next choose K such that (cf. (4.14)) 
K> A*N’-* and (cf. (4.16)) K>2B(r) pJX,, Y)3’. These choices show 
that in (4.16) we have p(n-‘M,, Y)< Kn’-‘; i.e., (4.15) holds also for 
k=n. u 

Summarizing our findings for the constant A in Theorem 4.2 we have 

COROLLARY 4.3. In Theorem 4.2 we can take 

A = A* = Cmax(p(X,, Y), v,(X,, Y), v,~/(‘-~)X~, Y) if l<r,<2 
Cmax(A*‘pL, p(X,, Y)) if r > 2, 

where C is a constant which depends only on r and k. 
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