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We present strong laws of large numbers, central limit theorems and laws of the 
iterated logarithm for the growth of some random walks on free groups and semi- 
groups which generalize isotropic random walks. Our method to derive these 
results is based on corresponding limit theorems on polynomial hypergroups. If this 
method can be applied, then it has the advantage that expectation and variance 
appearing in the limit theorems can be computed explicitly. 6 1991 Academic 

Press. Inc. 

INTRODUCTION 

In this paper we present a method to derive limit theorems for the 
growth of certain random walks on free groups and semigroups by using 
corresponding limit theorems for polynomial hypergroups. In essence, the 
idea is the following: Suppose that there exists a Banach subalgebra M of 
the Banach algebra Mb(r) of all bounded measures on a free group or 
semigroup J’ such that A4 admits a linear basis consisting of probability 
measures 11, on r with supp p, = (w E r 1 lwl = n}. It turns out that then A4 
is commutative and isomorphic to a polynomial hypergroup algebra. We 
can consequently study the growth IX,X, ... X, 1 of the product of inde- 
pendent r-valued random variables X, by regarding ( JX, X, . . . X, I), E N as 
a Markov chain on N, associated with a suitable polynomial hypergroup. 

Since this method depends entirely on the existence of a suitable A4, it is 
clear that our method has the disadvantage that the results cannot be 
extended to arbitrary random walks on free groups or semigroups. 
Furthermore, it is not possible to obtain more general results such as that 
of Sawyer and Steger [15] who considered random walks for groups 
generated by a finite number of free involutions. 
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On the other hand, when applicable, our method has some advantages 
in comparison to the results of Derriennic [3], Guivarc’h [6] and Sawyer 
and Steger [ 151, if we are interested in the behaviour of IX, X, . . . X, (. The 
first advantage is that the parameters in the limit theorems (which means 
expectation and variance) can be computed explicitly in a straightforward 
way and that the variance is in fact positive except for some trivial cases. 
The paper of Derriennic [3, p. 1973 contains an expression for the expecta- 
tion, but it seems impossible to immediately get explicit values (except for 
isotropic random walks). Sawyer and Steger (see [ 15, (6.5), (6.6)]) have 
explicit analytic expressions for expectation and variance of nearest 
neighbor random walks. But, only very few facts about the general case are 
known. For instance, Sawyer and Steger [IS] do not give general condi- 
tions when the variance is positive. Further advantages of our method are 
that our limit theorems require very weak moment conditions, and that it 
is possible to derive limit theorems for random variables X, which are not 
necessarily identically distributed. 

This paper is organized as follows: In Section 1 we introduce 
pseudoisotropic random walks on free groups, formulate the associated 
limit theorems and give explicit formulas for expectation and variance of 
these random walks. Section 2 then contains the proofs of the results of 
Section 1 that are based on a reduction of the problem to limit theorems 
for random walks on polynomial hypergroups. A central step of this reduc- 
tion is valid in a more general situation for random walks on discrete 
hypergroups. Since this reduction result is of independent interest, it will be 
discussed and proved in an appendix in the end of the paper. In Section 3 
we transfer the methods used in Section 2 to a class of discrete semigroups 
and obtain limit theorems for pseudoisotropic random walks on such semi- 
groups. These results generalize similar results of Soardi [ 161 slightly. 
Finally, in Section 4 we deal with the question to what free semigroups we 
can apply our method. 

It is a pleasure to thank the referee for some valuable comments which 
did lead to improvements of the presentation of the following results. 

1. LIMIT THEOREMS FOR PSEUDOISOTROPIC 
RANDOM WALKS ON FREE GROUPS 

1.1. Let r be the free group generated by d generators g,, . . . . g& 
Denote the neutral element by e. Every word WE r can be written in a 
unique way as 

w = gy,' gy2z . . . g:," with kEN,, i,, . . . . i,E{l,..., d}, 

n,, . . . . n,EZ-{O},il-l#i, for I E { 2, . . . . k}. (1.1) 
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Using this representation of WE r, we define the length of w by 
IwI :=Cf=, In,l. Let Mb(r) be the Banach algebra of all bounded 
measures on r equipped with the convolution which is induced by the 
group multiplication on ZY 

Fix a constant c > 0 and numbers s,, . . . . sd, t,, . . . . t,,> 0 such that 

d 
c b,+t,)=l and s,t,=szt,= ... =s,t,=c. (1.2) 

k=l 

The arithmetic-geometric mean inequality implies that 0 < cd l/(4&). 
Define positive measures pL, E M + (r) (n E N,) as follows: 

(a) pn is supported by {g E r: (gl = n}. 
(b) ,u,( { g}) = n;= I s;~‘@‘,“. t~ax(-n’,o) if gEr with Jgl =n has the 

representation (1.1) which determines the parameters k, n,, . . . . n, and 
11 9 .‘., ik uniquely. 

The closed subspace of Mb(r) generated by the measures p, (n E No) is 
denoted by MS, . .._. sd. [, , ._., ld or, in brief, M if there is no possible confusion 
with respect to the indices. 

The purpose of this paper is to present limit theorems for the growth of 
random walks on r whose laws are contained in a common space M. This 
means the following: Let (Xn)ncN be a sequence of independent r-valued 
random variables which are defined on a common probability space 
(52, &‘, P) such that their distributions v, are contained in a common space 
M. We shall give limit theorems for (IS, I), E N, where S, := X, X, . . . X, is 
the random walk of the partial products of the X,,. Following the notation 
of Soardi [16] who considers similar random walks on special semigroups 
(see also Section 3), we say that a random walk as introduced above is 
pseudoisotropic. In particular, if s, = . . . = sd = t, = . . . = t, = 1/(2d), then 
we have the isotropic case which is considered in Sawyer [ 141 and 
Voit [19]. 

The restriction to investigating pseudoisotropic random walks is a result 
of our method to derive limit theorems. As shown in Section 2, the spaces 
A4 s ,.,,,, sd,t ,,.,.,, d are Banach subalgebras of Mb(r) and (IS, I),, N is a Markov 
chain on No. Using these facts, we shall forget the construction of 
w”I)ntN and consider it as Markov chain on No whose transition 
probabilities are associated with a convolution structure which is con- 
nected with MS ,,..., +,. ,, ,_._, ,d in a natural way. This convolution structure is a 
polynomial hypergroup (for details see Heyer [S], Lasser [ 111, or Voit 
[ 17-19]), and we can apply limit theorems for Markov chains on polyno- 
mial hypergroups (see Voit [ 17-211) to derive the desired results. This 
method is also used in Soardi [16] and Voit [17, 193 in order to derive 
limit theorems for isotropic random walks on certain semigroups and 
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infinite distance-transitive graphs. Soardi also studies some pseudoisotropic 
random walks. 

In order to avoid a trivial case which has to be considered separately, we 
now assume that d > 2. In fact, d = 1 means r = Z, in which case the classi- 
cal limit theorems for sums of independent, real valued random variables 
can be used. These theorems also work for c =O, which is formaily 
excluded by our assumptions. This is a consequence of the fact that in this 
case no cancellation of symbols appears during our random multiplication, 
and therefore IS, [ = xi = 1 IX, 1 holds. 

Before we present the limit theorems, we define moment functions mi 
and m2 which are needed to describe the parameters of these limit theorems 
explicitly. 

1.2. For HE No let 

ml(n)=n l- ( 2(rw - 1) 
(w-r) w”+m- 1 > 

2(1-r)w(w”-1) 
- (w-l)[(U’-r)w”+rw-1] 

and 

w(1 -r)(wn+ 1) 
m2(n)=n2-4n.(M’L l)[(w-r) Wn+rW- 11 

4(w+ 1) w(1 -r)(w”- 1) 
+(w-l)~[(W-r)Pv~+rW-l]~ 

where 

(1.3) 

(1.4) 

1 
r:=2d- 

and 
l+jl-4c(2d-l)>l 

w:=l-J’iiqGzj . 

We consider two important special cases: For n E { 0, 1 } we have 

m I(O) = m2(0) = 0, mi(l)=JiX@Zi-), m,(l) = 1. (1.5) 

ml( 1) and m2( 1) are important for nearest neighbor random walks. 
Furthermore, for isotropic random walks on f we have c = 1/(4d2), 
w = l/r = 2d - 1 and thus 

ml(n) = n - 2;ddI,:,(1 -(2d- I)-“1 (1.6) 
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and 

Equations (1.6) and (1.7) are special cases of formulas for moments of 
isotropic random walks on infinite distance-transitive graphs (see Sec- 
tion 5.6 of Voit [19]). Equation (1.6) can be found also in Sawyer [14] 
and Derrienic [3]. 

The following theorems are proved in Section 2. 

1.3. THEOREM. Let the X,, be identically distributed with law v E A4. Then 

IS,l/n 4 p := Wh(lX1 I)) almost surely, 

where p E [0, CC ] is possible. 

Moreover, if in addition, E(m,( IX, I)) < co and v # 6,, then p E 10, co [, 

~2:=~~~2(1~,1))-~~~,(1~,1~~2~10, mC, 

and (IS,, 1 - np)/,,& tends in distribution to the normal distribution N(0, o*). 
Finally, if E( 1 X, I 3, < 00 and v # 6,) then o* E 10, cc [, 

lim+szp Jen = 1 almost surely, 

and the set of cluster points of the sequence 

(I I&I -wIIJ2~2n~lnlnnL.. 

is equal to [ - 1, l] with probability one. 

1.4. THEOREM. Assume that the distributions v, of X,, are not degenerate 
(i.e., #a,). Zf of :=E(m,(lX,,I))-E(m,(lX,I))*, thrn ai>O, and we have 
the following results: 

(1) If (rJnsN is a sequence of positive real numbers such that r,, + 00 
and C,“=, of/r: < co, then 

lim L l&l- f: W,(lXkl)) 
> =O almost surely. 

n-m r, k=l 
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(2) [f st := C; = , CJ: satisfies the Lindeherg condition 

lim L i E(m2(l~kI).lr,x~,,as,i)=0 “‘ms;k=, 
,for every 6 > 0 ( 1.8) 

(1 A being the characteristic function of a measurable set A), and if 

sup $ i E(IXI,I’)<oo for ie { 1,2), (1.9) 
ncN ” k=l 

then (IS,1 -Cl! 1 E(m,(lX,I)))/s, converges in distribution to N(0, 1). 

2. PSEUDOISOTROPIC RANDOM WALKS AND POLYNOMIAL HYPERGROUPS 

In this section we shall show that, for every pseudoisotropic random 
walk (%A,aN on rv WnOnEN is a Markov chain on a suitable polynomial 
hypergroup. As a consequence, we shall derive Theorems 1.3 and 1.4 from 
limit theorems for polynomial hypergroups. 

2.1. PROPOSITION. The measures p, of Section 1 satisfy the recursion 
formula 

In particular, M is a commutative subalgebra of Mb(r). 

Prooj We first show the recursion formula for p,, * pl. To do this, we 
take g E r with 1 g( = n + 1 and note that g has exactly one representation 
as g = h . w with Jhl = n and I w( = 1. Therefore, by the definition of p,,, it 
follows that 

Pn*Plk)=P,+I(g) for nEN. (2.2) 

Now take ge r with lgl = n - 1. Then g can be written as g = h. w with 
Ihl = n and IwI = 1 if and only if h is of the form h = gw-‘, where the last 
character of g is not equal to w. Therefore, since p,(u) p,(u ~ ’ ) = c for all 
u with IuI = 1, and since cl,(gw~l)=~n~l(g).~L(w-L) in the case above, 
we conclude that 

Pl *PI(g)= c p,(w)p,(w-‘)=2dc=2dcp0(g) (2.3) 
h’Er..In.l=I 
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and, for n > 2, 

&I *‘Ah(g) = c P,(W) Pnbo 
w E F, I WI = 1, w not last symbol of R 

=C~L,~,(g)lll(~~1)~LI(~)=(2d-l)c~n-I(g). (2.4) 

Equations (2.2k(2.4) prove the recursion formula for ~1, * pI. Since the 
equations for pu, * pu, can be derived in a similar way, we omit details. 

It follows from fit0 = 6,, (2.1), and induction that p,,, * p, = p,, * p, E M 
for all m, n E N. 

2.2. Using the basis (pH)naNO of M, we define an isometric 
isomorphism n from A4 onto MJN,,), the Banach algebra of all bounded 
measures on N,, by rc(p,) := 11~~ 11 .6,, 6, being the point measure of 
n E N,. rc preserves probability measures, and, if Mb( N,) is equipped with 
the convolution l inherited from A4 via rr, (Mb( N,,), l ) becomes a Banach 
algebra isomorphic to M. The convolution product of probability measures 
on this algebra is always a probability measure. 

Let us consider details of this convolution: Since lIpLo 11 = l/,ul )I = 1, we 
have 

I*1 * PI = lb* II . l,f:,l -+ 2cd.p, 

and 

p1*7& 

IIP”+IIl &+I =-.- .~ 

IlPn II lb”+ I II 
+(2~-l)cllPn-,ll k-1 

II& II IlPn- 1 II (2.5) 

for n > 2, and therefore, 

and 

~~.6,=~6,+,+‘la’-111(2d-1’cg~-~ (n32). (2.6) 
n lb” II 

Let 

a1 = llP* II? cl = 2cd, an = II&+ I ll/llP, II, 
c,, = (2d- 1)~ II/L, ll/ll~, II for ~32. 

(2.7) 

We then have a, + c,, = 1 for n E N, since the convolution product of 
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probability measures is a probability measure. Define polynomials 
(f’nlnemr,, by 

P,(x) := 1, P,(x) := 2.x. J(2d- 1 )c, 

P,(x).P,(x)=a,P,+,(x)+c,P,~,(x) (n E N ). 
(2.8) 

Standard facts on orthogonal polynomials (see Chihara [2, Chap. I]) show 
that V’J, E No is a sequence of orthogonal polynomials. The choice of P, 
seems to be unnatural at first glance, but in Section 2.4 we shall see that 
this normalization ensures that the associated orthogonality measure is 
supported by [ - 1, 11. 

We shall next show that the study of pseudoisotropic random walks /S, 1 
can be reduced to investigating Markov chains on a plynomial hypergroup. 

2.3. PROPOSITION. The convolution l on Mb( N,) defines a polynomial 
hypergroup which is associated with the orthogonal polynomials (P,),, NO. 
Moreover, if (X,), E N is a sequence of independent random variables on r 
withlawsv,EM,andz~S,=eandS,=X,X,...X,(nE~), then(IS,I),,,, 
is a Markov chain on NO with 

I&I =o, P(IS,,I=klIS,-,I=~)=(~(v)~~,)(k) (k, 1~ N,, nE N). 

(2.9) 

Proof: To check that 9 defines a polynomial hypergroup which is 
associated with (P,),, NO, we have to prove that, for m, n E N,, the 
linearization formula P, . P, = CTzk _ n, gm.n,k Pk implies that 6, l 6, = 
CIG=‘L, gm,n,&k. BY (2.6) and (2.8), this is true for m E (0, 1 } and all 
n E N,. Once this is true, it follows for m > 1 by (2.6), (2.8), and induction. 

The further assertion is a consequence of Proposition 2.1 and 
Theorem A.1 which is formulated and proved in the end of this paper. 

2.4. We are now in the position to apply results for random walks 
on polynomial hypergroups (see [ 17-211). However, in order to get 
explicit formulas for the moment functions which are defined in [ 17 or 191 
in terms of derivations of the P,, we first derive a suitable explicit represen- 
tation of these polynomials. To do this, we set 

Q&c) := 1, al(x) := a;(;;- 1 )C)“,2 
. . ..a.-1 .p,(x) (nEN). 

Then, using a,, c, + , = (2d- 1)c for n E N, we obtain 

Qo(x) = 1, Ql(X, = 2x9 Q,(x) QAxJ=Q,(4+& Qdx) 
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and 

Qnb) Q,(x) = Qn+ ,(x1 + Qn- I(X) (n22) 

which implies 

Q,(cos 0) = 
sin(n+ l)&(1/(2d- l))sin(n- 1)0 

sin 8 
(84, e+o,n22) 

(2.11) 

(see, for example, Askey and Wilson [l, (4.29), (4.33)]). In particular, by 
[l, Eq. (4.31)], the orthogonality measure of the sequence (Pn)neNO is 
supported by [ - 1, l] and has the Lebesgue density 

(1 -x2)“2/(1 -(2d- l)d-‘X2). (2.12) 

We now use the Q, to compute the a,, c,, and 1)~~ 1) as well as the moment 
functions. For this, we define w as in Section 1.2 and observe that 
‘pO := f In w > 0 satisfies cash ‘p. = (2 J-)-l > 1. Therefore, by 
(2.8), we have P,(cosh cpo)= 1 (for no No) and 

1 
Pn(x) = Q,(cosh cpo) Q,(x) (n E No). 

It follows that 

Qn + ,(cosh cpo) 

“= Q,(cosh cpo) Q,(cosh cpo) 

y/m. 
sinh(n + 2) cpo - r sinh ncp, 

sinh(n+ 1) ‘po-r sinh(n- 1) cpo 

=J~.e~~+O(e-“)=J@ziji.Ji+O(e-“) 

= i( 1 + ,/l - 4c(2d- 1)) + O(ePfl) (2.14) 

for n E N. Using the definition of a, (see Section 2.1), we obtain 

Q,(cosh cpo) 
“” ” = Q;(cosh cpo) 

(HEN). (2.15) 

The moment functions m, and m2 were defined in Section 2.4 of Voit 
Cl91 by 

d’ 
mj(4=~Wosh cp) ~p=‘po (i’l, 2, PrEPJo). 



284 MICHAEL VOIT 

If we use (2.11) (2.13), the definition of M: and the abbreviation 
r = l/(2& 1 ), then a (longer) straightforward computation (or an applica- 
tion of a computer algebra program like MAPLE) leads to the explicit 
formulas (1.3) and (1.4). 

We conclude the discussion of the P, by noting that by (2.11) the Q,, and 
hence the P, can be written as linear combinations of Tchebichef polyno- 
mials of the first kind with nonnegative coefficients. In other words, 
Property (T) required in Voit [ 17, 19,211 is true in the situation here. 

If we use Eq. (2.14) and Property (T), then Theorem 1.3 is a conse- 
quence of Theorem 3 in Voit [ 171, Theorem 2.9 in Voit [ 191, and 
Theorem 2.5(2) in Voit [21]. Part (1) of Theorem 1.4 follows from 
Corollary 2 in Voit [ 173 and part (2) from Theorem 2.9 in Voit [ 191. In 
both cases we have to use the fact that SUP,,~ Inz,(n)-ni <ixj (see 
Eq. (1.3)) which ensures that m ,( IS,, 1) can be replaced by IS,, 1 in the limit 
results. 

2.5. Interpretation of the moment m,. Let m: r--+ [w be an additive 
function, i.e., m(.xy) = m(x) + m(y) for x, y E f. The set of all additive func- 
tions is a vector space, and every additive function is determined uniquely 
by m(g, 1, . . . . m( gd). If we fix a Banach subalgebra M = M “,, ,-,,s d ,,,,,,,,, d as 
in Section 1, then the functions @ri,: N, -+ R, $(a) := & =,, m(w)k. 
pL,(w)/IIpH II satisfy the addition formula 

k k 
Si.J#ik) = 1 

I=0 0 
, &ti) fik-I(j). (2.16) 

Since m, is determined uniquely by ml( 1) and the addition formula 
si*si(m,)=m,(i)+m,(j) ( see Voit [ 19, Section 2.4]), we have #r, = rm,, 
r being a constant. Therefore, up to the constant r, m, can be interpreted 
as the average of an arbitrary additive function on K But, unfortunately, 
we do not have any good interpretation of r. Even worse, if M is the 
algebra of isotropic measures (i.e., si = . . . = s, = t r = . = td), then 5r1 = 0 
and Gi2 = rml for every additive function m # 0 (r > 0, a constant depending 
on m). It is fairly unclear how this relation can be interpreted. 

Additive functions on I- can be used to derive further facts about random 
walks on free groups. For instance, if we define an additive function m by 
m(g,)= 1 (i= 1, . . . . d), then m(S,) counts the difference of how often the 
generators g,, . . . . g, and their inverse elements, respectively, appear in S,. 
Let R+(g) and R-(g) be the number of generators and their inverses, 
respectively, that appear in the reduced form of g E ZY Using R+(g) + 
R-(g)=lgj and R+(g)-RR_(g)=m(g), we obtain the following strong 
law of large numbers from Theorem 1.3 and the strong law of large 
numbers for sums of independent real valued random variables. 
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2.4. THEOREM. Let the random variables X, be identically distributed on 
r with law v E M. If p := E(m,( IX, I)) < CO, then 2 := E(m(X,)) E R and 

R+(XJ/n+f(~++) and R-(S,)/n++(p-I.) almost surely. 

3. PSEUDOISOTROPIC RANDOM WALKS ON SOME DISCRETE SEMIGROUPS 

3.1. Let f be the discrete semigroup generated by the D + E 
symbols a,, . . . . a, and b, , . . . . b, with F different (and consequently 
independent) relations 

aik b,, = e, k = 1, . . . . F, ik E { 1, . . . . D},j, E { 1, . . . . E}, (3.1) 

where e is the neutral element of r. To avoid trivial cases, we assume that 
E, D, F> 1. 

The purpose of this section is to derive limit theorems for random walks 
on r which are similar to that of Section 1. The family of semigroups we 
here investigate contains all semigroups which were considered by Soardi 
[16]. In fact, Soardi assumes D= E= F and a,bi=e (i= 1, . . . . F). 

Fix r as above. Every word w E r can be written as 

w=g,...g, with ke N,,g,E {a,, . . . . a,, b,, . . . . bE} 

(i= 1, . . . . k)andg,g,+,#e(i=l,...,k-1). (3.2) 

If a word w E r has this unique reduced form, then 1 WI := k is the length 
of w. Let Mb(r) be the Banach algebra of all bounded measures on r 
equipped with the convolution which is induced by the semigroup multi- 
plication. 

Fix an arbitrary probability measure p, E M’(T) with supp pL1 c. 
{wEr:lwl= l} and define 

k=l 

rf p := If= 1 pl(aj) < 1, then 

with equality if and only if F= D . E and p = $, in which case we in 
essentially have isotropic random walks on Soardi’s semigroup S,. 



286 MICHAEL VOIT 

Now define positive measures pne Mb(r) (no Ni,) with supp pn c 
{M’E~:(M’/ =nf by ~~~=6, and 

Pn(8, .g*...g,)= ii cc1(g,), (3.3) 
/= 1 

where 

lg, .g*..~& =a and g,, . . . . g, E (a,, . . . . a,, b,, . . . . bE}. 

Using the methods of the proof of Proposition 2.1, we obtain the following 
result: 

3.2. PROPOSITION. The measures CL, satisfy the recursion formula 

~I*~L,=c1,*~L1=c1,+1+c~L,~I (n E Iv). (3.4) 

In particular, the closed subspace M of Mb(r) which is generated by the 
measures jam (n E f+JO) is a commutative subalgebra of Mb(r). 

3.3. Let (Xi) be a sequence of independent, r-valued random 
variables with distributions v, E M. Let S, := e and S, :=X, .X, . ... X, 
(n E tV) be the associated random walk. We say that such a random walk 
is pseudoisotropic with respect to M. We are interested in deriving limit 
theorems for 1 S, I. If c = 0, then no cancellation can appear and JS, 1 = 
x1= i (X, 1 holds. Since this case can be completely treated by using classical 
results for sums of real independent random variables we shall now exclude 
it by assuming c > 0. We then can copy the methods of Section 2 and intro- 
duce the isometric isomorphism 7c from M onto Mb( f$,) by n(Q := 
11~~ 11 6, (n E N,). Let l be the convolution on Mh( N,) such that 7c becomes 
a Banach algebra isomorphism. Using 

p1*h 

IIPLn+lll Pn+l =-.- .- 

IILL II Ilbz + 1 II 
+c II/b-III 11,-l 

IIPn II IlPn ~ I II 
bEN), 

we obtain 

6,*61=a,6,+,+c,~,-,, where ~~:=@&f,c,,:=“)~;” (3.5) 
n ” 

for n E RJ. The associated orthogonal polynomials which are given by 

P, := 1, Pi(X) := 2x. &, PL-Pn=anP,.L +c,P,-,(neN) (3.6) 
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are-up to normalization-Tchebichef polynomials of the second kind. 
More exactly, if 

Q. = 1, Q,(cos 0) = sin(n + 1) B/sin 8 (eE@,e#o,nEN)), 

then P,(x) = Q,(x)/Q,((2 fi))‘) for n E N,, where (2 &)-I > 1. 
Moreover, using the methods of the proof of Proposition 2.3, we obtain 
that (Mb(Njn), l ) is a polynomial hypergroup, that the (P,),,No are the 
associated orthogonal polynomials, and, finally, that (IS, I),, N0 is a 
Markov chain on N, satisfying 

l&l =o, 

P(IS,l=kl Is,~,(=Z)=(~(v,)*6,)(k)(k,Z~N~,n~~). 
(3.7) 

3.4. It turns out that we have to consider the cases c E [O, i[ and 
c= d separately in order to derive limit theorems for IS,,/ (see also 
Remark 5 in Soardi [16]). Let us first assume that c E 10, $[. Then we 
obtain exactly the same limit theorems as stated in Theorems 1.3 and 1.4, 
where only the moments m, and m, have to be adapted to the present 
situation. Using the definitions of m, and m, in terms of derivatives of the 
P, (see Voit [19, Section 2.4]), we obtain 

m,(n)=n 1 +wn+T ( > 
2w(w”- 1) 

-1 - (w- l)($+l- 1) (3.8) 

and 
4(w” + 1)n 4(w+l)w(w”-1) 

m2(n)=n2-(w-~)(W”+L~)+(W-q2(Wn+Lq~ (3.9) 

where w := (1 + -)/(2 A). In particular, we have m,( 1) = &% 
and m,( 1) = 1. Therefore, if (S,),, N0 is an arbitrary nearest neighbor 
random walk with law I*,, then the assertions of Theorem 1.3 hold with 
expectation ,fm and variance 4c, where c := C:= i ~~(a~,) p,(bjk). 

We next present some limit, results for c = 4. In essence, this case was 
treated by Soardi [16]. While the central limit theorem agrees with 
Soardi’s, our strong law of large numbers slightly improves the corre- 
sponding results in [16]. The law of the iterated logarithm is new. 

3.5. THEOREM. Let c = a. Let X, be independent, identically distributed 
r-valued random variables with law v E M. If E( (X, I “) < CC for a constant 
E,E [l, 2[, then JS,l/n’3-“)‘2 + 0 for n + 00 almost surely. Moreover, if 
v#6,, and if 

n(n + 2) 
m2(n) := 3 for PIEN, and 0’ :=E(m2(lX,I))~1Q OOC, 
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then S,/Ja’n converges in distribution to the Rayleigh distribution P,,~ on 
[0, co [ which has the Lebesgue density fi x2 . exp( -x2/2). Finally, if in 
addition, E( IX, 14) < co and v #S,, then o2 E 10, w [, 

lim sup S,/Jm = 1 almost surely, 
“-X 

and, with probability one, the set of cluster points of (S,,/dm),, N 
is equal to [0, 11. 

Proof. The strong law of large numbers follows from Gallardo and Ries 
[S] (see also Theorem 5 in Voit [17]). The central limit theorem is a 
consequence of Theorem 3.1 in Gallardo [4] (see also Voit [18, 
Theorem 3.21). Finally, the law of the iterated logarithm results from 
Theorem 1.5 in Voit [20]. A weaker version of this law was earlier stated 
in Gallardo [4]. 

We conclude this section by noting that the results of Mabrouki [13] 
yield an invariance principle for the central limit theorem in the situation 
of Theorem 3.5. We suggest that an analoguous principle exists for 
c E 10, a[. 

4. FOR WHICH SEMICROUPS Do THERE 
EXIST ASSOCIATED POLYNOMIAL HYPERGROUPS? 

In this section we briefly discuss the limitations of the method to derive 
limit theorems on free groups or semigroups by using polynomial hyper- 
groups. To do this, we consider a semigroup r which is generated by N 
symbols a,, . . . . aN with the relations 

aiai = e where (i,j)EfIc (1, . . . . N} x (1, . . . . N}, HZ@, (4.1) 

where e is as usual the neutral element of ZY Assume without loss of 
generality that a, # aj# e for all i, je { 1, . . . . N}, i #j (otherwise we could 
remove some generators). 

To come to a classification of semigroups to which our methods apply, 
we ask for the existence of a sequence (p,,)neNo of probability measures on 
r with supp pn = {w E r: /WI = n} such that the Banach space Mc Mb(r) 
generated by the pL, is closed under convolution. It follows by induction 
that A4 is generated by the n-fold convolution powers & of ~1~ (n E IV,). 
Consequently, the following proposition leads to the desired classification: 

4.1. PROPOSITION. In the position above, there exists a probability 
measure Pam’ with supp p = (a,, . . . . a,,,} such that the Banach space 
generated by the measures ,u”I jw,tr:,Wl=nj (n E FV,) is a Banach subalgebra of 
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Mb(F) tf and only tf one of the following cases holds (after a possible 
permutation of the generators): 

(1) N=2d+r (d,r>O) and 

H={(l,d+l),(2,d+2) ,..., (4 2d), (d+ 1, 1X (d+2, 2), . . . . (24 d), 

(2d+ 1,2d+ l), (2d+ 2,2d+ 2), . . . . (N, N)}; 

i.e., F is the free product of the free group Fd (which is generated by d 
elements; see Section 1) and the group generated by r free involutions. 
Furthermore, the measure u satisfies 

A4 Aa, + d) = da,)’ = c > 0 for l<i<d,2d+l<j<N, 

c being a constant. 

(2) F is a semigroup as considered in Section 3 with N = D + E. u is 
an arbitrary probability measure with supp p = {a,, . . . . aN}. 

Proof Since aiaj = a,a, = e (i,j, k E { 1, . . . . N}) implies ai = aia,ak = ak 
and therefore i= k, the set of generators splits into two parts: The first set 
S, consists of all elements which have a full (i.e., left and right) inverse 
element and which cannot satisfy any further relations of the type (4.1). 
The subsemigroup of r generated by S, is just a group as considered in 
part (1) of our proposition. The second set S2 contains the generators 
which have no or no full inverse. Moreover, by our conclusion at the 
beginning of the proof, we obtain that no element of S, can be cancelled 
on the left side and on the right side at the same time. In orther words, the 
subsemigroup generated by S, is of the type considered in Section 3. In 
summary, the fundamental assumptions of the proposition yield that r is 
a free product of two subsemigroups which satisfy (1) and (2), respectively. 

We next prove that the existence of a measure p as claimed above 
implies that r is either of form (1) or of form (2). To do this, we first 
observe that ~~1 (,,,E r:,w,, =, 1 = cp, c > 0 being a constant. Since 

P3tai) = ((P * PI * P)(aJ 

= Aa,) .P * de) + c p * plalaj) ‘,dak) 
/.k,Iwitha~u,#e.(u/a,)u&=o, 

= idai) .P * de) + c p * dajaj) ‘ptak) 
j,kwitho,a,#e’,a,o&=e 

=P(ai) .P * p(e) + u(ai). c daj) ’ ptak) 
j.kwitho,a,fr.a,ok=r 

for i = 1, . . . . N, it fOllOWS that H(a;) := Ca,U,,fe,U,,ak=r~(aj) FL(+) iS 

683/38/2-9 
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independent of i. If S2 # 0, then we can choose U;E S, such that 
a,~, # e for all j which implies 

H(ai)= C Au,) PC%). 

/,k with O,Q = Y 

On the other hand, if u,ES, #@, then H(a,)=H(u,)-~(~,)~(a;‘)# 
H(u,) which proves that either Si = fzr or S, = @. Moreover, if S2 = 0, 
then the independence of H(ui) also ensures that ,~(a[) ~(a;‘) does not 
depend on I which concludes the proof of the necessity. 

The converse statement follows from Proposition 3.2 and an obvious 
generalization of Proposition 2.3. We omit details. 

4.2. Remark. Proposition 4.1 classifies random walks on semigroups 
which can be analyzed by using polynomial hypergroups. In view of our 
limit theorems for random walks, the class of groups contained in part (1) 
is a trivial extension of the class of free groups (the same orthogonal poly- 
nomials and the same moment functions appear). Therefore, we have, in 
essence, discussed all possible examples which can be treated using polyno- 
mial hypergroups. But this statement is only true under the assumption 
that there exist no further relations for the generators which are inde- 
pendent of the relations of type (4.1). For instance, if we permit relations 
of the type uiuj= uk, then many further examples appear. Examples are 
discrete groups whose Cayley graphs are infinite distance-transitive graphs 
(see Voit [ 191). Further examples are discussed in Section 5 of Voit [ 173. 
Since we are still not able to give a complete list of possible examples, we 
omit a discussion here. 

APPENDIX: RANDOM WALKS ON DISCRETE HYPERGROUPS 

In this appendix we prove the following general result for random walks 
on a discrete hypergroup or discrete semihypergroup with neutral element. 
In Sections 2 and 3, this theorem is applied to free groups or semigroups, 
respectively. For details on (semi)hypergroups see Jewett [9] who uses the 
term (semi)convo. 

A.l. THEOREM. Let K be a countable discrete hypergroup (with neutral 
element e and involution -), and H a discrete space. Let f: K -+ H be a 
surjective mapping and (pu,), E H a family of probability measures on K 
such that 

(1) f -‘(f(e)) = Ie>, 
(2) supp~X=f~l(x)und~f~‘(x)(<aoforuNx~H, 
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(3) iff(u)=f(v) for u, vcK, then f(U)=f(Y), and 
(4) the Banach space M in M,(K) generated by {pc:x E H} is closed 

under convolution. 

Then 

defines a hypergroup structure on H. The Banach algebra (M,(H), l ) is 
isomorphic to M via J: Moreover, of (S,), E NO is a Markov chain on K with 

S,=e, P(S”, 1 =u(S,=v)=6,*v,(u) (ng h,, u, UEK), 

the v, being probability measures contained in M, then (f (S,)),, No is a 
Markov chain on H with 

P(f(S,+,)=xIf(S,)=Y)=~.,,*f(v,)(x) (n E No, x, Y E HI. 

The assertions above remain valid when the term “hypergroup” is 
replaced by “semihypergroup with neutral element” and condition (3) is 
omitted. 

Proof. Since the measures px * pY are finitely supported, and 
eEsupp(px * p,,) if and only if f -I(x) = (f-r(y))-, (H, 0) is obviously a 
hypergroup. The corresponding result for semihypergroups is trivial. 

To check the assertion concerning Markov chains, we write the measures 
v, as v, = C,, H cn,;pz and note 

* v,(v) = P.x * v,(v) = 1 c&x * PZNV) 
ZEH 

= (6-~*f(v,))(f(v)).~~~“,(v) 

= 1 (6,*ffv,))(Y).~.“(v) 
x E H 

for all v E K and XE H. The proof is completed by the following general 
result about Markov chains. 

14.2. LEMMA. Let K and H be countable discrete sets and f: K -+ H be a 
surjective mapping. Let (S,), E NO be a Markov chain on K with transition 
matrices p,(x, y) (n E NO) and with SO = u,, E K, uO satisfying f -‘(f(q,)) = 
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{uO}. Suppose there are probability measures (pL,),EH on K and constants 
$,,(x, y) 3 0 (x, y E H, n E Nio) such that 

(1) supppu.cf-‘(x)for all XE H, and 

(2) LKP.Au) P,(K u)=C,..~P,A-T Y) p,.(u)for all -AUK UEK, and 
nENo. 

Then W&)),, No is a Markov chain on H with transition matrices a,,(~, y). 

ProoJ: Take x,, . . . . x, E H. Then, by assumption, pO(u,, u,) = 
doV(uo), x,).P,,(u~) whenever ul l f~‘(x,), and 

for i = 1, . . . . n - 1 and u, + , E fP ‘(x, + , ). Therefore, 

P(f(S,) = -x, A&) = .x2, . . . . f(S,) = .u,) 

= c Po(Uo7 U,).P,(O,, h)‘..Pn-,(Un-lr &I) 
r,E./-‘(.Y,).l <!G:n 

=do(S(~o),X,).~I(X,,.~2).~~~n-,(-~,,~,IX,,) 

which ensures that (f( S,)), E NO is a Markov chain with transition matrices 
dn(X, Y). 
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