
JOURNAL OF MULTIVARIATF ANALYSIS 43, 331-350 (1992) 

On the Distributions of Some Test Criteria 
for a Covariance Matrix under Local Alternatives 

and Bootstrap Approximations 

HISAO NAGAO AND M. S. SRIVASTAVA 

University of Osaka Prefecture, Osaka, Japan and 
University of Toronto, Toronto, Canada 

Communicated by the Editors 

The asymptotic distribution of some test criteria for a covariance matrix are 
derived under local alternatives. Except for the existence of some higher moments, 
no assumption as to the form of the distribution function is made. As an illustra- 
tion, a case of t distribution included normal model is considered and the power of 
the likelihood ratio test and Nagao’s test for sphericity, as described in Srivastava 
and Khatri and Anderson, is computed. Also, the power is computed using the 
bootstrap method. In the case of I distribution, the bootstrap approximation does 
not appear to be as good as the one obtained by the asymptotic expansion 
method. cc) 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let p x 1 vectors X,, . . . . X, be a random sample of size N on the vector 
X having a continuous multivariate distribution function with pdf h(x), 
mean vector p, and covariance matrix C. Suppose we are interested in 
testing the hypothesis ZZ,: 25 E w  against the alternative H, : z E a- CO, 
where R stands for the set of all p x p positive definite matrices and CO is 
a subset of Q with i p(p + 1) - r(T) unknown parameters. This problem 
contains many tests of problems hypotheses on the covariance matrix C 
such as H,: z = Z,, or HO: 2 = 02ZP, etc. For these problems, we consider 
test statistics of the form 

T, = nT(S,), (1.1) 
where 

nS,= g (Xi-8)(X,-x)‘, X=N-’ 2 Xi, andn=N-1. (1.2) 
i= 1 r=l 

Received October 22, 1990; revised March 7, 1992. 

AMS 1980 subject classifications: 62H10, 62815. 
Key words and phrases: Covariance matrix, LR test, Nagao’s test, asymptotic expansion. 

bootstrap, logarithm transformation. 

331 
0047-259X/92 $5.00 

Copyright 6 1992 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



332 NAGAO AND SRIVASTAVA 

For example, in the case of testing for sphericity Z = c21p, T, could be 
taken as the likelihood ratio test or Nagao’s test for the normal model as 
given in Srivastava and Khatri [13] or Anderson [l]. 

The asymptotic non-null distribution of T,, for fixed alternative H, was 
given by Chan and Srivastava [4] without assuming any form for the dis- 
tribution function of the random vector X (except for the existence of some 
higher moments). The first term of this asymptotic distribution is a normal 
distribution. However, such asymptotic expansions do not provide good 
approximation for alternatives close to the null hypothesis, as was shown 
by Chan and Srivastava [4]. In this paper, we give an asymptotic distribu- 
tion of T, under local alternatives, the first term of which can be expressed 
as a weighted sum of independent noncentral x2 variates. As an illustration, 
we compute the power of the likelihood ratio test and Nagao’s test for 
sphericity under local alternatives, assuming normality and t distribution. 
We also compute the power by the bootstrap method. 

2. STOCHASTIC EXPANSION OF T,, AND DISTRIBUTION OF 

LOGARITHMIC TRANSFORMATION OF SN 

Without loss of generality, we can assume E(S,) = ,Z’, = I+ (l/,,,&) 0, as 
local alternatives, where 8 is fixed symmetric matrix and the rank of 8 is 
r(T). To derive the asymptotic distribution, we assume 

(i) T(I) = 0, 

(ii) i?T(l)/~%,~ = 0, (2-l) 

(iii) F= (8*T(Z)/h,, ds,,) is positive semi-definite 

matrix with rank r(T). 

In the above and in the rest of the paper the derivatives such as 8T(S)/&,B 
evaluated at S = I will be denoted by i?T(Z)/h,+ etc. Let 

SN = .XAi2 exp (J57;; 2) CfiJ2, 

7’” = nT(S,), 
(2.2) 

where A”* is a symmetric matrix such that A = A ‘/2A I’*. Such a matrix 
always exists for a positive semi-definite matrix. Expanding the exponential 
term in S, and ZA1* = (I+ (l/&r) Q)“‘, we find that, under assumptions 
(i) and (ii), T, can be expanded as 
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T,=nT(S,) = 1 c Tab:cd) 

uCb c4d 

x(zab+$eobj[& (zca+~ecnj(zvd+~eadj 

-5 i ecaemdj] @ 
a=1 

+3 1 1 1 Tab:cd:&) 
o<b c<d e<j 

(2.3) 

where Z = (z,b) and 0 = (e,b). To obtain the asymptotic distribution of Z 
which is a logarithmic transformation of S,, first we give an Edgeworth 
expansion of the distribution of V= (u,b) = a (LC;li2 SNC;‘/* - I). The 
characteristic function of II = (uI1, . . . . v,, v12, . . . . up _ r, P)’ is given by 

=l-;E (.,, ab c t v .b)2-+(;btabV.b~+ ..‘) (2.4) 

where t= (t,,, . . . . t,, t12, . . . . t,-l.,) is a real vector and i* = - 1. To 
evaluate the above expressions, we need the following assumption on 
moments of vab (or s,~), in addition to assumptions (i)-(iii) given above: 

(iv) EV,bV,d = Cub:&+ O(n-‘) 

EV,bv,dVd=J2/nd,,:.,:,f+O(n-3’2). 
(2.5) 
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Then we have 

= exp 
! 

- ; o;h <Td ?ah tcdCah : cd> 
. . 

Thus the first term of the asymptotic distribution of v is a $ p(p + 1) 
variate normal distribution with mean 0 and covariance matrix 
c = tcah : cd). 

In order to obtain the distribution of u having the above characteristic 
function, let h,(u) be a distribution corresponding to the characteristic 
fun&on MO(t) =exp(-4 Cagh Ccsd fahfcdCah :rd): 

MO(t) = j” exP (i c tobv.h) ho(v) n do,,. 
a<h rr<h 

(2.7) 

Integrating by parts, we obtain 

Similarly, we have 

itabtcdtefMO(t)= j” exp (i 1 tahvah)( 8ua3~~“:u ) n %b. (2.9) 
o<h oh cd ej a<h 

Now we have 

+ kcdxj.) 1 g  : 
( 

g~h ah ghvg,)+kh:cd,(~h &f:g,$gh) 

- 
(g;h g,h : ghvgh)( 1 gcd: ghvgh)( 1 gef : ghVgh)]j 

. g<h g<h 

(2.10) 
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with G=(gahIcd)=C-‘. Thus the asymptotic distribution of v is given by 

(2.11) 

Since V = &(exp(& Z) - I), we have, as in Nagao [lo], 

where Ai is an eigenvalue of Z. Then we obtain 

“o=,+ Jz -((p+l)trZ+O(n-‘). 
W) 2& 

(2.13) 

Since 

V uh a f z,zz,b+ O(n-‘), =z,,+- 

2J;;.a 

the asymptotic distribution of z = (z, I) . . . . zPP, z,?, . . . . zP _ ,, ,,) is given by 

(2.14) 



336 NAGAO ANDSRIVASTAVA 

where h,(z) is a p(p + 1)/2 variate normal distribution with mean 0 and 
covariance matrix G - ’ = (g,, : cd) ~ ’ = C. 

3. CHARACTERISTIC FUNCTION OF TEST CRITERIA T,, 

From Section 2, the first term of the characteristic function of T,,, say, 
c(t) is given by 

c(~)=const.jCI-~‘~jexp[ -kz’C-‘z+(il) c c Tabycd(l) 
n<b csd 

+ab+--$%b)(zcd+-$‘%d)]~bdz.b 

=ICIP1/2 IC-‘-2itFI-‘/‘exp (it)zB’F(CP1-2ilF)-1FB+~6’F8 1 , 

(3.1) 

where 0 = tell, . . . . e,,, e,,, . . . . e,- ,,P )‘, Now there exist orthogonal matrices 
T, and T, such that 

T, F’I’C ‘12T2 = diag(a, . . . . &, &, . . . . 6, 0, . . . . 0) 

where I,,> . . . >A,>A,2> ... >A,.,,. > 0 and these are eigenvalues of 
C1/2FC1/2. The (r*, s*) are some integers such that the number of positive 
roots is r(T). We note that due to assumption (iii) that F is positive semi- 
definite and thus F If2 is well defined. We shall now simplify the expression 
on the exponent of c(t), namely, 

(it)20’F(C-1-2itF)-1 FtI+0B’F6’ 
2 

= (it)' etFl/2T;D1/2(1- 2itD)-l D112TlF1j2e + y &F1f2T', T, &"12e 

= (it)’ q’diag(Al,(l -2itil,,)-‘, . . . . A,.,,.(1 -22ifA~,~*)-‘, 0, . . . . 0) q 

= (it)’ 1 “lb ,‘,’ +y c &, 
a~b 1 - 2it&b ab o<b 

(3.2) 
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where 

‘t=(fl*, 9 ‘e-9 flpp 1129 ...Y ?p- 1.J’ 

= T1F’/2& T,F1f2C’~=T2T;C-‘f2~ 

= T;C-1’28= (q,,, . . . . q,.*,,*, 0, . . . . 0)‘. 

Also we have 

ICI -112 IC --1 - 2itFj -l/2 = (I- 2&/2f’C’/7 -112 

= )Z-2itDl-1’2= n (1-2it&,b)-1’2. (3.3) 
a<b 

Thus the first term of the characteristic function is given by 

(1 -2it&b)-1’2exp 
( ’ 
,““‘,>i Aa+bqEb , (3.4) 

ab 

where 

‘%b>O 

I,, = 0. 

as a normal distribution with mean 
~~>~~(Cca’-~~$rd’ i with 8= (O,,, . . . . 0 0 12, . . . . tI P-LP )’ and 
covariance matrix (C - ’ - 2itF) - ‘, we shall calcu%e the expectations of 
other terms under the following assumption (v): 

(v) c112~2 cD,d”i i> ~~~~1~0 = 8. (3.5) 

Under assumption (v), the mean v simplifies to 

C112T2(Z-2itD)- ’ (Dg’” ;)q-O}. (3.6) 

Then we note that n + (d/2) 8 contains terms dependent only on 
(1 - 2itl,,)-‘. We now calculate the expectation: 
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y(p+l)trZ-i 1 c i: &b:cdZabZcaZrd 
rr<b c<d a=1 

x(;,&d:gbzgb)( c &f:gbzgh)-(gob:@,) 
g<h 

X (1 
g<h 

&d:ghzgb)-k.,:,l)( c &b:ghZgh) 
g<h 

- (gab : cd) (g;h &f : ghzgh)] + tit) (i u;b cTd eg, Trrb : <d: ,(I) 
. . . . 

(3.7) 

(3.8) 

Also the COVarianCe matrix ((T,b : ‘.d) = (C ~ ’ - 2ilF) - ’ can be expressed as 

Then 

u ub:rd= c aab:efacd:ef(l -2itk?f)-‘. (3.9) 
r’ < / 

ELF- %-&,Zef} = v,bb,d: ef + V,dcab : ef+ v,fc,b : ‘.d+ &,bV~dVef (3.10) 

Also for ihe terms containing (it) in the expectations, at first we have 

(3.11) 
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where v& =CcCd aab : cdl;‘2 (1 - 2it&) ~ ‘. Put 
x { (1 - 2it&,)-’ - 1); then we obtain 

vzb = $ cc G d uab : cd(A$‘2)3 

(3.12) 

and 

1 
= v,*ocd: ef+ ftdgab : ef + v$aab : rd + - V,*bv:dvb 2 

(3.13) 

4. ASYMPTOTIC EXPANSION OF THE DISTRIBUTION OF T,, 

Let the function P’(u(~)) stand for the inverse transformation of 
a characteristic function u(r). At first we consider the distribution 
corresponding to c(t). Then we have 

y(C(t))=P(x)=P c ‘$,,&(~o+b&,)6X , 
a<b > 

(4.1) 

where the r(T) random variables $r,(,Io+6qib) are mutually independent 
and have x2 distribution with one degree of freedom and non-centrality 
(n,+,qf,)/2. Also, all the x2 variates appearing hereafter are mutually inde- 
pendent with some degrees of freedom with some non-centrality. 

Next we consider the terms of I/&, which consist of sum/product of 
v,b > v?by and aab : cd with some weights. We give some formulas: 

u(c(t) vcd)’ 1 a,d:,~~,;‘2P,/(x)-e,P(x), 

esf 
(4.2) 

where 

and 

(4.4) 

di4(c(t) v,*J) = 4 c acd:&e;./2)3 (p&) - P(x)). 

e</ 

683/43/2-I2 
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Also we have 

where 

and 

a,d:ija,f:k,a,h:k,~i:‘2Pii:k,(x) 
i<j k<l 

[ablij : kl] = 

Similarly, we have 

5 (a, b) = (4 i) = W, 0 
3 (a, b) = (i, j) or (a, 6) = (k, l) 
0 otherwise. 

(4.5) 

(4.6) 

i<j k<i 

Xad:kla,b:k,(Pii:kr(x)-pk,(X)}. (4.7) 

Finally, 

where 

P~:k/:mn(X)=P 1 a,X~,b,ii:k,:mn7t~a+btl~b)~x 
> 

(4.9) 
a&b 
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and 

7 (a, b) = (i, j) = (k, I) = (m, n) 
5 exactly two pairs of three pairs (i, j), (k, I), 

[ablij:kZ:mn]= 
(m, n) equal to (a, b) 

3 exactly on pair of three pairs (i, j), (k, I), 
(m, n) equal to (a, b) 

0 otherwise. 

x(A;‘2)3 ~:‘2~~~{Pii:k,:mn(X)-Pkl:mn(X)}. (4.10) 

Thus we have the following theorem: 

THEOREM 4.1. Under local alternatives, the asymptotic distribution of the 
test statistic T,, = nT(S,) under assumptions (it(v) can be expressed as a 
weighted sum of r(T) independent non-central x2 variates, where r(T) is the 
rank of F. 

5. ASYMPTOTIC DISTRIBUTION OF TEST STATISTIC UNDER A t DISTRIBUTION 

In this section we consider a t distribution, as distribution. In a 
multivariate t distribution with k degrees of freedom, we have 

(5.1) 

where I = f(ci - 1) with ci = (k - 2)/(k - 4). Also Z, and ZPCP- I),* stand for 
identity matrices of order p and p(p - 1)/2, respectively. Furthermore, G, 
means a matrix with all entries one. For details of the t distribution, we can 
refer to DeGroot [S]. Also we note that in a case of a normal ci reduces 
to 1 and C”2FC1’2 is idempotent for many statistics T, = nf(SN) and 
equals CF. In a multivariate t distribution, dab : cd: ef in (2.5) is given by 

dab:cd:ef=$C~ab((C2-3C1+2)Bcd6d+(c2-c1)(6,,6df 

+ s,6de)) + 6,, (cc2 - c1) dbd &f+ C2(dbe 6df+6,sd@)) 

+6ad{(c2 -c1) 8bc hf+ C2(Bbe hf+ 6,6ce)} 

+ sae{(C2-Cl) 6,6,.d+ c2(86c bdf+ ‘%dkf)) 

+6,f{(C2-C1)Bbe6cd+C2(~b~(Ted+~bddc~)}l, (5.2) 
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where 

(k-2)2 
“=(k-4)(k-6)’ 

In this section, we treat the following hypothesis concerning a covariance 
matrix; the null hypothesis ZZ,: ,E = a21P, where a2 is unspecified positive 
constant, against the alternative hypotheses H, : JY # a*Z,. For this problem 
we consider two test criteria, namely the likelihood ratio (=LR) test and 
Nagao’s test. These tests in a normal case are discussed in Anderson [l] 
and Srivastava and Khatri [13]. The rejection regions of the LR test and 
Nagao’s test are, respectively, 

and 

(5.3) 

{ I SN ~tr{S,(trS,)~‘-p-‘l,}*>c, . 
I 

(5.4) 

Then, by Chan and Srivastava [4], the matrices F and Tab : cd: ,(I) of the 
two tests are given as 

(5.5) 

Also for the LR test we have 

(2(pp2- 11, a=b=c=d=e=f 

2P-2, 
czb:rd:eju)= -2 

i ’ 0, 

a=b=c=d#e=f 
a=b=c=e#d=f (5.6) 

otherwise; 

and for Nagao’s test, 

i 

-6p-‘(1 -p-l), a=b=c=d=e=f 

Tab : cd : e/(z) = 
-2p-‘(l -3p-‘), 
-4p-1, =;:=I;‘;:: (5.7) 

0, otherwise. 
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Then the eigenvalues of CF are c, with multiplicity f = p(p + 1)/2 - 1 and 
zero. Thus (3.4) reduces to 

c(t)=(l -22irc,))f12exp &+ ?Zb 
( c > I la<b 

(5.8) 

CuG b ql= v’q = B’Ftl = tr 0’ since tr 0 = 0. Therefore the limiting distribu- 
tions of the LR test and Nagao’s test are the same and they are c, times 
non-central xZ distributions withf = p(p + 1)/2 - 1 degrees of freedom with 
non-centrality a2 = tr 02/(2c,). By this result we find these two test criteria 
are robust test statistics. Next we give the l/,,& terms. Since Ez = 
&(it)(C-’ - 2itF)-’ FQ and 

((T,~:~J=(C-’ -2itF)-’ 

I,-(h+2ifc,)(l +A)-’ (G,/p) i 0 

=c,(l-2itc,)-’ ,.............................. ; . . . . . . . . . . . , 
0 : %~p- 1)/2 

(5.9) 

where h=c,{2[c,(p+2)-p]-l-c;‘}, we have 

v,b=eab{(l-2itC1)-‘- l} (5.10) 

and 

oab:cd=C1 $&&,+6,~&,,)(l -22itc,)-’ 

+~{(l+h)l-(l-2irc,)~‘)6,,6,, . 1 (5.11) 
Also the vhb in (3.11) and v,* in (3.12) are vhb=fIab(l-2itc,)-’ and 
v,*b = eab((i -22itcl)-’ - 1 j/(2c,). At first we have 

Y(c(t)) = Pr(c,Xf(62) <x). (5.12) 

We put Pr(c, xj(S2) Gx) = P,(J2). Then 

=ww vcd) = ~cd~~,+2(o -pm), 
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Therefore we have 

THEOREM 5.1. Let p x p matrix Z be a covariance matrix of a p-variate 
t-distribution with k degrees of freedom. For testing the hypothesis 
HO: Z = a*I,, against the alternatives H, : C # 021p, where a* is unspecified 
positive number, the distribution of the LR test A. given by (5, 3) is expanded 
as 

Pr(i.gX)=Pf(62)+1.;ltr(B,02)3 
A6 i( > 2-l Pj+6tb2) Cl 

-( > 2-4 p/+,(6*)+ %-6 Pf+*(s*) 
Cl ( > Cl 

-($-3)P,(a*)}+O(n-‘). (5.14) 

where P,.(S*) is cl times noncentral x2 distribution with f degrees of freedom 
with noncentrality 6* and 

k-2 (k - 2)2 
Cl==> “=(k-4)(k-6)’ 

6* = -& tr(@/a*)‘. (5.15) 
I 

In a normal case, c, and c2 reduce to 1. The above result coincides with 
Nagao’s on [9] in case of a normal for the sphericity test. Similarly, 
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THEOREM 5.2. Under the same assumption and notation as in 
Theorem 5.1, the distribution of Nagao’s test statistics is given by 

-(z--3) pi(S’)}+O(n-‘). 

The result in a normal case given by Nagao [ 111 is included in the 
above result. Also Hayakawa [6] derived the asymptotic distribution of 
these test criteria under local alternatives for an elliptical distribution. 
However, his results seem to be very complicated. 

6. NUMERICAL EXAMPLES 

In this section, we give some numerical powers for the sphericity test. 
For a t-distribution with k degrees of freedom, we modify the LR test and 
Nagao’s test T as 

I’ = 
k-4 k-4 
-A>c,, - 
k-2 

T’=k-2 Tat,. (6.1) 

Numerical powers are calculated by two methods due to asymptotic expan- 
sions and the bootstrap method used by Beran [3]. At first we explain the 
bootstrap powers. 

We shall mention how to calculate them under covariance matrix 
C = Z, in a sphericity test. We construct vectors xi (i = 1, . . . . N) consisting 
of having a multivariate t distribution with k degrees of freedom, mean 0, 
and covariance C,. We note that when k = 00, this distribution reduces to 
a multivariate normal distribution with mean 0 and covariance C,. Let, as 
in Beran and Srivastava [2]. 

yi = -p/ CFN1"" xi (i= 1, . . . . N), 

where CpN = (l/N) C;“= i (x, - X)(x, - X)’ and E, means an empirical 
distribution. 
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From ( y, , . . . . yN}, we choose N random vectors y;“, . . . . y$ with replace- 
ment. Then they can be regarded as a random sample with mean 
Cfi’ ~~~~~ X and covariance matrix .&,. For each sample x1, . . . . xN, we 
draw samples from $N a great many of times and calculate the test 
statistics. An approximation of the power is given by dividing the number 
of rejection cases with the number B of bootstrap replications. In this place, 
we set B= 500 and we repeat this procedure 100 times and we calculate an 
average and the standard deviation. We call the averages the bootstrap 
powers. The value in parenthesis in the tables are the standard deviations 
of 100 trials. To find the power of the test, we have to obtain the critical 
value c,. In order to obtain c,, we have a few methods such as those based 
on exact distribution, asymptotic distribution, or empirical distribution. 
The third method can be found in Beran [3]. In this paper, for a normal 
case, we use critical values due to asymptotic distributions of test statistics 
in Anderson [ 1 ] and Nagao [9]. Also for a t distribution, critical values 
are calculated by a limiting distribution which is a x2 distribution with 
f = p( p i- 1)/2 - 1 degrees of freedom as given by Muirhead and Waternaux 
[S] in case of elliptical distribution. 

Case 1. For testing the hypothesis H: .?Y= g2ZJ against alternative 
z=(l-p)Z+pll’ with l=(l, 1, l)‘, we give the powers under a three- 
dimensional normal and t distribution with 10 degrees of freedom. 

N = 50 (normal distribution) 

P LRT B-LRT 

0.01 0.05 1 0.079(0.030) 
0.03 0.056 0.072(0.022) 
0.05 0.067 0.083(0.026) 
0.08 0.096 0.109(0.027) 
0.10 0.126 0.140(0.036) 

Nagao B-Nagao 

0.055 0.066(0.025) 
0.061 0.062(0.020) 
0.072 0.071(0.023) 
0.104 O.lOO(O.025) 
0.136 0.129(0.034) 

N = 50 (t distribution) 

P LRT B-LRT 

0.01 0.050 0.048(0.035) 
0.03 0.054 0.057(0.052) 
0.05 0.062 0.063(0.051) 
0.08 0.084 0.082(0.065) 
0.10 0.105 0.099(0.048) 

Nagao B-Nagao 

0.050 0.035(0.030) 
0.054 0.042(0.041) 
0.063 0.048(0.038) 
0.084 0.064(0.052) 
0.106 O.OSO(O.039) 
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N = 80 (normal distribution) 

347 

P LRT B-LRT Nagao B-Nagao 

0.01 0.05 1 0.063(0.020) 0.054 0.056(0.019) 
0.03 0.060 0.072(0.023) 0.063 0.066( 0.023 ) 
0.05 0.078 0.089(0.023) 0.082 0.084( 0.022) 
0.08 0.129 0.130(0.030) 0.134 0.127(0.028) 
0.10 0.186 0.181(0.030) 0.189 0.182(0.029) 

N = 80 (t distribution) 

P LRT B-LRT Nagao B-Nagao 

0.01 0.05 1 0.041(0.028) 0.05 1 0.034(0.025) 
0.03 0.057 0.049(0.030) 0.057 0.043(0.026) 
0.05 0.070 0.067(0.042) 0.07 1 0.059(0.037) 
0.08 0.107 0.092(0.051) 0.107 O.OSS(O.046) 
0.10 0.144 0.116(0.046) 0.145 O.lll(O.042) 

N= 100 (normal distribution) 

P LRT B-LRT Nagao B-Nagao 

0.01 0.05 1 0.061(0.018) 0.054 0.055(0.017) 
0.03 0.062 0.067(0.018) 0.065 0.063(0.017) 
0.05 0.085 0.091(0.022) 0.089 0.087(0.021) 
0.08 0.152 0.152(0.029) 0.157 0.150(0.028) 
0.10 0.221 0.215(0.030) 0.228 0.220(0.028) 

N= 100 (t distribution) 

P LRT B-LRT Nagao B-Nagao 

0.01 0.05 1 0.054(0.042) 0.05 1 0.048(0.038) 
0.03 0.059 0.059(0.034) 0.059 0.053(0.032) 
0.05 0.076 0.076(0.059) 0.076 0.071(0.055) 
0.08 0.123 0.111(0.040) 0.124 0.107(0.036) 
0.10 0.172 0.148(0.050) 0.173 0.148(0.047) 
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From these tables, we find that the bootstrap powers are good for a 
normal distribution but not for a t distribution. 

Case 2. For testing the hypothesis H: C= a2Z3 against alternative 
C= diag(a,, 1, a*), we give the powers under normal and t distribution 
with 10 degrees of freedom. 

N = 50 (normal distribution) 

al, a2 LRT B-LRT Nagao B-Nagao 

0.9 0.9 0.058 0.076(0.036) 0.063 0.064(0.03 1) 
0.8 0.9 0.079 0.095(0.028) 0.085 0.081(0.025) 
0.8 0.8 0.092 0.108(0.036) 0.100 0.097(0.032) 
0.9 1.1 0.073 0.092(0.027) 0.079 0.079(0.024) 
0.8 1.1 0.113 0.122(0.034) 0.120 0.104(0.030) 
0.8 1.2 0.157 0.165(0.035) 0.166 0.148(0.034) 

N = 50 (t distribution) 

al, a2 LRT B-LRT Nagao B-Nagao 

0.9 0.9 0.056 0.061(0.054) 0.056 0.044(0.042) 
0.8 0.9 0.071 0.063(0.038) 0.071 0.047(0.030) 
0.8 0.8 0.08 1 0.082(0.041) 0.08 1 0.054(0.03 1) 
0.9 1.1 0.067 0.068(0.043) 0.067 0.049(0.032) 
0.8 1.1 0.095 0.089(0.043) 0.095 0.064(0.034) 
0.8 1.2 0.127 0.106(0.043) 0.127 0.080( 0.033 ) 

N = 80 (normal distribution) 

4, a2 LRT B-LRT Nagao B-Nagao 

0.9 0.9 0.064 8.074(0.022) 0.067 0.068(0.020) 
0.8 0.9 0.098 0.103(0.025) 0.102 0.095(0.023) 
0.8 0.8 0.122 0.124(0.029) 0.127 0.119(0.028) 
0.9 1.1 0.088 0.098(0.024) 0.092 0.092( 0.022) 
0.8 1.1 0.157 0.168(0.028) 0.163 0.149(0.028) 
0.8 1.2 0.236 0.242(0.030) 0.243 0.224(0.030) 
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N = 80 (t distribution) 

al, a2 LRT B-LRT Nagao B-Nagao 

0.9 0.9 0.060 0.054(0.037) 0.060 0.045(0.032) 
0.8 0.9 0.085 0.086(0.062) 0.085 0.072(0.056) 
0.8 0.8 0.102 0.097(0.054) 0.102 O.OSS(O.046) 
0.9 1.1 0.078 0.077(0.054) 0.078 0.065(0.050) 
0.8 1.1 0.127 0.114(0.051) 0.126 0.095(0.049) 
0.8 1.2 0.182 0.160(0.069) 0.182 0.140(0.065) 

N= 100 (normal distribution) 

4, a2 

0.9 0.9 
0.8 0.9 
0.8 0.8 
0.9 1.1 
0.8 1.1 
0.8 1.2 

LRT B-LRT 

0.067 0.074(0.020) 
0.112 0.116(0.026) 
0.143 0.149(0.029) 
0.099 0.104(0.021) 
0.189 0.200(0.028) 
0.292 0.291(0.03 1) 

Nagao B-Nagao 

0.070 0.069(0.020) 
0.115 0.108(0.025) 
0.148 0.145(0.028) 
0.102 0.095(0.019) 
0.194 0.180(0.028) 
0.300 0.277(0.031) 

N = 100 (t distriution) 

al, a2 LRT B-LRT 

0.9 0.9 0.063 0.056(0.029) 
0.8 0.9 0.095 O.OSS(O.039) 
0.8 0.8 0.117 0.098(0.043) 
0.9 1.1 0.085 0.073(0.036) 
0.8 1.1 0.149 0.129(0.048) 
0.8 1.2 0.222 0.196(0.060) 

Nagao B-Nagao 

0.063 0.049(0.026) 
0.095 0.074(0.035) 
0.117 0.091(0.040) 
0.085 0.064(0.032) 
0.149 0.11 l(O.046) 
0.222 0.174(0.057) 

In a normal case, the values in asymptotic expansions show that Nagao’s 
test is better than LRT. This fact indicates that Nagao’s test is locally best 
invariant test as shown by John [7] and Sugiura [14]. Also Nagao [12] 
in the normal case has considered another property. However, from 
Cases 1 and 2, we may say that the bootstrap approximations are not good 
for a t distribution. Whereas the asymptotic expansions seem to give 
reasonable values for even a t distribution. 
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