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In some applications, the mean or median response is linearly related to some
variables but the relation to additional variables are not easily parameterized.
Partly linear models arise naturally in such circumstances. Suppose that a random
sample [(Ti , Xi , Yi ), i=1, 2, ..., n] is modeled by Yi=X T

i ;0+g0(Ti)+errori ,
where Yi is a real-valued response, Xi # R p and Ti ranges over a unit square, and
g0 is an unknown function with a certain degree of smoothness. We make use of
bivariate tensor-product B-splines as an approximation of the function g0 and con-
sider M-type regression splines by minimization of �n

i=1 \(Yi&X T
i ;& gn (Ti)) for

some convex function \. Mean, median and quantile regressions are included in this
class. We show under appropriate conditions that the parameter estimate of ;
achieves its information bound asymptotically and the function estimate of g0

attains the optimal rate of convergence in mean squared error. Our asymptotic
results generalize directly to higher dimensions (for the variable T) provided that
the function g0 is sufficiently smooth. Such smoothness conditions have often been
assumed in the literature, but they impose practical limitations for the application
of multivariate tensor product splines in function estimation. We also discuss the
implementation of B-spline approximations based on commonly used knot selection
criteria together with a simulation study of both mean and median regressions of
partly linear models. � 1996 Academic Press, Inc.
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1. INTRODUCTION

There are obvious reasons for the popularity of linear regression among
which is simplicity in computation and interpretation. This remains the
case despite the fact that theory and methods in nonparametric regression
have taken much of the spotlight in the statistical literature in recent years.
When multiple predictor variables are included in the regression equation,
the size of a data set is often too small to justify a nonparametric regression
fit with reasonable precision. But this does not mean that a linear rela-
tionship is always sufficient. In some applications, the mean or median
response is linearly related to some variables but the relation to additional
variables are not easily parameterized. Partly linear models become natural
choices in such applications: the linear model is minimally altered to allow
one or a few of the independent variables to have complicated effects.
Shiller (1984) considered an earlier cost curve study in the utility industry
using a partly linear model. Engle, Granger, Rice and Weiss (1986) studied
the highly nonlinear relationship between temperature and electricity usage
where other related factors such as income and price are parameterized
linearly in the model.

Suppose that a random sample [(Ti , Xi , Yi )]n
1 of (T, X, Y) is modeled

by a partly linear model

Yi=X T
i ;0+g0(Ti)+ei , 1�i�n, (1.1)

where Y is the real-valued response variable, X # R p, T ranges over [0, 1]q

and the ei's are random errors which are assumed to be independent of
[(Ti , Xi)] and of each other. The model consists of a p-dimensional
parameter ;0 and an unspecified q-variate function g0 .

The increasing recognition of partly linear models has attracted a
number of authors to study the asymptotic behavior of both the parameter
and function estimates. One interesting question is the effect of infinite
dimensional nuisance parameters on the estimates of linear coefficients.
Ritov and Bickel (1990) showed that without regularity conditions there
may not exist any sequence of estimators which is n&: consistent for ;.
Information bounds for more general semiparametric models were further
discussed in Bickel, Klaassen, Ritov and Wellner (1993).

The partial splines approach (cf. Wahba, 1984) uses a roughness penalty
in minimizing

1
n

:
n

i=1

(Yi&X T
i ;&g(Ti))2+*J(g)
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where * is a smoothing parameter and J(g) is a penalty function. In the
case of q=1, a common choice is J(g)=�1

0 (g(m)(t))2 dt for some m. For
this type of penalty function, the solution to the minimization problem lies
in a natural spline space of dimension n.

Heckman (1986) showed that if the regressors X and T are not
correlated, the parameter estimate of ;0 from partial splines is consistent
and asymptotically normal. In a thought-provoking paper, however, Rice
(1986) found that in general the asymptotic bias of the parameter estimates
can dominate the variance unless the nonparametric function is under-
smoothed. Thus routine use of cross-validation procedures for smoothing
parameter selection becomes questionable if the parametric components are
of interest. Quickly coming to the rescue are Speckman (1988) and Chen
(1988) among others. Speckman (1988) developed an alternative method
based on kernel smoothing and showed that optimal rates of convergence
for both the parametric and nonparametric components can be achieved in
a partly linear regression. His idea is to adjust variables for the covariates
and then regress residuals on residuals. Chen (1988) established the same
for piecewise polynomials. Chen and Shiau (1991) explored a two-stage
spline smoothing method. Also see Eubank and Whitney (1989) for related
work on rate of convergence.

All the above-mentioned references are concerned with the conventional
mean regression where the use of the least squares facilitates computation
and asymptotic analysis. In the present paper, we consider M-type regres-
sion. The M-type objective function is often used for robust estimation,
but our motivation for using this general formulation is to treat mean
regression, median regression and other quantile regression in one setting.
Tensor product B-splines are used to estimate the nonparametric part of
the model. We focus on how the parametric estimates behave when such
nonparametric function estimation is involved. We allow dependence
between X and T, and do not assume additivity for the function g0 .

Mean regression curves provide a grand summary for the averages, just
as the mean does for a univariate distribution. Mosteller and Tukey (1977)
advocated the use of regression quantiles for a more complete picture of
the data at hand. Some interesting examples of quantile regression in linear
models and nonparametric models can be found in Efron (1991), Hendricks
and Koenker (1992), and He, Ng and Portnoy (1995).

The formulation of regression quantiles by Koenker and Bassett (1978)
openened a new window for regression analysis. Instead of taking the
squared distance in (1.1), we minimize

:
n

i=1

\: (Yi&X T
i ;&gn (Ti)) (1.2)
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where gn is a function in a m-dimensional B-spline space and

\: (s)=|s|+(2:&1)s (1.3)

is used to obtain an estimate of the :-th conditional quantile function.
Nonparametric estimates of conditional quantiles for a univariate

regressor variable have been considered by Koenker, Ng and Portnoy
(1994) for smoothing splines and by He and Shi (1994) using B-spline
approximations. Chaudhuri (1991) proposed a local polynomial approxima-
tion for one or higher dimensional regressors. More recently, He (1996)
proposed restricted regression quantiles to avoid the problem of quantile
crossing.

By the nature of (1.3), the asymptotic analysis of quantile estimates is
well typified by the median regression which corresponds to :=1�2. One
added difficulty here comes from the discontinuity of the score function
9(s)=\$: (s). In the present paper, we make use of the convexity of \: .

Use of B-spline approximations in statistical models is not new. Agarwal
and Studden (1980) derived asymptotic bias and variance for regression
splines which are linear in the observations of the response variable,
including in particular the least squares estimator and a bias minimizing
estimator. Least squares spline in nonparametric regression was also con-
sidered in Chen (1991). Stone (1991) provided asymptotic results for log-
spline response models. A recent article of Stone (1994) provided a firmer
theoretical ground for use of polynomial splines and their tensor products in
a variety of multivariate function estimation problems including regression,
logistic regression, Poisson regression, log-linear models and proportional
hazard models. However, asymptotic results on the parametric estimates
outside the least squares universe are not yet available in the literature. The
maximum likelihood approach used by Stone and some other authors is
limited to densities of exponential families and does not cover the L1-type
loss function used for quantile regression.

The rest of the paper is organized as follows. Selection 2 introduces the
M-type regression splines, and Section 3 is devoted to their asymptotic
analysis. Most of our results are stated for the case of q=2 where bivariate
tensor-product splines will be used as a basis for function approximations.
A recent paper of Shi and Li (1994) obtained similar asymptotic results for
the special case of q=1. Under suitable conditions on the distribution of
(X, T) and on the score function 9, we show that the optimal rate of con-
vergence for the function estimate and the root-n asymptotic normality of
the parameter estimate ;� are obtained when the the number of knots per
dimension is chosen to be in the order of n1�(2r+q), where q is the dimen-
sionality of the nonparametric function and r is its degree of smoothness.
The asymptotic normality result can be used for large sample tests of
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linear hypotheses. Our result for optimal mean squared error for the non-
parametric regression spline requires that the degree of smoothness of g0

increases linearly with dimension in the form of r>q�2. This might limit
the use of tensor-product B-splines in high dimensions. This type of condi-
tion has also been used by other authors in similar settings without much
discussion. We conjecture that this smoothness requirement in necessary
for the spline method, and a discussion is given in Section 4. In Section 5,
we consider the practical problem of knot selection using the idea of cross
validation and information-based criteria. Part of our simulation study for
using bivariate tensor-products of quadratic splines is also reported in
Section 5. The median regression spline appears very competitive with the
least squares regression at normal errors and performs far better at heavier-
tailed distributions. The large-sample tests of linear hypotheses on ;0 show
satisfactory performance in our simulated example.

2. M-TYPE REGRESSION SPLINES

The degree of smoothness of the true regression function determines how
well the function can be approximated. It can be formulated as follows.

Let Cr be the space of all bivariate functions h(t1 , t2) on [0, 1]2 such
that D(u1 , u2)h=�u1+u2h��u1t1 �u2t2 is continuous and Lipschitz of order #:

|D(u1 , u2)(T)&D(u1 , u2)(S)|�W0 |T&S | #

for any T, S # [0, 1]2 and u1+u2�r&#, where W0 is a finite constant.

Condition 1. g0 # Cr for some r�1.

The quantity r is the order of smoothness of the true regression function
g0 . We shall use the normalized B-splines of order r associated with any
quasi-uniform sequence of knots on [0, 1]. In practice, the value of r is
unknown and has to be determined by specific considerations or by
examination of the data. The choices of r=2 (piecewise linear), 3 (quad-
ratic) and 4 (cubic) are common. They avoid the oscillation problem often
associated with higher order polynomials but preserve certain degree of
smoothness.

For simplicity, we assume without loss of generality that all B-splines
here are defined on an extended partition associated with a uniform parti-
tion of Mn knots for each regressor variable. Following Schumaker (1981),
we denote by Bj (ti) ( j=1, 2, ..., N=Mn+r, i=1, 2) the B-spline basis
functions on the i th component of T. Furthermore, define

Bi1 , i2 (t)=Bi1 (t1) Bi2(t2) (2.1)
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for any 1�i1 , i2�N. Let ?(t) be the N 2
-dimensional vector consisting of

all product functions of the form (2.1). The B-spline estimate of the regres-
sion function is now given by the parameter ;� and ĝn (t)=?T(t) â where
(;� , â) solves

:
n

i=1

\(Yi&X T
i ;&?(Ti)

Ta)=minimum! (2.2)

for a properly chosen loss function \.
The mean and median regression correspond to \(s)=s2 and \(s)=|s|

respectively. To limit the influence of outlying observations in Y, a \
function with a bounded derivative is often recommended.

There are several efficient algorithms to generate the B-spline basis func-
tions for a given set of knots in each variable ti . A direct recursion
relationship (see Schumaker, 1981, p. 120) is often used to compute Bj (}).
The line average algorithm described in Chui (1988, pp. 8�11) for uniform
knots provides an efficient approximation scheme useful for displaying
curves. Another type of algorithm is based on an explicit formulation for
each polynomial piece of the B-spline, see Chui and Lai (1987) for details.

3. SOME ASYMPTOTIC RESULTS

In this section, we give sufficient conditions under which the B-spline
estimates of both linear and nonparametric components converge at their
best possible rates as the sample size goes to infinity. We also show that the
parameter estimate ;� is asymptotically normal, so it is possible to make
standard large sample inference on the parameter.

To make technicalities manageable, we prove all our results for non-
stochastic and uniform knots. In practice, data-based adaptive knots are
far more flexible and useful. Despite this limitation, we feel that results
obtained for nonadaptive splines would shed light on the large sample
behavior of adaptive estimates. A recent work of Chen and Shiau (1994)
considered data-driven selection of smoothing parameters for partial
regression models.

The distrubutional assumptions on (X, T) are given first.

Condition 2. The density function w of T is bounded away from zero
and infinity, that is, there exist two positive constants b1 and b2 such that
b1�w(t)�b2 for all t # [0, 1]2.

Condition 3. E(X)=0, E |X| 3<�, and `(t)=E(X | T=t) # Cr . Also,
Var(X) and 7=Var(X&`(T)) are finite and nonsingular. Furthermore,
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there exists a positive definite matrix 70 such that Var(X&`(t))<70 for
all t # [0, 1]2.

In the special case where X and T are independent, `(t) does not depend
on t and 7 is the variance-covariance matrix of X. One common motiva-
tion of the ` function is to think of Xi being related to Ti by a regression
model E(X | T=t)=`(t). This is a sufficient but not necessary condition
for most of the results obtained in this section.

Let 9(s)=\$(s) be the derivative function of \. Our conditions on 9 are
formulated as follows.

Condition 4. \(s) is a convex function with E9(e1)=0, E92(e1)<�,
and for some b3>0,

E9(e1+s)=b3 s+o(s) as s � 0. (3.1)

In some cases, we assume a stronger version of (3.1) as follows:

E9(e1+s)=b3 s+O(s2) as s � 0. (3.2)

Condition 5. There exist positive constants b4 , b5 and b6 such that

E(9(e1+s)&9(e1))2�b4 |s| ,

|9(v+s)&9(v)|�b5 for all |s|�b6 and v # R.

Verification of Conditions 4 and 5 is usually straightforward. The mean
regression corresponds to zero mean and finite variance for the error
variable e1 . If zero is the 100: percentile of the error variable e1 , we will
be estimating the : th conditional quantile. In the latter case, we assume
that the density function f of the error variable satisfies

Condition 6. f (0)>0 and f (s) is Lipschitz in a neighborhood of zero.

The dimensionality of the approximating B-spline space has to increase
with n for asymptotic consistency. The number of knots must be properly
chosen to balance the bias and variance.

Theorem 3.1. Assume Conditions 1�5. If the number of knots Mnr

n1�(2r+2) and r>1, then

|;� &;0|=Op (n&r�(2r+2))

and

1
n

:
n

i=1

( ĝn (Ti)&g0(Ti))2=Op (n&r�(r+1)). (3.3)
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Furthermore,

&D(u1 , u2) ĝn&D(u1 , u2)g0&=Op (n&(2r&m)�(2r+2)) (3.4)

where u1+u2=m<r, and &h&2=�[0, 1]2 h2(t) f (t) dt.

The nonparametric rate of convergence in (3.4) is optimal by Stone
(1982) for the estimation of the regression function as well as its
derivatives. However, we show under some additional conditions that the
resulting parameter estimate ;� actually converges at the parametric rate of
n&1�2 with desirable asymptotic normality.

Theorem 3.2. Assume Conditions 1�6 with (3.1) replaced by (3.2).
Suppose that r>3, or r>2 if 9 is Lipschitz. We then have

- n(;� &;0) � N(0, _27&1) (3.5)

where _2=E9 2(e1)�b2
3 .

Remark. If T is univariate, then the asymptotic normality holds for any
r>3�2, or r>1 if 9 is Lipschitz. In general, the smoothness conditions
required are r>3q�2 or r>q.

The asymptotic efficiency of the parameter estimate is determined by 9
in the same way as that of the M-estimate of location. According to Chen
(1988), the least squares method with 9(s)=s gives the best possible
asymptotic variance in the case of normal errors. For robustness considera-
tions, Huber's score function 9c (x)=median[&c, x, c] would yield the
minimax variance estimate when the error distribution is believed to be in
a small neighborhood of Normality, see Huber (1981) for details.

The result of Theorems 3.2 can be applied directly to hypothesis testing.
For example, consider testing the hypothesis that

AT;0=0 (3.6)

where A is a known p_d0 matrix with rank d0 . Then, we have the
following result.

Corollary 3.1. If the conditions of Theorem 3.2 are satisfied, then
under the null hypothesis (3.6),

n_&2(AT;� )T [AT7� &1
n A]&1 (AT;� ) w�d /2

d0
,

where /2
d0

is the chi-square distribution of degree d0 , Z T
n =(?(T1), ..., ?(Tn))

and 7� n=n&1(X1 , ..., Xn)(I&Zn (Z T
n Zn)&1 Z T

n )(X1 , ..., Xn)T.
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4. B-SPLINE APPROXIMATION IN HIGHER DIMENSIONS

Theorems 3.1 and 3.2 can be generalized to higher dimensions with q�2
without further technical complication. If the number of knots is chosen to
be in the order of n1�(2r+q), the optimal rate of convergence for the
MSE at n&2r�(2r+q) will follow under the smoothness condition of r>q�2.
Even stronger conditions are needed to prove the asymptotic normality
of ;� .

This type of smoothness condition has also appeared in the literature
without a good explanation. For example, Chen (1991) dealt with the least
squares spline estimate under the assumption of r>q. Our approach
weakens the condition to r>q�2, so does Stone (1994). A recent paper of
Shen and Wong (194) indicated that in the univariate spline approximation
the best rate of convergence cannot be achieved in the case of r�1�2 (for
q=1), unless some restricted optimization is carried out. The phenomenon
is expected to be the same in general dimensions when r�q�2.

Note that such smoothness conditions are not mandatory for the estima-
tion problem at hand. For example, the piecewise polynomial approxima-
tion considered in Chen (1988) and Chaudhuri (1991) for the mean and
median regression achieves the optimal nonparametric rate of convergence
without imposing conditions on r. We naturally ask whether the same
holds true for B-spline approximations.

We do not yet have a definite answer for the question. Whereas the
deficiency in our proofs probably accounts for part of the problem, we have
some reason to think that it is necessary for the smoothness r to increase
linearly with dimension q in order to obtain the desirable rate of con-
vergence in our case. The following is one plausible explanation.

The tensor-product B-splines have the needed approximation power,
that is, the function g0(x) can be uniformly approximated by ?(x)T :0 for
some :0 with an error rate of O(M&r

n ). When Mnrn1�(2r+q), the ``bias''
vanishes at the desirable rate. What remains is essentially a linear regres-
sion problem with increasing dimensions. Without loss of generality, we
consider a purely nonparametric model with g0 in the approximating
B-spline space so that there is no bias. The linear model can then be
written as Yi=?(Ti)

T :0+ei with Pn=M q
nrnq�(2r+q) parameters.

There have been intensive studies on the linear model with increasing
number of parameters, see Huber (1981) and Portnoy (1984) among
others. Since �n

i=1 ?(Ti) ?(Ti)
T is on the order of n�Pn , we rewrite the

linear model as Yi=zT
i %0+ei where zi=- Pn ?(Ti) and %0=P&1�2

n :0 . The
zi's resemble the design considered in Portnoy (1984, p. 1301). Results of
Huber and of Portnoy suggest that &%� &%0&=Op (- Pn�n), that is,
&:̂&:0&=Op (Pn�- n) on the original scale. Since Pnrnq�(2r+q), it is
necessary to require r>q�2 in our setup for the consistency of :̂.
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Note that the analysis we do assumes that all basis functions for the ten-
sor product splines are entered into the model. It is possible that adaptively
choosing a suitable subset would be helpful in high dimensions. On the
other hand, if one considers additive or interaction models, the effective
dimensionality is reduced to q$ if the model consists of interactions of up
to order q$. Chen (1991) assumed r>q for interaction models with q$=2,
but it can be weakened to r>2 if bivariate tensor products are used.

5. IMPLEMENTATION AND SIMULATION

Implementation of the B-spline approximation requires knot selection.
In this section, we consider using both uniform and non-uniform knots
selected by an information-based criterion or by the idea of cross-valida-
tion. We allow for different number of knots for each component of T when
uniform knots are used, but the same number is used when nonuniform
knots are considered in the selection.

5.1. Selection Criteria. To compare two sets of prospective knots, we
consider some commonly-used selection criteria.

To use the idea of cross validation, we first consider the case where
\ is everywhere differentiable. Let A be the set of knots under con-
sideration, ?A( } ) be the vector of B-spline basis functions and
ui=(X T

i , M 1�2
n ?A(Ti)

T)T. Also write %A=(;� T, M&1�2
n :̂T)T, ri=Yi&uT

i %A ,
and Un=(u1 , ..., un)T. Furthermore, let wi=9(ri)�ri if ri{0, and wi=0 if
ri=0, and Dw=diag(w1 , w2 , ..., wn).

The M-estimator of (2.2) solves �i 9(ri)ui=0, or �i wi ui ri=0. Thus %A

satisfies a weighted least squares equation

\n&1 :
n

i=1

wi ui uT
i + %A=n&1 :

n

i=1

wi Yi ui (5.1)

and the GCV criterion (see Wahba, 1990) can be formulated as

GCV(%A)=
n&1 � wi r2

i

(1&n&1 trace(Bn))2 (5.2)

where Bn=Un (U T
n Dw Un)&1 U T

n Dw . A set of knots is preferred by GCV to
another if it has a smaller GCV value.

In the case of quantile regression, \: is not differentiable at zero.
However, the number of zero residuals is in the order of O(Mn)=o(n), and
(5.1) holds up to a remainder of O(Mn�n)=o(1). Thus, (5.2) can be used
as a good approximation.
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Since each set of knots determines an approximating model, information
based criteria are natural choices. Parallel to the AIC function proposed by
Akaike (1973), we select knots for low values of

AIC(%A)=ln \n&1 :
n

i=1

\(ri)++
2p
n

. (5.3)

where p is the dimensionality of the approximating model.
Hurvich and Tsai (1989) observed that AIC often leads to overfitting.

They suggested to use a bias correction to AIC. A somewhat more
dramatic correction is to minimize.

BIC(%A)=ln { :
n

i=1

\(ri)=+\ ln n�(2n), (5.4)

see Schwarz (1978) for motivation. Koopersberg and Stone (1992) found
the ln n factor works quite well in logspline density estimation.

Our experience shows that the information-based criteria generally per-
form a little better than cross validation for knot selection. The difference
between AIC and BIC is very marginal for sample sizes between 50 and
150. Tighter control on the number of knots is obtained by BIC when the
sample size is really large.

5.2. Distribution of Knots. Let sj, 1 , sj, 2 , ..., sj, Mnj
be the B-spline knots

used for the j th component of T, j=1, 2. Uniform knots refer to the case
of sj, i=i�Mnj (i=1, 2, ..., Mnj). In this case, we only need to determine the
sizes Mnj in the knot selection procedure. Uniform knots are usually
sufficient when the function g0 does not exhibit dramatic changes in its
derivatives.

Non-uniform knots are desirable when the function has very different
local behaviors in different regions. We adopt a stepwise strategy for
knot placement and deletion, in a way similar to that of Friedman and
Silverman (1989). The stepwise selection procedure works as follows.

We consider a subset of locations defined by the distinct values realized
by the data set. Knots will be selected from this collection in order to
follow the change in the curve while containing costs. Suppose that the first
k knots [Ti1 , Ti2 , ..., Tik] have been selected, the additional knot Tik+1

is so
chosen that [Ti1

, ..., Tik , Tik+1
] is preferred by the selection criterion being

used to any other [Ti1 , ..., Tik , Tl], 1�l�n. This knot placement proce-
dures continues until no additional knot in the form of Tl is preferred by
the selection criterion. Then we start a stepwise deletion by removing one
knot at a time. If removal of one knot would be preferred by the selection
criterion, we leave this one out. If there are several such candidates, leave
out the one such that the resulting set of knots is the most preferred by the
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selection criterion. This process continues until the current set of knots is
preferred to any one-point deletion.

The stepwise knot placement procedure may also be applied separately
to each component of T by searching over a fine grid of [0, 1]. This is
much more time consuming even in the bivariate case, and in our
experience does not improve on the results in any significant way.

5.3. Simulation. We ran a small simulation study for quadratic B-spline
estimates of partly linear models with a bivariate function g0 . Both the
mean square errors of the linear parameter estimate and the nonparametric
function estimate as follows:

LE 2=average[(;� &;0)t 7&1(;� &;0)] (5.5)

and

NE 2=average {n&1 :
i

( ĝn (Ti)&g0(Ti))2= . (5.6)

The following knot selection scheme is used in each example unless
otherwise specified. Uniform knots are first selected by AIC. In the final
stage, a stepwise deletion from the equally-spaced sets is performed to
reduce the dimensionality of the fit whenever possible.

The first model we consider is

y=x1+2x2+g(t1 , t2)+e (5.7)

where (x1 , x2) has a standard bivariate normal distribution and (t1 , t2) are
uniformly distributed on the unit square. The error variable is N(0, 1). We
use the test function

GBCW(t1 , t2)=
40 exp(8((t1&0.5)2+(t2&0.5)2))

\exp(8((t1&0.2)2+(t2&0.7)2))
+exp(8((t1&0.7)2+(t2&0.2)2)) +

which has been used by several other authors including Breiman (1991),
Friedman (1991), and Gu et al. (1989).

We take 1000 samples of size 150 in the experiment. The estimated LE
and NE are given in Table 1. Also included are the average number of
knots (Mi) used for each variable ti and the dimensionality of the fitted
model (d.f.). Results for using other selection criteria or uniform knots are
similar.

A noticeable point is that the number of knots used in the B-spline
approximation is very small. It averages about 2.5 for each dimension. In
this case, the average number of parameters used in the linearized fitting is
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TABLE I

Quadratic Spline for GBCW Function; Uniform Knots

Median Reg Mean Reg

Distribution LE NE M1 M2 d.f. LE NE M1 M2 d.f.

Normal 0.1631 0.5368 2.7440 2.3370 20.7580 0.1358 0.4671 2.9030 2.4030 21.7720
Contaminated 0.1706 0.5957 2.4700 2.2120 19.0390 0.1928 0.6408 2.6950 2.3500 20.7360

only around 20, substantially smaller than the sample size n=150. This
offers some advantage over the method of penalized smoothing splines
where the number of parameters is around n in the calculation.

It is not surprising that the L2 method has a slightly better precision than
the L1 method for normal errors. But the advantage quickly disappears
for heavier-tailed errors such as a contaminated normal 0.95N(0, 1)+
0.05N(0, 52), also considered in Table 1.

We examined the bias and variance for each component of ;� . Variance
is the dominating factor in the mean squared error. For the L2 estimate,
the component-wise variance in this example is about 0.009, compared to
its asymptotic value of 0.007. The L1-estimate has a component-wise
variance of 0.013, compared to its asymptotic value of 0.010. At the sample
size n=300, the finite sample variances are nearly the same as their
asymptotic ones.

In order to have some idea of how well the B-spline approximation com-
petes with some well-known multivariate regression estimation technique,
we simulated bivariate data from the model y=g(t)+e and compared the
B-spline based mean (L2) and median (L1) regression with the Friedman's
MARS algorithm and Breiman's PI algorithm. The four test functions are

(1) EXP exp(t1 sin(?t2)) with t # [&1, 1]2, _=0.5;

(2) SIN1 3 sin(t1 t2) with t # [&2, 2]2, _=1;

(3) GBCWwith t # [0, 1]2, _=1.

(4) SIN2 sin(2?t1) t2
2 for &1�t1�0, 2t1 t2

2 for 0<t1�1, with
t2 # [&3, 3], _=1.

The first three are taken from the ``benchmark'' functions of Breiman
(1991), and the fourth is constructed to have lower and uneven degree of
smoothness. Three error distributions are considered. They are Normal:
N(0, _2) with the same variance used in Breiman; Mixture: .95N(0, _2)+
0.05N(0, 25_2), and Slash: N(0, 0.01)�U(0, 1).

Table II gives the values of NE (the first number in each case) computed
from 1000 replicates of sample size n=100. The associated SD's (the
second number in each case) are standard deviations of individual
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TABLE II

Comparison: Tensor-product B-splines, MARS, and PIMPLE

Function Distr. L2 Fit L1 Fit MARS PIMPLE

Normal 0.231, 0.017 0.262, 0.022 0.288, 0.034 0.245, 0.184
Mixture 0.340, 0.076 0.301, 0.054 0.405, 0.079 0.856, 14.7

EXP Slash 18.7, 7546 0.538, 6.46 31.5, 18342 45.5, 35492

Normal 0.453, 0.079 0.528, 0.098 0.775, 0.225 0.409, 0.086
Mixture 0.682, 0.322 0.622, 0.238 1.02, 0.475 0.693, 0.439

SIN1 Slash 51.7, 75380 0.612, 6.46 28.7, 13851 44.4, 35429

Normal 0.544, 0.072 0.609, 0.095 0.827, 0.261 0.558, 0.090
Mixture 0.747, 0.327 0.691, 0.233 1.07, 0.530 0.822, 0.398

GBCW Slash 31.1, 18135 0.689, 6.52 38.1, 28283 12424, ***

Normal 0.805, 0.472 0.999, 0.723 0.963, 0.374 0.456, 0.151
Mixture 0.992, 0.587 1.078, 0.746 1.224, 0.650 0.854, 0.761

SIN2 Slash 98.8, 304670 1.500, 14.51 135.99, 554882 8394, ***

NE's from simulated samples. When a number is greater than 106, it is
replaced by *** in the table. A large SD indicates that the quality of fits
would vary a lot from one sample to another. It is clear from the table that
the tensor-product B-spline approximation is highly competitive and
generally outperforms MARS. PIMPLE is an excellent performer with nor-
mal error, but it does a poor job if the error is heavy-tailed. Professors
Friedman and Brieman kindly supplied their fortran codes of MARS and
PIMPLE respectively. The calculations of the B-spline based mean and
median regression were carried out by GAUSS programs on an IBM 486.

One referee pointed out that MARS was developed with applications
with many more predictors in mind. The comparison we made was limited
to two predictors. Therefore the results presented here do not imply that
the tensor-product B-spline approximations are always preferred.

Finally, we consider the performance of approximate tests based on
Corollary 3.1 in finite sample problems. The simple model investigated here
is

Y=X;0+T exp(T�3)+e, (5.8)

where the random error e has distribution N(0, 1), X=X0+T�4, X0 and T
are independent and distributed as N(0, 1) and U(&2, 2) respectively. We
wish to test the null hypothesis of ;0 . For a fixed level of :=0.05, sample
sizes of 50, 100, and 150 are used. The type I and type II errors of the
large-sample test based on Corollary 3.1 are estimated from 4000 Monte
Carlo samples, and given in Tables III (A and B). Both the L1 and L2

methods provide rather reliable significance levels.
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TABLE III

A. Estimated Type I Errors

L1-Estimator L2-Estimator

n=50 n=100 n=150 n=50 n=100 n=150

0.0473 0.0470 0.0433 0.0560 0.0545 0.05175

B. Estimated Type II Errors

L1-Estimator L2-Estimator

;0 n=50 n=100 n=150 n=50 n=100 n=150

0.3 0.6328 0.3688 0.1998 0.4658 0.1693 0.0563
0.5 0.2498 0.0348 0.0033 0.0910 0.0018 0.0003

APPENDIX: PROOFS OF MAIN RESULTS

In this section, we prove the results of Theorems 3.1 and 3.2 for any
q�2. We assume that sj, i=i�Mn , Mnj=Mn , and Nj=N, for i=1, ..., Mn ,
1� j�q.

Let

Zn=(?(T1), ..., ?(Tn))T,

G=Zn (Z T
n Zn)& Z T

n , (6.1)

7� n=(X1 , ..., Xn)(I&G)(X1 , ..., Xn)T,

where (Z T
n Zn)& stands for Moore Inverse of Z T

n Zn . Direct verifications
show that n&17� n � 7 almost surely. By arguments similar to Lemma 3.1 of
He and Shi (1994) and Theorem 4 of Chen (1991), we see that the eigen-
values of n&1N qZn Z T

n and n&17� n are bounded away from zero and
infinity. Without loss of generality, we assume that both eigenvalues are
greater than or equal to a constant * for all n. The following lemma justifies
the approximation power of the tensor-product B-splines. Its proof follows
readily from Theorem 12.7 of Schumaker (1981).
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Lemma 6.1. Under Condition 1, there exist a constant W3 depending only
on m, q and W0 such that

sup
t # [0, 1]q

| g0(t)&?(t)T a0 |�W3 M&r
n (6.2)

where a0 is a N q
-dimensional vector depending on g0 .

The following lemma is needed to prove consistency of the regression
splines.

Lemma 6.2. Assume Conditions 1 and 4 and N=O(n1�(2r+q)). We have
as n � �,

(a) sup|a|=1, |;| =1 P(aT?(t) xT;)Nq�2=O(1),

(b) limn � � sup|a|=1, |;|=1 |(Pn&P) aT?(t)(x&`(t))T ; | Nq�2=0, a.s.
(c) limn � � sup|a|=1, |;|=1 |(Pn&P) aT?(t) xT; | N q�2=0, a.s.

where Ph and Pn h denote the expectation under the probability distribution
of (X, T) and the empirical distribution respectively.

The proof of Lemma 6.2 is straightforward by the standard Cauchy�
Schwartz inequality, convergence of Pn xxT, and boundness of the eigen-
values of n&1N qZn Z T

n .

Proof of Theorem 3.1. By Lemma 6.1, there exists a*(g0) such that
Rn (t) = g0(t) & ?(t)T a*( g0) = O(M&r

n ) uniformly in t. Let H 2
n=

diag(7� n , N qZ T
n Zn) be a symmetric and block-diagonal matrix and

%� #\%� 1n

%� 2n+

=Hn \
;� &;0

+ .
(â&a*(g0))N&q�2+(Z T

n Zn)& :
n

k=1

?(Tk) X T
k (;� &;0)N&q�2

Since |7� 1�2
n (;� & ;0)| � |%� | and [n&1 �n

i=1 (?(Ti )
T (â & a*( g0)))2]1�2 �

n&1�2 |%� |+4&1�2
n |;� &;0| sup|a|=1, |;|=1 |n&1 �n

i=1 aT?(Ti) X T
i ;Nq�2| , it suf-

fices to show that |%� |=Op (M q�2
n ). The rest of the proof follows the same

arguments as those of He and Shi (1994).

To obtain asymptotic normality of ;� , we shall make use of stronger
asymptotic linearization results than Lemmas 3.3 and 3.4 of He and Shi
(1994). The key difference is that the following lemmas give the uniform
linearization over a broader parameter space for %1 # Rp. This is where
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stronger smoothness conditions of r>q and r>3q�2 are used. Since the
proofs follow the same line as in He and Shi (1994), they are also omitted
in the present paper.

Let

Rni=g0(Ti)&?(Ti)
T a0 , zi=\z1i

z2i+ , z2i=H&
2n ?(Ti)Nq�2,

z1i=H&
1n \Xi& :

n

k=1

?(Tk)T (Z T
n Zn)& ?(Ti)Xk+ , i=1, ..., n.

Lemma 6.3. Under the conditions of Theorem 3.2, we have for any L>0
and M>0,

sup
|%1|�M, |%2|�LMn

q�2 } :
n

i=1

[\(ei&zT
1i %1&zT

2i %2&Rni)&\(ei&zT
2i %2&Rni)

+zT
1i%1 9(ei)&Ee (\(ei&zT

1i %2&Rni)&\(ei&zT
2i %2&Rni))] }=op (1),

(6.3)

where Ee is the conditional expectation operator given (T1 , X1), ..., (Tn , Xn).

Lemma 6.4. Under the conditions of Theorem 3.2, we have

:
n

i=1

Ee (\(ei&zT
1i %&zT

2i %2&Rni)&\(ei&zT
2i %2&Rni))

=%T
1 %1 b3 �2+rn (%1 , %2),

where sup|%1|�M, |%2| �LMn
q�2 |rn (%1 , %2)|=op (1);

Proof of Theorem 3.2. Let %� T
n =(%� T

1n , %� T
2n) as in the proof of

Theorem 3.1, and %� 1=b&1
3 �n

i=1 z1i 9(ei). By the triangle inequality and
Lemmas 6.3 and 6.4, we have for any L>0, and $>0,

sup
|%1&%� 1|=$, %1 # Rp

I( |%� 1|�L, |%� 2n|�LMq�2
n ) } :

n

i=1

(\(ei&zT
1i %1&zT

2i %� 2n&Rni)

&\(ei&zT
1i %� 1&zT

2i %� 2n&Rni))&
b3 $2

2 }
�2 sup

|%1|�L+$, |%2|�LMn
q�2 } :

n

i=1

(\(ei&zT
1i %1&zT

2i %2&Rni)&\(ei&zT
2i %2&Rni)

+zT
1i %1 9(ei))&

b3 %T
1 %1

2 }=op (1).
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On the other hand, P[ |%� 1|�L] and P[ |%� 2n|�LM q�2
n ] decrease to zero as

L � �. Therefore,

lim
n � �

P { sup
|%1&%� 1|=$, %1 # R p } :

n

i=1

(\(ei&zT
1i %1&zT

2i %� 2n&Rni)

&\(ei&zT
1i %� 1&zT

2i %� 2n&Rni))&
b3 $2

2 }�===0 (6.4)

for any =>0. By Corollary 25 of Eggleston (1958, p. 47), (6.4) implies that

lim
n � �

P { inf
|%1&%� 1|�$

:
n

i=1

(\(ei&zT
1i %1&zT

2i %� 2n&Rni)

> :
n

i=1

\(ei&zT
1i %� 1&zT

2i %� 2n&Rni)==1.

By the definition of %� n , we have %� 1n=%� 1+op (1). The result then follows
from the central limit theorem on %� 1 .
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