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a b s t r a c t

In this paper, empirical likelihood-based inference for longitudinal data within the frame-
work of generalized linear model is investigated. The proposed procedure takes into
account the within-subject correlation without involving direct estimation of nuisance
parameters in the correlation matrix and retains optimal even if the working correlation
structure ismisspecified. The proposed approach yieldsmore efficient estimators than con-
ventional generalized estimating equations and achieves the same asymptotic variance
as quadratic inference function based methods. Furthermore, hypothesis testing proce-
dures are developed to test whether or not the model assumption is met and whether or
not regression coefficients are significant. The finite sample performance of the proposed
methods is evaluated through simulation studies. Application to the Ohio ChildrenWheeze
Status data is also discussed.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Longitudinal data, or more generally cluster data, often arise in the biometrical, epidemiological, social and economical
fields. Repeatedmeasurements aremade on subjects over time and responseswithin a subject are very likely to be correlated
with an unknown correlation structure, although responses between subjectsmay be independent.Whenmodeling longitu-
dinal data, the within-subject correlationmust be taken into account. Otherwise, statistical inferencemay not be correct [7].

The method of generalized estimating equations (GEEs), developed by Liang and Zeger [17] from generalized linear
models [21,20] and quasi-likelihood [35,19], is widely used to deal with both continuous and discrete longitudinal data. The
key idea behind the GEE approach is to extend generalized linearmodels and quasi-likelihoodmethods by using a ‘‘working’’
correlation matrix parameterized in terms of additional nuisance parameters α, with additional estimating equations for α
if necessary. The estimators of parameters in the mean based on the GEE approach are still consistent even if the correlation
matrix is misspecified [17].

However, when theworking correlation ismisspecified, this can lead to a great loss of efficiency of parameter estimators.
Furthermore, one of the underlying assumptions on the GEE method is that the nuisance parameter α in the correlation
matrix has to be properly estimated. Unfortunately, the estimator of α suggested by Liang and Zeger [17] is not available
even in some simple cases of misspecification [5].

The generalized method of moments (GMM), proposed by Hansen [10], is a popular approach for estimation of the
vector of regression parameters from a set of score functions when the dimension of the score function exceeds that of the
regression parameter. Under some regularity conditions, the estimators obtained viaGMMare consistent and asymptotically
normal. To overcome the difficulties associated with the GEEmethod, Qu et al. [30] introduced amethod based on quadratic
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inference functions (QIF) which does not involve direct estimation of the nuisance parameter α but lead to more efficient
estimators even if the working correlation matrix is misspecified. The key idea of QIF is to represent the inverse of the
working correlation matrix by the linear combination of basis matrices and combine these estimating equations using
the principle of GMM. More recently, the QIF approach has been applied to other models, including varying coefficient
models [29], partial linear models [3], and single-index models [1].

An important problem in statistical inference is how to construct confidence regions for parameters of interest. Two
conventional methods are the normal approximation method and the bootstrap method. A convenient choice is the use
of asymptotic normal distribution of parameter estimators obtained by one of the aforementioned methods to construct
the confidence regions. However, with this method, a plug-in estimator of the limiting variance of regression parameter
estimators is needed. Accordingly, the confidence region that is derived from an asymptotic normal distribution is
predetermined to be symmetric. To avoid plug-in estimation of the limiting variance, the bootstrap method may be used
instead.

Taking these issues into account, we consider a different but somehow related approach via empirical likelihood (EL) to
construct the confidence regions. The EL approach, originally proposed by Owen [23], has many advantages over the normal
approximation-based method and the bootstrap method [6,9,23–26,28]. First, the EL approach does not involve a plug-in
estimation for the limiting variance. Second, the shape and the orientation of EL-based confidence regions are determined
automatically and entirely by the data. Third, the EL approach yields better coverage probability for small sample [26].
Fourth, as DiCiccio et al. [6] showed, the EL approach is Bartlett correctable, and thus has an advantage over the bootstrap
method.

The EL approach has been widely applied to statistical models to construct a confidence region for the mean of a
random vector in a similar manner to that by Owen [23,24]. Owen [25] considered the EL-based analysis for linear
regression models and Kolaczyk [13] extended it to generalized linear models. Further extensions to partial linear models
and generalized partially linear models were also considered [16,31,33]. However, all those aforementioned methods
assume that data are statistically independent. The use of the EL-approach to longitudinal data analysis has received
little attention because of the challenge imposed by incorporating the within-subject correlation. Existing work using the
EL-approach for longitudinal data includes longitudinal partially linear regression models [40], case-control studies [42],
varying coefficient models [36,37], semiparametric varying coefficient partially linear models [43,44,38] and partially linear
single-index models [18]. All those studies, however, use a working independence structure and thus ignore the within-
subject correlation of longitudinal data. Recently, Wang et al. [34] extended the block empirical likelihood method of
You et al. [40] by accounting for thewithin-subject correlation andproposed two generalized EL-basedmethods, the subject-
wise EL method and the element-wise EL method, to solve the problem. Wang et al. [34] showed that the subject-wise EL
method with correctly specified correlation structure is the most efficient. Bai et al. [2] proposed a weighted EL-approach
for longitudinal data by introducing a weight matrix to account for the within-subject correlation. However, it is still not
clear yet how to correctly specify the correlation structure in [34] and how to choose the optimal weight matrix in [2].

In this paper, we aim to develop an unified approach that enables us to deal with both continuous and discrete
longitudinal data without losing efficiency. We propose an estimation procedure for longitudinal data using a linear
approximation to the inverse of the correlation matrix and empirical likelihood. The proposed method allows us to directly
incorporate correlation intomodel building, but does not require estimation of the nuisance parameters associated with the
correlation.

We also consider confidence regions for parameters of interest. The EL-based confidence regions for the unknown
regression parameters can be constructed. Our proposed approach does not require estimating the covariance matrices
of the parameter estimators. Moreover, the proposed confidence region is adapted to data and not necessarily symmetric.
Thus, it reflects the nature of the underlying data and hence gives a more representative manner to make inferences about
the parameters of interest.

The rest of the paper is organized as follows. In Section 2, we first briefly review the GEE and QIF approaches. We
then define an EL ratio function based on the ‘‘extended score’’ and propose an EL-estimation approach for longitudinal
data, which can be obtained by using a linear approximation in the line of the QIF approach. Section 3 discusses the
theoretical results of the proposed estimation method. Hypothesis testing procedures for the model assumption and
regression coefficient specification are also developed. Section 4 reports the finite sample performance of the proposed
method by Monte Carlo simulation studies. Section 5 gives an application of the proposed estimation method to the Ohio
Children Wheeze Status data. Further discussions are given in Section 5.

2. Estimation procedure

In this section, we describe how to obtain efficient estimators of parameters using EL. We start with a brief review on
existing methods for longitudinal data under the framework of generalized linear models.

2.1. Generalized estimating equations

Let yij be an outcome variable and xij be a p × 1 vector of covariates, observed at times tij (j = 1, . . . ,mi) for subjects
i = 1, . . . , n. Assume that the first and second moments of yij are modeled by
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g(µij) = xTijβ (1)

and

Var(yij) = φv(µij) (2)

where β is a p × 1 parameter vector, g(·) is a known link function, µij = E(yij), φ is a dispersion parameter, and v( · ) is a
known variance function.

For the longitudinal data, the quasi-likelihood equation [35,19] of β is defined by

U(β) =

n
i=1

(µ̇i)
TΣ−1

i (yi − µi) = 0, (3)

where µ̇i = ∂µi/∂β , µi = (µi1, . . . , µimi)
T , Σi = Cov(yi) and yi = (yi1, . . . , yimi)

T . If Σi is known, it is well known that
U(β) is the optimal estimating function.

In practice, Σi is often unknown, so that the estimator of β is obtained by solving (3) after replacing Σi in (3) with
empirical estimator Σ̂i for the Σi. However, if the size of matrix Σi is large, the inverse of an estimator of Σi, e.g., based on
sample covariance, can be very unreliable or incalculable, especially whenΣi hasmany zero entries, as is common in spatial
data [14], or if Σi is close to a singular matrix.

To avoid this difficulty, Liang and Zeger [17] proposed to keep the same assumption about themarginal variance structure
as in quasi-likelihood equations but introduce a common working correlation matrix R which involves a small number of
nuisance parameters α to simplify the correlation analysis. Specifically, it is assumed that the matrix Σi can be expressed in
terms of a working correlation matrix R(α) as Σi = A1/2

i R(α)A1/2
i , where Ai = diag{Var(yi1), . . . , Var(yimi)} and α is some

unknown nuisance parameter. Thus, the corresponding GEE are
n

i=1

(µ̇i)
TA−1/2

i R−1(α)A−1/2
i (yi − µi) = 0. (4)

If the working correlation R is misspecified, the resulting estimator of the parameters β based on GEE (4) is still consistent,
but it may not be efficient within the same class of estimating equations [32].

As pointed out by Crowder [5], one potential limitation of the GEE method is that the moment estimator of the nuisance
parameter α in the working correlation matrix may not exist even in some simple cases.

2.2. Quadratic inference function

Unlike the GEE, Qu et al. [30] model R−1 by the class of matrices

R−1
≈

k
i=1

aiMi, (5)

where M1 = I is the identity matrix and M2, . . . ,Mk are known symmetric basis matrices with 0 or 1 as their components
and a1, . . . , ak are unknown constants determining the within-subject correlation parameters α, which can be viewed as
nuisance parameters associated with the correlation. It is worth pointing out that the basis matrices M1, . . . ,Mk do not
depend on the nuisance parameters α. This expression (5) holds exactly for some common working correlation structures.
For example, ifR(α) is amatrixwith compound symmetry (CS) structure, thenR−1(α) = a1M1+a2M2 withM2 being amatrix
with 0 on the diagonal and 1 off the diagonal. And if R(α) is amatrixwith AR(1) structure, then R−1(α) = a∗

1M1+a∗

2M2+a∗

3M3
where M2 takes 1 on the two main off diagonals and zero elsewhere and M3 takes 1 on the two corner components of the
diagonal and zero elsewhere. In general,M3 is a minor boundary correction and can be omitted. For more details, see [30].

Substituting (5) into (4) leads to
n

i=1

(µ̇i)
TA−1/2

i (a1M1 + · · · + akMk)A
−1/2
i (yi − µi) = 0. (6)

One approachwould be to choose the coefficients a = (a1, . . . , ak) so as to optimize some function of the informationmatrix
associated with (6). Note that the estimating equations (6) are a linear combination of elements of the following ‘‘extended
score’’ vector

S̄n(β) =
1
n

n
i=1

Si(β),

where

Si(β) =

(µ̇i)
TA−1/2

i M1A
−1/2
i (yi − µi)

...

(µ̇i)
TA−1/2

i MkA
−1/2
i (yi − µi)

 . (7)
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In general, there is no solution for the equations S̄n(β) = 0 unless k = 1 as S̄n(β) is a vector of length kp (> p), whichmeans
that there are more estimating equations than those actually needed for estimation of the unknown parameters.

Qu et al. [30] proposed to use the GMM [10] to construct an estimator ofβ byminimizing the quadratic inference function

Qn(β) = nS̄Tn (β) C−1
n (β) S̄n(β), (8)

where Cn(β) = n−1 n
i=1 Si(β)STi (β) is the sample covariance matrix and is assumed to be invertible.

According to Hansen [10], the QIF estimator, i.e., β̂ = argminβ Qn(β), has the usual large sample properties under some
regularity conditions. In other words,

√
n(β̂ − β) −→ N(0, VQIF ) (9)

in distribution as n → ∞, where the asymptotic covariance matrix VQIF =

ΣT

12Σ
−1
11 Σ12

−1
with

Σ12 = lim
n→∞


1
n

n
i=1

∂Si(β)

∂β


and Σ11 = lim

n→∞


1
n

n
i=1

Si(β)STi (β)


. (10)

The asymptotic covariance matrix VQIF can be estimated consistently by V̂QIF that is given by

1
n

n
i=1

∂Si(β)

∂β


β=β̂

T 
1
n

n
i=1

Si(β̂)STi (β̂)

−1 
1
n

n
i=1

∂Si(β)

∂β


β=β̂


−1

.

Based on these results, the approximated confidence regions are provided by
β : n(β̂ − β)T V̂QIF (β̂ − β) 6 χ2

p,α


where χ2

p,α is the 1 − α quantile of the standard χ2
p distribution.

If the dimension of the extended score is the same as the dimension of the parameters, that is, k = 1, then n−1 n
i=1

∂Si(β)/∂β and n−1 n
i=1 Si(β)STi (β) are p × p matrices and minimizing the QIF is equivalent to solving S̄n(β) = 0 directly.

This approach also provides an optimal linear combination of the given estimating functions in the sense that the
asymptotic variance of the estimator attains the minimum in the sense of Loewner ordering (e.g. [27, p. 12]). This property
ensures that the QIF approach improves the efficiency of the GEE method when the working correlation structure is
misspecified but remains as efficient as the GEE method when the working correlation structure is specified correctly [30].

2.3. Empirical likelihood

By representing the inverse of theworking correlationmatrix by a linear combination of the basismatrices and using only
those basismatrices to formulate the objective function, the QIF estimator is obtainedwith no need to estimate the nuisance
correlation parameters a1, . . . , ak. Hence, the QIF method does not depend on whether or not appropriate estimators of the
correlation parameters are available. As there are more estimating equations than those actually needed for estimation of
the unknown parameters, the GMM is used through minimizing the criterion of the QIF.

GMM and EL are two popular but different methods for combining information about parameters when there are more
estimating equations than those actually needed for estimation of the unknown parameters. The main difference lies in the
way of combination of the information [28,11]. Imbens [12] and Newey and Smith [22] further showed that the EL-approach
has several advantages over the GMM-method. For example, the GMM estimation requires a correct choice of the weight
matrix. In contrast, the EL-approach does not have such a constraint. Moreover, the EL estimation can produce a smaller bias
of second order than the GMM method. See [12,22] for more details. Below we carry out a likelihood-type inference using
EL [23], encouraged by its attractive performance for estimating equations as demonstrated by Qin and Lawless [28] and
others.

Let pi be the non-negative probability weight associated with the estimating function Si(β) defined in (7). Note that
{Si(β) : 1 ≤ i ≤ n} aremutually independent and satisfy E[Si(β0)] = 0where β0 is the true value of β . The EL ratio function
for β is defined by

Ln(β) = max


n

i=1

npi

pi ≥ 0,
n

i=1

pi = 1,
n

i=1

piSi(β) = 0


, (11)

where the maximization is taken with respect to the probabilities p1, . . . , pn. Note for a given β an unique value for Ln(β)
exists, provided that 0 is inside the convex hull of the point S1(β), . . . , Sn(β) [23,24]. By the standard procedure of the EL
approach [28,23], we know that the probability pi must have the form

pi =
1
n


1

1 + tT (β)Si(β)


,
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where t(β) is the Lagrange multiplier that satisfies

Qn1(β, t) =
1
n

n
i=1

Si(β)

1 + tT (β)Si(β)
= 0. (12)

Clearly, we have

log Ln(β) = −

n
i=1

log

1 + tT (β)Si(β)


. (13)

The empirical log-likelihood ratio function of β can be defined by

ℓn(β) = − log Ln(β) =

n
i=1

log

1 + tT (β)Si(β)


. (14)

Then the maximum EL estimator (MELE), β̃ , is defined as the maximizer of Ln(β) or the minimizer of ℓn(β).
When the estimating function Si(β) is differentiable with respect to β , the MELE can be found via solving the following

system of equations,

Qn1(β, t) = 0 and Qn2(β, t) = 0, (15)

where Qn1(β, t) is defined in (12) and

Qn2(β, t) =
1
n

n
i=1

1
1 + tT (β)Si(β)


∂ Si(β)

∂β

T

t(β). (16)

In general, t(β) is a vector with dimension kp where k is the number of the basis matrices involved in the working
correlation structure. As mentioned earlier, for some common working correlation structures k takes small integers, for
example, k = 1 for working independent correlation structure and k = 2 for compound symmetry and AR(1) correlation
structures. According to [28], when k = 1, the EL estimator β̃ is also equal to the solution of the estimating equations

n
i=1

Si(β) = 0

We show in the next section that if β0 is the true parameter vector, 2ℓn(β0) is then asymptotically chi-square distributed.

3. Main results

In this section, we give asymptotic properties of the EL estimator β̃ and the empirical log-likelihood ratio. To state the
results, we first introduce some notation. In the following, we use ∥ · ∥ to denote the Euclidean norm for a vector.

C1. The matrix n−1 n
i=1 SiS

T
i converges almost surely to a constant matrix Σ11, where Σ11 is positive definite.

C2. The covariates xij and the vectors

ġ−1(xiβ) = (ġ−1(x′

i1β), . . . , ġ−1(xTimi
β))T

are all bounded, meaning that all the elements of the vectors are bounded.
C3. E∥yi − µi∥

3 < ∞.
C4. The matrix n−1 n

i=1 ∂ Si(β)/∂β converges in probability to a constant matrix Σ12.
C5. The parameter space S is a compact subset of R p, and β0 is an interior point of S.
C6. ∂2 Si(β)/∂β∂βT is continuous with respect to β in a neighborhood of the true value β0.

Conditions listed in C1–C6 above are common conditions that are used in the literature. Similar conditions also were used
in [28,30,39].

3.1. Asymptotic properties of the EL estimator

Theorem 1. Under the conditions C1–C3, as n → ∞, with probability tending to 1 the likelihood Eq. (15) has a solution β̃ within
the open ball ∥β̃ − β0∥ ≤ n−1/3.

Theorem 1 provides the consistency of the MELE β̃ . This result corresponds to Lemma 1 in [28] which is about the
consistency of MELE for independent and identically distributed data. It is also an analogue of [4] for parametric maximum
likelihood estimators.
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Theorem 2. Under the conditions C1–C6,
√
n(β̃ − β0) −→ N(0, VEL) (17)

in distribution as n → ∞, where the covariance matrix VEL is given by VEL = (ΣT
12Σ

−1
11 Σ12)

−1 and Σ12 and Σ11 have the same
definition as (10).

Theorem 2 shows that the EL estimator β̃ is consistent and asymptotically normally distributed. It is interesting to note
that the asymptotic covariance matrix of β̃ has the same form as that of the QIF estimator based on GMM. The asymptotic
covariance matrix VEL can be estimated consistently by


n

i=1

p̃i
∂Si(β̃)

∂β

T 
n

i=1

p̃iSi(β̃)STi (β̃)

−1 
n

i=1

p̃i
∂Si(β̃)

∂β


−1

with p̃i = [n(1 + tT (β̃)Si(β̃))]−1, or alternatively by the same expression with p̃i’s simply replaced by n−1 for simplicity.
It is noted that the proof of Theorem 1 is similar to the proof of Lemma 1 in [28], and the proof of Theorem 2 is similar to

the proof of Theorem 1 in [28]. The details are thus omitted here but can be obtained from the authors on request.

3.2. Model checking and testing

Let us now turn our attention to the empirical log-likelihood ratio.

Theorem 3. The empirical log-likelihood ratio statistic for testing H0 : β = β0 is

WE = 2ℓn(β0) − 2ℓn(β̃). (18)

Under the conditions C1–C6, WE → χ2
p in distribution as n → ∞, when H0 is true.

Corollary 1. Let β = (βT
1 , βT

2 )T , where β1 and β2 are r × 1 and (p − r) × 1 vectors, respectively. For H0 : β1 = β0
1 , the profile

empirical log-likelihood ratio test statistic is

W1 = 2ℓn(β
0
1 ,

β0
2 ) − 2ℓn(β̃1, β̃2), (19)

where β0
2 minimizes ℓn(β

0
1 , β2) with respect to β2. Under the conditions C1–C6, W2 → χ2

r in distribution as n → ∞, provided
that H0 is true.

The proof of Theorem 3 and Corollary 1 can be achieved by using the similar arguments as those used in the proof of
Theorem 2 and Corollary 5 in [28]. The details are thus omitted here but can be obtained upon request. It is noted that the
QIF approach has also an analogue to the likelihood ratio test (ALRT), as shown by Theorem 1 in [30].

Clearly, Theorem 3 can be used not only to test the hypothesis H0 : β = β0 for some specific β0, but also to construct the
confidence region for β . In fact, let

Iα = {β : WE ≤ cα},

where cα satisfies Pr{χ2
p ≤ cα} = α. Then, by Theorem 3 the set Iα gives a confidence region for the parameters β with

asymptotically correct coverage probability 1 − α, i.e., Pr(β ∈ Iα) = 1 − α + op(1). It is worth pointing out that the
asymptotic confidence region Iα is obtained with no need to estimate the asymptotic covariance matrix of the resulting
estimator of parameters.

4. Monte Carlo simulations

In this section, two simulation studies aremade to assess the performance of the proposed approach in terms of the finite
sample bias and the standard error of the parameter estimator, the coverage rate and average length of confidence intervals,
as well as the power and size of hypothesis test.

4.1. Study 1: estimation of parameters

Consider the following model

yij = β xij + ϵij, i = 1, 2, . . . , n; j = 1, 2, . . . , 10
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Table 1
The empirical bias and standard deviation of β based on GEE, QIF and EL methods with different correlations and sample sizes, calculated from 1000
simulations. TR, true correlation structure; WR, working correlation structure.

Bias Standard deviation
TR WR α GEE QIF EL GEE QIF EL

Sample size n = 50
CS AR1 0.3 −0.0003 −0.0005 −0.0005 0.0396 0.0389 0.0389

0.5 −0.0004 −0.0005 −0.0004 0.0356 0.0352 0.0352
0.7 −0.0004 −0.0003 −0.0002 0.0288 0.0289 0.0289

CS 0.3 0.0004 0.0002 0.0004 0.0357 0.0353 0.0353
0.5 0.0001 0.0001 0.0002 0.0308 0.0304 0.0305
0.7 0.0000 0.0000 0.0003 0.0241 0.0238 0.0239

AR1 CS 0.3 0.0013 0.0010 0.0011 0.0394 0.0390 0.0390
0.5 0.0013 0.0011 0.0012 0.0397 0.0393 0.0393
0.7 0.0009 0.0008 0.0009 0.0378 0.0373 0.0373

AR1 0.3 0.0005 0.0004 0.0004 0.0370 0.0366 0.0366
0.5 0.0004 0.0003 0.0003 0.0330 0.0328 0.0328
0.7 0.0002 0.0001 0.0001 0.0260 0.0265 0.0265

Sample size n = 100
CS AR1 0.3 −0.0001 −0.0001 −0.0002 0.0283 0.0280 0.0280

0.5 −0.0002 −0.0001 −0.0001 0.0254 0.0254 0.0254
0.7 −0.0001 0.0000 0.0000 0.0206 0.0208 0.0208

CS 0.3 0.0004 0.0003 0.0004 0.0255 0.0253 0.0253
0.5 0.0002 0.0002 0.0002 0.0219 0.0218 0.0218
0.7 0.0001 0.0000 −0.0001 0.0172 0.0171 0.0171

AR1 CS 0.3 0.0007 0.0007 0.0007 0.0280 0.0279 0.0279
0.5 0.0008 0.0007 0.0008 0.0282 0.0281 0.0281
0.7 0.0006 0.0006 0.0007 0.0269 0.0267 0.0267

AR1 0.3 0.0004 0.0004 0.0004 0.0264 0.0262 0.0262
0.5 0.0002 0.0003 0.0003 0.0236 0.0236 0.0236
0.7 0.0001 0.0002 0.0002 0.0185 0.0190 0.0190

Sample size n = 200
CS AR1 0.3 0.0006 0.0006 0.0006 0.0201 0.0199 0.0199

0.5 0.0003 0.0004 0.0004 0.0181 0.0181 0.0181
0.7 0.0001 0.0003 0.0003 0.0146 0.0148 0.0148

CS 0.3 0.0007 0.0007 0.0007 0.0181 0.0180 0.0180
0.5 0.0005 0.0005 0.0005 0.0156 0.0155 0.0155
0.7 0.0004 0.0003 0.0000 0.0122 0.0122 0.0122

AR1 CS 0.3 0.0010 0.0011 0.0011 0.0199 0.0199 0.0199
0.5 0.0010 0.0010 0.0011 0.0201 0.0200 0.0200
0.7 0.0008 0.0009 0.0009 0.0191 0.0190 0.0190

AR1 0.3 0.0008 0.0008 0.0008 0.0187 0.0187 0.0187
0.5 0.0006 0.0007 0.0007 0.0167 0.0168 0.0168
0.7 0.0003 0.0005 0.0005 0.0132 0.0136 0.0136

where β = 1, xi = (xi1, . . . , xi,10)T is generated independently from a multivariate normal distribution with mean (0.1,
0.2, . . . , 1.0)T and covariance matrix I where I is the identity matrix. And also ϵi = (ϵi1, . . . , ϵi,10)

T is generated from a
10-dimensional normal distributionwithmean 0, marginal variance 1 and the two commonworking correlation structures:
compound symmetry (CS) and AR(1) with a single nuisance parameter α. In order to see how the proposed approach
behaves under different degrees of correlation, the parameter α takes values 0.3, 0.5 and 0.7. In our simulation, we took
sample size n = 50, 100 and 200, respectively. For each combination of n and α, we generated 1000 Monte Carlo random
samples.

Table 1 reports the empirical bias and standard deviation of β based on the GEE, QIF and EL approaches from the 1000
simulation studies. Table 1 shows that the empirical biases are slightly smaller for QIF than EL in all but two cases. However,
empirical biases from those three approaches are all smaller than 0.0013 and thus the biases can be neglectful. Hence, from
Table 1 we conclude that those threemethods all produce no detectable bias in the estimator of the regression coefficient β ,
which confirms the theoretical result. As sample size increases, the standard deviation for the estimator of β by those three
approaches decreases. An interesting finding observed from Table 1 is that there is no difference between the estimated
standard deviations by the QIF and EL approaches. This is reasonable as we already showed that the resulting estimator
from the EL approach has the same asymptotic covariance form as that of the QIF estimator. In fact, in those two methods
we use the same formula to estimate the standard deviation of β except for using different consistent estimators of β to
replace β in the formula.

Next, we examine the performance for each approach in terms of the coverage probability and average length of the
resulting confidence interval. Table 2 presents the empirical coverage probability and average length of the confidence
interval over 1000 simulation studies, based on the GEE, QIF and EL approaches, respectively. For the QIF approach, we
constructed the confidence interval using two different methods, say QIF1 and QIF2. In the QIF1, the confidence interval is
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Table 2
The average length and empirical coverage rates for confidence interval of β based on GEE, QIF and ELmethodswith different correlations and sample sizes,
calculated from 1000 simulations. TR, true correlation structure; WR, working correlation structure; QIF1, QIF confidence interval based on the asymptotic
normality; QIF2, QIF confidence interval based on the ALRT test.

Average length Coverage rate
TR WR α GEE QIF1 QIF2 EL GEE QIF1 QIF2 EL

Sample size n = 50
CS AR1 0.3 0.1552 0.1525 0.1349 0.1275 0.937 0.933 0.952 0.933

0.5 0.1395 0.1381 0.1218 0.1152 0.939 0.931 0.947 0.940
0.7 0.1130 0.1133 0.0998 0.0943 0.939 0.935 0.953 0.942

CS 0.3 0.1400 0.1385 0.1222 0.1162 0.938 0.936 0.947 0.939
0.5 0.1206 0.1194 0.1052 0.1001 0.941 0.940 0.949 0.936
0.7 0.0944 0.0934 0.0822 0.0783 0.944 0.940 0.952 0.934

AR1 CS 0.3 0.1544 0.1527 0.1353 0.1283 0.940 0.933 0.942 0.940
0.5 0.1556 0.1539 0.1360 0.1294 0.944 0.939 0.941 0.937
0.7 0.1481 0.1463 0.1290 0.1237 0.947 0.940 0.941 0.934

AR1 0.3 0.1449 0.1434 0.1268 0.1202 0.936 0.936 0.949 0.936
0.5 0.1293 0.1287 0.1136 0.1080 0.936 0.939 0.940 0.933
0.7 0.1018 0.1037 0.0915 0.0870 0.942 0.943 0.940 0.935

Sample size n = 100
CS AR1 0.3 0.1109 0.1096 0.0948 0.0926 0.936 0.940 0.955 0.952

0.5 0.0997 0.0994 0.0861 0.0840 0.936 0.938 0.959 0.954
0.7 0.0808 0.0816 0.0704 0.0686 0.940 0.938 0.957 0.951

CS 0.3 0.0998 0.0993 0.0858 0.0839 0.941 0.940 0.957 0.955
0.5 0.0860 0.0856 0.0737 0.0721 0.942 0.934 0.958 0.947
0.7 0.0673 0.0670 0.0576 0.0563 0.942 0.938 0.959 0.952

AR1 CS 0.3 0.1098 0.1093 0.0946 0.0924 0.943 0.944 0.959 0.953
0.5 0.1107 0.1101 0.0953 0.0932 0.937 0.936 0.957 0.954
0.7 0.1053 0.1047 0.0903 0.0890 0.936 0.933 0.959 0.953

AR1 0.3 0.1033 0.1028 0.0878 0.0858 0.939 0.938 0.949 0.945
0.5 0.0923 0.0924 0.0788 0.0769 0.939 0.940 0.952 0.944
0.7 0.0727 0.0746 0.0639 0.0624 0.950 0.942 0.951 0.949

Sample size n = 200
CS AR1 0.3 0.0788 0.0781 0.0669 0.0662 0.945 0.942 0.955 0.952

0.5 0.0708 0.0708 0.0608 0.0603 0.950 0.944 0.956 0.956
0.7 0.0574 0.0581 0.0500 0.0495 0.941 0.943 0.954 0.952

CS 0.3 0.0709 0.0707 0.0604 0.0598 0.954 0.949 0.952 0.950
0.5 0.0611 0.0609 0.0522 0.0517 0.952 0.950 0.953 0.950
0.7 0.0478 0.0477 0.0409 0.0409 0.953 0.948 0.952 0.946

AR1 CS 0.3 0.0781 0.0779 0.0664 0.0657 0.947 0.949 0.957 0.952
0.5 0.0786 0.0784 0.0670 0.0663 0.940 0.949 0.958 0.959
0.7 0.0747 0.0745 0.0635 0.0630 0.941 0.939 0.955 0.952

AR1 0.3 0.0734 0.0733 0.0621 0.0615 0.947 0.948 0.948 0.947
0.5 0.0656 0.0659 0.0560 0.0554 0.951 0.941 0.952 0.951
0.7 0.0517 0.0531 0.0454 0.0450 0.948 0.947 0.960 0.956

constructed based on the asymptotic normality distribution, while in the QIF2 the confidence interval is formed using the
ALRT test, as shown in Theorem 1 in [30].

The simulation findings in Table 2 can be summarized as follows. First of all, as the sample size increases, the average
length of confidence interval given by those approaches decreases and the corresponding empirical coverage probability
is more close to the nominal coverage probability 0.95. When the sample size is small, say n = 50, the QIF2 approach
based on the ALRT test, produces the highest empirical coverage probabilities for most cases. The GEE approach gives
higher coverage probabilities than the QIF1 and EL methods, although the corresponding empirical coverage probabilities
are smaller than the nominal coverage probability 0.95. When the sample size is moderate or large, for example, n = 100
or 200, our simulation shows that compared to the GEE and QIF approaches, the empirical coverage probabilities for the
confidence intervals given by the EL approach are more close to the nominal coverage probability 0.95.

Second, correct specification of the correlation structure yields a short average length of confidence interval obtained by
each of those approaches.

Third, for all the simulation cases the EL-based confidence interval lengths are shorter than those by the GEE, QIF1 and
QIF2, although the average length of the EL-based confidence interval is very close to those by the QIF2, especially when the
sample size is moderate or large. Both the GEE and QIF1 approaches give longer confidence intervals than the EL approach
for all the simulation cases.

Overall, the proposed EL approach has better performance than the GEE approach in terms of coverage probability and
the average length of confidence interval. Although the EL approach gives the same asymptotic covariance matrix for the
resulting estimator for the regression coefficients as the QIF method, the EL approach has better finite-sample performance
than the QIF method.
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Table 3
Simulated power for testing H0 : β2 = β0

2 by GEE, QIF and EL methods in the simulation Study 3 with the true correlation structure CS and ρ = 0.7.
QIF.Wald is the Wald test based on the asymptotic normality of the QIF estimator and QIF.ALRT is the quadratic score test based on a quadratic inference
function.

Working R β0
2 GEE.Wald QIF.Wald QIF.ALRT EL.ELR

AR(1) 1 0.059 0.048 0.039 0.048
1.05 0.381 0.418 0.386 0.413
1.1 0.887 0.920 0.900 0.914

CS 1 0.052 0.050 0.037 0.051
1.05 0.512 0.530 0.486 0.532
1.1 0.957 0.976 0.964 0.972

4.2. Study 2: test of hypothesis

As suggested by an anonymous reviewer, in this section we conduct Monte Carlo simulation experiments to investigate
the small sample behavior of the empirical log-likelihood ratio statistic presented in Theorem 3. We consider the following
model

yij = β1xij1 + β2xij2 + ϵij, i = 1, . . . , n; j = 1, 2, . . . ,m,

where β1 = 0.5, β2 = 1, n = 100, andm = 5. xij1 are i.i.d. fromUniform(0.5, 1.5), and xij2 are independently fromN(µxij2 , 1)
with µxij2 = j/m for j = 1, 2, . . . ,m and i = 1, 2 . . . , n. The random errors ϵi = (ϵi1, . . . , ϵim) ∼ Nm(0, R(ρ)) where the
covariance matrix R(ρ) is of the compound symmetry (CS) structure with ρ = 0.7. We aim to test the null hypothesis
H0 : β2 = β0

2 , where β0
2 takes different values at β0

2 = 1.00, 1.05 and 1.10 in order to assess the test size and power.
For the GEE approach, based on the asymptotic normality of regression parameter estimators we can construct theWald

test for the null hypothesis H0 : β2 = β0
2 , denoted by GEE.Wald. For the QIF approach, there are two versions of testing

statistic for the above null hypothesis H0. One is similar to the test method GEE.Wald, which is using theWald test principle
and the asymptotic normality distribution of the QIF regression parameter estimator, denoted by QIF.Wald. The other is
constructed using an analogue of the likelihood ratio test (ALRT) for the QIF, denoted by QIF.ALRT. For the EL approach, the
empirical log-likelihood ratio (ELR) statistic presented in Theorem 3 is applied, denoted by EL.ELR.

Table 3 displays the simulation results based on 1000 replicates for the four aforementioned test methods. It shows that
both the QIF.Wald test and the EL.ELR test perform very well, in particular when the within-subject correlation structure
is correctly specified. Those two test methods behave quite similarly in terms of test size and power. When the working
correlation structure iswrongly specified as AR(1), theGEE.Wald test has slightly inflated type I error and the size of QIF.ALRT
based test is smaller than the nominal size.When theworking correlation structure is correctly specified as CS, the test sizes
of all tests except for QIF.ALRT test are very closed to the nominal size. On the other hand, the QIF.Wald test appears most
powerful, while the GEE.Wald test is least powerful in most cases regardless of whether or not the working correlation
structure is correctly specified.

5. Analysis of Ohio Children’s wheeze status data

We apply the proposed method to analyze Ohio Children’s wheeze status data, which is part of the longitudinal binary
data on respiratory health effects of indoor and outdoor air pollution in six U.S. cities. One of the interests of the study is
to determine the effect of maternal smoking on children’s respiratory illness. This data set was analyzed by many authors
[41,8,30]. They analyzed the data on 537 children collected on at ages 7 to 10 from Ohio and treated the maternal smoking
habit as fixed at the first visit.

The response is a binary outcome with 0 and 1, indicating the presence or absence of respiratory illness. The maternal
smoking habit, in the preceding year, is recorded as a binary covariate. For further details about the data background, see [8].
One of the aims of the study was to assess the effect of maternal smoking on children’s respiratory illness. Clearly, we can
expect that the measurements for the same child are very likely serially correlated.

The following logistic model is applied to the binary data

log


πij

1 − πij


= β0 + β1xij1 + β2xij2 + β3xij1xij2

for i = 1, . . . , 537 and j = 1, . . . , 4, where xij1, xij2 and xij1xij2 are the age of the child, the maternal smoking habit indicator
and their interaction, respectively. The matrix Ai is diagonal with elements v(πit) = πit(1− πit). The extended score vector
S̄n(β) is constructed by choosing k = 2, for instance, by choosing the working correlation structure as either CS or AR(1)
structure, so that only the first two basis matrices are used in this case.

Table 4 presents the point estimators and their corresponding standard errors, obtained by the GEE, QIF and EL methods
under the two commonly used working correlations CS and AR(1). The estimators of the regression parameters are very
similar for the threemethods under the CS andAR(1)working correlation structures.When theworking correlation structure
is specified as the CS, the standard errors for β2 and β3 by GEE are bit smaller than those by the QIF and EL. When the
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Table 4
The parameter estimators and corresponding standard errors (in the parentheses) for Ohio Children’s wheeze status data by GEE, QIF and EL methods.

Working R Parameter GEE QIF EL

CS β0 −1.9005(0.1191) −1.9120(0.1194) −1.9008(0.1195)
β1 −0.1412(0.0582) −0.1456(0.0585) −0.1413(0.0586)
β2 0.3138(0.1878) 0.2879(0.2124) 0.3140(0.2012)
β3 0.0708(0.0883) 0.0760(0.0905) 0.0708(0.0902)

AR(1) β0 −1.9195(0.1200) −1.9170(0.1198) −1.9071(0.1197)
β1 −0.1468(0.0593) −0.1469(0.0586) −0.1444(0.0589)
β2 0.2953(0.1900) 0.2868(0.1902) 0.3142(0.1903)
β3 0.0815(0.0907) 0.0783(0.0900) 0.0757(0.0905)

Table 5
Testing of hypotheses for the longitudinal data on Children’s wheeze status. The column 2ℓn(β̃) is minimum of the log-likelihood obtained under the null
hypotheses,W1 is the value of the test statistic, df is the degrees of freedom.

Null hypotheses 2ℓn(β̃) W1 df p-value

Full model 3.972 0 — —
H0 : β4 = 0 4.449 0.477 1 0.490
H0 : β2 = β3 = 0 5.823 1.851 2 0.396
H0 : β1 = β3 = 0 10.337 6.365 2 0.041
H0 : β1 = β2 = β3 = 0 11.898 7.926 3 0.048

working correlation structure is specified as the AR(1), the standard errors for β1 and β3 by both the QIF and EL are smaller
than those by the GEE. This difference may be due to the fact that the true correlation structure is unknown. In fact, the
approximation of the inverse of the working matrix, R, used in both the QIF and EL approaches, depends on the choice of the
working correlation structure. The t-ratio shows that the interaction between the age of the child and maternal smoking is
not significant. The t-ratio also suggests that age is a significant factor and should be included in the model. The negative
sign for age means that older children are less likely to have respiratory disease. Similarly, the maternal smoking habit has
a positive effect on children’s respiratory disease, although smoking habit seems not to be a significant factor.

In order to assess whether the sub-models are adequate, we compute the statistic 2ℓn(β̃) under various sub-models with
certain parameter constraints and perform the ELR tests to compare different models. Results are reported in Table 5.

Each row of Table 5 represents results for a given model with the specific constraints on the parameters. In particular,
the first row provides the full model that includes all the covariates, age, maternal smoking and their interaction. For
each model, we compute the parameter estimate β̃ and report the corresponding value of 2ℓn(β̃). The test statistic W1
is calculated using (19) which is actually compared to the full model. The column of ‘‘df’’ is the degrees of freedom for the
corresponding test statistic and the last column gives the associated p-value. From Table 5, it is clear that the null hypotheses
H0 : β1 = β2 = β3 = 0 and H0 : β1 = β3 = 0 are rejected as the corresponding p-values are smaller than 0.05. In contrast,
the remaining null hypotheses H0 : β2 = β3 = 0 and H0 : β4 = 0 cannot be rejected.

6. Conclusions

The EL approach is a powerful tool for combining information about parameters when there are more estimating
equations than those actually needed for estimation of the unknown parameters. In this paper, we proposed EL-based
inference for longitudinal datawithin the framework of generalized linearmodels. Theproposed approach takes into account
the within-subject correlation but has no need to estimate the nuisance parameters involved in the correlation matrix. The
resulting estimator of parameters retains optimal even if the working correlation structure is misspecified. The proposed
approach yieldsmore efficient estimators than the conventional GEE approach and achieves the same asymptotic covariance
as the QIF method. Compared to the QIF method, the proposed EL approach has a better finite-sample performance in the
sense of the average length of confidence interval and coverage probability of the estimator of regression coefficients.

It is noted that Leung et al. [15] recently proposed a hybrid GEE method for longitudinal data by using the EL approach
to combine multiple GEEs based on different working correlation models. The EL approach is employed in both our method
and Leung et al. [15]’s approach, but it is used in very different ways. In fact, in our EL method the estimating equations
are different from those by Leung et al. [15]. More specifically, Leung et al. [15] retained the idea of GEE and focused on the
manner of combining GEEswhich are based on differentworking correlation structures. In theirmethod there aremore than
one working correlation matrices and each working correlation matrix is used to form one GEE. In our proposed approach,
however, we proposed to use only oneworking correlationmatrixwhose inverse is approximated by a linear combination of
basis matrices. We then combine the resulting ‘‘extended score’’ vector in terms of the EL method. Therefore, our proposed
method is simpler than Leung et al. [15]’s one in this sense. More importantly, in Leung et al. [15]’s approach the nuisance
parameters in the working correlation matrices have to be estimated, which is not always feasible even for some simple
cases [5]. In contrast, there is no need to estimate any nuisance parameters in our method.



D. Li, J. Pan / Journal of Multivariate Analysis 114 (2013) 63–73 73

Acknowledgments

Li’s research was supported by an Overseas Research Scholarship from the UK and a Scholarship from School of
Mathematics, University of Manchester, UK. Pan’s research was supported by a grant from the Royal Society of the UK.
We would like to thank two anonymous reviewers for their constructive comments and helpful suggestions. We are also
grateful to Professor Annie Qu for providing the MATLAB code for the QIF method.

References

[1] Y. Bai, W. Fung, Z. Zhu, Penalized quadratic inference functions for single-index models with longitudinal data, Journal of Multivariate Analysis 100
(2009) 152–161.

[2] Y. Bai,W. Fung, Z. Zhu,Weighted empirical likelihood for generalized linearmodelswith longitudinal data, Journal of Statistical Planning and Inference
140 (2010) 3446–3456.

[3] Y. Bai, Z. Zhu, W. Fung, Partial linear models for longitudinal data based on quadratic inference functions, Scandinavian Journal of Statistics 35 (2008)
104–118.

[4] H. Cramér, Mathematical Methods of Statistics, Princeton University Press, 1946.
[5] M. Crowder, On the use of a working correlation matrix in using generalised linear models for repeated measures, Biometrika 82 (1995) 407–410.
[6] T. DiCiccio, P. Hall, J. Romano, Empirical likelihood is Bartlett-correctable, The Annals of Statistics 19 (1991) 1053–1061.
[7] P.J. Diggle, P.J. Heagerty, K.Y. Liang, S.L. Zeger, Analysis of Longitudinal Data, second ed., Oxford University Press, 2002.
[8] G. Fitzmaurice, N. Laird, A likelihood-based method for analysing longitudinal binary responses, Biometrika 80 (1993) 141–151.
[9] P. Hall, B. La Scala, Methodology and algorithms of empirical likelihood, International Statistical Review 58 (1990) 109–127.

[10] L. Hansen, Large sample properties of generalized method of moments estimators, Econometrica 50 (1982) 1029–1054.
[11] G. Imbens, One-step estimators for over-identified generalized method of moments models, The Review of Economic Studies 64 (1997) 359.
[12] G. Imbens, Generalized method of moments and empirical likelihood, Journal of Business and Economic Statistics 20 (2002) 493–506.
[13] E. Kolaczyk, Empirical likelihood for generalized linear models, Statistica Sinica 4 (1994) 199–218.
[14] S. Lele, M. Taper, A composite likelihood approach to (co)variance components estimation, Journal of Statistical Planning and Inference 103 (2002)

117–135.
[15] D. Leung, Y. Wang, M. Zhu, Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method, Biostatistics 10 (2009) 436–445.
[16] H. Liang, Y. Qin, X. Zhang, D. Ruppert, Empirical likelihood-based inferences for generalized partially linear models, Scandinavian Journal of Statistics

36 (2009) 433–443.
[17] K. Liang, S. Zeger, Longitudinal data analysis using generalized linear models, Biometrika 73 (1986) 13–22.
[18] G. Li, L. Zhu, L. Xue, S. Feng, Empirical likelihood inference in partially linear single-indexmodels for longitudinal data, Journal of Multivariate Analysis

101 (2010) 718–732.
[19] P. McCullagh, Quasi-likelihood functions, The Annals of Statistics 11 (1983) 59–67.
[20] P. McCullagh, J. Nelder, Generalized Linear Models, Chapman & Hall/CRC, 1989.
[21] J. Nelder, R. Wedderburn, Generalized linear models, Journal of the Royal Statistical Society. Series A (General) 135 (1972) 370–384.
[22] W. Newey, R. Smith, Higher order properties of gmm and generalized empirical likelihood estimators, Econometrica 72 (2004) 219–255.
[23] A. Owen, Empirical likelihood ratio confidence intervals for a single functional, Biometrika 75 (1988) 237–249.
[24] A. Owen, Empirical likelihood ratio confidence regions, The Annals of Statistics 18 (1990) 90–120.
[25] A. Owen, Empirical likelihood for linear models, The Annals of Statistics 19 (1991) 1725–1747.
[26] A. Owen, Empirical Likelihood, Chapman & Hall/CRC Press, 2001.
[27] F. Pukelsheim, Optimal Design of Experiments, Wiley, New York, NY, 1993.
[28] J. Qin, J. Lawless, Empirical likelihood and general estimating equations, The Annals of Statistics 22 (1994) 300–325.
[29] A. Qu, R. Li, Quadratic inference functions for varying-coefficient models with longitudinal data, Biometrics 62 (2006) 379–391.
[30] A. Qu, B. Lindsay, B. Li, Improving generalised estimating equations using quadratic inference functions, Biometrika 87 (2000) 823–836.
[31] J. Shi, T. Lau, Empirical likelihood for partially linear models, Journal of Multivariate Analysis 72 (2000) 132–148.
[32] Y.Wang, V. Carey,Working correlation structuremisspecification, estimation and covariate design: implications for generalised estimating equations

performance, Biometrika 90 (2003) 29–41.
[33] Q. Wang, B. Jing, Empirical likelihood for partial linear models, Annals of the Institute of Statistical Mathematics 55 (2003) 585–595.
[34] S. Wang, L. Qian, R. Carroll, Generalized empirical likelihood methods for analyzing longitudinal data, Biometrika 97 (2010) 79–93.
[35] R. Wedderburn, Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method, Biometrika 61 (1974) 439–447.
[36] L. Xue, L. Zhu, Empirical likelihood for a varying coefficient model with longitudinal data, Journal of the American Statistical Association 102 (2007)

642–654.
[37] L. Xue, L. Zhu, Empirical likelihood semiparametric regression analysis for longitudinal data, Biometrika 94 (2007) 921–937.
[38] H. Yang, T. Li, Empirical likelihood for semiparametric varying coefficient partially linearmodels with longitudinal data, Statistics & Probability Letters

80 (2010) 111–121.
[39] H. Ye, J. Pan, Modelling of covariance structures in generalised estimating equations for longitudinal data, Biometrika 93 (2006) 927–941.
[40] J. You, G. Chen, Y. Zhou, Block empirical likelihood for longitudinal partially linear regression models, Canadian Journal of Statistics 34 (2006) 79–96.
[41] S. Zeger, K. Liang, P. Albert, Models for longitudinal data: a generalized estimating equation approach, Biometrics 44 (1988) 1049–1060.
[42] Y. Zhao, W. Jian, Analysis of longitudinal data in the case-control studies via empirical likelihood, Communications in Statistics: Simulation and

Computation 36 (2007) 565–578.
[43] P. Zhao, L. Xue, Empirical likelihood inferences for semiparametric varying-coefficient partially linear errors-in-variables models with longitudinal

data, Journal of Nonparametric Statistics 21 (2009) 907–923.
[44] P. Zhao, L. Xue, Empirical likelihood inferences for semiparametric varying-coefficient partially linearmodels with longitudinal data, Communications

in Statistics. Theory and Methods 39 (2010) 1898–1914.


	Empirical likelihood for generalized linear models with longitudinal data
	Introduction
	Estimation procedure
	Generalized estimating equations
	Quadratic inference function
	Empirical likelihood

	Main results
	Asymptotic properties of the EL estimator
	Model checking and testing

	Monte Carlo simulations
	Study 1: estimation of parameters
	Study 2: test of hypothesis

	Analysis of Ohio Children's wheeze status data
	Conclusions
	Acknowledgments
	References


