
Journal of Multivariate Analysis 114 (2013) 288–302

Contents lists available at SciVerse ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Kernel smoothers and bootstrapping for semiparametric mixed
effects models✩

Wenceslao González Manteiga a, María José Lombardía b, María Dolores Martínez Miranda c,∗,
Stefan Sperlich d

a Departamento de Estadística e I.O., Universidad de Santiago de Compostela, E - 15782 Santiago de Compostela, Spain
b Departamento de Matemáticas, Universidade da Coruña, E - 15071 A Coruña, Spain
c Departamento de Estadística e I.O., Universidad de Granada, E - 18071 Granada, Spain
d Département des sciences économiques & Institut de Recherche en Statistique, Université de Genève, CH - 1211 Genève 4, Switzerland

a r t i c l e i n f o

Article history:
Received 14 December 2011
Available online 9 August 2012

AMS 2010 subject classifications:
62G08
62H15
62P12

Keywords:
Mixed effects models
Non- and semiparametric models
Bootstrap inference
Bandwidth choice
Small area statistics

a b s t r a c t

While today linear mixed effects models are frequently used tools in different fields of
statistics, in particular for studying datawith clusters, longitudinal ormulti-level structure,
the nonparametric formulation of mixed effects models is still quite recent. In this paper
we discuss and compare different nonparametric estimation methods. In this context we
introduce a computationally inexpensive bootstrap method, which is used to estimate
local mean squared errors, to construct confidence intervals and to find locally optimal
smoothing parameters. The theoretical considerations are accompanied by the provision of
algorithms and simulation studies of the finite sample behavior of the methods. We show
that our confidence intervals have good coverage probabilities, and that our bandwidth
selection method succeeds to minimize the mean squared error for the nonparametric
function locally.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Over the past twenty years linear mixed effects models and their extensions have become quite popular statistical
models for analyzing data with an a priori specified correlation structure. The accounting for the so-called ‘‘within-subject
correlation’’ allows to deal with longitudinal and clustered data which naturally arise for example in biomedical studies.
In fact, statistical inference with linear mixed effects models has been widely studied in the context of longitudinal data
and biometrical data with repeated measurement; see for example [27] or [5]. At the same time, mixed effects models are
also particularly suitable for small-areas estimation [15] and data matching or poverty mapping [6]. In the last five to ten
years there has been a notable interest in extending parametric models to more flexible nonparametric formulations; see
for example [30]. Along with the different non- and semiparametric formulations (see [33,17,18,29,2,24]), there is growing
demand for feasible methods to do inference based on them. Likelihood based approaches were proposed for example by
Lin and Zhang [20], and Lombardía and Sperlich [21,26].
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The main problem when using smoothing methods is to choose an appropriate smoothing (or say, regularization)
parameter. Gu and Ma [10,11] proposed generalized cross validation in the context of spline smoothing. Later Xu and
Zhu [32] proposed cross validation for kernel based nonparametric mixed effects models. In this article we introduce the
use of a computationally inexpensive bootstrapmethod for non- and semiparametric mixed effects models to facilitate both
inference (here illustrated by the construction of confidence intervals) and bandwidth selection.

We start from the one-way model with a fully nonparametric formulation, i.e.

yij = m(xij) + vi(zij) + εij, j = 1, . . . , ni, i = 1, . . . , q,
q

i=1

ni = n, (1.1)

with yij being the observed responses, and xij (k × 1), zij (r × 1) observable covariates, where often zij consists of a constant
and some elements of xij. Here, m(·) represents the fixed effect or population function, and vi(·) are the random-effects
functions. The errors, εij, are supposed to be independent with mean 0 and conditional variances σ 2(xij). The vi(zij) can be
considered as realizations of a zero-mean smooth process with a covariance function γ (zij1 , zij2) = E[vi(zij1)vi(zij2)]. As it is
common in these models, vi(zij) and εij are assumed to be independent, conditionally to xij. Model (1.1) comprises several
often used models in longitudinal studies or for clustered data, including nested-error and random regression coefficient
models, among others. More specifically we have the following.

For longitudinal data, may it be balanced or unbalanced panels or just repeated measurements, one considers a study
involving q subjects. In this case, yij is taken from subject i (i = 1, . . . , q), either at time point tij being an element of the
explanatory part xij (j = 1, . . . , ni), or – as is typical panel studies – simply at time t = j. Observations from different
subjects are assumed to be independent, while observations from the same subject are naturally correlated. This intra-
subject dependence is often modeled by vi(zij) = vi(tij), and these random effects can be interpreted as unobservable
subject effects, sometimes also called ‘‘real effects’’.

For clustered data, a multi-level structure or small area model, one considers observations from q clusters (areas, groups,
. . .), where yij is taken from ith cluster with covariate xij (j = 1, . . . , ni, i = 1, . . . , q). Now, observations from different
clusters are assumed to be independent, whereas those from the same cluster are supposed to be correlated to various
degrees. Then, this intra-cluster correlation is modeled by a random term vi(zij), which is often called ‘‘latent effects’’.

Another special and quite popular case is the so-called nested-error regression model, where m(·) is linear (or a
polynomial), and vi is simply an indicator function for ith (i = 1, . . . , q) cluster. Such model is considered for example in
the context of small area statistics where the population is divided into q small areas, with ni being the number of sampled
units (individuals) in the ith area. Also in econometric panel studies this is, maybe, the most often applied model. In this
case q units have been observed over ni periods.

As we will concentrate on nonparametric forms of m(·) and vi(·) based on local polynomials (see Section 2), it is useful
to mention also the more general random regression coefficient model including a random slope, i.e.

yij = βxij + bixij + εij,

where β and bi are the fixed-effects and the random-effects coefficients, respectively. Compared to them, the flexibility
of model (1.1) offers also new perspectives for various problems faced in applied statistics. Apart from the rather flexible
modeling to avoid specification problems of the functional form in the mean function [23] or in the variances [9], it can
further be used for data mining and specification testing; see [26] and references therein. The contribution of our article to
the literature can be summarized as follows.

First, we will review the existing approaches to estimate model (1.1) by local polynomial estimation. There, the main
question is how to choose the weights, i.e. how to combine correlation structure and kernel weights in the estimating
equations. We investigate mainly three different strategies for the estimation and explore both the statistical properties
and some practical issues.

Second, we introduce a computationally inexpensive bootstrap procedure in order to do inference. So far, in this kind of
models bootstrap based inference has focused mainly on testing distributional assumptions on the random effects, see [3]
for a review, or on likelihood based tests for functional misspecification, see [26]. Here we consider the application of the
bootstrap methods to construct confidence intervals.

Third, we propose to solve the bandwidth choice problem for the estimation of the fixed-effects function by bootstrap
estimation of themean squared error. In non- and semiparametricmixed effectsmodels, the choice of smoothing parameters
becomes a more critical but also challenging task than in common non- and semiparametric estimation problems. Due to
the more complex data structure, neither intuition nor eye balling will help here. The standard nonparametric methods
ignoring the correlation structure are not suitable because they cannot pick up the extra variability.

This is, probably, the first article considering local optimal smoothing for mixed effects models. The resampling scheme
follows the spirit of [8,22,21]. Evidently, the estimates of the mean squared errors can equally well be used to construct
confidence and prediction intervals. We will mainly deal with the estimation and inference of the population functionm(·),
but also discuss the mixed effects or individual functions, say ηi(x, z) = m(x) + vi(z), to analyze particular population
parameters such as Θi = ṁ(xi) + v̇i(zi) with ṁ(xi) =

ni
j=1 m(xij)/ni and v̇i(zi) =

ni
j=1 vi(zij)/ni, which arise mainly in

small area statistics. All together these methods provide us with powerful tools for data analysis in mixed effects models for
estimation, inference, and local bandwidth selection.
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The rest of the paper is organized as follows. In Section 2 we introduce the nonparametric mixed-effects model with the
particular case of a semiparametric model where the random-effects are just linear. In that context, we study the different
proposals for marginal nonparametric estimation and compare them with respect to efficiency aspects, implementation
and finite sample performance. In Section 3 we introduce a fast bootstrap-based method for inference. This will be used to
construct confidence intervals, and to get local optimal bandwidths. All this is accompanied by studies of its finite sample
behavior. Technical proofs, the estimation of the variance–covariance matrices, and the joint estimation of fixed effects
together with the prediction of random effects are deferred to the Appendix.

2. Marginal estimation in nonparametric mixed-effects models

2.1. A local linear mixed-effects model

Assuming that the functions m and vi have (p + 1)th continuous derivatives (for simplicity set p = 1), for any fixed x in
a generic domain X, m can be approximated by a linear function within a neighborhood of x by a Taylor expansion, i.e.

m(xij) ≈ m(x) + (xij − x)t ▽ m(x), (2.1)

where ▽m denotes the gradient of the functionm.
Similarly, for the random function vi one has

vi(zij) ≈ vi(z) + (zij − z)t ▽ vi(z),

for any fixed z in a generic domain Z.
Setting Xij = (1, (xij − x)t), β = (m(x), ▽m(x)t)t , and Zij = (1, (zij − z)t), bi = (vi(z), ▽vi(z)t)t , model (1.1) can be

approximated by the local linear mixed effects model (LME):

yij = Xijβ + Zijbi + εij j = 1, . . . , ni, i = 1, . . . , q. (2.2)

A most crucial assumption is that the random effects, bi, are independent from Xij (j = 1, . . . , ni; i = 1, . . . , q) with mean
zero and E[bibt

i ] = Bi. The errors, εij, are both mutually independent and independent from bi, have conditional mean
zero, E[εij|xij] = 0, and finite conditional variances σ 2(xij). By stacking the observations in the q groups, the model can be
written as

yi = Xiβ + Zibi + εi i = 1, . . . , q, (2.3)

where yi = (yi1, . . . , yini)
t ,Xi is a (ni×2)matrix with rowsXij = (1, (xij−x)t), Zi amatrix with rows Zij = (1, (zij−z)t) (j =

1, . . . , ni, i = 1, . . . , q), and εi = (εi1, . . . , εini)
t an error vector with conditional covariancematrixΣi = diag(σ 2(xi1), . . . ,

σ 2(xini)). The model (2.3) can be written more compactly, i.e.

y = Xβ + Zb + ε, (2.4)

with y = (yt1, . . . , y
t
q)

t , matrix X (n × (k + 1)) with block rows Xi, and matrix Z (n × q(r + 1)) with diagonal blocks Zi. The
coefficient of the random effects is given by b = (bt

1, . . . , b
t
q)

t , and the global vector of errors by ε = (ε1, . . . , εq)
t .

2.2. Three ways to estimate the fixed-effects function

For the estimation of such a local linear mixed-effects model let us start by considering the fixed-effects β and the
marginal model

y = Xβ + u (2.5)

with u = Zb+ ε, involving a within-subjects correlation expressed by E[uut
|X, Z] = V = ZBZt

+ Σ. Here B is a symmetric
matrix of dimension n(r + 1) × n(r + 1) defined by diagonal blocks Bi.

Lin and Carroll [17] propose a formal extension of the parametric generalized estimating equations approach (GEE)
introducing kernel weights for clustered data. They consider the standard GEE based on quasi-likelihood for inference of
the fixed-effect parameter β, given by

0 =

q
i=1

Xt
i (V

c
i )

−1(yi − Xiβ) (2.6)

with Vc
i not necessarily being the true intra-subject correlation matrix ZiBiZt

i + Σi but rather a working matrix. Indeed, it
was defined by Vc

i = S1/2i Ri(δ)S
1/2
i with S1/2i being a diagonal matrix depending on the diagonal elements of Vi, and Ri(δ) an

invertible ‘‘working-correlation’’ matrix, possibly depending on an additional parameter δ. The solution can be obtained by
iteratively reweighted least squares, and they showed that the resulting estimator is asymptotically Gaussian under mild
regularity conditions.
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If the parametric (linear) model is only assumed locally, it is necessary to introduce kernel-weights to take into account
only observations in a small neighborhood. Lin and Carroll [17] suggest two different ways to introduce the weights, namely

0 =

q
i=1

Xt
i (V

c
i )

−1Wih(yi − Xiβ) (2.7)

and 0 =

q
i=1

Xt
iW

1/2
ih (Vc

i )
−1W1/2

ih (yi − Xiβ), (2.8)

where Wih = diag(Kh(xi1 − x), . . . , Kh(xini − x)), with Kh(·) = h−1K(·/h), K is a (multivariate) kernel function and h > 0
is a bandwidth parameter. Note that the two approximations are different if Vc

i is not diagonal. The authors recommend to
ignore the within-subject correlation completely as the estimators from (2.7) or (2.8) reach asymptotically the minimum
variance with Ri(δ) = I. Wang [29] explains the reason why asymptotically this is still optimal and therefore different from
the parametric GEE in this respect. Asymptotically (i.e. when h → 0) there is effectively only one single observation (i, j) for
each i = 1, . . . , q that contributes to estimatem(x). This unique observation is weighted by Kh(xij − x)vjj

i , with v
jj
i being the

(j, j)-element of V−1. Consequently, for asymptotic efficiency improvements, alternative weighting methods are necessary
whichmake properly use of the correlation within-subjects. In the following wewill present three different ways of making
use of the present correlation.

The idea of generalized (or weighted) least squares regression (say GLS) is to transform (2.5) such that one gets
uncorrelated observations. Vilar and Francisco [28] adopted this methodology to a local polynomial estimator for an AR(1)
time series structure. Following Vilar and Francisco’s strategy but adapted to the current underlying model, given that V
is a symmetric and positive defined matrix, its inverse has a squared root V−1/2 which satisfies V−1

= V−1/2(V−1/2)t =

(V−1/2)tV−1/2. Then one considersy = V−1/2y = V−1/2Xβ + V−1/2u =Xβ +u, (2.9)

where it is satisfied that E[uut
|X] = V−1/2V(V−1/2)t = I, i.e. one has uncorrelated errors. Afterward, the kernel weights are

introduced in order to obtain weighted least squares regression of̃y = W1/2
h y = W1/2

h V−1/2y = W1/2
h V−1/2Xβ + W1/2

h V−1/2u =
̃Xβ + ̃u

withWh = diag(Wih). The weighted least squares regression leads to a marginal local linear estimator for the fixed effects,
namely

βM1 =


q

i=1

Xt
iV

−1/2
i WihV

−1/2
i Xi

−1 q
i=1

Xt
iV

−1/2
i WihV

−1/2
i yi.

This gives our first marginal local linear estimator

mM1(x) = et1βM1 =

q
i=1

wM1
i (x)yi (2.10)

with weights

wM1
i (x) = et1


q

l=1

Xt
lV

−1/2
l WlhV

−1/2
l Xl

−1

Xt
iV

−1/2
i WihV

−1/2
i . (2.11)

Several authors have pointed out that such a transformation does not improve the asymptotic first-order properties of
the estimator; but it does improve the estimation in finite samples. Linton et al. [19] propose a two-step estimator which
first calculates the ‘‘working independence’’ estimator of Lin and Carroll [17], then uses the results to construct a linear
transformation of y that exhibits a diagonal covariance matrix, and finally runs a local linear regression on the transformed
data. Alternatively to the GLS, Wang [29] improves on the GEE approach proposing a kernel-type estimator which makes
an efficient use of the correlation structure achieving the best results when the true correlation is known. However, her
estimator is difficult to calculate, as it requires an iterative procedure initializedwith the estimates from Lin and Carroll [17].
We decided to stick here to computationally less demanding procedures.

In a similar spirit as Wang [29], Chen and Jin [2] suggest to use a weighting function that is based on local variances
instead of the global ones. This actually comes closer to the idea of generalized least squares estimators and leads to the
following marginal local linear estimator. Consider

W1/2
h y = W1/2

h Xβ + W1/2
h u

and transform it to get uncorrelated observations by calculating

Ω
−1/2
h W1/2

h y = Ω
−1/2
h W1/2

h Xβ + Ω
−1/2
h W1/2

h u,
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with Ωh = E[W1/2
h u(W1/2

h u)t ] = W1/2
h VW1/2

h . Here Ω
−1/2
h is the Moore–Penrose generalized inverse of Ω

1/2
h . Finally,

introduce kernel weights byy = W1/2
h Ω

−1/2
h W1/2

h y = W1/2
h Ω

−1/2
h W1/2

h Xβ + W1/2
h Ω

−1/2
h W1/2

h u =Xβ +u.

The resulting marginal local linear estimator is

mM2(x) = et1βM2 =

q
i=1

wM2
i (x)yi, (2.12)

βM2 =


q

i=1

Xt
iW

1/2
ih Ω

−1/2
ih WihΩ

−1/2
ih W1/2

ih Xi

−1 q
i=1

Xt
iW

1/2
ih Ω

−1/2
ih WihΩ

−1/2
ih W1/2

ih yi

with Ωih = W1/2
ih ViW

1/2
ih and weightswM2

i (x) = et1
q

l=1 X
t
lW

1/2
lh Ω

−1/2
lh WlhΩ

−1/2
lh W1/2

lh Xl

−1
Xt

iW
1/2
ih Ω

−1/2
ih WihΩ

−1/2
ih W1/2

ih .
Asymptotic properties can be obtained in the same way as done by Vilar and Francisco [28], but the results do not reveal

the desirable intuition about the influence of the intra-subject correlation. Though it is already easier to implement and
faster calculated than the versions of [29,19], the necessary use of a generalized inverse makes the theoretical study and the
calculation of the estimator quite tedious.

The third approach consists in an alternative of Park and Wu [24] which is easier to implement and calculate with, and
is also intuitively appealing. This gives a third marginal estimator based – along their presentation – on the likelihood

LM(β; y) = −
1
2

q
i=1


[yi − Xiβ]t W

1/2
ih V−1

i W1/2
ih [yi − Xiβ] + CiM


, (2.13)

with a constant CiM = log |Vi| + 2ni log(2π). The estimator is given by

mM3(x) = et1βM3 =

q
i=1

wM3
i (x)yi, (2.14)

with

βM3 =


q

i=1

Xt
iW

1/2
ih V−1

i W1/2
ih Xi

−1 q
i=1

Xt
iW

1/2
ih V−1

i W1/2
ih yi,

and the weights

wM3
i (x) = et1


q

l=1

Xt
lW

1/2
lh V−1

i W1/2
lh Xl

−1

Xt
iW

1/2
ih V−1

i W1/2
ih . (2.15)

An interesting observation can be made about the profile-kernel GEEs derived from the optimization of the log-likelihood
based score of (2.13). In fact, following a similar reasoning used to motivate the estimators (2.10) and (2.12), we are actually
considering an estimator in the transformed modely = V−1/2W1/2

h y = V−1/2W1/2
h Xβ + V−1/2W1/2

h u =Xβ +u.

However, in this case the transformation does not lead to an uncorrelated model

E[uut
|X] = V−1/2W1/2

h VW1/2
h (V−1/2)t ≠ WhI.

Park and Wu [24] argue that regardless the asymptotic findings, in the numerical outcome this estimator should perform
well, maybe not much worse than that of the much more involved estimator of Chen and Jin [2].

In order to check this statement, but also for illustrative purposes, we evaluated the finite sample performance of the
three here introduced estimators. We performed a small simulation study (details not shown for brevity), where we found
that βM3 and βM2 behave quite similar indeed, but outperform βM1 by far. Not surprisingly, implementation efforts and
computational expenses are much lower for βM3 than for βM2 but higher than for βM1. Fig. 1, left side, shows a typical
outcome of the three estimators using quartic kernels for amodel with k = 1, x ∼ U[−3, 3] andm(x) = sin(x)with random
effects vi(zij) = γi ∼ N(0, 0.3) and error εi ∼ N(0, 0.1), where we set q = 30 and ni = 4 for all i. The bandwidth used
in the example was based on a standard plug-in rule for local linear smoothers with independent data, tending therefore
to undersmooth. The critical points, i.e. those where one expects highest and lowest bias and/or variance when estimating
a nonparametric function by a local linear kernel smoother, are the minimum, maximum, turning points, etc. In the right
panel of Fig. 1 we can see that, not surprisingly, ignoring the dependence structure may lead to serious disturbances due to
the random effects.
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Fig. 1. Left: the three marginal local linear estimates with bandwidth h = 0.345 and quartic kernels. Right: simulated sample with fixed effects function
and its ‘‘critical points’’.

2.3. A semiparametric model: linear random effects

Nonparametric functionals with nonparametric random effects are, especially for practitioners, a quite demanding
challenge in either aspect: asymptotic studies, including further inferences, implementation and interpretation. It is
therefore helpful to consider the particular though still quite flexible case of semiparametric models with linear random
effects, i.e.

yij = m(xij) + bizij + εij with j = 1, . . . , ni, i = 1, . . . , q,
q

i=1

ni = n, (2.16)

where bi indicate the random effects. This semiparametric model was also proposed in [30] but without any theoretical
study or empirical illustration. To estimate (2.16) one can use each of the marginal estimators presented above.

As far as prediction is concerned, and in particular for small area statistics, it is of essential interest to predict the random
effects. This can also be done in a purely nonparametric model; see Appendix A.3. But it is rather cumbersome, what can
be seen from two simple considerations: first, for interpretation, simulation and resampling try to imagine the stochastic
process that is generating vi(zij). Second, while most papers in the literature do not even consider the analysis of predictors
for a nonparametric random function vi, others only discuss its difficulty. In different papers we found different predictors
even if they started from the same smoothed likelihood. In contrast, for a semiparametric mixed effects model like (2.16),
things simplify a lot and become more interesting for the practical use.

Let us denote by mM(x) any of the above marginal nonparametric fixed-effects estimators. Then the random-effects
component can be predicted as follows:bsm

= (bsm
1 , . . . ,bsm

q )t = BZtV−1(y − mM), (2.17)

whereZ is the (n× r)-matrix with rows (zi1, . . . , zini), i = 1, . . . , q, and mM the vector of allmM(xij). Under the assumption
that (b, y) follows a multivariate normal distribution, this is the Best Linear Predictor (BLP) for b. When the marginal
estimator is derived from generalized linear least squares, the resultant predictor is the BLUP. The individual mean curves
can be estimated byηi(x, z) = mM(x) +bsm

i z, and thus the average by Θi =
ni

j=1

mM(xij) +bsm
i zij


/ni. Estimators and

predictors depend on the variance matrices B and Σ. When these matrices are unknown, consistent estimators are plugged
in; see Appendix A.2.

3. Mean squared error estimation with bootstrap

The usual efficiency criterion for any estimator of a function m(x) is the prediction error, usually measured by the
conditional Mean Squared Error (MSE) at each estimation point x

MSE(mh(x)) = E

(mh(x) − m(x))2


= (Bias(mh(x)))2 + Var(mh(x))

or globally by its integrated version, i.e. MISE(mh) =

MSE(mh(x))dx.

In nonparametric mixed-effects model one is interested in quantifying the error of the nonparametric estimator m(x)
and the two types of random functions: the individual curves ηi, and the mean parameters Θi, i = 1, . . . , q. For the latter
two parameters one tries to control the Mean Squared Prediction Error (MSPE). In the current literature on mixed-effects
models, resampling methods are becoming more and more popular to estimate the MSE and MSPE; see for example [12].
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The common methods are variants of the parametric bootstrap or the moment-matching bootstrap, also known as wild
bootstrap. Lombardía and Sperlich [21] used a combination of parametric andwild bootstrap for testing problems. It certainly
can also be used for constructing local confidence intervals or global bands. The main disadvantage of resampling-based
inference is the time consuming procedure. We will see now how this can be avoided.

The bootstrap algorithm is formulated for given variance matrices. For practical implementation the variance matrices
can be estimated considering (restricted)maximum likelihood (cf. [4]) ormomentmethods (cf. [32]); see again Appendix A.2
formore details. Note that as long as the variance functions can be estimated at a rate faster than that form(·), the asymptotic
results are not affected, i.e. do not change. Consider now the following resampling scheme.

Step 1. Take a pilot estimatemh0(x) with a pilot bandwidth h0.
Step 2. Generate v∗

i (zij) from the assumed mean zero random process with known covariance structure γ (zij1 , zij2)
conditioned on the original covariates zij, i = 1, . . . , q, j = 1, . . . , ni.

Step 3. Generate ε∗

ij = σ(xij)Wij, j = 1, . . . , ni; i = 1, . . . , q, from Wij being independent and identically distributed (i.i.d.)
random variables with E[Wij] = 0 and E[W 2

ij ] = 1, independent of v∗

i (zij).
Step 4. Construct the bootstrapmodel y∗

ij = mh0(xij)+v∗

i (zij)+ε∗

ij , from the bootstrap sample, {(y∗

ij, xij, zij); j = 1, . . . , ni; i =

1, . . . , q}, and calculate the bootstrap estimatorm∗

h(x).

A bootstrap estimate of MSE(mh(x)) is given by

MSE∗(mh(x)) = E∗

m∗

h(x) − mh0(x)
2

, (3.1)

where E∗ denotes the expectation over the resampling distributions. The simplicity of the considered bootstrap mechanism
allows us to compute the exact expectations in (3.1).More specifically, since any proposedmarginal estimator can bewritten
as a linear combination of the block-independent responsesmh(x) =

q
i=1 wi(x)yi, we have that

MSE∗(mh(x)) = {B∗(h; x)}2 + V∗(h; x),

B∗(h; x) =

q
i=1

wi(x)mi,h0 − mh0(x), (3.2)

V∗(h; x) =

q
i=1

wi(x)Viwt
i (x),

using Var∗(y∗

i ) = Bi+Σi = Vi. Therefore it is not required to use anyMonte Carlo simulations to calculate theMSE∗(mh(x)).
For the mean prediction errors ofηi or Θi however, we do not get such a simplified version. Indeed, for each bootstrap

sample the prediction error contains the termsv∗

i −v∗

i , which is not easy to getwithout performing aMonte Carlo simulation.
In those cases we have to add the following step.

Step 5. Repeat the procedure for l = 1, . . . , R and denote bym∗(l)
h (x) the bootstrap estimator computed for the l-th bootstrap

sample.

The Monte Carlo approximation of MSE∗(ηi,h(x, z)) is then given by

MSE∗(ηi(x, z)) = R−1
R

l=1

η∗(l)
i,h (x, z) −ηi,h0(x, z)

2
, (3.3)

and analogously for Θi.
In the case of unknown variances one has to modify Step 1 to the following.

Step 1. Estimate γ (·, ·) (or Bi) and Σi. Take a pilot estimate mh0(x), involving these covariance estimates, with a pilot
bandwidth h0.

In our simulations the method with estimated variances performs quite well. In fact, the impact of estimating the variances
is not significant for our purposes; see the Appendix A.2 for details and simulation results.

In the bootstrap strategies presented the choice of a pilot bandwidth h0 is required. Related works – though in a simpler
context – propose asymptotic expressions for an ‘‘optimal pilot bandwidth’’; see for example [8]. This pilot bandwidthmust
tend to zero at a rate slower than h; see for example [13] or [1] who showed that the optimal bandwidth rate slowed down
from O(n−1/5) for h to O(n−1/9) for h0 in the one-dimensional case. Note that our plug-in proposal does not involve further
iterations like most of the so far published methods do. In other words, we avoid this way two nested iterations and get a
quick and easy method instead.

The proof of consistency for the bootstrap approximation of the MSE is given in the Appendix. It is derived analogously
to Martínez-Miranda et al. [22], and is based on calculating the imitations done in the bootstrap. The key issue is to know
the asymptotic expansion of the MSE which we approximate using the bootstrap method. With respect to the MSPE of
both, individual curves ηi and related mean parameters Θi, such a proof can only be derived for the semiparametric model.
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Table 1
Coverage probabilities for simple bootstrap confidence intervals (3.6).

(n,D) Size (%) −3π/4 −π/2 −π/4 0.0 π/4 π/2 3π/4

(120, 30) 90 0.868 0.884 0.881 0.880 0.885 0.874 0.857
95 0.929 0.939 0.936 0.936 0.938 0.933 0.919

(240, 40) 90 0.901 0.919 0.918 0.913 0.912 0.933 0.924
95 0.949 0.962 0.960 0.958 0.961 0.968 0.965

Specifically, since in the semiparametric model the nonparametric part, m, dominates the asymptotic expressions (due to
its slower convergence rate), it is sufficient to study the asymptotics of the MSE ofmh, and the consistency of the bandwidth
selection method.

Assuming some regularity conditions given in the Appendix, the bootstrap approximation MSE∗(mh(x)) in (3.1) is
consistent in the interior of the support of f , being f the density of x. In probability we have then

MSE∗(mh(x)) − MSE(mh(x)) → 0. (3.4)

For the sake of presentationwe restrict to the semiparametricmodel for the rest of the paper, i.e. we assume a linear random-
effects component from now on. Then, Step 2 is just drawing random effects b∗

i , i = 1, . . . , q, from B1/2
i W, where W is a

random vector with zero mean and covariance matrix being equal to the identity. For Step 4 one has then v∗

i (zij) = z′

ijb
∗

i .
To test the behavior of theMSE approximation in finite samples,we performed a simulation study forwhichwe generated

data samples {xij, yij}
ni,q
i,j=1 from model

yij = sin(xij) + bi + εij (3.5)

with random design xij ∼ U[−3, 3], i.i.d. errors εi,d ∼ N(0, 0.3), and i.i.d. random effects bi ∼ N(0, 0.3). In our simulations,
we always set n1 = n2 = · · · = nq for simplicity. For the above discussed reasons we consider here only the marginal
estimator M3 with quartic kernels. We estimated 500 times function m(·) at the points indicated in Fig. 1 with the non-
optimal global bandwidth h = 1.0. This exercise has been done first for a sample with (ni, q) = (4, 30), and was then
repeated for (ni, q) = (6, 40). We studied the construction of local confidence intervals based on our bootstrap procedure.
As it is known that even with bootstrap, the estimation of the bias is a serious problem, we follow the common spirit of
neglecting the bias. That is, we will simply use the variance estimates V∗ given in (3.2). Note that due to the neglecting of
the bias in the construction of confidence intervals we either should undersmooth or argue that we construct confidence
intervals for the expectation of the estimates but not for the true function. In the first case (i.e. undersmoothing), the
random confidence intervals should guarantee via undersmoothing that they hold the given coverage probability for the
true function. In the second case, we say that the calculated confidence interval covers (1 − α/2)% of all estimates when
repeating the experiment. In both cases, (1−α/2)% confidence intervals form(x) based on the estimates m̂h(x), V∗, and the
asymptotic normality of our estimates, would result in

m̂h(x) − z1−α/2V 1/2
∗

(x); m̂h(x) + z1−α/2V 1/2
∗

(x)

. (3.6)

Note that these intervals are constructed without Monte Carlo simulations and therefore they are calculated in a quick and
easy way.

We investigated the realized coverage probabilities for 90% and 95% confidence intervals. For the true function we
realized always coverage probabilities slightly larger than the nominal size (1%–4% points higher for the 90% confidence
intervals, i.e. conservative ones) for each sample size. The coverage of estimates in repeated experiments is shown in
Table 1. We see how the coverage probability converges to the expected one for increasing sample size. When we also
have to estimate the variance, then the coverage probability diminishes slightly (for the 90% confidence interval in average
about 1%–4% points compared to the here reported ones, depending on x and the sample size). For constructing prediction
intervals for ηi or Θi we cannot avoid the computationally more expensive Monte Carlo approximation. This however has
the advantage that for those cases we no longer need to work with the normality approximation in (3.6). Note that, while in
parametric mixed effects models bootstrap prediction intervals improved only marginally compared to the typically used
linear approximations, in non- and semiparametric mixed effects models they are the only applicable method (at least to
our knowledge).

3.1. Local optimal bandwidth selection

In nonparametric estimation the choice of the optimal smoothing parameter for estimation is the counterpart of model
selection in parametric regression. When there is no random effect term, the optimality of smoothing parameters and its
data-driven estimation have been extensively studied; see [16]. The so-called cross-validation method is quite popular due
to its intuitive definition as a simple minimizer of the MSE. But it suffers from high variability, tends to undersmooth in
practice, is computationally intensive, and does not allow for finding locally optimal smoothing parameters. The so-called
plug-in methods require pre-estimates for all expressions in the MSE, which are not easily available. The bootstrap method
can be a remedy here, and it can be used to find locally optimal smoothing parameters as we will see next.
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Table 2
Results from 500 simulation runs based on model (3.5) with ni = 6 for all q = 40 clusters and known variance components.

x (σ 2
e , σ 2

b )

(0.1, 0.5) (0.5, 0.1) (0.6, 0.0) (0.3, 0.3)

hopt 2.75 2.75 2.75 2.75
−3π
4 meanhb , stdhb 2.616(0.2213) 2.608(0.4547) 2.385(0.7325) 2.641(0.2657)

mse(m̂hopt ) 0.0157 0.0122 0.0120 0.0137
mse(m̂hb ), std 0.0161(0.0008) 0.0126(0.0011) 0.0125(0.0010) 0.0141(0.0009)

hopt 0.95 0.95 0.95 0.95
−2π
4 meanhb , stdhb 1.035(0.1561) 1.021(0.1289) 1.005(0.1151) 1.036(0.1450)

mse(m̂hopt ) 0.0222 0.0168 0.0153 0.0196
mse(m̂hb ), std 0.0229(0.0011) 0.0177(0.0017) 0.0162(0.0017) 0.0204(0.0013)

hopt 1.1 1.1 1.1 1.1
−π
4 meanhb , stdhb 1.204(0.3265) 1.159(0.1485) 1.128(0.1236) 1.169(0.1741)

mse(m̂hopt ) 0.0196 0.0147 0.0133 0.0173
mse(m̂hb ), std 0.0203(0.0015) 0.0153(0.0011) 0.0138(0.0010) 0.0179(0.0010)

hopt 2.3 2.75 2.75 2.75
0.0 meanhb , stdhb 2.151(0.2586) 2.587(0.3279) 2.548(0.3684) 2.469(0.3347)

mse(m̂hopt ) 0.0147 0.0064 0.0039 0.0111
mse(m̂hb ), std 0.0149(0.0003) 0.0067(0.0007) 0.0043(0.0009) 0.0113(0.0004)

The inclusion of a random term in the regression model modifies also the standard optimal values for fixed-effects
models. For longitudinal or clustered data the asymptotically optimal (global) bandwidth has been derived by Lin and
Carroll [17], Wu and Zhang [31], Park and Wu [24], and Chen and Jin [2]. In all cases the optimal bandwidth has been
calculated for the case where the true variancematrices were known and afterward were adjusted to the common situation
of unknown variances. Park and Wu [24] proposed a backfitting procedure with nested iterative algorithms, updating all,
different model components, variances and bandwidths, based on a cross-validatory technique. Xu and Zhu [32] proposed
a generalized cross validation method to simultaneously estimate the bandwidth and the variances. Chen and Jin [2]
estimated the global optimal bandwidth by mimicking the rule-of-thumb global bandwidth selector of Fan and Gijbels [7],
implemented cross-validation and discussed the empirical-bias bandwidth selector of Ruppert [25]. But neither of them are
adjusted to the presence of the new random-effect component and the consequent increase of variance.

We propose a data-driven smoothing parameter selection that is based on the bootstrap method looking for the locally
optimal bandwidths

hopt(x) = argmin
h

MSE(mh(x)). (3.7)

Making use of the bootstrap MSE estimate, the local bandwidth selector for the marginal estimatormh(·) is consequently

hb(x) = argmin
h

MSE∗(mh(x)). (3.8)

The consistency of the selection procedure follows from the one of the bootstrap approximation of the MSE; see also
Appendix.

To check out the behavior of this bandwidth selector we extended our simulation study from above. Again we generated
500 samples {xij, yij}

ni,q
i,j=1 from model (3.5) but xij ∈ [−3, 3] taken from a fixed equidistant grid, i.i.d. errors εi,d ∼ N(0, σ 2

e ),
and i.i.d. random effects bi ∼ N(0, σ 2

b ) with different combinations of (σe, σb) fulfilling σ 2
e + σ 2

b = 0.6. We varied sample
size and the number of clusters q. The rest was as before.

The optimal bandwidth was searched for estimating function m(·) with M3 at xk = kπ/8 for all integers k from −7
to 7. In this way we verified that the method works equally well for symmetric problems. For all points we searched the
optimal local bandwidth out of the following equidistant grid {0.65, 0.8, . . . , 2.6, 2.75} (15 bandwidths). The pilot plug-in
bandwidth h0, see step 1, was calculated as follows: we applied a local quadratic estimator to get an estimate of the second
derivative,m′′(·) and set then, c.f. [7],

h5
PI = 2.751/5

∧
(σ 2

e + σ 2
b ) · range(x) ·


K 2(u)du

n(

u2K(u)du)2 1

q

q
i=1

ni
j=1

1
ni
m′′

2
(xij)

, n =

q
i=1

ni (3.9)

which for simplicity ignores the dependence structure of the data. Following arguments of [13] or [1] we set h0 = hPIn
1
5 −

1
9 ,

compare also discussion from above. To avoid that the estimation of m′′ by local quadratic smoothing fails due to data
sparse areas we used a bandwidth of size 2.75. This, however, might lead to oversmoothing and result in

ni
j=1
m′′

2
(xij) ≈ 0.

Therefore we introduced the upper boundary of 2.75 for hPI in (3.9).
Comparing hopt with themean and standard deviation of hb, and themean squared errors of the corresponding estimates

of m respectively (calculated from 500 simulation runs), we see in Table 2 that our bandwidth selection methods works
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Fig. 2. For xij = k/(8π), k = −7, −6, . . . , 7 the solid line indicates hopt , the upper and lower dashed line indicate mean(hb) ± std(hb) where mean,
std indicate mean and standard deviation over 500 simulation runs from model (3.5) with σ 2

b = 0.5, σ 2
e = 0.1. (ni, q) = (3, 20) on the left plot;

(ni, q) = (6, 40) on the right plot.

Table 3
Results from 500 simulation runs based on model (3.5) with σ 2

e = σ 2
b = .3 and known variance components.

x n
60 120 240 480

hopt 2.75 2.75 2.75 2.75
−3π
4 meanhb , stdhb 2.612(0.4380) 2.681(0.1864) 2.641(0.2657) 2.635(0.2154)

mse(m̂hopt ) 0.0444 0.0247 0.0137 0.0082
mse(m̂hb ), std 0.0456(0.0040) 0.0251(0.0011) 0.0141(0.0009) 0.0086(0.0007)

hopt 1.25 1.1 0.95 0.8
−2π
4 meanhb , stdhb 1.552(0.3655) 1.239(0.2154) 1.036(0.1450) 0.868(0.0935)

mse(m̂hopt ) 0.0564 0.0300 0.0196 0.0121
mse(m̂hb ), std 0.0658(0.0149) 0.0320(0.0048) 0.0204(0.0013) 0.0123(0.0004)

hopt 1.4 1.25 1.1 0.95
−π
4 meanhb , stdhb 1.687(0.4186) 1.436(0.2729) 1.169(0.1741) 1.014(0.1155)

mse(m̂hopt ) 0.0484 0.0281 0.0173 0.0110
mse(m̂hb ), std 0.0539(0.0096) 0.0300(0.0036) 0.0179(0.0010) 0.0112(0.0004)

hopt 2.75 2.75 2.75 2.6
0.0 meanhb , stdhb 2.575(0.3272) 2.572(0.3342) 2.469(0.3347) 2.336(0.3575)

mse(m̂hopt ) 0.0274 0.0166 0.0111 0.0070
mse(m̂hb ), std 0.0284(0.0025) 0.0170(0.0009) 0.0113(0.0004) 0.0071(0.0003)

pretty well for different ‘‘critical points’’ xij (see Fig. 1) and different combinations of (σb, σe), including the fixed effects
model with σb = 0. We used here ni = 6 for all of the q = 40 clusters. This finding is illustrated by the two plots in Fig. 2
where for xij = k/(8π), k = −7, −6, . . . , 7 the solid line indicates hopt , whereas the upper and the lower dashed line
indicate mean(hb) ± std(hb) with mean, std being the mean and standard deviation over 500 simulation runs from model
(3.5). We have considered the model with σ 2

b = 0.5, σ 2
e = 0.1 and sample sizes (ni, q) = (3, 20) on the left plot, and

(ni, q) = (6, 40) on the right plot. We see first, that the selection procedure reveals the functional form of hopt(x) with
respect to x, even for such a small sample of only n = 60. We see further how this method improves for increasing sample
size. The latter point is also illustrated in Table 3 for a model with σ 2

e = σ 2
b = 0.3. Again, like in Table 2, we see that not just

hb comes close to hopt but, even more important, the optimal mean squared errors for each x can be reached, indeed.

4. Conclusions

Our aim in this paper has been to compare different kernel estimators, and solve the practical but the crucial problem
of doing inference and choosing the bandwidth for nonparametric mixed models. For convenience we considered a
simpler semiparametric version with parametric random effect impacts. We have defined several local kernel estimation
strategies to estimate the nonparametric function in the model. For all considered smoothers we have solved the problem
of constructing confidence intervals, and finding the optimal (local) bandwidth by a simple bootstrap method that does
not require expensive Monte Carlo simulations. We have provided the consistency of our methods, and have carried out
simulation studies which have revealed the good performance of our methods in practice. For the assumed mixed model
not many competitors are available which actually involve the assumed correlation structure, and only cross-validation
strategies have been proposed recently in the literature for bandwidth selection. These however, become very slow and
even inefficient for big datasets.
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Further research is still necessary to extend the results to a fully nonparametric mixed model where inference and
bandwidth selection becomes also relevant for the prediction of the randomeffects. As already indicated in our paper, several
additional difficulties will arise then, and the practicability is questionable.

Appendix

A.1. Appendix A: asymptotic results

We first derive the mean squared error of the marginal estimator (2.14) in the semiparametric model (2.16). To simplify
notation we will write the estimator as mM(x) = et1βM . We will work with two sets of hypothesis, namely cases 1 and 2
below.

• Case 1. The number of observations in each group, ni, tends to ∞ and also the number of groups, q → ∞.
• Case 2. The number of observations in each group, ni, is bounded and only the number of groups, q goes to infinity.

Because the covariance matrices can be estimated at parametric rates we derive the asymptotics assuming that the
variance matrices are known without loss of generality. For notational reasons, but without loss of generality, we set the
dimension of xij = xij to one (k = 1). For each case we consider the following set of assumptions.

For the first case we have the following.

A11. The design points xij, j = 1, . . . , ni, i = 1, . . . , q, are i.i.d. with density f (·).
A12. The point x is in the interior of the support of f where f (x) > 0 and f ′(x) exists.
A13. The fixed-effect functionm(x) has twice-continuous derivatives at x.
A14. The variances of the random effects, Bi are uniformly bounded.
A15. The conditional error variance σ 2(x) = E[ε(x)2] is continuous at x. Also

 
f (u)/σ 4(u)du


< ∞.

A16. The kernel K is a bounded symmetrical probability density function with bounded support ([−1, 1]) so that
K(u)u2du < ∞ and


K 2(u)du < ∞.

A17. As q → ∞, h → 0, nih → ∞ and nih3
→ 0, for i = 1, . . . , q.

For the second case we have the following.

A21. The assumptions A11–A16 are satisfied.
A22. For some 0 < C < ∞, ni ≤ C , i = 1, . . . , q.
A23. As q → ∞, h → 0,nh → ∞ and nh3

→ 0.

Let B(r,s)(K) =

usK(u)rdu for any adequate kernel K , andn =

qq
i=1 n−1

i
.

Lemma 1. • Case 1. Under conditions A11–A17the asymptotic mean squared error of mM(x) is given by

MSE(mM(x)) =
h4

4


f (x)m′′(x)

2 B2
(1,2)(K)


1 + OP


(nh)−1/22

+


q

i=1

n2
i Bi

n2
+

q
i=1

ni

Bi + σ 2(x)


n2hf (x)

B(2,0)(K)

 
1 + OP((nh)1/2) + OP((h/n)1/2) .

• Case 2. Under conditions A21–A23 the asymptotic mean squared error of mM(x) is given by

MSE(mM(x)) =
h4

4


f (x)m′′(x)

2 B2
(1,2)(K)


1 + OP


h−1/22

+


q

i=1

n2
i Bi

n2
+

q
i=1

ni

Bi + σ 2(x)


n2hf (x)

B(2,0)(K)

 
1 + OP(h1/2) + OP(h1/2)


.

Remark 1. Note that for the case 1 when Bi ≡ ΣB, ∀i = 1, . . . , q, since n2i
n2

≈
1
q , the error can be written as

MSE(mM3(x)) =
h4

4


m′′(x)

2 B2
(1,2)(K)


1 + OP


(nh)−1/22

+


ΣB

q
+

ΣB + σ 2(x)
nhf (x)

B(2,0)(K)

 
1 + OP((nh)1/2) + OP((h/n)1/2) .

The above expression is equivalent to that given by Park andWu [24, Theorem 4.1], but considering the parametric structure
for the random effects defined in the semiparametric model (2.16).
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Sketch of the Proof. The proof follows steps similar to those of [24, Theorems 4.1 and 4.2] and therefore we only show the
main calculations. Let us consider the minus-log-likelihood in (2.13),

Q (β) = −LM(β; y) = −

q
i=1

Xt
iW

1
2
ihV

−1
i W

1
2
ih [yi − Xiβ] .

Using a Taylor expansion at the optimizerβM , the (conditional) bias can be computed by

Bias(βM) = E
βM


− β = −


Q ′(β)

−1 E [Q (β)] (A.1)

since Q ′(β) =
q

i=1 X
t
iW

1
2
ihV

−1
i W

1
2
ihXi is constant under the conditional distribution. And the (conditional) variance is

Var(βM) =

Q ′(β)

−1 Var (Q (β))

Q ′(β)

−1
. (A.2)

We can write the two factors in (A.1) by

Q ′(β) =

q
i=1


Gx1i − Gx2iΛ

−1
i Gt

x2i


,

E [Q (β)] = −

q
i=1


Gm1i − Gx2iΛ

−1
i Gm2i


.

Here we have used that V−1
i = Σ−1

i − Σ−1
i 1niΛ

−1
i 1t

niΣ
−1
i , with Λi = B−1

i +
ni

j=1 σ−2(xij) (i = 1, . . . , q), and introduced

the following notation:mi = (mi1, . . . ,mini)
t ,mij = m(xij)−Xiβ = m(xij)−m(x)− (xij −x)m′(x), Gm1i = Xt

iW
1
2
ihΣ

−1
i W

1
2
ihmi,

Gx1i = Xt
iW

1
2
ihΣ

−1
i W

1
2
ihXi, Gx2i = Xt

iW
1
2
ihΣ

−1
i 1ni and Gm2i = 1t

niΣ
−1
i W

1
2
ihmi (i = 1, . . . , q). Now we use standard asymptotic

approximations for each of the elements in the defined matrices, based on the Markov property, i.e. for a random variable Z
with finite second-order moment it holds Z = E[Z] + OP(

√
Var(Z)). The resulting approximations are given by

Q ′(β) =
nf (x)
σ 2(x)


1 + OP((nh)− 1

2 ) O(h2) + OP((h/n) 1
2 )

O(h2) + OP((h/n) 1
2 ) O(h2) + OP((h3/n) 1

2 )


(A.3)

and

E [Q (β)] =
nh2

σ 2(x)
1
2
m′′(x)f (x)B(1,2)


1 + OP((nh)− 1

2 )

OP((h/n) 1
2 )


. (A.4)

If we consider the situation in case 2, the results are similar using analogous approximations and the assumption (A15). In
this case we get

Q ′(β) =
nf (x)
σ 2(x)


1 + OP(h−

1
2 ) O(h2) + OP(h

1
2 )

O(h2) + OP(h
1
2 ) O(h2) + OP(h

3
2 )


. (A.5)

For E [Q (β)] we get an expression analogous to (A.4) but droppingn from the OP(·) terms. Finally, substituting the above
expressions into (A.1) the asymptotic expression for the bias term in the lemma is proved.

For the variance (A.2) we have to calculate the term

Var(Q (β)) =

q
i=1


Ω1i − 2Gx2iΛ

−1
i Ω2i + Gx2iΛ

−1
i Ω3iΛ

−1
i Gt

x2i


, (A.6)

wherewehave defined thematrices:Ω1i = Xt
iW

1
2
ihΣ

−1
i W

1
2
ih(Γ i+Σi)W

1
2
ihΣ

−1
i W

1
2
ihXi,Ω2i = 1t

niΣ
−1
i W

1
2
ih(Γ i+Σi)W

1
2
ihΣ

−1
i W

1
2
ihXi,

and Ω3i = 1t
niΣ

−1
i W

1
2
ih(Γ i + Σi)W

1
2
ihΣ

−1
i 1ni , with Γ i = 1niBi1t

ni (i = 1, . . . , q). Since we are interested in Var(mM(x)) =

et1Var(βM)e1, we only have to provide an asymptotic approximation for the first element of the matrices involved in
expression (A.6). More specifically, for i = 1, . . . , q, we get:

et1Gx2iΛ
−1
i Ω2ie1 =

n2
i f

2(x)
σ 4(x)


hO(1) + O(n−1

i ) + OP((nih)−
1
2 )


,

et1Gx2iΛ
−1
i Ω3iΛ

−1
i Gt

x2ie1 = n2
i h

O(1) + OP((nih)−2)O(n−1

i ) + OP((nih)−
1
2 )


,

et1Ω1ie1 =
n2
i f

2(x)Bi

σ 4(x)


1 + OP(h2)


+

n2
i f (x)τ

2
i (x)B(2,0)h−1

σ 4(x)


1 + OP((nih)−

1
2 )


.



300 W. González Manteiga et al. / Journal of Multivariate Analysis 114 (2013) 288–302

The result for the variance in the Lemma are obtained by using the above approximations. Again, the situation in case 2
yields analogous results when droppingn from the OP(·) terms.
Consistency of the bootstrap approximation

Assuming the same hypotheses as before together with the following ones (depending on the case 1 or 2), we have the
following.

• Case 1: A18. As q → ∞, h0 → 0, nih0 → ∞ and nih3
0 → 0. Also h−1

0 h → 0.
• Case 2: A24. As q → ∞, h0 → 0,nh0 → ∞ and nh3

0 → 0. Also h−1
0 h → 0.

The proof of (3.4) is obtained by imitation. We consider for simplicity the semiparametric model (2.16) and the marginal
estimator (2.14),mM(x) = et1βM . Assuming known variance matrices, the marginal estimator is linear in the responses and
we obtain the decomposition of the bootstrap MSE into the squared bootstrap bias term

Bias∗(mh(x)) =

q
i=1

wi(x)mi,h0 − mh0(x),

and the bootstrap variance,

Var∗(mh(x)) =

q
i=1

wi(x)Viwt
i (x).

In a similar way we have a squared-bias and variance decomposition for the true MSE with: Bias(mh(x)) =
q

i=1 wi(x)mi −

m(x) and Var(mh(x)) =
q

i=1 wi(x)Viwt
i (x). Taking differences we only have to assess that the difference between bias

terms goes to zero. Note that with straightforward calculations on the expressions derived above, the difference becomes
in fact

Bias∗(mh(x)) − Bias(mh(x)) = et1

Q ′(β)

−1


q

i=1

Xt
iW

1
2
ihV

−1
i W

1
2
ih

mi,h0 − mi


which goes to zero as n → ∞ because of the consistency of the pilot estimator mi,h0 and the assumed oversmoothing by
the pilot bandwidth i.e. (h−1

0 h → 0).

A.2. Appendix B: estimation of the covariance matrices

All estimators presented depend on the covariance matrices B and Σ. Where these matrices are unknown, consistent
estimators are used as substitutes. Those are easily available for example when using joint likelihood estimation. Note that
the estimators for the fixed effects are not longer linear functions of the responses which makes it harder to deal with. If
the conditional variance functions, σ 2(·), and γ (·, ·) or Bi respectively, are parametrically specified, the covariance matrices
can be estimated at parametric rates. When a general linear mixed model is assumed, [14] provides asymptotic results for
all estimators. The generalization to a semiparametric setting can be found e.g. in [21], whereas the generalization to a
fully nonparametric setting is still an open problem, even in the simpler longitudinal data case of [31,30]. Most frequently
used methods are the maximum likelihood estimators (ML) and restricted maximum likelihood estimators (REML). For the
above local polynomial estimators, [31] calculate these estimators by the EM algorithm or the Newton–Raphson algorithm.
We adapted their method to our setting. In order to do so it is helpful to specify the distribution of (b, y). Taking the joint
normal distribution, the ML method for estimating B and Σ is based on the following kernel-weighted log-likelihood

logL(β, B, Σ|y) = −
1
2
n log(2π) −

1
2
log |V| −

1
2
(y − Xβ)tΩh(y − Xβ),

withV = W1/2
h ZBZtW1/2

h + Σ and Ωh = W1/2
h
V−1W1/2

h . Note that this looks like the ML method for standard linear mixed
effects models but adding some kernel-transformations. This likelihood also gives estimates for β. In contrast, the REML
method integrates out these parameters in order to adjust for the loss of degrees of freedom. Then it maximizes the log of

L(β, B, Σ|y)dβ given by

logL(B, Σ|y) = −
1
2
n log(2π) −

1
2
log |V| −

1
2
log

XtΩhX
− 1

2
ytWhPVWhy

with PV =V−1
−V−1W1/2

h X(XtΩhX)−1XtW1/2
h
V−1.

Alternative methods include the method of moments. For instance, [32] proposed to use it to estimate the covariances
of the random effects starting from a pilot estimation of the fixed-effects function. When checking the behavior of our
bandwidth selection, for the case where variances are unknown, we used this moment approach.

Again we generated 500 samples {xij, yij}
ni,q
i,j=1 from model (3.5), xij ∈ [−3, 3] taken from a fixed equidistant grid,

i.i.d. errors εi,d ∼ N(0, σ 2
e ), and i.i.d. random effects bi ∼ N(0, σ 2

b ) with different combinations of (σe, σb) but keeping
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Table 4
Results from 500 simulation runs based on model (3.5) with different sample sizes and combinations of (σe, σb) comparing the results of our bandwidth
selection under known versus unknown variances.

(q, ni, n) (30, 4, 120) (40, 6, 240)
(σ 2

e , σ 2
b ) (0.1, 0.5) (0.5, 0.1) (0.1, 0.5) (0.5, 0.1)

x, V Known Unkn. Known Unkn. Known Unkn. Known Unkn.
−2π
4 meanhb 1.323 1.298 1.259 1.262 1.068 1.060 1.050 1.061

stdhb 0.2733 0.2715 0.2270 0.2316 0.1740 0.1817 0.1437 0.1469
−π
4 meanhb 1.486 1.444 1.399 1.403 1.218 1.207 1.170 1.181

stdhb 0.3165 0.3148 0.2272 0.2387 0.2509 0.2496 0.1625 0.1666

0.0 meanhb 1.873 1.898 1.964 1.961 1.874 1.890 1.958 1.945
stdhb 0.1778 0.1752 0.1202 0.1281 0.1755 0.1710 0.1320 0.1517

always σ 2
e + σ 2

b = 0.6. We also varied sample size and the number of clusters q. We did the calculations first under the
assumption of known variances, and then repeated the procedure under the assumption of unknown variances where these
were estimated by themethod ofmoments. The bandwidth grid was reduced to the range of [0.6; 2.0] with step size 0.1. The
results are given for the three critical points x in Table 4. In can be seen that the outcome is hardly affected by the additional
uncertainty of unknown variances.

A.3. Appendix C: prediction of random effects

The nonparametric estimation of fixed effects and prediction of random effects is of particular interest for prediction and
small area issues. Again it can be realized for example by making use of a likelihood. Actually, [31] and later [24] proposed
such joint estimation in a longitudinal data model. However, though they started out from the same likelihood, they ended
up with different predictors. We checked the expressions of [31] and will follow here their lines. The generalization to our
more general context can be made as follows.

Under a local modeling approach, the model (1.1) is approximated by a linear mixed effects model such as (2.2) in each
neighborhood. Looking at the local linear model, there is no need to restrict to the semiparametric model; we just consider
bi as a local linear version of vi. Assuming that the random effects bi, and the residuals εij are normally distributed, the
estimators and predictors for β and bi arise from the maximization of the local kernel-weighted joint log-likelihood of
(yi, bi), given by

LJ(β, b; y) = −
1
2

q
i=1


[yi − Xiβ − Zibi]t W

1/2
ih Σ−1

i W1/2
ih [yi − Xiβ − Zibi] + bt

iB
−1
i bi + CiJ


with b = (b1, . . . , bq)

t and a constant CiJ = log |Σi| + log |Bi| + 2ni log(2π) (i = 1, . . . , q). Note that this matches with the
likelihood standard linear mixed effects model estimation but considering the transformed model

y = W1/2
h y = W1/2

h Xβ + W1/2
h Zb + W1/2

h ε =Xβ +Zb +ε. (A.7)

Under the assumption of known Bi and Σi (i = 1, . . . , q), the resultant estimator is given by

βJ =


q

i=1

Xt
iΩihXi

−1 q
i=1

Xt
iΩih yi

where Ωih = W1/2
ih
V−1

i W1/2
ih , Vi = W1/2

ih ZiBiZt
iW

1/2
ih + Σi. Therefore the (joint) local linear estimator of the fixed-effect

function is obtained by

mJ(t) = et1


q

i=1

Xt
iΩihXi

−1 q
i=1

Xt
iΩih yi (A.8)

with et1 = (1, 0). For the prediction of local linear random effects we get

bi = (Zt
iW

1/2
ih Σ−1

i W1/2
ih Zi + B−1

i )−1Zt
iW

1/2
ih Σ−1

i W1/2
ih (yi − XiβJ) (A.9)

for i = 1, . . . , q, which is equivalent tobi = BiZt
iW

1/2
ih
V−1

i W1/2
ih (yi − XiβJ), (A.10)

whereVi = W1/2
ih ZiBiZt

iW
1/2
ih + Σi, for i = 1, . . . , q. The predicted random-effects function is then given by

vi(z) = et1bi. (A.11)
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It can be shown that the asymptotic properties of the marginal estimator (2.14) and the joint estimator (A.8) are quite
similar. The asymptotic properties of the random effect component is still not worked out. Finally, the individual curves can
be estimated byηi(x, z) = mJ(x) +vi(z), (A.12)

for each group i = 1, . . . , q, and the mean parameter byΘi = ̇mJ(xi) + ̇vi(zi). (A.13)
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