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a b s t r a c t

Some robust sequential procedures for the detection of structural breaks in the Capital
Asset Pricing Model (CAPM) are proposed and studied. Most of the existing procedures for
this model are based on ordinary least squares (OLS) estimates. Here we propose a class
of cumulative sum (CUSUM)-type procedures based on M-estimates and partial weighted
sums of M-residuals. The theoretical results are accompanied by a simulation study that
compares the proposed procedures with those based on OLS estimates. An application to a
real data set is also presented.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and statistical framework

The Capital Asset Pricing Model (CAPM), introduced by Sharpe [25] and subsequently modified by many authors (see,
e.g. Lintner [22], Merton [24] and others), is an important and widely used model for evaluating the risk of a portfolio of
assets with respect to the market risk. Despite of some shortcomings pointed out by theoreticians and practitioners as well,
thewide-spread use of the CAPM is alsowell-documented (cf., e.g., the report ofMartin and Simin [23]). Amain advantage of
themodel is its simplicity in describing the sensitivity of an asset’s risk against themarket risk,which is essentially expressed
through one parameter, the (so-called) portfolio beta. On the other hand, it is alsowell-known that the corresponding pricing
of a portfolio asset heavily relies on the constancy of the betas over time. Confer, for example, the discussion in Ghysels [13]
and recently Caporale [7]. So, it may be of great interest to find out whether portfolio betas change significantly over time or
not. The latterwas amainmotivation in Aue et al. [1] for constructing a sequentialmonitoring procedure for the testing of the
stability of portfolio betas, taking also high-frequency data into account. Along the lines of Chu et al. [9], the corresponding
stopping rules of Aue et al. [1] are based on comparing the (ordinary) least squares estimate (OLS) of the beta fromahistorical
data set (training period) to that from sequentially incoming new observations. A structural break (change) in the model is
then confirmed when the beta significantly changes, that is, when the newly estimated beta exceeds a critical distance from
the historical one.
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However, it is well-known that OLS estimators are sensitive with respect to outliers and deviations from normality
assumptions. Concerning the possible application of the CAPM this has led to an extensive discussion and numerous
suggestions for ‘‘robustifying’’ the use of beta estimates in the prediction of portfolio risks (confer, e.g., Genton and
Ronchetti [12] and Martin and Simin [23] together with the works mentioned therein). Indeed, this has also motivated
our present paper in which we propose a robust monitoring procedure for testing the stability of CAPM portfolio betas. In
doing so, we try to take into account various aspects of the model which should allow for a broader applicability in practice.
First of all we suggest a multivariate approach allowing for dependencies within the portfolio. Second we work with a time
series model describing possible dependencies over time, and last but not least our approach is based on (multivariate)
M-estimators in order to reduce the sensitivity of the statistical decisions against outliers and non-normality assumptions.
For some related work on theM-estimation in linear models with dependent errors confer also Wu [26].

In view of the latter aspects the monitoring procedure proposed below extends other sequential testing procedures
for detecting an instability of parameters in regression models when a training sample is available (e.g. Chu et al. [9] or
Aue et al. [2]), which are typically based on OLS estimators and related L2-residuals. Here we shall make use of general
M-residuals which to the best of our knowledge have not been applied in this context. Only in case of a univariate linear
regressionmodel with independent observations, Koubková [21] already studied some similar robust sequential procedures
based on cumulative sum (CUSUM)-type test statistics. We would also like to mention that our procedure can be extended
to generalmultivariate linear regressionmodels or even to functional data setups, but this is beyond the scope of the present
work and will be studied elsewhere.

In the sequel our statistical framework will be as follows. We consider the model

ri = αi + βiriM + εi, i ∈ Z, (1.1)

where ri = (ri,1, . . . , ri,d)T is a d-dimensional vector of daily log-returns at time i, riM is the log-return of themarket portfolio
at time i, and εi = (εi,1, . . . , εi,d)

T are d-dimensional error terms. The αi’s and βi’s are d-dimensional unknown parameters,
and the βi’s are the parameters of interest, usually called the ‘‘portfolio betas’’. Note that the sequence {(ri, riM)} is a (d+1)-
dimensional time series satisfying certain conditions to be specified below.

We assume that a training sample of sizem with no instabilities is available, i.e.,

α1 = · · · = αm =: α0, β1 = · · · = βm =: β0, (1.2)

where α0 and β0 are unknown parameters. The problem of the instability of the portfolio betas is formulated as a testing
problem, that is, we want to test the null hypothesis

H0 : β1 = · · · = βm = βm+1 = · · ·

of no change versus the alternative

HA : β1 = · · · =βm+k∗ ≠ βm+k∗+1 = · · ·

of a structural break at an unknown change-point k∗
= k∗

m.
For later convenience we reformulate our model as follows:

ri,j = α0
j + β0

j riM + (α1
j + β1

jriM)δmI{i > m + k∗
} + εi,j, j = 1, . . . , d, i = 1, 2, . . . , (1.3)

where k∗
= k∗

m is the change-point, α0
j , β

0
j , α

1
j , β

1
j , δm are unknown parameters, and

riM = riM − rmM , with rmM =
1
m

m
i=1

riM . (1.4)

Our test procedureswill be generated by convex loss functionsϱ1, . . . , ϱd with a.s. derivativesϱ′

j = ψj called score functions
having further properties to be specified later. The estimatorsαjm =αjm(ψj),βjm = βjm(ψj) of α0

j , β
0
j based on the training

sample are defined as minimizers of

m
i=1

ϱj(ri,j − aj − bjriM) (1.5)

w.r.t. aj, bj for j = 1, . . . , d.
Generally, having m + k observations (the training sample of size m plus k new observations) it would be natural

to construct the test procedure via comparing estimators of β0
1 , . . . , β

0
d based on r1, . . . , rm and on rm+1, . . . , rm+k,

respectively. This, however, would be computationally quite demanding. Therefore we propose a test procedure based on
functionals of partial sums of weightedM-residuals which is asymptotically equivalent.

TheM-residuals to be used are defined as follows:

ψ(εi) = (ψ1(εi,1), . . . , ψd(εi,d))T (1.6)
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with εi = (εi,1, . . . ,εi,d)T ,εi,j = ri,j −αjm −riMβjm. (1.7)

A suitable test statistic based on the firstm + k observations is

Q (k,m) =


1

√
m

m+k
i=m+1

riMψ(εi)T Σ−1
m


1

√
m

m+k
i=m+1

riMψ(εi) (1.8)

where the matrix Σm is an estimator of the asymptotic variance (matrix)

Σ = lim
m→∞

var


1

√
m

m
i=1

(riM − EriM)ψ(εi)


(1.9)

based on the firstm observations. Details will be discussed later.
We reject the null hypothesis as soon as the test statistic exceeds a critical level for the first time, i.e., whenQ (k,m)/qγ (k/m) ≥ c

for an appropriately chosen c = cγ (α), where qγ (t), t ∈ (0,∞) is a suitable boundary (weight) function. In this case we
stop the procedure and confirm a structural break, otherwise we continue monitoring. The associated stopping rule is given
by

τm = τm(γ ) = inf{1 ≤ k ≤ ⌊mT⌋ : Q (k,m)/qγ (k/m) ≥ c}, (1.10)

with inf ∅ := ∞. Here T is a fixed positive number, that is, we have a so-called closed-end procedure. This is very practical
since in applications the upper bound for the maximum number of possible observations is usually specified a priori. The
following class of the weight functions qγ can be used, e.g.,

qγ (t) = (1 + t)2


t
t + 1

2γ

, t ∈ (0,∞), (1.11)

where γ is a tuning constant taking values in

0, 1/2). The critical value c will be chosen such that, under H0, for α ∈ (0, 1)

(fixed),

lim
m→∞

P

τm < ∞


= α, (1.12)

i.e., the overall asymptotic level (false alarm rate) is α and, under HA,

lim
m→∞

P

τm < ∞


= 1, (1.13)

i.e., the test is consistent (has asymptotic power 1).
The rest of the paper is organized as follows. The main results including the assumptions and limit properties of the

test procedures are presented and discussed in Section 2. Section 3 reports on the results of a small simulation study and an
application to a real data set. The proofs of ourmain results are given in Section 4, whereas Section 5 contains some auxiliary
lemmas to be used in the proofs.

2. Assumptions and main results

We start with formulating the assumptions on the sequence {(εi,1, . . . , εi,d, riM)}i∈Z and on the loss functions ϱ1, . . . , ϱd
(or equivalently on the score functions ψ1, . . . , ψd).

We assume on ψj and the distribution function Fj of εi,j, j = 1, . . . , d:

(A.1) ψj are nondecreasing functions,λj(t) = −

ψj(x−t)dFj(x), t ∈ R,λj(0) = 0,λ′

j(0) > 0,λ′

j(t) exists in a neighborhood
of 0 and is Lipschitz in a neighborhood of 0, e.g., for |t| ≤ c0 with some c0 > 0.

(A.2)


|ψj(t)|2dFj(t) < ∞ and
|ψj(x + t2)− ψj(x + t1)|2dFj(x) ≤ C1|t2 − t1|κ , |t1|, |t2| ≤ c0

for some 1 ≤ κ ≤ 2, c0, C1 > 0.
[It can be assumed that c0 is the same in both assumptions.] Note that κ = 1 corresponds to L1.
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These assumptions are quite standard in robust statistics. For further information on the choice of ψj see the classical
works on robustmethods, e.g., Jurečková and Sen [18] andHuber [17] for the univariate situations and the papers by Koenker
and Portnoy [19] and Bai et al. [3,4] for the multivariate ones.

Let us recall some of themost often consideredψj-functions. The classical choiceψj(x) = x, x ∈ R1, leads to the ordinary
least squares (OLS) and L2-residuals. A choice of ψj(x) = sign x, x ∈ R1, leads to L1-estimators and L1-residuals. Huber [17]
introduced ψj(x) = x I{|x| ≤ K} + K sign x I{|x| > K}, x ∈ R1, for some K > 0, which is one of the most often used score
functions, usually known as the Huber function.

For a vector-valued random variable X define

∥X∥p =

E|X|

p1/p, p ≥ 1,

the Lp- norm of X, where |X| denotes the Euclidean norm of X.
Concerning the assumptions on {riM} and {εi} we follow the setup in Aue et al. [1]:

(B.1) For any i ∈ Z, riM = h(ξi, ξi−1, . . .), where h(·) is a measurable function, {ξi} is a sequence of i.i.d. random vectors
with dimension q1, and E|r0M |

2+∆ < ∞ for some∆ > 0.
[Note that {riM : i ∈ Z} is a stationary and ergodic sequence.]

(B.2) For any i ∈ Z, εi = g(ζi, ζi−1, . . .), where g(·) is a measurable function, {ζi} is a sequence of i.i.d. random vectors with
dimension q2 and some further properties to be specified later.
[Note that {εi : i ∈ Z} is also a stationary and ergodic sequence.]

(B.3) The sequences {ξi} and {ζi} are independent.
(B.4) For all i ∈ Z,

∞
L=1

∥riM − r (L)iM ∥2+∆ < ∞,

where

r (L)iM = h(ξi, ξi−1, . . . , ξi−L+1, ξ
(L)
i−L, ξ

(L)
i−L−1, . . .),

with ξ(L)i−L, ξ
(L)
i−L−1, . . . being i.i.d. with the same distribution as ξ0 and independent of {ξi}.

[Note that r (L)iM
D
= riM

D
= r0M for all i ∈ Z and L ≥ 1.]

(B.5) For ψ(εi) = (ψ1(εi,1), . . . , ψd(εi,d))
T , i ∈ Z, it holds that

∞
L=1

sup
|a|≤a0

∥ψ(εi − a)− ψ(ε
(L)
i − a)∥2 < ∞

for some a0 > 0, where

ε
(L)
i = g(ζi, ζi−1, . . . , ζi−L+1, ζ

(L)
i−L, ζ

(L)
i−L−1, . . .)

with ζ(L)i−L, ζ
(L)
i−L−1, . . . being i.i.d. with the same distribution as ζ0 and independent of {ζi}.

The above assumptions are motivated by the work of Hörmann and Kokoszka [14] on the concept of Lp-m-approx-
imability, in which also the relation to other types of dependencies is discussed as well as various examples are presented.
In this respect, our asymptotic analysis below differs from the approach of Wu [26] who also relaxed the independence
assumption in the classicalM-estimation theory and allowed for a more general class of dependent errors.

Next we present our results on the limit behavior of the test procedures both under the null hypothesis H0 as well as
under the alternative HA.

2.1. Asymptotic results

Theorem 2.1. Let Assumptions (A.1)–(A.2), (B.1)–(B.5) and (1.11) with γ ∈ [0, 1/2) be satisfied and

Σm − Σ = oP(1) (m → ∞), (2.1)

where

Σ = lim
m→∞

var


1

√
m

m
i=1

(riM − EriM)ψ(εi)



= E[(r0M − Er0M)2ψ(ε0)ψ(ε0)T ] +

∞
i=1

E[(r0M − Er0M)(riM − EriM)(ψ(ε0)ψ(εi)T + ψ(εi)ψ(ε0)
T )], (2.2)
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andΣ is a positive definite matrix. Then, under the null hypothesis H0,

max
1≤k≤⌊mT⌋

 Q (k,m)
qγ (k/m)


D

−→ sup
0<t<T/(T+1)


d

j=1
W 2

j (t)

t2γ

 (m → ∞),

where {Wj(t), t ∈ [0, 1]}, j = 1, . . . , d, are independent (standard) Brownian motions (Wiener processes).

The proof of Theorem 2.1 is postponed to Section 4.
It follows from Assumptions (A.1)–(A.2) and (B.1)–(B.5) that {riM} and {ψ(εi)} are independent sequences. Then Lemma

2.1 and Theorem 4.2 in Hörmann and Kokoszka [14] imply that the series in (2.2) converges (component-wise) absolutely.
Now we turn to the model under local alternatives, i.e.

ri,j = α0
j + β0

jriM + (α1
j + β1

jriM)δmI{i > m + k∗
} + εi,j, j = 1, . . . , d, i = 1, 2, . . . , (2.3)

with δm → 0 and k∗ < ⌊mT⌋.

Theorem 2.2. Let Assumptions (A.1)–(A.2), (B.1)–(B.5) and (1.11) with γ ∈ [0, 1/2) be satisfied andΣm − Σ = oP(1) (m → ∞),

whereΣ is as in Theorem 2.1.
(i) Under (2.3) with δm = m−1/2 and k∗

= ⌊ms⌋, 0 < s < T ,

max
1≤k≤⌊mT⌋

 Q (k,m)
qγ (k/m)


D

−→ sup
0<t<T/(T+1)


d

j=1
(Wj(t)− hj(t, s))2

t2γ

 (m → ∞),

where {Wj(t), t ∈ (0, 1)}, j = 1, . . . , d, are independent Brownian motions and

h(t, s) = (h1(t, s), . . . , hd(t, s))T , 0 < s < T , 0 < t < T/(T + 1),
h(t, s) = max(0, t/(1 − t)− s)var{r0M}Σ−1/2(λ′

1(0)β
1
1 , . . . , λ

′

d(0)β
1
d )

T , 0 < s < T , 0 < t < T/(T + 1).

(ii) Under (2.3) with δm → 0, |δm|m1/2
→ ∞, lim infm→∞(⌊mT⌋ − k∗)/m > 0, and β1

j ≠ 0 for at least one j,

max
1≤k≤⌊mT⌋

 Q (k,m)
qγ (k/m)


P

−→ ∞ (m → ∞).

The proof of Theorem 2.2 is also postponed to Section 4.

Remark 2.1. (a) By Theorem 2.1, the assertion (1.12) holds true if cγ (α) satisfies

P

 sup
0<t<T/(T+1)


d

j=1
W 2

j (t)

t2γ

 ≥ cγ (α)

 = α.

But the explicit form of the distribution of sup0<t<T/(T+1)
d

j=1 W
2
j (t)/t

2γ is unknown, so it does not provide an immediate
approximation of the critical values. However, cγ (α) can either be obtained by simulation of the limit distribution or by an
application of a suitable form of bootstrap based on the training sample.
(b) Theorem 2.2 (ii) implies the consistency of the test, i.e., the validity of (1.13) (asymptotic power 1).
(c) Theorem 2.2 (i) deals with so-called contiguous alternatives. As expected, asymptotically we have the maximum of
weighted sums of squares of shiftedWiener processes, where the shifts depend on the change-point, the amount of change
and also on the choice of the loss functions ϱ1, . . . , ϱd (through λ′

1(0), . . . , λ
′

d(0)).
Notice also that the limit distribution in Theorem2.2 (i) is only sensitivew.r.t. a change in theβj’s, but notw.r.t. a change in

theαj’s. Moreover, on checking the proof one can conclude that, in case of a local change in theαj’s only, the limit distribution
is the same as under H0.
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2.2. Estimation of the variance matrix

In this section we deal with an estimator of the asymptotic variance (matrix) Σ as given in (2.2). Notice that Σ =
∞

k=−∞
Γ k, where Γ k = E[(r0M − Er0M)(rkM − ErkM)ψ(ε0)ψ(εk)T ] for k ≥ 0 and Γ−k = Γ T

k .
We consider an estimator ofΣ based on the firstm observations defined asΣm =


|k|<q

ωq(k)Γ k (2.4)

where q = q(m) and ωq is a kernel function specified below,Γ k is the k-th lag sample covariance corresponding to Γ k, i.e.,

Γ k =


1
m

m−k
i=1

riMri+k,Mψ(εi)ψ(εi+k)
T , k ≥ 0,

Γ T
−k, k < 0,

(2.5)

with theriM as given in (1.4) and ψ(εi) based on theM-residuals defined in (1.6) and (1.7).
We shall work with the Bartlett kernel, i.e.,

ωq(x) = (1 − |x|/q) I{|x| ≤ q}, x ∈ R. (2.6)

Theorem 2.3. Let Assumptions (A.1), (A.2), and (B.1)–(B.5) be satisfied with∆ ≥ κ , κ from Assumption (A.2). Let Σm be the
estimator of Σ given in (2.4) with the kernel (2.6) such that, as m → ∞, q(m) → ∞ and q(m)/mmin{1/2,κ/4}

→ 0. ThenΣm = Σ + oP(1) (m → ∞).

3. Simulations and applications

In this sectionwe present some results from a small simulation study aswell as an application to a real data set in order to
illustrate the finite sample performance of our monitoring procedure based on the test statistic (1.8). For the computations
we used the statistical software package R (R Development Core Team, 2009), version 2.13.1.

First we give a table of simulated critical values for the asymptotic distribution of the test statistic as specified in
Theorem 2.1. Due to the scaling property of the Wiener process, it is enough to determine the critical values (say) cγ ,∞(α)
of the functional

sup
0<t<1


d

j=1
W 2

j (t)

t2γ

 , (3.1)

corresponding to the so-called open-end monitoring procedure. Then one can easily check that the critical values (say)
cγ ,T (α) of the statistic

sup
0<t<T/(T+1)


d

j=1
W 2

j (t)

t2γ


for the closed-end procedure considered in Theorem 2.1 satisfy the relation

cγ ,T (α) =


T

T + 1

1−2γ

cγ ,∞(α). (3.2)

Critical values cγ ,∞ for d = 1, 2 have already been determined in [21]. Here we present an extended table for d =

2, 3, 4, 5 (cf. Table 1) for choices γ = 0, 0.15, 0.25, 0.40, 0.49 of the tuning constant and nominal levels α = 1%, 5%, 10% of
the test. Thereby the supremum of the functional given in (3.1) has been approximated by a maximum over a grid of 25,000
equidistant points, and 100,000 repetitions have been run.

In our simulation study we made the following choices:
• α = 5%, d = 2, cγ ,T (α) from Table 1 rescaled according to (3.2);
• ψj-functions corresponding to the L2-, L1- andHuber-estimators as described in Section 2 (in theHuber casewith constant

K = 1.345 (var εi,j)1/2, where 1.345 is the default value in the R-package);
• m = 100, 200, 400; γ = 0, 0.25, 0.45;
• α0 = (0.5, 0.5)T , β0 = (0.5, 0.5)T ;
• Bartlett kernel variance estimator with q = 4, 10, 20.
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Table 1
Simulated critical values for the functional given in (3.1).

d α(%) \ γ 0 0.15 0.25 0.40 0.45 0.49

10 5.83300 6.16964 6.54486 7.79693 8.90706 10.97680
2 5 7.27319 7.62029 8.01801 9.24979 10.38189 12.51981

1 10.47212 10.81526 11.18947 12.41796 13.58373 16.08758

10 7.55347 7.91567 8.33422 9.69223 10.89566 13.24342
3 5 9.15817 9.51428 9.92618 11.27827 12.47845 14.93875

1 12.64423 12.97544 13.35888 14.71475 15.93770 18.61511

10 9.15704 9.54268 9.96759 11.40482 12.68321 15.28504
4 5 10.89252 11.26607 11.67221 13.12474 14.41193 17.05890

1 14.65064 15.00585 15.43069 16.88893 18.13029 20.88200

10 10.63242 11.04519 11.48214 12.97519 14.35397 17.13813
5 5 12.47376 12.87663 13.31469 14.80208 16.16445 19.02006

1 16.43966 16.84611 17.32441 18.86821 20.13233 23.11929

Table 2
Empirical sizes at nominal level α = 5%, T = 10, dependent observations.

q m \ γ L2 Huber L1
0 0.25 0.45 0 0.25 0.45 0 0.25 0.45

100 8.2 9.6 8.7 7.3 8.5 7.2 7.0 8.1 5.9
riM ∼ AR(1), εi ∼ IID 4 200 6.1 7.1 6.6 5.6 6.6 5.4 5.1 6.2 4.5

400 5.6 6.5 5.7 4.8 5.9 5.1 4.7 5.7 5.0

100 7.5 9.6 9.8 5.9 7.2 6.0 3.8 5.0 3.4
riM ∼ IID, εi ∼ VAR(1) 4 200 5.7 6.9 6.9 5.1 6.6 5.2 4.3 5.2 3.8

400 4.9 5.6 6.6 4.3 5.2 5.3 3.9 4.6 3.8

100 15.6 18.3 16.5 12.7 15.0 13.0 9.4 10.7 9.1
riM ∼ AR(1), εi ∼ VAR(1) 4 200 11.1 13.3 12.5 9.7 11.1 10.0 6.6 7.8 6.7

400 7.4 9.3 9.5 7.2 8.7 8.7 7.0 8.1 7.6

100 13.8 16.3 14.9 11.5 13.1 11.9 8.8 10.2 7.9
riM ∼ AR(1), εi ∼ VAR(1) 10 200 9.4 11.1 10.5 7.9 9.1 8.6 5.7 6.9 5.5

400 5.8 7.1 7.5 5.5 7.0 6.9 5.7 6.9 5.7

100 12.1 14.0 12.4 8.9 10.7 8.7 6.4 7.7 6.1
riM ∼ AR(1), εi ∼ VAR(1) 20 200 7.2 8.6 8.5 6.6 7.6 6.2 5.1 6.7 5.6

400 5.1 6.8 7.3 5.0 6.6 6.1 4.3 5.5 5.0

Table 2 shows the empirical sizes of the test procedure under the null hypothesisH0 for T = 10.We simulated dependent
data, where both the market portfolio riM as well as the errors εi may be dependent. In this case, the riM ’s were generated
as an autoregressive sequence of order 1 with coefficient 0.5 and i.i.d. N(0, 1)-innovations (denoted riM ∼ AR(1)), and the
εi’s were chosen as a vector autoregression with coefficient matrix A =


0.5 0
0 0.5


and i.i.d. innovations ζi ∼ N2(0,A),

i.e., εi = Aεi−1 + ζi (denoted εi ∼ VAR(1)). When no particular dependency is described, then the sequences are just
i.i.d. innovations (IID) as specified before.

We can see that the empirical levels are getting closer to the nominal one when the size m of the historical sample
increases. The L1-procedure is the most conservative one, but all procedures perform quite well also for dependent data.
Naturally, when the dependency is weaker, the performance is better. Also, in case of weak dependencies, the performance
was relatively stablewith respect to the choice of the bandwidth q in the Bartlett kernel variance estimator, and q = 4 turned
out to be a reasonable choice. Only in case of heavier dependencies in both, market portfolio and errors, the performance
improvedwith increasing q (confer the last three rowblocks in Table 2). Concerning the choice of γ , there is some experience
from other studies (cf., e.g., Černíková et al. [8] or Horváth et al. [15]). For example, if a change is to be expected ‘‘early’’ after
the training period, then γ near to 0.5 is advisable. For ‘‘late change scenarios’’, however, small γ ’s are recommended. A
choice of γ = 0.25 seems to strike a reasonably good balance between these two scenarios.

Next we concentrate on the robustness aspects of our method. For simplicity we used i.i.d. errors here with independent
components, having either a normal N , t4 or t1 (Cauchy) distribution. Table 3 presents the corresponding empirical sizes
(under H0). It is obvious that, in case of t1-distributed errors, the L2-procedure totally fails, whereas the Huber- and L1- type
procedures still perform well.

In order to illustrate the properties of the test under the alternative hypothesis, we chose T = 2, k∗
= 10 and δm β1

j = 1,
j = 1, 2. Table 4 gives the medians of detection delays τm − k∗ under the same error distributions as above. Sometimes the
change was not detected (ND) at all until the end of the monitoring period. Again, the Huber-type procedure shows a good
performance over all error distributions. Note that, for the sake of brevity, we just reported on one scenario in Table 4, in
which d = 2 and both parameters change, but the detector also reacts if at least one parameter changes.
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Table 3
Empirical sizes at nominal level α = 5%, T = 10, q = 4, different error distributions.

m\γ L2 Huber L1
0 0.25 0.45 0 0.25 0.45 0 0.25 0.45

100 7.4 8.1 6.9 5.9 6.7 5.3 3.8 4.9 3.6
N 200 4.7 5.9 5.0 4.4 5.3 4.3 4.3 5.0 3.9

400 4.3 5.0 4.6 4.5 5.1 4.4 3.2 4.5 4.1

100 6.2 8.5 9.3 5.7 7.6 6.5 5.2 6.7 6.5
t4 200 6.5 8.5 9.5 5.0 6.7 4.4 4.5 5.4 6.4

400 3.7 5.3 6.3 4.2 5.4 3.9 3.8 4.3 5.2

100 62.6 65.6 64.2 5.5 6.5 4.2 4.2 5.1 5.6
t1 200 65.9 68.5 67.9 5.3 6.0 4.6 3.9 4.0 5.6

400 62.6 66.1 65.4 4.4 4.8 4.1 3.7 4.6 5.5

Table 4
Medians of detection delays, k∗

= 10, q = 4.

m\γ L2 Huber L1
0 0.25 0.45 0 0.25 0.45 0 0.25 0.45

100 30 20 15 41 28 22 62 45 39
N 200 38 22 15 50 31 22 73 47 35

400 40 27 16 66 36 22 92 54 34

100 38 25 20 41 27 22 63 44 38
t4 200 48 29 20 50 31 22 73 47 34

400 64 35 21 65 37 22 92 54 35

100 ND ND 186 71 50 42 90 66 60
t1 200 ND 348 301 79 51 36 99 66 52

400 ND ND 766 100 59 36 120 73 48

Table 5
Empirical power of the test (in %) for t1 errors, q = 4.

m\γ L2 Huber L1
0 0.25 0.45 0 0.25 0.45 0 0.25 0.45

100 41.0 47.5 55.0 98 99 98 97 98 97
200 44.4 51.8 53.5 100 100 100 100 100 100
400 41.4 48.2 57.0 100 100 100 100 100 100

In Table 5, we present some empirical power values of the test procedure under t1-distributed errors. For the other
distributions the power was always 1 which is in accordance with (1.13).

Finally, as an illustration of a possible application, we investigated a data set of MSCI Global Sector Indices (net prices)
that can serve as a benchmark to conduct relative valuations of sectors, industry groups and industries across countries
and regions. Three sector indices – NDWUCSTA-World Consumer Staples (food, beverages, tobacco, prescription drugs and
household products), NDWUFNCL-World Financials, and NDWUHC-World Health Care have been studied, and we chose
NDDUWIMSCIWorld Index (aweighted index designed tomeasure the equitymarket performance of 24 developed country
market indices) to represent the market portfolio.1

We have a sample of data from 29/12/2000 to 29/03/2011. The data from the period 31/12/2004 to 01/12/2006
(of length m = 500) was examined by an a-posteriori test for detecting a change in regression parameters based on
cumulative sums (cusum’s) of residuals (see, e.g., Csörgő and Horváth [10]). Since the (asymptotic) cusum test did not
reject the null hypothesis of no change, we used this data set as the (stable) historical (training) period for our monitoring
procedure. The length of themonitoring period is 2m = 1000, that is, themonitoring terminates on 01/10/2010. So, critical
values were chosen for T = 2.

Since, as described earlier, the Huber-type procedure provides a good combination of efficiency and robustness, we only
present the results for this type of monitoring here. Also, as we did not know where to expect the possible change, we used
γ = 0.25 as a compromise between detecting an early or late change, and, in accordance with the simulations above, we
chose a bandwidth of q = 4 in the Bartlett kernel variance estimator. Moreover, we considered the portfolio including all
three indices as well as all pairwise combinations.

1 Source: Bloomberg, 2011, http://www.msci.com/products/indices/tools/tickers/bb_eod/bloomberg_tickers_eod_sector.html

http://www.msci.com/products/indices/tools/tickers/bb_eod/bloomberg_tickers_eod_sector.html
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Fig. 1. Test statistics and critical values for different combinations of indices.

In Fig. 1 the values of the test statistics are shown together with the critical values; a solid line indicates the critical
value for T = ∞ (i.e., for the open-end monitoring) and a dashed line the one for T = 2 (closed-end monitoring). A solid
vertical linemarks the date 01/08/2007, i.e., the datewhen the subprimemortgage crisis approximately started. The figures,
particularly the first three ones, demonstrate the high sensitivity of the portfolio risk with respect to the financial sector.

4. Proofs

Proof of Theorem 2.1. The proof will be given in three steps. Let us recall that under the null hypothesis we work with the
model

ri,j = α0
j + β0

jriM + εi,j, j = 1, . . . , d, i = 1, 2, . . . (4.1)

as defined in (1.3).

1. In a first step we obtain asymptotic representations of the estimatorsαjm, βjm of α0
j , β

0
j , j = 1, . . . , d. These estimators

are based on the training sample only, hence we are in a non-sequential setup and can proceed in the same way as in
treating the behavior of multivariate M-estimators. However, we need somewhat stronger results, since we are working
under dependence.

It is convenient to introduce auxiliary estimatorsα∗

jm andβ∗

jm as minimizers of

m
i=1

ϱj(εi,j − a∗

j /
√
m − b∗

jriM/√m) (4.2)

w.r.t. a∗

j and b∗

j for j = 1, . . . , d. Clearly,

α∗

jm =
√
m(αjm − α0

j ),
β∗

jm =
√
m(βjm − β0

j ). (4.3)

Usually, the estimatorsα∗

jm andβ∗

jm can be obtained as solutions of the equations

m
i=1

ψj(εi,j − (a∗

j + b∗

jriM)/√m) = 0, (4.4)

m
i=1

ψj(εi,j − (a∗

j + b∗

jriM)/√m)riM = 0, (4.5)

w.r.t. a∗

j , b
∗

j for j = 1, . . . , d.
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Proceeding in a standard way, Lemmas 5.2 and 5.3 below ensure thatα∗

jm = OP(1) andβ∗

jm = OP(1) and, moreover, we
get the asymptotic representations, asm → ∞,

α∗

jm =
√
m(αjm − α0

j ) =
1

√
mλ′

j(0)

m
i=1

ψj(εi,j)+ OP(m−η), (4.6)

β∗

jm =
√
m(βjm − β0

j ) =

√
m

λ′

j(0)
1

m
i=1
r2iM

m
i=1

ψj(εi,j)riM + OP(m−η), (4.7)

for some η > 0.

2. Next we show that the limit behavior of the weighted partial sums

H(m, k) = (H1(m, k), . . . ,Hd(m, k))T =
1

√
m

m+k
i=m+1

riMψ(εi), k = 1, . . . , ⌊mT⌋

is the same as that of

H(m, k) =
1

√
m

 m+k
i=m+1

(riM − EriM)ψ(εi)−

m+k
i=m+1

(riM − EriM)2

m
i=1
(riM − EriM)2

m
i=1

(riM − EriM)ψ(εi)

 , k = 1, . . . , ⌊mT⌋.

Again we follow the usual lines for treating the partial sums of weighted M-residuals with extension to dependent
observations.

Lemmas 5.3 and 5.4 together with the asymptotic representations (4.6) and (4.7) imply that, asm → ∞,

max
1≤k<⌊mT⌋+1


m+k

i=m+1

riMψj(εi,j − (α∗

jm +β∗

jmriM)/√m)

−

 m+k
i=m+1

riMψj(εi,j)−

m+k
i=m+1

r2iM
m
i=1
r2iM

m
i=1

riMψj(εi,j)



√

m(1 + k/m)(k/m)γ


= OP(m−η)

for some η > 0. Using the properties of {riM} from Lemma 5.1 we conclude that this relation remains true even ifriM is
replaced by riM − EriM . This together with assumption (2.1) further implies that the limit behavior of

max
1≤k≤⌊mT⌋

Q (k,m)/qγ (k/m),
is the same as that of

max
1≤k≤⌊mT⌋

Q (k,m)/qγ (k/m),

where

Q (k,m) = H(m, k)TΣ−1H(m, k). (4.8)

3. Finally, we study the limit behavior of

m+k
i=m+1

(riM − EriM)ψ(εi), k = 1, . . . , ⌊mT⌋,

and that of the related maximum of weighted quadratic forms

max
1≤k≤⌊mT⌋

Q (k,m)/qγ (k/m),
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with Q (k,m) defined by (4.8). The desired results are obtained by an application of the results in Billingsley [6]. More
precisely, we introduce

Zi = (Zi,1, . . . , Zi,d)T = (riM − EriM)ψ(εi), i = 1, 2, . . . ,

Z(L)i = (Z (L)i,1 , . . . , Z
(L)
i,d )

T
= (r (L)iM − Er (L)iM )ψ(ε

(L)
i ), i = 1, 2, . . . , and

Zm(t) =
1

√
m

⌊mt⌋
i=1

Zi, 0 ≤ t ≤ T + 1.

The main step is to show that

Zm(·)
Dd

[0,T+1]
−→ WΣ(·),

where {WΣ(t) : t ∈ [0, T + 1]} is a centered Gaussian process with covariance function E[WΣ(t)WT
Σ(s)] = min(t, s)Σ, and

Dd
[0,T+1]
−→ denotes weak convergence in the Skorokhod space Dd

[0, T + 1]. To prove the latter relation, we make use of
Billingsley [6], p. 184. Note that, in view of the triangle inequality and Assumption (B.3),

∥Zi,ℓ − Z (L)i,ℓ ∥2 = ∥(riM − EriM)ψℓ(εi,ℓ)− (r (L)iM − Er (L)iM )ψℓ(ε
(L)
i,ℓ )∥2

≤ ∥[(riM − EriM)− (r (L)iM − Er (L)iM )]ψℓ(εi,ℓ)∥2 + ∥(r (L)iM − Er (L)iM )[ψℓ(εi,ℓ)− ψℓ(ε
(L)
i,ℓ )]∥2

≤ 2 ∥riM − r (L)iM ∥2 · ∥ψℓ(ε0,ℓ)∥2 + ∥r (L)0M − Er (L)0M∥2 · ∥ψℓ(εi,ℓ)− ψℓ(ε
(L)
i,ℓ )∥2.

So, by Assumptions (B.4) and (B.5), for ℓ = 1, . . . , d,

∞
L=1

∥Zi,ℓ − Z (L)i,ℓ ∥2 < ∞.

Now, according to Davidson [11], Theorem 29.16, it suffices to show that, for any set of constants c = (c1, . . . , cd)T , we have

cTZm(·)
D[0,T+1]
−→ cTWΣ(·)

asm → ∞. For the latter relation, however, note that

∞
L=1

 d
ℓ=1

Zi,ℓ −

d
ℓ=1

Z (L)i,ℓ


2 < ∞,

so that the desired conclusion follows from Billingsley [6], Theorem 21.1. Here we make also use of the fact that

lim
m→∞

var


1

√
m

m
i=1

(riM − EriM)ψ(εi)


= Σ.

In the next step, we study the processH(m, ⌊mt⌋) = Zm(t + 1)− Zm(1)− tZm(1) = Zm(t + 1)− (t + 1)Zm(1), 0 ≤ t ≤ T .

LetΣ = CCT , where C is a regular matrix. Via the continuous mapping theorem,

C−1H(m, ⌊m ·⌋)
Dd

[0,T ]
−→ W(·),

where {W(t) : 0 ≤ t ≤ T } is a centered Gaussian process with covariance function E[W(t)WT (s)] = (t + 1)s · Id, for
0 ≤ s ≤ t ≤ T , with Id denoting the d-dimensional unity matrix. Thus, via another application of the continuous mapping
theorem,

C−1H(m, ⌊m ·⌋)/( · + 1)
Dd

[0,T ]
−→ W(·)/( · + 1) = W∗(·),

for which it is easily checked that

{W∗(t) : 0 ≤ t ≤ T }
D
=


W


t
t + 1


: 0 ≤ t ≤ T


,

with {W(t) : t ≥ 0} denoting a standard Brownian motion.
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To complete the proof, note that, in view of Lemma 5.1, asm → ∞,

sup
0≤t≤T


m+⌊mt⌋
i=m+1

(riM − EriM)2

m
i=1
(riM − EriM)2

− t


P

−→ 0,

which implies that also

C−1H(m, ⌊m ·⌋)/( · + 1)
Dd

[0,T ]
−→ W


·

· + 1


.

Finally, in view of the law of iterated logarithm for a Brownian motion,

W


t
t + 1


t

t + 1

δ
→ 0 P-a.s. as t ↘ 0,

for every 0 ≤ δ < 1/2, and

sup
1/m≤t≤T

 qγ (t)
qγ (⌊mt⌋/m)

− 1
 = O


1
m


1

m2γ


→ 0 asm → ∞,

since 0 ≤ γ < 1/2.
Now, an application of the continuous mapping theorem, restricted to the set of functions

x ∈ Dd
[0, T ] : lim

t↘0
|x(t)|/tδ = 0 ∀ 0 ≤ δ < 1/2


,

completes this step and thus the proof of Theorem 2.1. �

Proof of Theorem 2.2. Recall that the model under the considered alternative has the form

ri,j = α0
j + β0

jriM + (α1
j + β1

jriM)δmI{i > m + k∗
} + εi,j, j = 1, . . . , d, i = 1, 2, . . . ,

where δm → 0. Notice that in this situation we have, for k∗ < k ≤ ⌊mT⌋,

m+k
i=m+1

riMψj(εi,j) =

m+k
i=m+1

riMψj(εi,j − (α∗

jm +β∗

jmriM)/√m + (α1
j + β1

jriM)δmI{i > m + k∗
}) (4.9)

with α∗

jm = OP(1), β∗

jm = OP(1) (m → ∞),

based on the training sample only. Moreover, in view of (5.4) below, it is enough to work on the set
sup

|a|+|b|≤C
max

i=1,...,m
|a + briM |/

√
m ≤ a0


,

with an arbitrary C > 0 and a0 from Assumption (B.5).
(i) Similar to the proof of Theorem 2.1 we need to study

Lj(a, b,m, k) =
1

√
m

m+k
i=m+1

riMψj(εi,j − (a + briM)/√m + (α1
j + β1

jriM)δmI{i > m + k∗
}).

Along the lines of the proof of Lemma 5.4 we get that

max
1≤k≤⌊mT⌋


|{Lj(a, b,m, k)− E∗Lj(a, b,m, k)}a=α∗

jm,b=
β∗
jm

|

(k/m)γ


= OP(m−η) (m → ∞),

uniformly in |a| + |b| ≤ C for some η > 0, where E∗ denotes the conditional expectation given (r1M , . . . , rmM).
The conditional expectation of Lj(a, b,m, k) has to be calculated more carefully. For doing so, notice that, using the

notation di = a + briM (see also (5.3) below),

E∗Lj(a, b,m, k) =
1

√
m

m+k
i=m+1

riME∗ψj(εi,j − di/
√
m + (α1

j + β1
jriM)δmI{i > m + k∗

})
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= −
1

√
m

m+k
i=m+1

riMλ′

j(0)(di/
√
m − (α1

j + β1
jriM)δmI{i > m + k∗

})

+OP

((a + briM)/√m + (α1

j + β1
jriM)δmI{i > m + k∗

})2


(m → ∞),

uniformly in |a| + |b| ≤ C and in 1 ≤ k ≤ ⌊mT⌋.
Then, in case of δm = m−1/2, an application of Lemma 5.1 results in

E∗Lj(a, b,m, k) = −bλ′

j(0)
1
m

m+k
i=m+1

r2iM + β1
j λ

′

j(0)
1
m

m+k
i=m+k∗+1

r2iM I{k > k∗
}

− aλ′

j(0)
1
m

m+k
i=m+1

riM + α1
j λ

′

j(0)
1
m

m+k
i=m+k∗+1

riM I{k > k∗
}

+OP

{a2 + b2 + (α1

j )
2
+ (β1

j )
2
}m−ξ


(m → ∞),

uniformly in |a| + |b| ≤ C and in 1 ≤ k ≤ ⌊mT⌋, for some ξ > 0.
Now, sinceα∗

jm = OP(1) andβ∗

jm = OP(1), we can plug-in the estimatesα∗

jm andβ∗

jm for a and b, respectively, and after a
few standard steps we get that the limit behavior of

Lj(α∗

jm,
β∗

jm,m, ⌊mt⌋)
qγ (⌊mt⌋/m)

1/2 : t ∈


1
m
, T


is the same as that of
 1

√
m

⌊mt⌋
i=m+1

(riM − EriM)ψj(εi,j)−

⌊mt⌋
i=m+1

(riM − EriM)2

m
i=1
(riM − EriM)2

m
i=1

(riM − EriM)ψj(εi,j)

+ λ′

j(0)β
1
j
1
m

m+⌊mt⌋
i=m+k∗+1

(riM − EriM)2




qγ (⌊mt⌋/m)
1/2

: t ∈


1
m
, T


for 0 ≤ γ < 1/2 and limm→∞(⌊mT⌋ − k∗)/m = T − s > 0. Then the rest of the proof of (i) follows along the lines of that
of Theorem 2.1.

(ii) In case of
√
m |δm| → ∞ and lim infm→∞(⌊mT⌋ − k∗)/m > 0, the term with β1

j in E∗Lj(a, b,m,mT ) dominates. More
precisely,

|E∗Lj(a, b,m,mT )| =
√
m |δm| λ′

j(0)|β
1
j |

1
m

m+⌊mT⌋
i=m+k∗+1

r2iM 1 + oP(1)
 P

−→ ∞,

uniformly in |a| + |b| ≤ C and in 1 ≤ k ≤ ⌊mT⌋, if β1
j ≠ 0. Therefore also the test statistic converges to ∞ in probability,

which proves (ii) and completes the proof of Theorem 2.2. �

Proof of Theorem 2.3. First define, for k ≥ 0,

Γ k =
1
m

m−k
i=1

riMri+k,Mψ(εi)ψ(εi+k)
T ,

Γ k =
1
m

m−k
i=1

(riM − EriM)(ri+k,M − Eri+k,M)ψ(εi)ψ(εi+k)
T ,

and, for k < 0, putΓ k = Γ T
−k and Γ k = Γ

T
−k, respectively.

Next, letΣm =


|k|<q

ωq(k)Γ k
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and

Σm =


|k|<q

ωq(k)Γ k.

Then we haveΣm = (Σm − Σm)+ (Σm − Σm)+ Σm.

First, let us considerΣm − Σm =


|k|<q

ωq(k)(Γ k − Γ k).

Recall that {riM} is stationary and put Er0M = µ. For simplicity and due to symmetry, wewill only treat the termswith k ≥ 0.
Obviously,

Γ k − Γ k = (rmM − µ)2
1
m

m−k
i=1

ψ(εi)ψ(εi+k)
T

− (rmM − µ)
1
m

m−k
i=1

(riM − µ)ψ(εi)ψ(εi+k)
T

− (rmM − µ)
1
m

m−k
i=1

(ri+k,M − µ)ψ(εi)ψ(εi+k)
T .

According to Lemma 5.1, rmM − µ = OP(m−1/2) asm → ∞. Further, for any j, ℓ = 1, . . . , d and ϵ > 0,

P

 
0≤k<q

ωq(k)
1
m

m−k
i=1

ψj(εi,j)ψℓ(εi+k,ℓ)

 > ϵ


≤

1
ϵ


0≤k<q

ωq(k)
1
m

E

m−k
i=1

ψj(εi,j)ψℓ(εi+k,ℓ)


≤

1
ϵ


0≤k<q

ωq(k)
1
m

m−k
i=1

(E|ψj(εi,j)|
2)1/2(E|ψℓ(εi+k,ℓ)|

2)1/2 ≤
D
ϵ
q,

thus 
0≤k<q

ωq(k)
1
m

m−k
i=1

ψ(εi)ψ(εi+k)
T

= OP

q(m)


(m → ∞).

Similarly, by iterated expectations and according to the independence of {riM} and {ψ(εi)},

P

 
0≤k<q

ωq(k)
1
m

m−k
i=1

(riM − µ)ψj(εi,j)ψℓ(εi+k,ℓ)

 > ϵ



≤
1
ϵ


0≤k<q

ωq(k)
1
m

m−k
i=1

E|riM − µ|(E|ψj(εi,j)|
2)1/2(E|ψℓ(εi+k,ℓ)|

2)1/2 ≤
D
ϵ
q,

which implies
0≤k<q

ωq(k)
1
m

m−k
i=1

(riM − µ)ψ(εi)ψ(εi+k)
T

= OP

q(m)


(m → ∞).

Analogously
0≤k<q

ωq(k)
1
m

m−k
i=1

(ri+k,M − µ)ψ(εi)ψ(εi+k)
T

= OP

q(m)


(m → ∞),

from which, together with the corresponding estimates for


q<k<0, we conclude that

Σm − Σm = OP

q(m)m−1/2 (m → ∞).

Next, let us considerΣm − Σm =


|k|<q

ωq(k)(Γ k −Γ k).
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We have
0≤k<q

ωq(k)(Γ k −Γ k) =


0≤k<q

ωq(k)
1
m

m−k
i=1

riMri+k,M [ψ(εi)ψ(εi+k)
T

− ψ(εi)ψ(εi+k)
T
]

=


0≤k<q

ωq(k)
1
m

m−k
i=1

riMri+k,M [ψ(εi)− ψ(εi)][ψ(εi+k)− ψ(εi+k)]
T

+


0≤k<q

ωq(k)
1
m

m−k
i=1

riMri+k,M [ψ(εi)− ψ(εi)]ψ(εi+k)
T

+


0≤k<q

ωq(k)
1
m

m−k
i=1

riMri+k,Mψ(εi)[ψ(εi+k)− ψ(εi+k)]
T

= S1 + S2 + S3 (say).

Set di = (a +riMb)/
√
m, where a = (a1, . . . , ad)T , b = (b1, . . . , bd)T , di = (di,1, . . . , di,d)T , and define

S01 =


0≤k<q

ωq(k)
1
m

m−k
i=1

riMri+k,M [ψ(εi − di/
√
m)− ψ(εi)][ψ(εi+k − di+k/

√
m)− ψ(εi+k)]

T ,

S02 =


0≤k<q

ωq(k)
1
m

m−k
i=1

riMri+k,M [ψ(εi − di/
√
m)− ψ(εi)]ψ(εi+k)

T ,

S03 =


0≤k<q

ωq(k)
1
m

m−k
i=1

riMri+k,Mψ(εi)[ψ(εi+k − di+k/
√
m)− ψ(εi+k)]

T .

Now, for the (j, ℓ)-th component S01(j, ℓ) of S
0
1, we get

P

|S01(j, ℓ)| > ϵ


≤


0≤k<q

ωq(k)
1
ϵm

m−k
i=1

E(E∗
|riMri+k,M [ψj(εi,j − di,j/

√
m)− ψj(εi,j)][ψℓ(εi+k,ℓ − di+k,ℓ/

√
m)− ψℓ(εi+k,ℓ)]|)

≤


0≤k<q

ωq(k)
1
ϵm

m−k
i=1

E(|riMri+k,M |E∗
|ψj(εi,j − di,j/

√
m)− ψj(εi,j)||ψℓ(εi+k,ℓ − di+k,ℓ/

√
m)− ψℓ(εi+k,ℓ)|),

with E∗ the conditional expectation given riM , i = 1, . . . ,m.
From the Cauchy–Schwarz inequality and according to Assumption (A.2),

E∗
|ψj(εi,j − di,j/

√
m)− ψj(εi,j)||ψℓ(εi+k,ℓ − di+k,ℓ/

√
m)− ψℓ(εi+k,ℓ)| ≤ D|di,j/

√
m|

κ/2
|di+k,ℓ/

√
m|

κ/2

= Dm−κ/2
|aj + bjriM |

κ/2
|aℓ + bℓri+k,M |

κ/2,

which holds uniformly in k = 0, . . . , q and for all a, b such that max1≤j≤d(|aj| + |bj|) < C with some constant C > 0.
From here, using the Cauchy–Schwarz inequality once again, and in view of Assumption (B.1) with∆ ≥ κ ,

E(|riM∥ri+k,M∥aj + bjriM |
κ/2

|aℓ + bℓri+k,M |
κ/2m−κ/2)

≤ Dm−κ/2
[E|riM |

1+κ/2
|ri+k,M |

1+κ/2
+ E|riMri+k,M | + E|riM |

1+κ/2
|ri+k,M | + E|riMri+k,M |

1+κ/2
]

≤ Dm−κ/2,

from which we conclude that S01(j, ℓ) = OP

q(m)m−κ/2


and thus S01 = OP


q(m)m−κ/2


as m → ∞, uniformly for all a, b

such that max1≤j≤d(|aj| + |bj|) < C with some constant C > 0.
Proceeding in the same way we get S02 = OP


q(m)m−κ/4


and S03 = OP


q(m)m−κ/4


as m → ∞, uniformly for all a, b

such that max1≤j≤d(|aj| + |bj|) < C with some C > 0, and we can conclude that

S01 + S02 + S03 = OP

q(m)m−κ/4 (m → ∞),

uniformly for all a, b such that max1≤j≤d(|aj| + |bj|) < C with some constant C > 0.
Sinceεi,j = εi,j − α∗

jm/
√
m − β∗

jmriM/√m and α∗

jm = OP(1),β∗

jm = OP(1) for all j = 1, . . . , d (see (4.6) and (4.7),
respectively), we obtain, due to themonotonicity ofψj, j = 1, . . . , d, andwith the corresponding estimates for−q < k < 0,
that Σm − Σm = OP


q(m)m−κ/4 (m → ∞).
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It remains to show thatΣm
P

−→ Σ asm → ∞. But this follows easily from Theorem 16.6 in Horváth and Kokoszka [16].
Indeed, if we denote Zi = (riM −EriM)ψ(εi), i ∈ Z, it is enough to verify that {Zi} satisfies Assumptions 16.2–16.6 in Horváth
and Kokoszka [16].

The latter assumptions, however, follow easily from our Assumptions (B.1)–(B.5) together with the independence of
{riM} and {ψ(εi)} and Lemma 2.1 in Hörmann and Kokoszka [14]. Assumption 16.5 is satisfied with the kernel (2.6) (see
Example 16.4 inHorváth andKokoszka [16]), and Assumption 16.6 is fulfilled ifm → ∞, q(m) → ∞ and q(m)m−min{1/2,κ/4}

→ 0. Then with

Γ k =
1
m

m−k
i=1

ZiZT
i+k, k ≥ 0,

and Γ k = Γ
T
−k, k < 0,

Σm =


|k|<q

ωq(k)Γ k
P

−→ Σ (m → ∞),

which completes the proof. �

Remark 4.1. The assertion of Theorem 2.3 can be proved with any kernel ωq satisfying Assumption 16.5 in Horváth and
Kokoszka [16].

5. Some auxiliary results

In the sequel, D > 0 is a generic constant, which may vary from case to case.
At first we gather some properties of the sequence {riM}.

Lemma 5.1. Let Assumptions (B.1) and (B.4) be satisfied. Then,
(i) the sequence {r2iM} satisfies Assumption (B.1)with 2+∆ replaced by 1+∆/2 and Assumption (B.4)with ∥ · ∥2+∆ replaced

by ∥ · ∥1+∆/2 ;

(ii) there is a constant C > 0 such that, for every ℓ ∈ Z and n ∈ N,

E

 ℓ+n
i=ℓ+1

(riM − EriM)


p

≤ Cnp/2, 0 < p ≤ 2 +∆,

and, for b1 ≥ b2 ≥ · · · ≥ bn > 0,

E max
1≤k≤n

bk ℓ+n
i=ℓ+1

(riM − EriM)


p

≤ Cnp/2−1
n

k=1

bpk, 2 < p ≤ 2 +∆; (5.1)

(iii) as m → ∞,

m
i=1

(riM − EriM) = OP

m1/2,

max
1≤i≤m

|riM − EriM | = OP

m1/(2+∆),

m
i=1

|riM − EriM |
a
= OP


mmax(1,a/(2+∆))

for a > 0;
(iv) for some D > 0,

E

 max
1≤k≤⌊mT⌋

 m+k
i=m+1

(riM − EriM)


√
m (k/m)γ


p

≤ D, 2 < p ≤ 2 +∆;

(v) as m → ∞,

sup
0≤t≤T


m+⌊mt⌋
i=m+1

(riM − EriM)2

m
i=1
(riM − EriM)2

− t


P

−→ 0.
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Proof. (i) Ergodicity and stationarity, and the assertion for (B.1) is obvious. The rest follows from the following inequality:
E|r0M2

− (r20M)
(L)

|
p/22/p

=

E(| r0M − r0M (L) |p/2| r0M + r0M (L))|

p/22/p
≤

E| r0M − r0M (L) |p · E| r0M + r0M (L) |p

1/p
≤ D


E| r0M − r0M (L) |

p1/p
.

(ii) Making use of the L2+∆-approximability from Assumption (B.4), the first bound has been obtained in Berkes et al. [5],
Proposition 4. For the second one confer, e.g., Kirch [20], Theorem B.1.
(iii) By Chebyshev’s inequality and assertion (ii) above, with p = 2,

P


i=1

m
(riM − EriM)

 ≥ λ


≤

D
λ2

m.

Next, note that

max
1≤i≤m

|riM − EriM | ≤ D


1
m

m
i=1

|riM − EriM |
2+δ

1/(2+δ)

m1/(2+δ)

for any δ ≥ 0. Since the sequence {riM} is stationary and ergodic, also {g(riM)} is stationary and ergodic, where g is a
measurable function, and, if E|g(riM)| < ∞, the ergodic theorem implies

1
m

m
i=1

g(riM) → Eg(riM) a.s. (m → ∞). (5.2)

Hence, under Assumption (B.1),

1
m

m
i=1

|riM − EriM |
2+∆

→ E|r0M − r0M |
2+∆ a.s. (m → ∞),

and therefore

max
1≤i≤m

|riM − EriM | = OP

m1/(2+∆) (m → ∞),

which easily implies
m
i=1

|riM − EriM |
a

= OP


m
i=1

|riM − EriM |
min(a,2+∆) max

1≤i≤m
|riM − EriM |

max(0,a−(2+∆))


= OP


mmax(1,a/(2+∆)) (m → ∞).

(iv) It follows immediately from Assumptions (B.1) and (B.4) together with (5.1).
(v) Note that, by (5.2),

1
m

m
i=1

(riM − EriM)2 → var(r0M) a.s. (m → ∞),

hence, due to the strict stationarity, also

sup
0≤t≤⌊mT⌋

 1m


m+⌊mt⌋
i=m+1

(riM − EriM)2 − ⌊mt⌋var(r0M)

 P
−→ 0 (m → ∞).

On combining the above two assertions, the proof of (v) can be completed. �

The following two lemmas are crucial assertions for the proof of the limit behavior of the estimatorsα∗

jm,
β∗

jm from (4.2)
and (4.3), respectively. The arguments in the proofs of both lemmas are standard but, since our assumptions are different
from those usually considered, also some parts of the proofs differ and we focus on these differences.

In the following P∗, E∗ and var∗ again denote the conditional probability, conditional expectation and conditional
variance given riM , i = 1, . . . ,m. In Lemmas 5.2 and 5.3 we omit the index j, i.e., we write εi, ψ, . . . instead of εij, ψj, . . ..

Lemma 5.2. Let the assumptions of Theorem 2.1 be satisfied. Then, for arbitrary C > 0 and with a0 from Assumption (B.5), we
have on the set {sup|a|+|b|≤C maxi=1,...,m |a + briM |/

√
m ≤ a0}, as m → ∞,

sup
|a|+|b|≤C

|Zm(a, b)− E∗Zm(a, b)| = OP

m−η


,

E∗Zm(a, b) =
λ′(0)
2


a2 + b2

1
m

m
i=1

r2iM


+ OP

m−1/2

|a|3 + |b|3m−η

,
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and

sup
|a|+|b|≤C

Zm(a, b)−
λ′(0)
2


a2 + b2

1
m

m
i=1

r2iM
 = OP(m−η),

for some η > 0, where

Zm(a, b) =

m
i=1


ρ(εi − a/

√
m − briM/√m)− ρ(εi)+ (a/

√
m + briM/√m)ψ(εi)


.

Proof. The lines of the proof are quite standard. We just need to derive a proper approximation for the conditional expec-
tation and variance of Zm(a, b).

Whenever convenient we use the short-hand notations

di = a + briM and g(εi, x, di) = sign di

−ψ(εi − x sign di)+ ψ(εi)


, i ∈ Z. (5.3)

Note that, for any d,

ρ(εi − d)− ρ(εi)+ dψ(εi) = sign d


|d|

0


−ψ(εi − x sign d)+ ψ(εi)


dx ≥ 0, i ∈ Z.

Direct calculations in combination with Lemma 5.1 result in

E∗Zm(a, b) = E∗

m
i=1

sign di


|di|/

√
m

0
g(εi, x, di)dx =

m
i=1

λ′(0)d2i
1
2m

+ OP


m
i=1

|di|3
1

m3/2



=
1
2
λ′(0)


a2 + b2

1
m

m
i=1

r2iM


+ OP

m−1/2

|a|3 + |b|3m−3/2+max(1,3/(2+∆)),
uniformly in |a| + |b| ≤ C .

For the conditional variance we obtain

var∗

Zm(a, b)


= E∗


m
i=1


|di|/

√
m

0


g(εi, x, di)− E∗g(εi, x, di)


dx

2

=

m
i1=1

E∗


|di1 |/

√
m

0


g(εi1 , x, di1)− E∗g(εi1 , x, di1)


dx

2

+ 2E∗


1≤i1<i2≤m


|di1 |/

√
m

0


g(εi1 , x, di1)− E∗g(εi1 , x, di1)


dx



×


|di2 |/

√
m

0


g(εi2 , y, di2)− E∗g(εi2 , y, di2)


dy


= I1 + I2 (say).

Using Assumption (A.2) together with the Cauchy–Schwarz inequality, we get

I1 =

m
i1=1

E∗


|di1 |/

√
m

0


g(εi1 , x, di1)− E∗g(εi1 , x, di1)


dx

2

≤ D
m

i1=1


|di1 |/

√
m

0
yκ/2dy

2

≤ D
m

i1=1

(|di1 |/
√
m)κ+2

≤ D max
i=1,...,m

(|di|/
√
m)κ

1
m

m
i1=1

|di1 |
2,

uniformly in |a| + |b| ≤ C , where κ is from Assumption (A.2).
In view of Lemma 5.1(iii),

sup
|a|+|b|≤C

max
i=1,...,m

(|di|/
√
m)κ = OP


m−η


(m → ∞),

with some η > 0, hence

P


sup
|a|+|b|≤C

max
i=1,...,m

|di|/
√
m ≤ a0


→ 1 (m → ∞), (5.4)
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which, in view of the ergodic theorem, results in

sup
|a|+|b|≤C

|I1| = OP

m−η


(m → ∞),

for some η > 0.
Concerning I2 we have, due to the independence of {riM} and {εi},

I2 ≤ 2
m−1
i1=1

m−i1
v=1


|di1 |/

√
m

0


|di1+v |/

√
m

0


E∗(g(εi1 , x, di1))

2

×

E∗(−ψ(εi1+v − y)+ ψ(ε

(v)
i1+v

− y))2 + E∗(−ψ(εi1+v)+ ψ(ε
(v)
i1+v

))2
1/2

dxdy

≤ D
m−1
i1=1

|di1/
√
m|

κ/2+1
m−i1
v=1

|di1+v/
√
m| sup

|a|≤a0


E∗

ψ(εi1+v − a)− ψ(ε

(v)
i1+v

− a)
21/2

≤ D max
i=1,...,m

(|di|/
√
m)κ/2

1
m

m−1
i1=1

m−i1
v=1

|di1di1+v| sup
|a|≤a0


E

ψ(ε0 − a)− ψ(ε

(v)
0 − a)

21/2
,

if max1≤i≤m |di|/
√
m ≤ a0, where a0 is from Assumption (B.5). Since E|di1di1+v| ≤ E|d0|2, the latter assumption gives

sup
|a|+|b|≤C

|I2| = OP

m−η


(m → ∞),

with some η > 0.
On combining the above estimates for E∗Zm(a, b), I1, I2, we conclude that Lemma 5.2 holds true. �

Lemma 5.3. Let the assumptions of Theorem 2.1 be satisfied. Then, for arbitrary C > 0 and with a0 from Assumption (B.5), we
have on the set {sup|a|+|b|≤C maxi=1,...,m |a + briM |/

√
m ≤ a0}, as m → ∞,

sup
|a|+|b|≤C

|Mm(a, b)− E∗Mm(a, b)| = OP(m−η),

E∗Mm(a, b) = −
1
m
λ′(0)


am, b

m
i=1

r2iM
T

+ OP

m−η


,

and

sup
|a|+|b|≤C

Mm(a, b)+
1
m
λ′(0)(am, b

m
i=1

r2iM)T  = OP

m−η


,

with some positive η, where

Mm(a, b) =
1

√
m

m
i=1

(1,riM)T ψ(εi − (a + briM)/√m)− ψ(εi)

.

Proof. Again one has to get suitable approximations for the conditional expectation Mm(a, b) and the conditional (2 × 2)-
variance matrix

var∗
{Mn(a, b)} = E∗


Mn(a, b)− E∗Mn(a, b)


Mn(a, b)− E∗Mn(a, b)

T
.

We start with the conditional expectation

E∗MT
m(a, b) =

1
√
m

m
i=1

(1,riM)(−λ(di/√m))

= −
1

√
m
λ′(0)

m
i=1

(1,riM)di/√m + OP

|di/

√
m|

2
= −

1
m
λ′(0)


am, b

m
i=1

r2iM


+ OP

(a2 + b2)m−1/2

+ b2mmax(−1/2,−3∆/(2(2+∆))),
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uniformly in |a| + |b| ≤ C . Note that

E∗

MT

m(a1, b1)− MT
m(a2, b2)


= −

1
m
λ′(0)


(a1 − a2)m, (b1 − b2)

m
i=1

r2iM
+OP


(a21 + b21 + a22 + b22)m

−1/2
+ (b21 + b22)m

max(−1/2,−3∆/(2(2+∆))).
We only calculate one term of the conditional variance matrix. The calculation of the others is similar and will therefore be
omitted. We have

var∗

 1
√
m

m
i=1

riMψ(εi − di/
√
m)− ψ(εi)


=

1
m

m
i=1

r2iME∗

ψ(εi − di/

√
m)− ψ(εi)+ λ(di/

√
m)
2

+ 2
1
m

m
i=1

m−i
v=1

riMri+v,ME∗

ψ(εi − di/

√
m)− ψ(εi)+ λ(di/

√
m)


×

ψ(εi+v − di+v/

√
m)− ψ(εi+v)+ λ(di+v/

√
m)


= J1 + 2J2 (say).

In view of Assumption (A.2), a similar estimate as that for I1 in the proof of Lemma 5.2 gives

J1 =
1
m

m
i=1
r2iME∗


ψ(εi − di/

√
m)− ψ(εi)+ λ(di/

√
m)
2

≤ D 1
m1+κ/2


|a|κ

m
i=1
r2iM + |b|κ

m
i=1

|riM |
2+κ


= OP

m−ξ


,

with some ξ > 0, uniformly in |a| + |b| ≤ C .
Concerning J2 we obtain

J2 =
1
m

m
i=1

m−i
v=1

riMri+v,ME∗

ψ(εi − di/

√
m)− ψ(εi)+ λ(di/

√
m)


×

ψ(εi+v − di+v/

√
m)− ψ(εi+v)− (ψ(ε

(v)
i+v − di+v/

√
m)− ψ(ε

(v)
i+v))


,

and

|J2| ≤ D
1
m

m
i=1

m−i
v=1

|riMri+v,M |(|di|/
√
m)κ/2

×

E∗

ψ(εi+v − di+v/

√
m)− ψ(εi+v)− (ψ(ε

(v)
i+v − di+v/

√
m)− ψ(ε

(v)
i+v))

21/2
≤ D max

i=1,...,m
(|di|/

√
m)κ/2

1
m

m
i=1

m−i
v=1

|riMri+v,M | sup
|a|≤a0


E(ψ(ε0 − a)− ψ(ε

(v)
0 − a))2

1/2
.

Now, a similar estimate as that for I2 in the proof of Lemma 5.2 gives

sup
|a|+|b|≤C

|J2| = OP

m−ξ


,

with some ξ > 0, so that altogether we have

sup
|a|+|b|≤C

var∗


1

√
m

m
i=1

riMψ(εi − di/
√
m)− ψ(εi)


= OP


m−ξ


(m → ∞),

for some ξ > 0. �

Lemma 5.4. Let the assumptions of Theorem 2.1 be satisfied. Then, for any T > 0, as m → ∞,

max
1≤k≤⌊mT⌋


|{Nk,m(a, b)− E∗Nkm(a, b)}a=α∗

j,m,b=
β∗
j,m

|

(k/m)γ


= OP(m−η),

for some η > 0, whereα∗

j,m,
β∗

j,m are as in (4.3), and

Nk,m(a, b) =
1

√
m

m+k
i=m+1

riMψ(εi − a/
√
m − briM/√m)− ψ(εi)


.
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Proof. Lemma 5.4 is related to Lemma 5.3, but it is somewhat more complicated.

Direct calculations give

E∗Nk,m(a, b) = −
1

√
m

m+k
i=m+1

riMλ(a + briM)/√m


= −λ′(0)
1
m


a

m+k
i=m+1

riM + b
m+k

i=m+1

r2iM


+ OP

m−η


(m → ∞),

uniformly for |a| + |b| ≤ C , with some η > 0.
Next, we try to get an upper bound for var∗

{Nk,m(a, b)}.We have

var∗
{Nk,m(a, b)} =

1
m

m+k
i=m+1

r2iME∗

ψ(εi − di/

√
m)− ψ(εi)− E∗ψ(εi − di/

√
m)
2

+ 2
1
m

m+k
i=m+1

E∗riMψ(εi − di/
√
m)− ψ(εi)− E∗ψ(εi − di/

√
m)


×


m+k−i
v=1

ri+v,Mψ(ε(v)i+v − di+v/
√
m)− ψ(ε

(v)
i+v)− E∗ψ(ε

(v)
i+v − di+v/

√
m)


= L1,k + 2L2,k (say),

and, along the lines of the proof of Lemma 5.3, we get

L1,k ≤
D

m1+κ/2


|a|κ

m+k
i=m+1

r2iM + |b|κ
m+k

i=m+1

|riM |
2+κ


=

k
m

m−κ/2
|a|κ + |b|κ


mmax(0,(κ−∆)/(2+∆))OP(1),

|L2,k| =
1
m

m+k
i=m+1

|riM ||(a + bri+v,M)/√m|
κ/2OP(1) =

1
m1+κ/2

(|a|κ/2k + |b|κ/2k)OP(1) (m → ∞),

uniformly in |a| + |b| ≤ C and in 1 ≤ k ≤ ⌊mT⌋. So, altogether we have

var∗
{Nk,m(a, b)} =

k
m

m−ζ max(|a|κ + |b|κ , |a|κ/2 + |b|κ/2)OP(1) (m → ∞),

uniformly in |a| + |b| ≤ C and in 1 ≤ k ≤ ⌊mT⌋, with some ζ > 0.
Quite similarly we get, for v = 1, 2, . . . ,

var∗
{Nk+v,m(a, b)− Nk,m(a, b)} =

v

m
m−ξ max(|a|κ + |b|κ , |a|κ/2 + |b|κ/2)OP(1) (m → ∞).

Then, on applying Theorem B.4 of Kirch [20],

m−1+2γ E∗ max
1≤k≤⌊mT⌋

 1
kγ

|Nm,k(a, b)− E∗Nm,k(a, b)|
2

= m−1+2γ (logm)2
⌊mT⌋
k=1

1
k2γ

m−ξ max(|a|κ + |b|κ , |a|κ/2 + |b|κ/2)OP(1)

= (logm)2m−ξ (1 + m−2γ+1m−1+2γ )max(|a|κ + |b|κ , |a|κ/2 + |b|κ/2)OP(1)
= (logm)2m−ξ max(|a|κ + |b|κ , |a|κ/2 + |b|κ/2)OP(1) (m → ∞).

We need to replace a, b by the estimators α∗

jm,
β∗

jm. However our Nk,m(a, b) depends on ε1, . . . , εm. Therefore we try to
replace Nk,m(a, b) by something that is asymptotically equivalent, but does not depend on ε1, . . . , εm.

Toward this note that

N (m)k,m(a, b) =
1

√
m

k
i=1

ri+m,M

ψ(ε

(i)
i+m − di/

√
m)− ψ(ε

(i)
m+i)


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has all the properties of Nk,m(a, b) above, but it is independent of ε1, . . . , εm. This together with the consistency ofα∗

jm andβ∗

jm implies

m−1+2γ max
1≤k≤⌊mT⌋


1
kγ

{N (m)m,k(a, b)− E∗N (m)m,k(a, b)}a=α∗
jm,b=

β∗
jm

2

= OP

(logm)2m−ξ max(|α∗

jm|
κ

+ |β∗

jm|
κ , |+α∗

jm|
κ/2

+ |β∗

jm|
κ/2)


= OP


(logm)2m−ξ


(m → ∞).

It is still necessary to show the closeness of Nk,m(a, b) and N (m)k,m(a, b). Clearly, N
(m)
k,m(a, b) is independent of ε1, . . . , εm and

E∗

Nk,m(a, b)− N (m)k,m(a, b)


= 0,

Nk,m(a, b)− N (m)k,m(a, b) =
1

√
m

k
i=1

ri+m,M


ψ


εi+m −

di
√
m


− ψ


ε
(i)
i+m −

di
√
m


−

ψ(εi+m)− ψ(ε

(i)
i+m)


,

E∗
|Nk,m(a, b)− N (m)k,m(a, b)| ≤

D
√
m

k
i=1

|ri+m,M | sup
|a|≤a0

E

|ψ(ε0 − a)− ψ(ε

(i)
0 − a)| + |ψ(ε0)− ψ(ε

(i)
0 )|


≤

D
√
m

⌊mT⌋
i=1

|ri+m,M | sup
|a|≤a0

E|ψ(ε0 − a)− ψ(ε
(i)
0 − a)|,

which holds for any 1 ≤ k ≤ ⌊mT⌋ and any a, b such that |di|/
√
m ≤ a0. So, in view of Assumption (B.5),

sup
|a|+|b|≤C

E∗
|Nk,m(a, b)− N (m)k,m(a, b)| = OP(m−1/2) (m → ∞),

whence

sup
1≤k≤⌊mT⌋

 sup
|a|+|b|≤C

E∗
|Nk,m(a, b)− N (m)k,m(a, b)|

(k/m)γ

 = OP(m−η) (m → ∞),

for some η > 0. A combination of the above estimates completes the proof of Lemma 5.4. �
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