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a b s t r a c t

Let X1:n ≤ X2:n · · · ≤ Xn:n be the order statistics from some sample, and let Y[1:n], Y[2:n],
. . . , Y[n:n] be the corresponding concomitants. One purpose of this paper is to obtain re-
sults that stochastically compare, in various senses, the random vector (Xr:n, Y[r:n]) to the
random vector (Xr+1:n, Y[r+1:n]), r = 1, 2, . . . , n − 1. Such comparisons are called one-
sample comparisons. Next, let S1:n ≤ S2:n · · · ≤ Sn:n be the order statistics constructed from
another sample, and let T[1:n], T[2:n], . . . , T[n:n] be the corresponding concomitants. Another
purpose of this paper is to obtain results that stochastically compare, in various senses,
the random vector (Xr:n, Y[r:n]) with the random vector (Sr:n, T[r:n]), r = 1, 2, . . . , n. Such
comparisons are called two-sample comparisons. It is shown that some of the results in this
paper strengthen previous results in the literature. Some applications in reliability theory
are described.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent copies of a random vector (X, Y ). Let X1:n ≤ X2:n · · · ≤ Xn:n be the
order statistics constructed from the sample of the first coordinates X1, X2, . . . , Xn. Denote the Y -variate associated with
Xi:n by Y[i:n], i = 1, 2, . . . , n; that is, Y[i:n] = Yk if, and only if, Xi:n = Xk. The random variables Y[1:n], Y[2:n], . . . , Y[n:n] are called
the concomitants of the order statistics X1:n, X2:n, . . . , Xn:n. One purpose of this paper is to obtain results that stochastically
compare, in various senses, the random vector (Xr:n, Y[r:n]) to the random vector (Xr+1:n, Y[r+1:n]), r = 1, 2, . . . , n − 1. Such
comparisons will be called below one-sample comparisons.

Next, let (S1, T1), (S2, T2), . . . , (Sn, Tn) be another sample of independent copies of a random vector, but this time that
random vector is (S, T ), which generally has a different distribution function than (X, Y ). Let S1:n ≤ S2:n · · · ≤ Sn:n be
the order statistics constructed from the sample of the first coordinates S1, S2, . . . , Sn, and let T[1:n], T[2:n], . . . , T[n:n] be the
associated concomitants. A purpose of this paper is to obtain results that stochastically compare, in various senses, the
random vector (Xr:n, Y[r:n]) with the random vector (Sr:n, T[r:n]), r = 1, 2, . . . , n. Such comparisons will be called below
two-sample comparisons.

∗ Corresponding author.
E-mail address: shaked@math.arizona.edu (M. Shaked).

0047-259X/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jmva.2013.10.013

http://dx.doi.org/10.1016/j.jmva.2013.10.013
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2013.10.013&domain=pdf
mailto:shaked@math.arizona.edu
http://dx.doi.org/10.1016/j.jmva.2013.10.013


106 I. Bairamov et al. / Journal of Multivariate Analysis 124 (2014) 105–115

Applications of concomitants of order statistics can be found in many areas of probability and statistics. For example,
concomitants are of interest in a variety of estimation problems (see [8]), in selection and prediction problems (see [16]), in
insurance (see [5]), and in reliability theory (see [2]).

Some papers that studied positive dependence and/or stochastic orders involving concomitants of order statistics
are the following. Khaledi and Kochar [16] identified conditions on the distribution function of (X, Y ) under which the
concomitants are ordered with respect to several univariate stochastic orders, whereas Khaledi and Kochar [16] and
Blessinger [9] identified conditions on the distribution function of (X, Y ) under which the concomitants are positively
dependent in various senses. Eryilmaz [10] obtained results that stochastically compare concomitants without assuming
that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are identically distributed. Izadi and Khaledi [11] considered stochastic orderings of
concomitants of progressive type II censored order statistics, and recently Amini et al. [1] studied properties and orderings
of concomitants of record values. A study of concomitants of order statistics for dependent samples was developed by [22].

In this paper ‘‘increasing’’ and ‘‘decreasing’’ stand for ‘‘nondecreasing’’ and ‘‘nonincreasing’’, respectively. For any random
variable (or vector) Z and an event A, we will denote by [Z

A] any random variable that is distributed according to the
conditional distribution function of Z given A. We will use the notation a ∨ b = max{a, b} and a ∧ b = min{a, b}.

In Sections 2 and 3 belowwe describe, respectively, our one-sample and two-sample comparison results. In Section 4we
mention examples and applications of the technical results, and wemake various remarks on their relations to other results
in the literature, and on strictness of the assumptions in different results. But before proceeding to the technical results in
Sections 2 and 3 we list below and make some comments on various stochastic orders that will be used in the sequel.

All the stochastic orders that are mentioned in this paper can be found in [19] or in [21]. Specifically, ≤st stands for the
univariate ordinary stochastic order when two univariate randomvariables are compared (see, for example, [21, page 3]), and
it stands for the multivariate ordinary stochastic order when two random vectors are compared (see its formal definition
in [21, page 266]). The notation ≤hr stands for the univariate hazard rate order when two univariate random variables are
compared (see, for example, [21, page 16]), and it stands for the multivariate hazard rate order when two random vectors
are compared (see its formal definition in (6.D.1) in [21]). Another order that will be used in this paper is the likelihood ratio
order ≤lr. The univariate definition of it can be found in [21, page 42], whereas the multivariate definition is given in that
reference in page 298. Recall also that for two random vectors (X, Y ) and (S, T ) we say that (X, Y ) is smaller than (S, T )
in the upper orthant order, denoted as (X, Y ) ≤uo(S, T ) (respectively, (X, Y ) is smaller than (S, T ) in the lower orthant order,
denoted as (X, Y ) ≤lo(S, T )) if P{X > x, Y > y} ≤ P{S > x, T > y} (respectively, P{X ≤ x, Y ≤ y} ≤ P{S ≤ x, T ≤ y}) for
all (x, y) ∈ R2; see Section 6.G.1 in [21].

We further recall the definition of the strong stochastic order (see [18] or [21, page 268]). Let (X, Y ) and (S, T ) be two
random vectors. Suppose that

X ≤st S (1.1)

and that

[Y
X = x] ≤st[T

S = s] whenever x ≤ s. (1.2)

Then (X, Y ) is said to be smaller than (S, T ) in the strong stochastic order, and it is denoted as (X, Y ) ≤sst(S, T ). The
multivariate order ≤sst is stronger than the multivariate order ≤st.

2. One-sample comparisons

For the proof of the first result we will need the following lemma. To begin with, we recall the definition of the positive
dependence concept of stochastic increasingness: let (V ,W ) be a random vector.We say thatW is stochastically increasing in
V if the conditional random variable [W

V = v] is stochastically increasing in v ∈ support{V }with respect to the univariate
ordinary stochastic order ≤st.

Lemma 2.1. Let (V1,W1), (V2,W2), . . . , (Vn,Wn) be random vectors. If

Vr ≤st Vr+1, r = 1, 2, . . . , n − 1, (2.1)

and if

Wr is stochastically increasing in Vr with respect to ≤st , r = 1, 2, . . . , n, (2.2)

then

(Vr ,Wr) ≤st(Vr+1,Wr+1), r = 1, 2, . . . , n − 1.

Proof. From (2.1) it follows that we can construct, on some probability space, random variables V1,V2, . . . ,Vn such thatVr =st Vr , r = 1, 2, . . . , n, and such thatV1 ≤ V2 ≤ · · · ≤ Vn almost surely. (2.3)
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Furthermore, let U be a uniform(0,1) random variable that is independent of the Vr ’s. For r = 1, 2, . . . , n, denote the
conditional distribution function of [Wr

Vr = v] by F[Wr |Vr=v](w), and its inverse by F−1
[Wr |Vr=v]

(u). For convenience, consider
the function gr defined by gr(v, u) = F−1

[Wr |Vr=v]
(u). Now define (on the same probability space as the Vr ’s) the random

variablesWr ≡ gr(Vr ,U), r = 1, 2, . . . , n.

We note that

(Vr , Wr) =st(Vr ,Wr), r = 1, 2, . . . , n.

From assumption (2.2) it follows that gr(v, u) is increasing in v. This monotonicity, together with (2.3), gives

(Vr , Wr) ≤a.s.(Vr+1, Wr+1), r = 1, 2, . . . , n − 1.

It follows, from Theorem 6.B.1 in [21], that (Vr ,Wr) ≤st(Vr+1,Wr+1), r = 1, 2, . . . , n − 1. �

Using Lemma 2.1 we get the first comparison result:

Theorem 2.2. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent copies of random vector (X, Y ). Suppose that

Y is stochastically increasing in X with respect to ≤st . (2.4)

Then

(Xr:n, Y[r:n]) ≤st(Xr+1:n, Y[r+1:n]), r = 1, 2, . . . , n − 1. (2.5)

Proof. We apply Lemma 2.1 with (Xr:n, Y[r:n]) playing the role of (Vr ,Wr), r = 1, 2, . . . , n. In order to do that we need to
verify (2.1) and (2.2). Obviously, Xr:n ≤st Xr+1:n, and hence (2.1) holds. Next, the assumption that Y is stochastically increasing
in X is the same as the statement that Y[r:n] is stochastically increasing in Xr:n, and hence (2.2) holds. Thus, the stated result
follows from Lemma 2.1. �

We proceed now to a result that assumes a stronger condition than (2.4) on the strength of the dependence between X
and Y , and attains a conclusion that is different than (but similar to) (2.5). Recall that the univariate order ≤hr implies the
univariate order ≤st.

In the proof of the next result, and later in the paper, we denote by FXr:n and FXr:n ≡ 1 − FXr:n the distribution function
and the survival function of Xr:n, and we denote by F Y |X (y

x) .
= P{Y > y

X = x} the conditional survival function of Y given
X = x.

Recall from [13] that a nonnegative function g of two variables x and y is said to be totally positive of order 2 (TP2) if
g(x, y′)g(x′, y) ≤ g(x, y)g(x′, y′) whenever x ≤ x′ and y ≤ y′.

Theorem 2.3. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent copies of random vector (X, Y ). Suppose that

Y is stochastically increasing in X with respect to ≤hr . (2.6)

Then

(Xr:n, Y[r:n]) ≤hr(Xr+1:n, Y[r+1:n]), r = 1, 2, . . . , n − 1. (2.7)

Proof. For r = 1, 2, . . . , n, the survival function of (Xr:n, Y[r:n]) is given by

F (Xr:n,Y[r:n])(x, y) =


∞

x̃=x
F Y |X (y

x̃) dFXr:n(x̃)
=


∞

x̃=−∞

I(x, x̃) · F Y |X (y
x̃) dFXr:n(x̃),

where I(x, x̃) = 0 if x̃ ≤ x and I(x, x̃) = 1 if x̃ > x. From Theorem 1.C.37 in [21] we have that Xr:n ≤lr Xr+1:n. Hence
Xr:n ≤hr Xr+1:n. That is, the survival function

FXr:n(x̃) is TP2 in r and x̃. (2.8)

The assumption (2.6) that Y is stochastically increasing in X with respect to the order ≤hr implies that

F Y |X (y
x̃) is TP2 in y and x̃ and is increasing in x̃. (2.9)

Furthermore, the Heavyside function I satisfies

I(x, x̃) is TP2 in x and x̃ and is increasing in x̃. (2.10)
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Using (2.8) and (2.9), we get from Theorem 2.1 of [12] that F (Xr:n,Y[r:n])(x, y) is TP2 in r and y. Using (2.8) and (2.10), we get,
again from Theorem 2.1 of [12], that F (Xr:n,Y[r:n])(x, y) is TP2 in r and x. Finally, the product I(x, x̃) · F Y |X (y

x̃) is TP2 in x and
y, and hence F (Xr:n,Y[r:n])(x, y) is TP2 in x and y. In other words, the function F (Xr:n,Y[r:n])(x, y), of the three variables (r, x, y), is
TP2 in pairs. Since its support is a lattice, we have, from [15], that

F (Xr:n,Y[r:n])(x1, y1)F (Xr+1:n,Y[r+1:n])(x2, y2) ≤ F (Xr:n,Y[r:n])(x1 ∧ x2, y1 ∧ y2)F (Xr+1:n,Y[r+1:n])(x1 ∨ x2, y1 ∨ y2),

which yields (2.7). �

Comparing Theorems 2.2 and 2.3 we see, as mentioned earlier, that the assumption (2.6) is stronger than the assumption
(2.4), but the conclusions (2.7) and (2.5) are not comparable in the sense that none of them implies the other one.

In the next result we assume a condition that is even stronger than (2.6), andwe obtain a conclusion that is stronger than
both (2.5) and (2.7).

For the next result we assume that (X, Y ) is absolutely continuous, and denote its density function by f (x, y). We also
denote the marginal density of X by fX (x). The conditional density of [Y

X = x] is given by

fY |X (y
x) =

f (x, y)
fX (x)

.

In the next result it is assumed that [Y
X = x] is stochastically increasing in x ∈ support{X}with respect to the likelihood

ratio order ≤lr. That is, for x ≤ x′ we assume that
fY |X (y

x′)/fY |X (y
x) is increasing in y;

that is,
f (x′, y)
fX (x′)


f (x, y)
fX (x)


is increasing in y;

that is,
f (x′, y)/f (x, y) is increasing in y;

that is, f (x, y) is TP2.

Theorem 2.4. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent copies of an absolutely continuous random vector (X, Y ). If

Y is stochastically increasing in X with respect to ≤lr . (2.11)

then

(Xr:n, Y[r:n]) ≤lr(Xr+1:n, Y[r+1:n]), r = 1, 2, . . . , n − 1. (2.12)

Proof. The density functions of (Xr:n, Y[r:n]) and (Xr+1:n, Y[r+1:n]) are given by

f(Xr:n,Y[r:n])(x, y) = fXr:n(x) ·
f (x, y)
fX (x)

(2.13)

and

f(Xr+1:n,Y[r+1:n])(x, y) = fXr+1:n(x) ·
f (x, y)
fX (x)

.

From Theorem 1.C.37 in [21] we have that Xr:n ≤lr Xr+1:n. Hence

fXr:n(x1)fXr+1:n(x2) ≤ fXr:n(x1 ∧ x2)fXr+1:n(x1 ∨ x2).

From the stochastic monotonicity assumption (2.11) (the TP2-ness) we have

f (x1, y1)f (x2, y2) ≤ f (x1 ∧ x2, y1 ∧ y2)f (x1 ∨ x2, y1 ∨ y2).

It follows that

fXr:n(x1) ·
f (x1, y1)
fX (x1)

· fXr+1:n(x2) ·
f (x2, y2)
fX (x2)

≤ fXr:n(x1 ∧ x2) ·
f (x1 ∧ x2, y1 ∧ y2)

fX (x1 ∧ x2)
· fXr+1:n(x1 ∨ x2) ·

f (x1 ∨ x2, y1 ∨ y2)
fX (x1 ∨ x2)

;

that is,

f(Xr:n,Y[r:n])(x1, y1)f(Xr+1:n,Y[r+1:n])(x2, y2)
≤ f(Xr:n,Y[r:n])(x1 ∧ x2, y1 ∧ y2)f(Xr+1:n,Y[r+1:n])(x1 ∨ x2, y1 ∨ y2);

and this yields the stated result (2.12). �
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As we said earlier, the assumption (2.11) is stronger than both assumptions (2.4) and (2.6) since the univariate order
≤lr implies both univariate orders ≤st and ≤hr. On the other hand, by Theorem 6.E.8 and 6.E.6 in [21] it is seen that the
conclusion (2.12) is stronger than conclusions (2.5) and (2.7).

Theweakest among the positive dependence conditions (2.4), (2.6), and (2.11) is (2.4). This leads one towonder whether,
under a positive dependence condition that is weaker than (2.4), one can obtain a stochastic comparison of (Xr:n, Y[r:n]) and
(Xr+1:n, Y[r+1:n]) that is weaker than (2.5).

For example, one candidate positive dependence condition that is weaker than (2.4) is the positive quadrant dependent
(PQD) condition. Recall that a random vector (X, Y ) is said to be PQD if

P{X ≤ x, Y ≤ y} ≥ P{X ≤ x}P{Y ≤ y} for all x, y ∈ R,

or, equivalently, if

P{X > x, Y > y} ≥ P{X > x}P{Y > y} for all x, y ∈ R.

The PQD condition is a positive dependence condition that is indeed weaker than condition (2.4) (see page 146 of [6]).
Next, candidate orders that are weaker than ≤st and ≤hr (and hence also weaker than ≤lr) are ≤uo and ≤lo. Using this
notion of positive dependence, and these stochastic orders, we are led to conjecture that if (X, Y ) is PQD then (Xr:n, Y[r:n])
≤lo(Xr+1:n, Y[r+1:n]) and (Xr:n, Y[r:n]) ≤uo(Xr+1:n, Y[r+1:n]), r = 1, 2, . . . , n − 1. We have not been able to prove (or disprove)
this conjecture.

Furthermore, an examination of the conditions (2.4), (2.6), and (2.11) leads one also to wonder whether a positive
dependence relationship between X and Y leads to the same positive dependence relationship between Xr:n and Y[r:n]. Since
the conditional distribution function of Y given X = x is the same as the conditional distribution function of Y[r:n] given
Xr:n = x it obviously follows that if (X, Y ) satisfies (2.4) (respectively, (2.6), (2.11)) then so does (Xr:n, Y[r:n]). However, the
following counterexample shows that the PQD condition on (X, Y ), that is weaker than (2.4), does not necessarily imply
that the same positive dependence condition also holds for (Xr:n, Y[r:n]).

Counterexample 2.5. Let (X, Y ) have the following joint probability function:
❧

❧❧X
Y

0 1 2
0 .1 .1 .1 .3
1 .1 0 .1 .2
2 .1 .1 .3 .5

.3 .2 .5 1

It is not too hard to verify that (X, Y ) is PQD. A straightforward computation yields the following joint probability function
of (X1:2, Y[1:2]):

❧
❧

❧❧
X1:2

Y[1:2]

0 1 2
0 .17 .17 .17 .51
1 .12 0 .12 .24
2 .05 .05 .15 .25

.34 .22 .44 1

Since P{X1:2 ≥ 1, Y[1:2] ≥ 1} = .3200 < .3234 = (.49)(.66) = P{X1:2 ≥ 1}P{Y[1:2] ≥ 1} we see that (X1:2, Y[1:2]) is not
PQD. ⋆

3. Two-sample comparisons

As is described in Section 1, let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sample of independent copies of a random vector
(X, Y ), and let (S1, T1), (S2, T2), . . . , (Sn, Tn) be another sample of independent copies of a random vector (S, T ). From
Section 1, recall the definition of the random vectors (Xr:n, Y[r:n]) and (Sr:n, T[r:n]), r = 1, 2, . . . , n. One may expect that
if (X, Y ) and (S, T ) are ordered with respect to some multivariate stochastic order, then (Xr:n, Y[r:n]) and (Sr:n, T[r:n]) may be
similarly ordered. The results below give some formal versions of such an idea.

Theorem 3.1. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sample of independent copies of a random vector (X, Y ), and let
(S1, T1), (S2, T2), . . . , (Sn, Tn) be another sample of independent copies of a random vector (S, T ). If

(X, Y ) ≤sst(S, T ) (3.1)

then

(X1:n, X2:n, . . . , Xn:n, Y[1:n], Y[2:n], . . . , Y[n:n]) ≤st(S1:n, S2:n, . . . , Sn:n, T[1:n], T[2:n], . . . , T[n:n]). (3.2)
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Proof. The assumption (X, Y ) ≤sst(S, T )means that (1.1) and (1.2) hold. From (1.1) it follows thatwe can construct, on some
probability space, random variablesX1,X2, . . . ,Xn andS1,S2, . . . ,Sn that satisfyX1 =stX2 =st · · · =stXn =st X,S1 =stS2 =st · · · =stSn =st S,X1 ≤a.s.S1,X2 ≤a.s.S2, . . . ,Xn ≤a.s.Sn, (3.3)

and

(X1,S1), (X2,S2), . . . , (Xn,Sn) are independent.

Denote the conditional distribution function of [Y
X = x] by F[Y |X=x](y), and its inverse by F−1

[Y |X=x](u). Similarly define
F−1
[T |S=s](u). For convenience, consider the functions g and h defined by g(x, u) = F−1

[Y |X=x](u) and h(s, u) = F−1
[T |S=s](u). Note

that (1.2) is equivalent to

g(x, u) ≤ h(s, u) for all u ∈ (0, 1) whenever x ≤ s. (3.4)

Consider now, with an obvious notation, the order statisticsX1:n ≤ X2:n ≤ · · · ≤ Xn:n and S1:n ≤S2:n ≤ · · · ≤Sn:n.
From (3.3) it follows that

X1:n ≤a.s.S1:n,X2:n ≤a.s.S2:n, . . . ,Xn:n ≤a.s.Sn:n. (3.5)

Let U1,U2, . . . ,Un be independent uniform(0, 1) random variable that are independent of (X1,S1), (X2,S2), . . . , (Xn,Sn).
As a result, they are also independent ofX1:n,X2:n, . . . ,Xn:n and ofS1:n,S2:n, . . . ,Sn:n. Now define (on the same probability
space as theXi’s and theSi’s) the random variablesY[i:n] ≡ g(Xi:n,Ui), i = 1, 2, . . . , n,

and T[i:n] ≡ h(Si:n,Ui), i = 1, 2, . . . , n.

From (3.4) and (3.5) it follows that

Y[1:n] ≤a.s.T[1:n],Y[2:n] ≤a.s.T[2:n], . . . ,Y[n:n] ≤a.s.T[n:n]. (3.6)

We note that

(X1:n,X2:n, . . . ,Xn:n,Y[1:n],Y[2:n], . . . ,Y[n:n]) =st(X1:n, X2:n, . . . , Xn:n, Y[1:n], Y[2:n], . . . , Y[n:n]) (3.7)

and that

(S1:n,S2:n, . . . ,Sn:n,T[1:n],T[2:n], . . . ,T[n:n]) =st(S1:n, S2:n, . . . , Sn:n, T[1:n], T[2:n], . . . , T[n:n]). (3.8)

From (3.5)–(3.8), and Theorem 6.B.2 in [21], we obtain (3.2). �

As a corollary of Theorem 3.1 we see that (3.1) implies

(Xr:n, Y[r:n]) ≤st(Sr:n, T[r:n]), r = 1, 2, . . . , n.

A slightly stronger result is stated and proven in the next theorem.

Theorem 3.2. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sample of independent copies of a random vector (X, Y ), and let (S1, T1),
(S2, T2), . . . , (Sn, Tn) be another sample of independent copies of a random vector (S, T ). If

(X, Y ) ≤sst(S, T )

then

(Xr:n, Y[r:n]) ≤sst(Sr:n, T[r:n]), r = 1, 2, . . . , n. (3.9)

Proof. From (3.1), which implies X ≤st S, we have

Xr:n ≤st Sr:n, r = 1, 2, . . . , n. (3.10)
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For x ≤ swe have

[Y[r:n]
Xr:n = x] =st [Y

X = x]

≤st [T
S = s] by (1.2)

=st [T[r:n]
Sr:n = s];

that is,

[Y[r:n]
Xr:n = x] ≤st[T[r:n]

Sr:n = s] whenever x ≤ s. (3.11)

Now, from the definition of the order ≤sst in (1.1) and (1.2) we see that (3.10) and (3.11) yield (3.9). �

A combination of Theorems 2.2 and 3.2 yields the following corollary.

Corollary 3.3. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sample of independent copies of a random vector (X, Y ), and let (S1, T1),
(S2, T2), . . . , (Sn, Tn) be another sample of independent copies of a random vector (S, T ). If

(X, Y ) ≤sst(S, T ),

and if

Y is stochastically increasing in X with respect to ≤st ,

and/or if

T is stochastically increasing in S with respect to ≤st ,

then

(Xr:n, Y[r:n]) ≤sst(Sr+1:n, T[r+1:n]), r = 1, 2, . . . , n − 1.

We next aim at obtaining a likelihood ratio order analog of Theorem 3.2. First we state a lemma that will be used in the
proof of the next theorem (Theorem 3.5).

Lemma 3.4. Let x1, x2, . . . , xn and x′

1, x
′

2, . . . , x
′
n be two sets of ordered real numbers such that

x1 ≤ x2 ≤ · · · ≤ xn and x′

1 ≤ x′

2 ≤ · · · ≤ x′

n. (3.12)

Then

x1 ∧ x′

1 ≤ x2 ∧ x′

2 ≤ · · · ≤ xn ∧ x′

n (3.13)

and

x1 ∨ x′

1 ≤ x2 ∨ x′

2 ≤ · · · ≤ xn ∨ x′

n. (3.14)

The lemma holds since whenever xi ≤ xj and x′

i ≤ x′

j we have xi ∧ x′

i ≤ xj ∧ x′

j and xi ∨ x′

i ≤ xj ∨ x′

j .

Theorem 3.5. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sample of independent copies of an absolutely continuous random vector
(X, Y ), and let (S1, T1), (S2, T2), . . . , (Sn, Tn) be a sample of independent copies of another absolutely continuous random vector
(S, T ). If

(X, Y ) ≤lr(S, T ) (3.15)

then

(X1:n, X2:n, . . . , Xn:n, Y[1:n], Y[2:n], . . . , Y[n:n]) ≤lr(S1:n, S2:n, . . . , Sn:n, T[1:n], T[2:n], . . . , T[n:n]).

Proof. Denote the bivariate density functions of (X, Y ) and (S, T ) by f and g , respectively. From (3.15) (or from Theorem
6.E.4(a) in [21]) we see that

n!
n

i=1

f (xi, yi) × n!
n

i=1

g(x′

i, y
′

i) ≤ n!
n

i=1

f (xi ∧ x′

i, yi ∧ y′

i) × n!
n

i=1

g(xi ∨ x′

i, yi ∨ y′

i) (3.16)

for all (x1, x2, . . . , xn), (x′

1, x
′

2, . . . , x
′
n), (y1, y2, . . . , yn), and (y′

1, y
′

2, . . . , y
′
n) in Rn.
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The density function of (X1:n, X2:n, . . . , Xn:n, Y[1:n], Y[2:n], . . . , Y[n:n]) is given by

fX(),Y[]
(x1, x2, . . . , xn, y1, y2, . . . , yn)

=

n!
n

i=1

f (xi, yi), if x1 ≤ x2 ≤ · · · ≤ xn and yi ∈ R, i = 1, 2, . . . , n;

0, otherwise.

Similarly, the density function of (S1:n, S2:n, . . . , Sn:n, T[1:n], T[2:n], . . . , T[n:n]) is given by

fS(),T[]
(x1, x2, . . . , xn, y1, y2, . . . , yn)

=

n!
n

i=1

g(xi, yi), if x1 ≤ x2 ≤ · · · ≤ xn and yi ∈ R, i = 1, 2, . . . , n;

0, otherwise.

Now, suppose that x1, x2, . . . , xn and x′

1, x
′

2, . . . , x
′
n satisfy (3.12). Then (below LHS and RHS stand for ‘left hand side’ and

‘right hand side’)

LHS(3.16) = fX(),Y[]
(x1, x2, . . . , xn, y1, y2, . . . , yn)fS(),T[]

(x′

1, x
′

2, . . . , x
′

n, y
′

1, y
′

2, . . . , y
′

n).

By Lemma 3.4, we see that (3.13) and (3.14) hold, and therefore

RHS(3.16) = fX(),Y[]
(x1 ∧ x′, x2 ∧ x′, . . . , xn ∧ x′, y1 ∧ y′, y2 ∧ y′, . . . , yn ∧ y′)

× fS(),T[]
(x1 ∨ x′, x2 ∨ x′, . . . , xn ∨ x′, y1 ∨ y′, y2 ∨ y′, . . . , yn ∨ y′).

From the fact that LHS(3.16) ≤ RHS(3.16) we obtain the stated result. �

From the closure under marginalization property of the order ≤lr (see Theorem 6.E.4(b) in [21]) we obtain the following
likelihood ratio order analog of Theorem 3.2 as a corollary of Theorem 3.5.

Theorem 3.6. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sample of independent copies of an absolutely continuous random vector
(X, Y ), and let (S1, T1), (S2, T2), . . . , (Sn, Tn) be another sample of independent copies of an absolutely continuous random vector
(S, T ). If

(X, Y ) ≤lr(S, T ) (3.17)

then

(Xr:n, Y[r:n]) ≤lr(Sr:n, T[r:n]), r = 1, 2, . . . , n. (3.18)

A combination of Theorems 2.4 and 3.6 yields the following corollary.

Corollary 3.7. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sample of independent copies of an absolutely continuous random vector
(X, Y ), and let (S1, T1), (S2, T2), . . . , (Sn, Tn) be another sample of independent copies of an absolutely continuous random vector
(S, T ). If

(X, Y ) ≤lr(S, T ),

and if

Y is stochastically increasing in X with respect to ≤lr ,

and/or if

T is stochastically increasing in S with respect to ≤lr ,

then

(Xr:n, Y[r:n]) ≤lr(Sr+1:n, T[r+1:n]), r = 1, 2, . . . , n − 1.

We are not aware of any analog of Theorems 3.2 and 3.6 in which the conclusion is the ordering of (Xr:n, Y[r:n]) and
(Sr:n, T[r:n]) with respect to ≤hr.

Remark 3.8. A related question that may be asked by looking at Theorems 3.2 and 3.6 is whether a stochastic ordering
condition that is weaker than (3.1) and (3.17) can be found, such that it implies a stochastic ordering conclusion that is
weaker than (3.9) and (3.18). Two common multivariate stochastic orders that are weaker than ≤sst and ≤lr are the upper
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and the lower orthant orders,≤uo and≤lo. Both orders≤sst and≤lr imply each of the orders≤uo and≤lo. The question above
becomes: In the setup of Theorems 3.2 and 3.6, is it true that

(X, Y ) ≤uo(S, T ) H⇒ (Xr:n, Y[r:n]) ≤uo(Sr:n, T[r:n]),

and is it true that

(X, Y ) ≤lo(S, T ) H⇒ (Xr:n, Y[r:n]) ≤lo(Sr:n, T[r:n])?

The answer to the above question is negative. Let (S, T ) have the distribution function of (X, Y ) in Counterexample 2.5,
and let X and Y be independent random variables such that X =st S and Y =st T . Then (S, T ) is PQD and as a result we
have (X, Y ) ≤uo(S, T ) and also (X, Y ) ≤lo(S, T ). On the other hand, (Sr:n, T[r:n]) is not PQD, and as a result we do not have
(Xr:n, Y[r:n]) ≤uo(Sr:n, T[r:n]) and (Xr:n, Y[r:n]) ≤lo(Sr:n, T[r:n]). ▹

4. Discussion

4.1. An application in reliability involving clean-up expenses

A typical application in reliability theory, through which one can illustrate many of our technical results, is described
next.

Consider an (n − r + 1)-out-of-n reliability system with independent absolutely continuous component lifetimes
X1, X2, . . . , Xn. This system fails at time Xr:n. Suppose that as a consequence of the system failure, the user of the system
encounters some random cost that depends on the failure time of the system, and that may also depend on the particular
identity k of the component that caused the system to fail (by absolute continuity, with probability 1, k is uniquely
determined from the equality Xr:n = Xk). Denote this random cost by Yk, or, equivalently, by Y[r:n]. In this paper we assume
that the conditional distribution function of Y[r:n], given Xr:n = x, is determined by a bivariate distribution function of some
random vector (X, Y ), in the sense that the distribution function of [Y[r:n]

Xr:n = x] is the same as the distribution function
of [Y

X = x] for all x ∈ support(X). The bivariate distribution function of (Xr:n, Y[r:n]) is then of interest to the user of the
reliability system.

Specifically, consider a reliability system that involves some clean-up expenses upon failure. Such clean-up expenses often
increase (stochastically) with the realization of the failure time, since, because of the routine wear-and-tear of the system,
more clean-up is needed after a longer working time span. That is, it is often the case that X and Y , described above, are
positively dependent.

In the setup of this application, we see that Theorem 2.2 can be interpreted as follows. Suppose that we compare an
(n − r + 1)-out-of-n reliability system with an (n − r)-out-of-n system. Obviously, the (n − r)-out-of-n system has
stochastically longer lifetime than the (n − r + 1)-out-of-n system — this is usually a desirable quality. Theorem 2.2 points
out, however, that the resulting clean-up cost upon failure, for the user, is stochastically larger in the former (better) system
— and, this is usually an undesirable quality.

Similar comments apply also to Theorems 2.3 and 2.4.
In the above setup we also see that Theorem 3.2 can be interpreted as follows. Suppose that we compare two (n− r +1)-

out-of-n reliability systems with component lifetimes X1, X2, . . . , Xn and S1, S2, . . . , Sn, respectively. If the component
lifetimes in the second system are stochastically larger than the component lifetimes in the first system, we obviously have
that the second system lifetime is stochastically larger than the first system lifetime — this is usually a desirable quality.
Theorem 3.2 points out that, however, that the resulting clean-up cost upon failure, for the user, is stochastically larger in
the second (better) system — and, this is usually an undesirable quality.

A similar comment applies also to Theorem 3.6.

4.2. Relations to results in the literature

In this subsection we point out some instances where our technical results extend and strengthen previous findings in
the literature.

First let us consider Theorem 2.2. Note that from (2.5) it follows that

Y[r:n] ≤st Y[r+1:n], r = 1, 2, . . . , n − 1. (4.1)

Thus, Theorem 2.2 shows that (2.4) H⇒ (4.1). The latter is Theorem 3.1(a) in [16]. So we see that the present Theorem 2.2
strengthens Theorem 3.1(a) of [16].

Theorem 2.2 also strengthens a result in [3]. That result says that if (2.4) holds then (Xr:n, Y[r:n]) ≤lo(Xr+1:n, Y[r+1:n]),
r = 1, 2, . . . , n − 1. Theorem 2.2 is stronger than that result of [3] because of the implication ≤st H⇒ ≤lo. It is worthwhile
to mention here that Bairamov [3] corrects a result in [4], which is of the same flavor as Theorem 2.2 above, but which
happened to be incorrect.

Regarding Theorem 2.3, note that from (2.7) it follows that

Y[r:n] ≤hr Y[r+1:n], r = 1, 2, . . . , n − 1. (4.2)
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Thus, Theorem 2.3 shows that (2.6) H⇒ (4.2). The latter is Theorem 3.2(b) in [16]. So we see that the present Theorem 2.3
strengthens Theorem 3.2(b) of [16].

Next, regarding Theorem 2.4, note that from (2.12) it follows that

Y[r:n] ≤lr Y[r+1:n], r = 1, 2, . . . , n − 1. (4.3)

Thus, Theorem 2.4 shows that (2.11) H⇒ (4.3). The latter is Theorem 3.3(a) in [16]. So we see that the present Theorem 2.4
strengthens Theorem 3.3(a) of [16].

4.3. Examples and remarks

One may wonder how restrictive the positive dependence conditions (2.4) and (2.6), and (2.11) in Theorems 2.2–2.4 are.
The strongest condition of the above three is (2.11). It turns out that it has been used extensively in the literature. In

[20, page 200] it is denoted as PLR(X, Y ) (PLR stands for positive likelihood ratio). Lehmann [17] showed that if (X, Y )
is bivariate normal with nonnegative correlation coefficient, then it is PLR(X, Y ). As another example, we note that it is
not too hard to verify that the Farlie–Gumbel–Morgenstern copula (see [20, page 77]), with a nonnegative shape parameter,
corresponds to a random vector that satisfies (2.11), and therefore also (2.4) and (2.6).

Regarding condition (2.4), in addition to the above examples, it is also satisfied by the Plackett copula (see [20, page 91])
with a shape parameter greater than unity (this is shown in [20, page 197]). Furthermore, Nelsen [20, Exercise 5.34 in
page 205] provides conditions on Archimedean copulas that correspond to random vectors that satisfy (2.4).

Conditions (3.1) or (3.15) are assumed throughout all the results in Section 3. So, naturally one may wonder how
restrictive these conditions are.

It turns out that examples of random vectors that satisfy (3.1) are easy to construct. For example, let X be an exponential
random variable with failure rate α > 0, and, for x > 0, let [Y

X = x] be an exponential random variable with failure rate
α/x. Then the joint density function of (X, Y ) is given by

fα(x, y) =
α2

x
exp{−α(x + y/x)}, (x, y) ∈ (0, ∞)2.

Let (S, T ) be another random vector with density function fα′ . It is easy to see that if α ≥ α′ > 0 then (X, Y ) ≤sst(S, T ).
We note that constructions of the type above are useful for modeling. For example, in the reliability application in

Section 4.1 the above procedure can be used to model the relationship between a lifetime of a component, and the cost
that is incurred upon its failure.

Examples of random vectors that satisfy (3.15) (or, equivalently, (3.17)) abound in the literature. For example, Karlin
and Rinott [14, Theorems 2.3 and 5.2] give conditions for ordering vectors of absolute values of dependent normal random
variableswith respect to≤lr, that is, (3.15). Belzunce et al. [7] describe circumstances underwhich (3.15) holds. In particular,
they note that somemixed multivariate distribution functions that arise from proportional hazard models are ordered as in
(3.15).
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