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a b s t r a c t

Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can
be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear)
function of the unobservable population covariance matrix. The optimal shape of this
function reflects the loss/risk that is to be minimized. We solve the problem of
optimal covariance matrix estimation under a variety of loss functions motivated by
statistical precedent, probability theory, and differential geometry. A key ingredient of
our nonlinear shrinkage methodology is a new estimator of the angle between sample
and population eigenvectors, without making strong assumptions on the population
eigenvalues. We also introduce a broad family of covariance matrix estimators that can
handle all regular functional transformations of the population covariance matrix under
large-dimensional asymptotics. In addition, we compare via Monte Carlo simulations our
methodology to two simpler ones from the literature, linear shrinkage and shrinkage
based on the spiked covariance model.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Ever since Charles Stein [30] proved that the usual estimator of the mean (vector) is inadmissible in dimensions
reater than three, decision theory has taken the edge over likelihood maximization in multivariate statistics. This leaves
pen the question of which loss function to minimize in a practical application. In this respect, the more loss functions
vailable the better, as different researchers may pursue different goals. Regarding the second moments, that is, covariance
atrix estimation, six loss functions have been investigated so far within the framework of large-dimensional asymptotics
y [8,22], yielding a grand total of three different optimal nonlinear shrinkage formulas.
This paper delivers the technology to double the number of loss functions that can be handled from 6 to 12, without

aking strict assumptions. The six new loss functions considered are potentially attractive to applied researchers, as
hey have been promoted before by statisticians for decision-theoretical estimation of the covariance matrix. In order to
chieve this degree of generality, we identify a formula from randommatrix theory (RMT) that enables us to develop a new
stimator of the angle of any sample eigenvector with any population eigenvector, in the large-dimensional limit. Using
his new technique opens the door to addressing a large set of loss functions that were previously unattainable within the
ramework of large-dimensional asymptotics with the techniques of [22]: In addition to the six specific new loss functions
onsidered, we can also handle two infinite general families of loss functions based on all regular transformations of the
opulation covariance matrix.
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Before starting to develop our methodology, it will be useful to give a brief review of the relevant literature. Likelihood
maximization has done wonders for statistics in general; however, in the particular context of multivariate statistics when
the number of parameters to be estimated is large, it tends to overfit in-sample data, at the expense of good out-of-sample
performance. In reaction to that, decision theory favors estimators that perform well out-of-sample with respect to some
given loss function. These estimators critically depend on the loss function selected by the end-user.

For covariance matrix estimation, we place ourselves firmly within the paradigm pioneered by [32,33]: (i) no assump-
tion on the eigenvalues of the population covariance matrix apart from positive definiteness; (ii) equivariance with respect
to rotation of the original orthonormal basis of variables; and (iii) full flexibility to modify the eigenvalues of the sample
covariance matrix as deemed necessary.

This is a tall order, and even Stein’s finite-sample mathematical prowesses achieved limited progress. It was only
after cross-pollination from RMT, a field originated by Nobel Prize-winning physicist Eugene Wigner [34], and specifically
the notion of large-dimensional asymptotics, that conclusive strides forward could be made. Charles Stein himself was
well aware, as early as 1969, of the potential of large-dimensional asymptotics to unlock the multivariate application
problems that preoccupied him [31, pp. 79–81]. However, he left some work on the table for his intellectual successors
in this respect.

There are currently three ‘simplified’ large-dimensional asymptotic strands of literature that fall short of Stein’s
ambitious program in one way or another. Sparsity [3] violates point (ii) because it assumes a priori knowledge of a specific
orthonormal basis where (unlike for most other bases) the proportion of covariances equal to zero approaches 100%. Linear
shrinkage [18] violates point (iii) because it can only modify the eigenvalues of the sample covariance matrix through
a linear transformation. The spiked covariance model of [13] violates point (i) because it assumes that all population
eigenvalues are equal to each other, except for a vanishingly small proportion of them (called ‘spikes’).

By contrast, the present paper inscribes itself in a strand of literature called nonlinear shrinkage [19,20,22] which does
not compromise on any of these three points, and so remains in line with Stein’s original ambitious paradigm. A key
ingredient is consistent estimation of the eigenvalues of the population covariance matrix. This was not even deemed
possible until [7] proved otherwise. Since then, it has been more of a discussion of which estimation scheme to use, such
as [7]’s own numerical procedure or a more modern approach based on supersymmetry [14]; in this paper, we use the
QuEST function of [20].

In recent related work, the spiked covariance model of [13] has been used by [5] to derive shrinkage covariance matrix
estimators for a ménagerie of 26 different loss functions. [5] promote the spiked model because, as they state in their
Section 10: ‘‘the simple shrinkage rules we propose here may be more likely to be applied correctly in practice, and to work
as expected, even in relatively small sample sizes’’. It is, therefore, of interest to study whether our ‘more complicated’
nonlinear shrinkage rules actually lead to improved performance or whether applied researchers are just as well served
by the rules of [5] according to their implicitly alluded to KISS (Keep it simple, statistician!) principle.

The remainder of this paper is organized as follows. Section 2 presents an intuitively understandable analysis in finite
samples. Section 3 defines the large-dimensional asymptotics under which our results are derived. Section 4 investigates
a wide variety of loss functions and, for each one, finds a bona fide covariance matrix estimator that is asymptotically
optimal. Section 5 extends the analysis to the challenging yet empirically relevant case when the dimension exceeds the
sample size. Section 6 presents Monte Carlo simulations. Section 7 concludes. An online supplementary material collects
various mathematical results to keep the presentation of the paper compact, and also deals with the case of demeaning
the data.

2. Analysis in finite samples

2.1. Basic setup

Assumption 1. Y is an n × p matrix of n independent and identically distributed (i.i.d.) observations on a system of
p < n random variables with mean zero and positive definite covariance matrix Σ with eigenvalues (τ1, . . . , τp), sorted
in nondecreasing order without loss of generality (w.l.o.g.), and corresponding eigenvectors (v1, . . . , vp).

(The case p > n is treated in Section 5.)
The sample covariance matrix is S := Y⊤Y/n. Its spectral decomposition is S =: UΛU⊤, where Λ is a diagonal matrix

and U is orthogonal. Let Λ =: Diag(λ) where λ := (λ1, . . . , λp)⊤, with the eigenvalues again sorted in nondecreasing
order w.l.o.g. The ith sample eigenvector is ui, the ith column vector of U , so that S =

∑p
i=1 λi · uiu

⊤

i . Note that it holds
imilarly Σ =

∑p
i=1 τi · viv

⊤

i .

efinition 1. We consider rotation-equivariant covariance matrix estimators of the type S̃ := UD̃U⊤, where D̃ is
diagonal matrix: D̃ := Diag(̃d1, . . . , d̃p).

This class assumes no a priori information about the orientation of the orthonormal basis of the (unobservable)
opulation covariance-matrix eigenvectors; this is different from the sparsity literature, which requires a priori knowledge
2
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Table 1
Existing set of finite-sample optimal (FSOPT) nonlinear shrinkage formulas. The first
column gives the name of the loss function; the second column gives the corresponding
stylized formula; the third column gives a reference for the loss function; and the fourth
column gives the shrinkage formula for d̃i , that is, the replacement for the ith sample
eigenvalue.
Loss function Stylized Formula Reference Shrinkage

Frobenius
̃S − Σ


F [24] u⊤

i Σui

Inverse Stein Tr
[̃
S−1Σ

]
− log

[
det

(̃
S−1Σ

)]
[9] u⊤

i Σui

Minimum Variance Tr
[̃
S−1Σ S̃−1

]/(
Tr

[̃
S−1

])2
[8] u⊤

i Σui

Stein Tr
[̃
SΣ−1

]
− log

[
det

(̃
SΣ−1

)]
[12] 1

u⊤

i Σ−1ui

Inverse Frobenius
̃S−1

− Σ−1

F [10] 1

u⊤

i Σ−1ui

Symmetrized Stein Tr
[̃
SΣ−1

+ S̃−1Σ

]
[15]

√
u⊤

i Σui
u⊤

i Σ−1ui

Table 2
Two more loss functions leading to existing nonlinear shrinkage formulas. The first column gives the
name of the loss function; the second column gives the corresponding stylized formula; the third column
gives a reference for the loss function; and the fourth column gives the shrinkage formula for d̃i , that
is, the replacement for the ith sample eigenvalue.
Loss function Stylized formula Reference Shrinkage

Weighted Frobenius Tr
[(̃

S − Σ
)2

Σ−1
]

Sharma and Krishnamoorthy ([27]) 1

u⊤

i Σ−1ui

Disutility Tr
[(̃

S−1
− Σ−1

)2
Σ

]
Supplementary material A u⊤

i Σui

of an orthonormal basis in which most covariances are (close to) zero. For many loss functions, there exists a finite-sample
optimal (FSOPT) estimator in this class of the form

S̃ :=

p∑
i=1

d̃i · uiu
⊤

i , d̃i := γ −1 [
u⊤

i γ (Σ)ui

]
, i ∈ {1, . . . , p} , (1)

here γ denotes some smooth invertible function mapping of (0, +∞) onto R. Here, as is standard, applying a univariate
unction γ to a diagonalizable positive-definite matrix means preserving its eigenvectors and applying γ to each
igenvalue individually; for example, log(Σ) :=

∑p
i=1 log(τi) · viv

⊤

i . Furthermore, γ −1 denotes the inverse function, so
for example if γ (x) = x3 then γ −1(x) is equal to x1/3, not x−3

Remark 1. S̃ in (1) is not feasible in practice, so the term ‘‘estimator’’ can be considered a slight abuse of terminology in
this context.

Remark 2. To simplify the notation, and in line with the related literature, we assume throughout the paper that all
variables have mean zero. Supplementary material C deals with the case when this assumption is not (known to be) true.

2.2. A brief summary of known results on nonlinear shrinkage

So far, only six loss functions have been solved in the very general rotation-equivariant framework of Assumption 1
and Definition 1. In the second column of Table 1, the loss functions are streamlined for readability; the actual ones could
be squared and have various constants added or multiplied in ways that are irrelevant to estimator optimality. The way to
read the fourth column is that the ith sample eigenvalue λi = u⊤

i Sui, i ∈ {1, . . . , p}, should be replaced by the quantity in
the fourth column, optimally with respect to the same-row loss function, in finite samples: so it is the optimally ‘shrunk’
eigenvalue. We use the standard notation for the Frobenius norm of M , a square matrix: ∥M∥F :=

√
Tr[MM⊤].

Table 1 shows that the six loss functions really only yield three different nonlinear shrinkage formulas. The first two
are of the type (1) with γ (x) = x and γ (x) = 1/x, respectively, and the third one is simply their geometric mean.

2.3. Additional loss functions

The easiest way to start this investigation is to look for different loss functions that give rise to the same nonlinear
shrinkage formulas as the ones in Section 2.2. Table 2 presents two of them.
3
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The second loss function, called Disutility, is new. It is derived from the loss of [27] in the same way that the Inverse
Frobenius loss is derived from the Frobenius loss, or that the Inverse Stein’s loss of [9] is derived from the original
Stein’s loss: by substituting the covariance matrix with its inverse, the precision matrix. At the same time, it has a more
interesting justification as minus the quadratic utility function of [25] in large dimensions, as argued in Supplementary
material A (hence the name disutility). It is a close cousin of the Minimum Variance loss function, with a tighter grip on
the scale of the estimator. Reassuringly, both of them give rise to the same optimal nonlinear shrinkage formula.

There are three interlocking reasons for bringing up these loss functions, even though they fall back on the known
estimators of Section 2.2. First, to avoid the well-known ‘file-drawer problem’ (also called publication bias), whereby
results that are deemed less interesting remain unpublished. Second, some applied researcher may well look at one of
these two loss functions and recognize that it suits his or her objective perfectly, in which case it does not matter whether
the shrinkage formula is old or new. Third, in the end, the choice of estimator is a choice of shrinkage formula, and the
best way to know what a specific shrinkage really means is to list as many loss functions as possible that lead to it.

2.4. New shrinkage formulas

The main point of the paper is to go beyond the two cases γ (x) = x±1 and thereby to study other functions of the
population covariance matrix (through the prism of sample eigenvectors). We introduce four more:

√
x, log(x), x2, and

/x2. Hence, we triple the number of functions that can be utilized for this purpose, from two to six. We could have
ntroduced as many new functions as we wanted, but this should be enough to make the point. Nor is this frivolous or
rbitrary: these four functional transformations arise naturally in the study of four well-regarded loss functions that have
emained as open problems. In what follows, the symbol I denotes a conformable identity matrix.

og-Euclidian It is defined as the Euclidian distance on the logarithm of the manifold of symmetric positive-definite
matrices, hence the name. It is a close cousin of the geodesic distance on the smooth Riemannian manifold
of positive-definite matrices. It has essentially the same properties, but is much more tractable for statistical
applications. In particular, it is invariant with respect to matrix inversion, so eigenvalues close to zero are treated
like eigenvalues close to infinity.

réchet The Fréchet discrepancy, named after the French mathematician Maurice Fréchet (1878–1973), is originally a
measure of distance between two probability distributions. In the multivariate normal case, it directly implies a
notion of distance between any two symmetric positive-definite matrices. Intuitively, we should think of it as a
measure of ‘how far apart’ are the distributions that these two covariance matrices generate.

uadratic This is a recent variant of the quadratic-type loss function that can be traced back to pioneers in the field such
as Section 2.2.4 of [26] and loss function L2 of [11]. Its signature is that it promotes accuracy in the direction of the
smallest principal components of the population covariance matrix.

nverse Quadratic Same as above, but with the inverse sample covariance matrix. Mechanically, it promotes accuracy in
the direction of the largest principal components of the population covariance matrix.

he logarithm and the square root are directly embedded into the first two shrinkage formulas (Log-Euclidian and Fréchet),
ut the square and inverse-square functions only appear in the last two loss formulas as part of combinations, echoing
hat happened with the Symmetrized Stein’s loss. Proof that the loss functions in the second column of the tables give
ise to the FSOPT formulas in the fourth column can be found in Supplementary material B.

These seven nonlinear shrinkage formulas give rather different results. Researchers may wonder how they compare
o each other. One interesting mathematical observation is that they do not cross, but one is always above (or below)
he other across the whole spectrum — with the sole exception of Symmetrized Stein vs. Log-Euclidian shrinkage. The
ollowing proposition reveals the ordering.

roposition 1. Under Assumption 1, with probability one, i ∈ {1, . . . , p}.

u⊤

i Σ2ui

u⊤

i Σui
≥ u⊤

i Σui ≥

(
u⊤

i

√
Σui

)2
≥ exp

[
u⊤

i log (Σ) ui

]
≥

1
u⊤

i Σ−1ui

≥
u⊤

i Σ−1ui

u⊤

i Σ−2ui

,

(
u⊤

i

√
Σui

)2
≥

√
u⊤

i Σui

u⊤

i Σ−1ui
≥

1
u⊤

i Σ−1ui

.

roof. Follows from Jensen’s inequality and the Cauchy–Schwarz inequality once we remark that u⊤

i γ (Σ)ui =
∑p

j=1 γ (τi)·
u⊤

i vj

)2 for γ (x) = x, 1/x, x2, 1/x2,
√
x, or log(x), and that

∑p
j=1

(
u⊤

i vj

)2
= 1, i ∈ {1, . . . , p}.
4
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Table 3
New set of finite-sample optimal (FSOPT) nonlinear shrinkage formulas. The first column
gives the name of the loss function; the second column gives the corresponding formula;
the third column gives a reference for the loss function; and the fourth column gives the
shrinkage formula for d̃i , that is, the replacement for the ith sample eigenvalue.
Loss function Formula Reference Shrinkage

Log-Euclidian
log(̃S) − log(Σ)


F [1] exp[u⊤

i log(Σ)ui]

Fréchet
̃S1/2 − Σ1/2


F [6]

(
u⊤

i Σ1/2ui

)2
Quadratic

Σ−1̃S − I

F LF ,3 in [5] u⊤

i Σ−1ui
u⊤

i Σ−2ui

Inverse Quadratic
̃S−1Σ − I


F LF ,4 in [5] u⊤

i Σ2ui
u⊤

i Σui

2.5. Preview of general result

FSOPT estimators of the form (1) cannot be used directly because they depend on the population covariance matrix Σ ,
which is unobservable. So it stands to reason to ask: How is it even possible that this approach leads anywhere? First
of all, note that we do not need to estimate all p(p+ 1)/2 entries of the symmetric matrix Σ , we only need p quantities:
u⊤

i γ (Σ)ui, i ∈ {1, . . . , p}, which is much more manageable. When the matrix dimension p is large, it is possible to
approximate these quantities by the general formula

u⊤

i γ (Σ)ui ≈
1
p

p∑
j=1

γ (̂τj) ·

{
p
n λi τ̂j⏐⏐̂τj [1 −

p
n −

p
n λi m̆τ̂

n,p(λi)
]
− λi

⏐⏐2
}

, (2)

where τ̂ := (̂τ1, . . . , τ̂p)⊤ is an estimator of the population eigenvalues, and m̆τ̂
n,p(·) is the complex-valued function of real

argument due to Section 2 of [20]. Formula (2) generates bona fide covariance matrix estimators of the type (1) for all the
loss functions in Table 3 by setting γ (x) equal to log(x),

√
x, x−2, or x2. Given that u⊤

i γ (Σ)ui =
1
p

∑p
j=1 γ (τj) ·

{
p(u⊤

i vj)
2
}
,

he term between curly brackets in (2) is simply an estimator of the dimension-normalized squared dot product of the
th sample eigenvector with the jth population eigenvector.

. Analysis under large-dimensional asymptotics

We now move on to formally establishing that plugging the approximation (2) into the generic nonlinear shrinkage
ormula (1) yields optimal rotation-equivariant covariance matrix estimators under large-dimensional asymptotics with
espect to the loss functions listed. First of all, to make the paper self-contained, we need to restate some sets of
ssumptions that have been used a number of times before. We shall do so in a condensed fashion; any unfamiliar reader
nterested in getting more background information should refer to earlier work such as, for example, Section 3.1 of [22]
nd the references therein.
In a nutshell: The dimension p goes to infinity along with the sample size n, their ratio p/n converges to some limit

∈ (0, 1), and we seek to asymptotically optimize the way to nonlinearly shrink sample eigenvalues. Also, from now on,
ll dimension-dependent objects are subscripted by the sample size n.

.1. Large-dimensional asymptotic framework

ssumption 2 (Dimension). Let n denote the sample size and p := p(n) the number of variables. It is assumed that the
atio p/n converges, as n → ∞, to a limit c ∈ (0, 1) called the limiting concentration (ratio). Furthermore, there exists a
ompact interval included in (0, 1) that contains p/n for all n large enough.

ssumption 3 (Population Covariance Matrix).

a. The p × p population covariance matrix Σn is nonrandom symmetric positive-definite.
b. Let τn := (τn,1, . . . , τn,p)⊤ denote a system of eigenvalues of Σn, and Hn their empirical distribution function (e.d.f.):

Hn(x) :=
∑p

i=1 1[τn,i,+∞)(x)/p, where 1 denotes the indicator function of a set. It is assumed that Hn converges weakly
to some limit law H , called the limiting spectral distribution (function).

c. Supp(H), the support of H , is the union of a finite number of closed intervals in (0, +∞).
d. There exists a compact interval [h, h] ⊂ (0, ∞) that contains

{
τn,1, . . . , τn,p

}
for all n large enough.

This assumption includes the spiked covariance model of [13] as a special case in which the limiting population spectral
distribution H is assumed to be a point mass.
5
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ssumption 4 (Data Generating Process). Xn is an n × p matrix of i.i.d. random variables with mean zero, variance one,
and finite 12th moment. The matrix of observations is Yn := Xn

√
Σn. Neither

√
Σn nor Xn are observed on their own:

only Yn is observed.

This assumption includes the spiked covariance model of [13] as a special case in which the variates are assumed to
be normal.

Remark 3 (Moment Condition). The existence of a finite 12th moment is assumed to prove certain mathematical results
using the methodology of [17]. However, Monte Carlo studies in [19,20] indicate that this assumption is not needed in
practice and can be replaced with the existence of a finite fourth moment. This is a generic requirement which does not
depend on any particular loss function.

The sample covariance matrix is defined as Sn := n−1Y⊤
n Yn = n−1√ΣnX⊤

n Xn
√

Σn. It admits a spectral decomposition
Sn =: UnΛnU

⊤
n , where Λn is a diagonal matrix, and Un is an orthogonal matrix: UnU

⊤
n = U⊤

n Un = In, where In (in slight
abuse of notation) denotes the identity matrix of dimension p × p. Let Λn := Diag(λn) where λn := (λn,1, . . . , λn,p)⊤.
We assume w.l.o.g. that the sample eigenvalues are sorted in increasing order: λn,1 ≤ λn,2 ≤ · · · ≤ λn,p. Correspondingly,
the ith sample eigenvector is un,i, the ith column vector of Un. Under Assumptions 2–4, the e.d.f. of the sample eigenvalues
Fn(x) :=

∑p
i=1 1[λn,i,+∞)(x)/p converges almost surely to a nondeterministic cumulative distribution function F that

depends only on H and c:

Fn(x)
a.s.

−→ F (x) ∀x ∈ (0, +∞) .

How to go from (H, c) to F is determined by the following equation, which is due to [28]: For all z in C+, the
half-plane of complex numbers with strictly positive imaginary part, m := mF(z) is the unique solution in the set{
m ∈ C : −

1−c
z + cm ∈ C+

}
to the equation

m =

∫
1

τ
[
1 − c − c z m

]
− z

dH(τ ) , (3)

where mF denotes the Stieltjes transform of F , whose standard definition is:

∀z ∈ C+ mF(z) :=

∫
1

λ − z
dF (λ) .

The Stieltjes transform admits a well-known inversion formula:

G(b) − G(a) = lim
η→0+

1
π

∫ b

a
Im

[
mG(ξ + iη)

]
dξ

if G is continuous at both a and b, where Im denotes the imaginary part of a complex number. Although the Stieltjes
transform of F , mF, is a function whose domain is the upper half of the complex plane, it admits an extension to the
real line, since [29] show that: ∀x ∈ (0, +∞), limz∈C+→x mF(z) =: m̆F(x) exists and is continuous. The imaginary part
f m̆F is the derivative of F , up to rescaling by π ; therefore, (3) enables us to pin down the location of the sample
igenvalues, a fact exploited by the QuEST function; see Section 3.2. Furthermore, the support of the limiting distribution
f the sample eigenvalue, Supp(F ), is the union of a finite number κ ≥ 1 of compact intervals: Supp(F ) =

⋃κ

k=1[ak, bk],
here 0 < a1 < b1 < · · · < aκ < bκ < ∞.

Definition 2 (Rotation-Equivariant Estimators). We consider covariance matrix estimators of the type S̃n := UnD̃nU⊤
n , where

Dn is a diagonal matrix: D̃n := Diag(̃ϕn(λn,1) . . . , ϕ̃n(λn,p)), and ϕ̃n is a (possibly random) real univariate function which
can depend on Sn.

Assumption 5 (Nonlinear Shrinkage Function). We assume that there exists a nonrandom real univariate function ϕ̃ defined
on Supp(F ) and continuously differentiable on

⋃κ

k=1[ak, bk] such that ϕ̃n(x)
a.s

−→ ϕ̃(x) for all x ∈ Supp(F ). Furthermore,
this convergence is uniform over x ∈

⋃κ

k=1[ak +η, bk −η], for any small η > 0. Finally, for any small η > 0, there exists a
finite nonrandom constant K̃ such that almost surely, over the set x ∈

⋃κ

k=1[ak − η, bk + η], |̃ϕn(x)| is uniformly bounded
by K̃ , for all n large enough.

3.2. The QuEST function

Once again, to make the paper self-contained, we need to restate the definition of a key mathematical object called the
QuEST (quantized eigenvalues sampling transform) function. We shall do so in condensed fashion; the interested reader
is referred to [20,21] for full background information.

In a nutshell: QuEST is a multivariate deterministic function mapping population eigenvalues into sample eigenvalues,
valid asymptotically as p and n go to infinity together.
6
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efinition 3 (QuEST). For any given n and p, Qn,p maps t :=
(
t1, . . . , tp

)⊤
∈ [0, +∞)p into

Qn,p(t) :=
(
q1n,p(t), . . . , q

p
n,p(t)

)⊤
, where qin,p(t) := p

∫ i/p

(i−1)/p

(
F t
n,p

)−1 (u) du ,

(
F t
n,p

)−1 is the inverse function of F t
n,p(v) :=

1
π

∫ v

−∞

Im
[
m̆t

n,p(x)
]
dx ,

and, for all x in R, m̆t
n,p(x) is the unique solution m ∈ C+ to the fundamental equation:

m =
1
p

p∑
j=1

1

tj
(
1 −

p
n

−
p
n
xm

)
− x

. (4)

heorem 1 ([20]). Suppose Assumptions 2–4 are satisfied. Define

τ̂n := argmin
t∈(0,+∞)p

1
p

p∑
i=1

[
qin,p(t) − λn,i

]2
, (5)

where Qn,p(t) is the QuEST function from Definition 3; both τ̂n and λn are assumed sorted in nondecreasing order. Let τ̂n,j denote
the jth entry of τ̂n (j = 1, . . . , p), and let τn := (τn,1, . . . , τn,p)⊤ denote the population covariance matrix eigenvalues sorted
in nondecreasing order w.l.o.g. Then

1
p

p∑
j=1

[̂
τn,j − τn,j

]2 a.s.
−→ 0 .

The function m̆τ̂n
n,p featured in the approximation (2) is a by-product of the QuEST function constructed by combining

4)–(5). It estimates the complex-valued deterministic function of real argument m̆F.

.3. Dot product of population eigenvalues with sample eigenvalues

Of much importance in this paper is the random bivariate cumulative distribution function

∀x, t ∈ R Θn(x, t) :=
1
p

p∑
i=1

p∑
j=1

(u⊤

n,ivn,j)
2 1[λn,i,+∞)(x) · 1[τn,j,+∞)(t) , (6)

which was first introduced in (6) of [17] under the notation ΦN . From Θn we can extract precise information about the
relationship between sample and population eigenvectors. In theory, the dot product u⊤

n,ivn,jwould be something worth
looking at. However, the sign is irrelevant, so we focus on the square (u⊤

n,ivn,j)
2 instead. Even then, we have to bear in

mind that we operate under large-dimensional asymptotics, so all quantities need to be normalized by the ever-increasing
matrix dimension p in appropriate fashion. In this particular instance, (u⊤

n,ivn,j)2 vanishes at the speed 1/p, as can be seen
from the following identities:

1
p2

p∑
i=1

p∑
j=1

(u⊤

n,ivn,j)2 =
1
p2

p∑
i=1

u⊤

n,i

⎛⎝ p∑
j=1

vn,jv
⊤

n,j

⎞⎠ un,i =
1
p2

p∑
i=1

u⊤

n,iun,i =
1
p

.

herefore, it is more convenient to study p(u⊤

n,ivn,j)2 instead. The average of the quantities of interest p(u⊤

n,ivn,j)2 over the
ample (respectively population) eigenvectors associated with the sample (respectively population) eigenvalues lying in
he interval [λ, λ] (respectively [τ , τ ]) is equal to∑p

i=1
∑p

j=1 p(u
⊤

n,ivn,j)21[λ,λ]
(λn,i) · 1[τ ,τ ](τn,j)∑p

i=1
∑p

j=1 1[τ ,τ ](τn,j)
=

Θn(λ, τ ) − Θn(λ, τ ) − Θn(λ, τ ) + Θn(λ, τ )[
Fn(λ) − Fn(λ)

]
·
[
Hn(τ ) − Hn(τ )

] .

hus, the object of interest is the Radon–Nikodym derivative of (the limit of) Θn(x, t) with respect to the cross-product
(x)H(t); which is exactly what (7) delivers.

heorem 2 ([17]). Under Assumptions 2–4, ∀λ, τ ∈ R, Θn(λ, τ ) converges almost surely to some nonrandom bivariate
umulative distribution function Θ(λ, τ ) :=

∫ λ

−∞

∫ τ

−∞
θ (x, t) dH(t) dF (x), where

∀x, t ∈ R θ (x, t) :=
cxt⏐⏐⏐t[1 − c − c x m̆F(x)

]
− x

⏐⏐⏐2 . (7)
7
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I
Q

Fig. 1. Absolute value of the cosine of the angle between population and sample eigenvectors. On the horizontal axes, eigenvectors are indexed by
their respective eigenvalues.

The Radon–Nikodym derivative θ (λn,i, τn,j) is ‘essentially like’ the squared dot product p(u⊤

n,ivn,j)2 for large p and n.
n order to operationalize (7), we need bona fide estimators for its ingredients, and they are provided by Section 3.2’s
uEST function:

θ̂n(λn,i, τ̂n,j) :=

p
nλn,îτn,j⏐⏐⏐̂τn,j[1 −

p
n −

p
n λn,i m̆

τ̂n
n,p(λn,i)

]
− λn,i

⏐⏐⏐2 . (8)

Although the expression may seem a bit unusual, it is just what comes out of RMT, and we should count ourselves lucky
to have any closed-form solution at all. This ‘luck’ is first and foremost due to the pioneering efforts of probabilists who
came before. If (3), (4), (7), and (8) appear to be descendants from each other, it is because they are. A graphical illustration
in the case where the population eigenvalues are evenly spread in the interval [1, 5], with concentration ratio p/n = 0.5,
is given by Fig. 1.

One can see that the spread of sample eigenvalues is much wider: from 0.2 to 10.2. Top-ranked sample eigenvectors are
more aligned with top-ranked population eigenvectors, and bottom-ranked sample eigenvectors are more aligned with
bottom-ranked population eigenvectors. The overall pattern is complicated and can only be captured by the function θ
of Theorem 2.

4. Asymptotically optimal nonlinear shrinkage estimators

The two loss functions from Table 2 are easy to handle using the techniques of [22]: The nonlinear shrinkage estimator
they call Ŝ∗

n is optimal with respect to the Weighted Frobenius loss under large-dimensional asymptotics; and the
estimator they call Ŝ◦

n is optimal with respect to the Disutility loss. These results are stated without proof, as they are just
minor extensions of the arguments put forward by [22].

Regarding the loss functions of Table 3, they are vastly more challenging, and cannot be handled with existing
techniques. Instead, they can only be handled by using the new technique of angle estimation introduced in Section 3.3
above, as we shall now proceed to demonstrate.

4.1. Four specific loss functions

We start with asymptotically optimal bona fide estimators based on Table 3.

Theorem 3 (Log-Euclidian). For any estimator S̃n in Definition 2, the Log-Euclidian loss

LLE
n (̃Sn, Σn) :=

1
Tr

[{
log

(̃
Sn

)
− log

(
Σn

)}2
]

,

p

8
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onverges under Assumptions 2–5 almost surely to a deterministic limit that depends only on H, c, and ϕ̃. This limit is minimized
f ϕ̃n(λn,i) is equal to

ϕ̂LE
n (λn,i) := exp

⎛⎝1
p

p∑
j=1

log(̂τn,j) · θ̂n(λn,i, τ̂n,j)

⎞⎠ , (9)

where τ̂n =
(̂
τn,j

)
j=1,...,p denotes the estimator of population covariance matrix eigenvalues in Theorem 1, and θ̂n(λn,i, τ̂n,j) is the

stimator of the (dimension-normalized) squared dot product of the ith sample eigenvector with the jth population eigenvector
n (8). The resulting covariance matrix estimator is ŜLEn :=

∑p
i=1 ϕ̂LE

n

(
λn,i

)
· un,iu

⊤

n,i.

roof. This theorem is a special case of Theorem 7 with γ (x) = log(x).

heorem 4 (Fréchet). The Fréchet loss LFRÉ
n (̃Sn, Σn) :=

̃S1/2n − Σ
1/2
n

2

F

/
p converges almost surely to a deterministic limit that

s minimized if ϕ̃n(λn,i) is equal to

ϕ̂FRÉ
n (λn,i) :=

⎛⎝1
p

p∑
j=1

√
τ̂n,j · θ̂n(λn,i, τ̂n,j)

⎞⎠2

. (10)

he resulting covariance matrix estimator is ŜFRÉn :=
∑p

i=1 ϕ̂FRÉ
n

(
λn,i

)
· un,iu

⊤

n,i.

roof. This theorem is a special case of Theorem 7 with γ (x) =
√
x.

heorem 5 (Quadratic). The Quadratic loss LQ
(̃
Sn, Σn

)
:=

Σ−1
n S̃n − In

2
F

/
p converges almost surely to a deterministic limit

hat is minimized if ϕ̃n(λn,i) is equal to

ϕ̂Q
n (λn,i) :=

1
p

p∑
j=1

1
τ̂n,j

· θ̂n(λn,i, τ̂n,j)

1
p

p∑
j=1

1
τ̂ 2
n,j

· θ̂n(λn,i, τ̂n,j)

. (11)

he resulting covariance matrix estimator is ŜQn :=
∑p

i=1 ϕ̂
Q
n
(
λn,i

)
· un,iu

⊤

n,i.

roof. To prove the theorem, we need to first state and prove some auxiliary results.

roposition 2. Under Assumptions 2–5,

LQ
n (̃Sn, Σn)

a.s.
−→

κ∑
k=1

∫ bk

ak

∫
+∞

−∞

[
ϕ̃(x)2

t2
− 2

ϕ̃(x)
t

+ 1
]

· θ (x, t) dH(t) dF (x) . (12)

roof. For simplicity, let us assume that the support of F is a single compact interval [a, b] ⊂ (0, +∞); the generalization
o the case κ > 1 is trivial. From Supplementary material B.11 we have:

LQ
n (̃Sn, Σn) =

1
p

p∑
i=1

d̃2n,i · u
⊤

n,iΣ
−2
n un,i −

2
p

p∑
i=1

d̃n,i · u⊤

n,iΣ
−1
n un,i + 1

=
1
p

p∑
i=1

p∑
j=1

[
d̃2n,i
τ 2
n,j

− 2
d̃n,i
τn,j

+ 1

]
·
(
u⊤

i vj
)2

=

∫ b

a

∫
+∞

−∞

[
ϕ̃n(x)2

t2
− 2

ϕ̃n(x)
t

+ 1
]

d2Θn(x, t) ,

where Θn is the random bivariate function from (6)). By applying the technique from the proof of Theorem 3.1 of [22],
and by using Theorem 2 to handle the function Θn, it follows that

LQ
n (̃Sn, Σn)

a.s.
−→

∫ b ∫
+∞

[
ϕ̃(x)2

2 − 2
ϕ̃(x)

+ 1
]

θ (x, t) dx dt ,

a −∞ t t

9
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here, as per (7),

∀x ∈ [a, b] ∀t ∈ R θ (x, t) :=
cxt⏐⏐t [

1 − c − cxm̆F(x)
]
− x

⏐⏐2 .

Proposition 2 allows us to characterize the asymptotically optimal nonlinear shrinkage function under Quadratic loss.

Corollary 1. Suppose Assumptions 2–5 hold. A covariance matrix estimator S̃n minimizes in the class of rotation-equivariant
estimators the a.s. limit (12) of the Quadratic loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ),
ϕ(x) = ϕ̂Q(x), where

∀x ∈ Supp(F ) ϕ̂Q(x) :=

∫
+∞

−∞

1
t

· θ (x, t) dH(t)∫
+∞

−∞

1
t2

· θ (x, t) dH(t)
. (13)

Proof. If we fix x ∈ Supp(F ), then the marginal contribution of ϕ̃(x) to the almost sure (nonrandom) limit of the loss
function LQ

n (Σn, S̃n) is∫
+∞

−∞

[
ϕ̃(x)2

t2
− 2

ϕ̃(x)
t

+ 1
]

θ (x, t) dH(t) . (14)

The partial derivative of (14) with respect to ϕ̃(x) is∫
+∞

−∞

[
2ϕ̃(x)
t2

−
2
t

]
θ (x, t) dH(t) .

The first-order condition is

ϕ(x)
∫

+∞

−∞

1
t2

θ (x, t) dH(t) =

∫
+∞

−∞

1
t

θ (x, t) dH(t) .

The solution is

ϕ(x) =

∫
+∞

−∞

1
t

θ (x, t) dH(t)∫
+∞

−∞

1
t2

θ (x, t) dH(t)
.

The proof of Theorem 5 is concluded as follows: To the unobservable quantity c corresponds the plug-in estimator p/n; to
the unobservable quantity H(t) corresponds the plug-in estimator Ĥn(t) :=

∑p
i=j 1[̂τn,j,+∞](t)/p; and to the unobservable

uantity θ (x) corresponds the plug-in estimator θ̂n(x, t) from (8). The fact that these three unobservable quantities can
e replaced with their respective plug-in counterparts at no loss asymptotically is established in the same way as in the
roof of Theorem 5.2 of [22].

heorem 6 (Inverse Quadratic). The Inverse Quadratic loss function, which is defined as LQINV
(̃
Sn, Σn

)
:=

̃S−1
n Σn − In

2
F

/
p,

converges almost surely to a deterministic limit that is minimized if ϕ̃n(λn,i) is equal to

ϕ̂QINV
n (λn,i) :=

1
p

p∑
j=1

τ̂ 2
n,j · θ̂n(λn,i, τ̂n,j)

1
p

p∑
j=1

τ̂n,j · θ̂n(λn,i, τ̂n,j)

. (15)

he resulting covariance matrix estimator is ŜQINVn :=
∑p

i=1 ϕ̂
QINV
n

(
λn,i

)
· un,iu

⊤

n,i.

Proof. To prove the theorem, we need to first state and prove some auxiliary results.

Proposition 3. Under Assumptions 2–5,

LQINV
n (̃Sn, Σn)

a.s.
−→

κ∑
k=1

∫ bk

ak

∫
+∞

−∞

[
t2

ϕ̃(x)2
− 2

t
ϕ̃(x)

+ 1
]

· θ (x, t) dH(t) dF (x) . (16)
10
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roof. As before, we assume that the support of F is a single compact interval [a, b] ⊂ (0, +∞). From Supplementary
aterial B.12 we have:

LQINV
n (̃Sn, Σn) =

1
p

p∑
i=1

d̃−2
n,i · u⊤

n,iΣ
2
nun,i −

2
p

p∑
i=1

d̃−1
n,i · u⊤

n,iΣnun,i + 1

=
1
p

p∑
i=1

p∑
j=1

[
τ 2
n,j

d̃2n,i
− 2

τn,j

d̃n,i
+ 1

]
·
(
u⊤

i vj
)2

=

∫ b

a

∫
+∞

−∞

[
τ 2
n,j

ϕ̃n(λn,i)2
− 2

τn,j

ϕ̃n(λn,i)
+ 1

]
d2Θn(x, t) .

y applying the technique from the proof of Theorem 3.1 of [22], and by using Theorem 2:

LQINV
n (̃Sn, Σn)

a.s.
−→

∫ b

a

∫
+∞

−∞

[
t2

ϕ̃(x)2
− 2

t
ϕ̃(x)

+ 1
]

θ (x, t) dx dt .

Corollary 2. Under Assumptions 2–5, a covariance matrix estimator S̃n minimizes in the class of rotation-equivariant estimators
he a.s. limit (16) of the Inverse Quadratic loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ),
ϕ(x) = ϕ̂QINV(x), where

∀x ∈ Supp(F ) ϕ̂QINV(x) :=

∫
+∞

−∞

t2 · θ (x, t) dH(t)∫
+∞

−∞

t · θ (x, t) dH(t)
.

Proof. If we fix x ∈ Supp(F ), then the marginal contribution of ϕ̃(x) to the almost sure (nonrandom) limit of the loss
function LQINV

n (Σn, S̃n) is∫
+∞

−∞

[
t2

ϕ̃(x)2
− 2

t
ϕ̃(x)

+ 1
]

θ (x, t) dH(t) . (17)

The partial derivative of (17) with respect to ϕ̃(x) is∫
+∞

−∞

[
−2

t2

ϕ̃(x)3
+ 2

t
ϕ̃(x)2

]
θ (x, t) dH(t) .

The first-order condition is

ϕ(x)
∫

+∞

−∞

t θ (x, t) dH(t) =

∫
+∞

−∞

t2 θ (x, t) dH(t) .

The solution is

ϕ(x) =

∫
+∞

−∞

t2 θ (x, t) dH(t)∫
+∞

−∞

t θ (x, t) dH(t)
.

The proof of Theorem 6 is concluded as before: To the unobservable quantity c corresponds the plug-in estimator p/n; to
the unobservable quantity H(t) corresponds the plug-in estimator Ĥn(t) :=

∑p
i=j 1[̂τn,j,+∞](t)/p; and to the unobservable

uantity θ (x) corresponds the plug-in estimator θ̂n(x, t) from (8). The fact that these three unobservable quantities can
e replaced with their respective plug-in counterparts at no loss asymptotically is established in the same way as in the
roof of Theorem 5.2 of [22].

.2. Two infinite families of loss functions

We have so far covered 12 loss functions, including many of the classic ones, from which we have derived a total of
different optimal nonlinear shrinkage formulas (as there are some commonalities). It is tedious to keep adding more
y hand. Most applied researchers should have already been able to find ‘the shoe that fits’ in this rather extensive list
y now.
If not, the only systematic method is to study an (uncountably) infinite number of loss functions, and to find the

onlinear shrinkage formula exactly optimized with respect to each of them. To the best of our knowledge, an ambitious
roject on this scale has never been envisioned before. In doing so, we will meet again some old acquaintances: 6 of
11
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he 12 loss functions already analyzed manually are special cases of the two general theorems presented below. The first
nfinite family of loss functions is what we call Generalized Frobenius.

heorem 7 (Generalized Frobenius). For any invertible and continuously differentiable function γ defined on (0, +∞), the
eneralized Frobenius loss Lγ ,F

n (̃Sn, Σn) :=
γ

(̃
Sn

)
− γ

(
Σn

)2
F

/
p converges almost surely to a deterministic limit that is

inimized if ϕ̃n(λn,i) is equal to

ϕ̂γ
n (λn,i) := γ −1

⎛⎝1
p

p∑
j=1

γ
(̂
τn,j

)
· θ̂n(λn,i, τ̂n,j)

⎞⎠ . (18)

he resulting covariance matrix estimator is Ŝγ
n :=

∑p
i=1 ϕ̂

γ
n
(
λn,i

)
· un,iu

⊤

n,i.

roof. To prove the theorem, we need to first state and prove some auxiliary results.

roposition 4. Under Assumptions 2–5,

Lγ ,F
n (̃Sn, Σn)

a.s.
−→

∫
+∞

−∞

γ (t)2 dH(t) − 2
κ∑

k=1

∫ bk

ak

∫
+∞

−∞

γ (t) γ
(̃
ϕ(x)

)
· θ (x, t) dH(t) dF (x)

+

κ∑
k=1

∫ bk

ak

γ
(̃
ϕ(x)

)2 dF (x) . (19)

roof. For simplicity: Supp(F ) = [a, b] ⊂ (0, +∞). From Supplementary material B.13 we have:

Lγ ,F
n (̃Sn, Σn) =

1
p

p∑
i=1

{
γ (τn,i)2 − 2u⊤

n,iγ (Σn)un,iγ (̃dn,i) + γ (̃dn,i)2
}

=
1
p

p∑
j=1

γ (τn,j)2 −
2
p

p∑
i=1

p∑
j=1

γ
(
τn,j

)
γ
(̃
ϕ(λn,i)

)
·
(
u⊤

n,ivn,j
)2

+
1
p

p∑
i=1

γ
(̃
ϕ(λn,i)

)2
=

∫
+∞

−∞

γ (t)2dHn(t) − 2
∫ b

a

∫
+∞

−∞

γ (t)γ
(̃
ϕn(x)

)
d2Θn(x, t) +

∫ b

a
γ
(̃
ϕn(x)

)2dFn(x) .

By applying the technique from the proof of Theorem 3.1 of [22], and by using Theorem 2:

Lγ ,F
n (̃Sn, Σn)

a.s.
−→

∫
+∞

−∞

γ (t)2 dH(t) − 2
κ∑

k=1

∫ bk

ak

∫
+∞

−∞

γ (t) γ
(̃
ϕ(x)

)
· θ (x, t) dH(t) dF (x)

+

κ∑
k=1

∫ bk

ak

γ
(̃
ϕ(x)

)2 dF (x) .

Corollary 3. Suppose Assumptions 2–5 hold. A covariance matrix estimator S̃n minimizes in the class of rotation-equivariant
estimators the a.s. limit (19) of the Generalized Frobenius loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈

Supp(F ), ϕ̃(x) = ϕγ (x), where

∀x ∈ Supp(F ) ϕγ (x) := γ −1
[∫

+∞

−∞

γ (t) · θ (x, t)dH(t)
]

. (20)

This yields an oracle covariance matrix estimator Sγ
n := UnDiag

(
ϕγ (λn,1), . . . , ϕγ (λn,p)

)
U⊤
n .

Proof. If we fix x ∈ Supp(F ), then the marginal contribution of ϕ̃(x) to the almost sure (nonrandom) limit of the loss
function Lγ ,F

n (Σn, S̃n)is

−2
∫

+∞

−∞

γ (t)γ
(̃
ϕ(x)

)
· θ (x, t) dH(t) + γ

(̃
ϕ(x)

)2
. (21)

The partial derivative of (21) with respect to ϕ̃(x) is

−2
∫

+∞

γ (t)γ ⊤
(̃
ϕ(x)

)
· θ (x, t) dH(t) + 2γ ⊤

(̃
ϕ(x)

)
γ
(̃
ϕ(x)

)
.

−∞

12
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he first-order condition is γ
(̃
ϕ(x)

)
=

∫
+∞

−∞
γ (t) · θ (x, t) dH(t), hence the solution is

ϕ̃(x) = γ −1
(∫

+∞

−∞

γ (t) · θ (x, t) dH(t)
)

.

The proof of Theorem 7 is concluded as before: To the unobservable quantity c corresponds the plug-in estimator p/n; to
the unobservable quantity H(t) corresponds the plug-in estimator Ĥn(t) :=

∑p
i=j 1[̂τn,j,+∞](t)/p; and to the unobservable

quantity θ (x) corresponds the plug-in estimator θ̂n(x, t) from (8). The fact that these three unobservable quantities can
be replaced with their respective plug-in counterparts at no loss asymptotically is established in the same way as in the
proof of Theorem 5.2 of [22].

Remark 4. The Frobenius, Inverse Frobenius, Log-Euclidian, and Fréchet losses are special cases of the General Frobenius
family, corresponding, respectively, to γ (x) equal to x, 1/x, log(x), and

√
x.

A second infinite family of loss functions is based on the Kullback–Leibler divergence of [16]. Given two multivariate
normal distributions N (0, Ai) with zero mean and covariance matrix Ai, for i ∈ {1, 2}, their dimension-normalized
Kullback–Leibler divergence is:

DKL
(
N (0, A1)∥N (0, A2)

)
:=

1
2p

{
Tr

[
A−1
2 A1

]
− log

[
det(A−1

2 A1)
]
− p

}
.

Stein’s loss and the Inverse Stein loss are special cases of the Generalized Kullback–Leibler family defined below, obtained
by setting γ (x) equal to 1/x and x, respectively.

Theorem 8 (Generalized Kullback–Leibler). For any invertible and continuously differentiable function γ defined on (0, +∞),
the Generalized Kullback–Leibler loss function

Lγ ,KL
n (̃Sn, Σn) :=

1
2p

{
Tr

[
γ
(̃
Sn

)−1
γ
(
Σn

)]
− log det

[
γ (̃Sn)−1γ (Σn)

]
− p

}
converges almost surely to a deterministic limit that is minimized if ϕ̃n(λn,i) is equal to the quantity ϕ̂

γ
n (λn,i) defined in (18),

i ∈ {1, . . . , p}.

Proof. To prove the theorem, we need to first state and prove some auxiliary results.

Proposition 5. Under Assumptions 2–5,

Lγ ,KL
n (̃Sn, Σn)

a.s.
−→

1
2

κ∑
k=1

∫ bk

ak

∫
+∞

−∞

γ (t)
γ
(̃
ϕ(x)

) · θ (x, t) dH(t) dF (x)

+
1
2

κ∑
k=1

∫ bk

ak

log
[
γ
(̃
ϕ(x)

)]
dF (x) −

1
2

∫
+∞

−∞

log
[
γ (t)

]
dH(t) −

1
2

. (22)

roof. For simplicity, Supp(F ) = [a, b] ⊂ (0, +∞). From Supplementary material B.14:

Lγ ,KL
n (̃Sn, Σn) =

1
2p

p∑
i=1

{
u⊤

i γ (Σ)ui

γ
(̃
δi
) + log

[
γ
(̃
δi
)]

− log
[
γ
(
τi
)]

− 1

}

=
1
2

∫ b

a

∫
+∞

−∞

γ (t)
γ
(̃
ϕn(x)

) d2Θn(x, t) +
1
2

∫ b

a
log

[
γ
(̃
ϕn(x)

)]
dFn(x)

−
1
2

∫
+∞

−∞

log
[
γ (t)

]
dHn(t) −

1
2

.

By applying the technique from the proof of Theorem 3.1 of [22], and by using Theorem 2:

Lγ ,KL
n (̃Sn, Σn)

a.s.
−→

1
2

κ∑
k=1

∫ bk

ak

∫
+∞

−∞

γ (t)
γ
(̃
ϕ(x)

) · θ (x, t) dH(t) dF (x)

+
1
2

κ∑
k=1

∫ bk

ak

log
[
γ
(̃
ϕ(x)

)]
dF (x) −

1
2

∫
+∞

−∞

log
[
γ (t)

]
dH(t) −

1
2

.

orollary 4. Suppose Assumptions 2–5 hold. A covariance matrix estimator S̃n minimizes in the class of rotation-equivariant
estimators the a.s. limit (22) of the Generalized Kullback–Leibler loss if and only if its limiting shrinkage function ϕ̃ verifies
13
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∀

T

o

x ∈ Supp(F ), ϕ̃(x) = ϕγ (x), where ϕγ (x)is defined by (20). This results in the same oracle covariance matrix estimator
Sγ
n := UnDiag

(
ϕγ (λn,1), . . . , ϕγ (λn,p)

)
U⊤
n as in Corollary 3.

Proof. If we fix x ∈ Supp(F ), then the marginal contribution of ϕ̃(x) to the almost sure (nonrandom) limit of the loss
function Lγ ,KL

n (Σn, S̃n)is

1
2

∫
+∞

−∞

γ (t)
γ
(̃
ϕ(x)

) · θ (x, t) dH(t) + log
[
γ
(̃
ϕ(x)

)]
. (23)

The partial derivative of (23) with respect to ϕ̃(x) is

−
1
2

∫
+∞

−∞

γ (t)

γ
(̃
ϕ(x)

)2 γ ⊤
(̃
ϕ(x)

)
· θ (x, t) dH(t) +

γ ⊤
(̃
ϕ(x)

)
2γ

(̃
ϕ(x)

) .

he first-order condition is γ
(̃
ϕ(x)

)
=

∫
+∞

−∞
γ (t) · θ (x, t) dH(t), hence the solution is

ϕ̃(x) = γ −1
(∫

+∞

−∞

γ (t) · θ (x, t) dH(t)
)

.

The proof of Theorem 8 is concluded as before, by showing that replacing the key oracle objects with their plug-in
counterparts comes at no cost under large-dimensional asymptotics.

5. Singular case: p > n

This is a case of great practical importance. When it happens, the sample covariance matrix is singular: It has p − n
eigenvalues equal to zero and is thus only positive semi-definite. There then exist some linear combinations of the original
variables that falsely appear to have zero variance when one only looks in-sample. In a sense, the sample covariance
matrix, with its p(p + 1)/2 degrees of freedom, ‘overfits’ the data set of size n × p.

5.1. Analysis in finite samples

With respect to the loss functions studied in this paper, the optimal nonlinear shrinkage formula applied to the n non-
zero sample eigenvalues remains the same as in the case p < n, so no need to revisit. The only item to be determined
is how to shrink the p − n null sample eigenvalues. Recall that we sort the sample eigenvalues in nondecreasing order
without loss of generality (w.l.o.g.,) so the null eigenvalues are the first p − n ones. To build intuition, we start as before
with the finite-sample case: Table 4 presents a counterpart to Tables 1–3, listing how to optimally shrink the null sample
eigenvalues.

The pattern is clear: compute how the eigenvectors in the null space of the sample covariance matrix relate to
(a function of) the population covariance matrix, take the average(s), and take smooth transformations of the average(s),
where a transformation could be simply the identity. There is a rotational indeterminacy in this null space of dimension
p − n, but the formulas in the last column are invariant to a rotation of the basis of the null eigenvectors, so it does not
matter.

5.2. Analysis under large-dimensional asymptotics

Assumption 6 (Singular). The ratio p/n converges, as n → ∞, to a finite limit c > 1. Furthermore, there exists a compact
interval included in (1, +∞) that contains p/n for all n large enough.

Given that the first p − n sample eigenvalues are devoid of informational content, it is judicious to focus on the e.d.f
of the n other ones: ∀x ∈ R F n(x) :=

1
n

∑p
i=p−n+1 1[λn,i,+∞)(x) . Under Assumptions 3–6, it admits a nonrandom limit:

∀x ∈ R F n(x)
a.s.

−→ F (x) := (1 − c)1[0,+∞)(x) + cF (x) .

Of particular interest will be its Stieltjes transform: ∀z ∈ C+ mF (z) :=
∫ 1

λ−z dF (λ), which admits a continuous extension
nto the real line: ∀x ∈ R m̆F (x) := limz∈C+→x mF (z).

5.3. Optimal shrinkage of null sample eigenvalues

At this stage, what we need is an equivalent of (2) that pertains to the shrinkage of the null sample eigenvalues.
It comes from Theorem 9 of [17]:

1
p − n

p−n∑
u⊤

n,iγ (Σn)un,i ≈
1
p

p∑
γ (̂τn,j) ·

1(
1 −

n
) [

1 + m̆τ̂n (0)̂τ
] , (24)
i=1 j=1 p n,p n,j

14
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Table 4
Formulas for shrinking null sample eigenvalues. The first column gives the name of the
loss function; the second column gives the corresponding stylized formula; and the third
column gives the shrinkage formula for d̃i , that is, the replacement for the ith sample
eigenvalue. This shrinkage formula only applies to the null sample eigenvalues, that is,
to the first p − n sample eigenvalues.
Loss function Stylized Formula Null Shrinkage

Frobenius
̃S − Σ


F

1
p−n

∑p−n
i=1 u⊤

i Σui

Inverse Stein Tr
[̃
S−1Σ

]
− log

[
det

(̃
S−1Σ

)] 1
p−n

∑p−n
i=1 u⊤

i Σui

Minimum Variance Tr
[̃
S−1Σ S̃−1

]/(
Tr

[̃
S−1

])2
1

p−n

∑p−n
i=1 u⊤

i Σui

Stein Tr
[̃
SΣ−1

]
− log

[
det

(̃
SΣ−1

)] (
1

p−n

∑p−n
i=1 u⊤

i Σ−1ui

)−1

Inverse Frobenius
̃S−1

− Σ−1

F

(
1

p−n

∑p−n
i=1 u⊤

i Σ−1ui

)−1

Symmetrized Stein Tr
[̃
SΣ−1

+ S̃−1Σ

] √
1

p−n

∑p−n
i=1 u⊤

i Σui
1

p−n

∑p−n
i=1 u⊤

i Σ−1ui

Weighted Frobenius Tr
[(̃

S − Σ
)2

Σ−1
] (

1
p−n

∑p−n
i=1 u⊤

i Σ−1ui

)−1

Disutility Tr
[(̃

S−1
− Σ−1

)2
Σ

]
1

p−n

∑p−n
i=1 u⊤

i Σui

Log-Euclidian
log(̃S) − log(Σ)


F exp

[
1

p−n

∑p−n
i=1 u⊤

i log(Σ)ui

]
Fréchet

̃S1/2 − Σ1/2

F

(
1

p−n

∑p−n
i=1 u⊤

i Σ1/2ui

)2

Quadratic
Σ−1̃S − I


F

1
p−n

∑p−n
i=1 u⊤

i Σ−1ui
1

p−n

∑p−n
i=1 u⊤

i Σ−2ui

Inverse Quadratic
̃S−1Σ − I


F

1
p−n

∑p−n
i=1 u⊤

i Σ2ui
1

p−n

∑p−n
i=1 u⊤

i Σui

where τ̂n := {̂τn,j}
p
j=1 is, as before, the estimator of population eigenvalues obtained by numerically inverting the QuEST

unction, and m̆τ̂n
n,p(0) is a strongly consistent estimator of m̆F (0) which is another by-product of the QuEST function (when

> n). As per Section 3.2.2 of [20], m̆τ̂n
n,p(0) is the unique solution m ∈ (0, ∞) to the equation

1
m

=
1
n

p∑
j=1

τ̂n,j

1 + τ̂n,j m
. (25)

(24) enables us to extend the squared-dot-product function θ (x, t) presented in Section 3.3 to handle the case x = 0.
ig. 2 graphs

θ (0, t) :=
1(

1 −
1
c

) [
1 + m̆F (0) t

] (26)

s a function of t for various values of the concentration ratio p/n. We use the same baseline scenario as in Fig. 1: the
opulation eigenvalues are evenly spread in the interval [1,5].
Eigenvectors in the null space of the sample covariance matrix tend to be more (less) aligned with population eigen-

ectors corresponding to small (large) population eigenvalues, which makes intuitive sense. The degree of preferential
lignment is inversely related to the concentration ratio, as a high ratio p/n disorients the sample eigenvectors. The overall
attern is highly nonlinear, and could only be pinned down through (25)–(26) from RMT. Note that, by construction, the
imension-normalized density of the squared dot-product averages to 1, so it is deviations from the baseline number of 1
hat are informative.

.4. Covariance matrix estimation in the singular case

Theorems 3–8 remain valid when c > 1, with the understanding that the estimator of the squared dot-product in the
null space of the sample covariance matrix, i ∈ {1, . . . , p − n}, is, for j ∈ {1, . . . , p},

θ̂n(λn,i, τ̂n,j) = θ̂n(0, τ̂n,j) :=
1(

1 −
n
) [

1 + m̆τ̂ (0)̂τ
] . (27)
p n,p n,j

15
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w

Fig. 2. The Radon–Nikodym derivative θ (0, t) as a function of the population eigenvalues. This plot shows how aligned the null-space sample
eigenvectors are with the population eigenvectors.

In order to show how this works, we need only state and prove the singular-case counterpart of Theorem 7, as the other
theorems are adapted from p < n to the p > n case in similar fashion.

Theorem 9. Under Assumptions 3–6, the Generalized Frobenius loss admits an almost sure (deterministic) limit, which is
minimized by the nonlinear shrinkage formula

ϕ̂γ
n (λn,i) := γ −1

⎛⎝1
p

p∑
j=1

γ
(̂
τn,j

)
· θ̂n(λn,i, τ̂n,j)

⎞⎠ ,

here the bivariate function θ̂n(x, t) is given by (8) for x > 0, and θ̂n(0, t) is given by (27). The resulting covariance matrix
estimator is Ŝγ

n :=
∑p

i=1 ϕ̂
γ
n
(
λn,i

)
· un,iu

⊤

n,i.

Proof. To prove the theorem, we need to first state and prove some auxiliary results. There is one small difference with
the non-singular case: the support of the limiting sample spectral distribution F is now Supp(F ) = {0} ∪

(⋃κ

k=1[ak, bk]
)
,

where (as before) 0 < a1 < b1 < · · · < aκ < bκ < ∞.

Proposition 6. Under Assumptions 3–6,

Lγ ,F
n (̃Sn, Σn)

a.s.
−→

∫
+∞

−∞

γ (t)2 dH(t) − 2
κ∑

k=1

∫ bk

ak

∫
+∞

−∞

γ (t) γ
(̃
ϕ(x)

)
· θ (x, t) dH(t) dF (x)

− 2
c − 1
c

∫
+∞

−∞

γ (t) γ
(̃
ϕ(0)

)
· θ (0, t) dH(t) +

κ∑
k=1

∫ bk

ak

γ
(̃
ϕ(x)

)2 dF (x) +
c − 1
c

γ
(̃
ϕ(0)

)2
, (28)

where θ (0, t) is given by (26).

Proof. For simplicity, we assume that Supp(F ) = {0} ∪ [a, b], as the extension to the case κ > 1 is straightforward.
Starting from the proof of Proposition 4:

Lγ ,F
n (Σn, S̃n) =

1
p

p∑
j=1

γ (τn,j)2 −
2
p

p∑
i=1

p∑
j=1

γ
(
τn,j

)
γ
(̃
ϕn(λn,i)

)
·
(
u⊤

n,ivn,j
)2

+
1
p

p∑
i=1

γ
(̃
ϕn(λn,i)

)2
=

1
p

p∑
γ (τn,j)2 −

2
p

p∑ p∑
γ
(
τn,j

)
γ
(̃
ϕn(λn,i)

)
·
(
u⊤

n,ivn,j
)2
j=1 i=p−n+1 j=1

16
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T

T

t
f
c
r
o

R
n
o
T
e

R
c

R
l

−
2
p

p−n∑
i=1

p∑
j=1

γ
(
τn,j

)
γ
(̃
ϕn(0)

)
·
(
u⊤

n,ivn,j
)2

+
1
p

p∑
i=p−n+1

γ
(̃
ϕn(λn,i)

)2
+

1
p

p−n∑
i=1

γ
(̃
ϕn(0)

)2
=

∫
+∞

−∞

γ (t)2dHn(t) − 2
∫ b

a

∫
+∞

−∞

γ (t)γ
(̃
ϕn(x)

)
d2Θn(x, t)

− 2
p − n
p

∫
+∞

−∞

γ (t)γ
(̃
ϕn(0)

)
dΘn(0, t) +

∫ b

a
γ
(̃
ϕn(x)

)2dFn(x) +
p

p − n
γ
(̃
ϕn(0)

)2
.

By applying the technique from the proof of Theorem 6.1 of [22], and by using Theorem 3 of [17] to handle the limit
of Θn, it follows that:

Lγ ,F
n (Σn, S̃n)

a.s.
−→

∫
+∞

−∞

γ (t)2 dH(t) − 2
κ∑

k=1

∫ bk

ak

∫
+∞

−∞

γ (t) γ
(̃
ϕ(x)

)
· θ (x, t) dH(t) dF (x)

− 2
c − 1
c

∫
+∞

−∞

γ (t) γ
(̃
ϕ(0)

)
·

1(
1 −

1
c

) [
1 + m̆F (0) t

] dH(t)

+

κ∑
k=1

∫ bk

ak

γ
(̃
ϕ(x)

)2 dF (x) +
c − 1
c

γ
(̃
ϕ(0)

)2
. (29)

Corollary 5. Under Assumptions 3–6, a covariance matrix estimator S̃n minimizes in the class of rotation-equivariant
estimators the a.s. limit (28) of the Generalized Frobenius loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈

Supp(F ), ϕ̃(x) = ϕγ (x), where

∀x ∈ Supp(F ) ϕγ (x) := γ −1
[∫

+∞

−∞

γ (t) · θ (x, t)dH(t)
]

. (30)

This yields the oracle covariance matrix estimator Sγ
n := UnDiag

(
ϕγ (λn,1), . . . , ϕγ (λn,p)

)
U⊤
n .

For x ∈
⋃κ

k=1[ak, bk], the proof is the same as for Corollary 3. The only pending matter is what happens when x = 0.
The marginal contribution of ϕ̃(0) to the almost sure (nonrandom) limit of the loss function Lγ ,F

n (Σn, S̃n) is

−2
c − 1
c

∫
+∞

−∞

γ (t)γ
(̃
ϕ(0)

)
· θ (0, t) dH(t) +

c − 1
c

γ
(̃
ϕ(0)

)2
. (31)

he partial derivative of (31) with respect to ϕ̃(0) is

−2
c − 1
c

∫
+∞

−∞

γ (t)γ ⊤
(̃
ϕ(0)

)
· θ (0, t) dH(t) + 2

c − 1
c

γ ⊤
(̃
ϕ(0)

)
γ
(̃
ϕ(0)

)
.

he first-order condition is γ
(̃
ϕ(0)

)
=

∫
+∞

−∞
γ (t) · θ (0, t) dH(t), hence the solution is

ϕ̃(0) = γ −1
(∫

+∞

−∞

γ (t) · θ (0, t) dH(t)
)

.

The proof of Theorem 9 is concluded as follows: To the unobservable quantity c corresponds the plug-in estimator p/n;
o the unobservable function H(t) corresponds the plug-in estimator Ĥn(t) :=

∑p
i=j 1[̂τn,j,+∞](t)/p; to the unobservable

unction θ (x, t) corresponds the plug-in estimator θ̂n(x, t) from (8) for x > 0; and to the unobservable quantity θ (0, t)
orresponds the plug-in estimator θ̂n(0, t) from (27). The fact that these four unobservables can be replaced with their
espective plug-in counterparts at no loss asymptotically is established in the same way as in the proof of Theorem 6.2
f [22].

emark 5. Both infinite families of loss functions confirm the asymptotic optimality of the same infinite family of
onlinear shrinkage estimators Ŝγ

n . The Frobenius norm is important because it is just the Euclidian distance on the space
f matrices, whereas the Kullback–Leibler divergence is important in a completely different field: information theory.
wo justifications coming from such different perspectives combine to give strong backing to the covariance matrix
stimator Ŝγ

n , no matter which function γ the end-user is interested in.

emark 6. The three other nonlinear shrinkage formulas that do not fit into the mold of (18) are just elementary
ombinations of ϕ̂

γ
n (·) for two different γ functions.

emark 7. It should also be pointed out that, apart from the two special cases γ (x) = x±1, these two infinite families of
oss functions can only be handled by using the new technique of angle estimation introduced in Section 3.3.
17



O. Ledoit and M. Wolf Journal of Multivariate Analysis 186 (2021) 104796

T
A
c

e

6

T
w
p

able 5
verage losses computed for various estimators for p = 100 and n = 200. The first column gives the name of the loss function and the remaining
olumns give the average losses (over 1000 simulations) for a given estimator. In each row, the best (that is, smallest) number is in bold face.
Loss function FSOPT Identity Sample Linear Ŝ◦

n Ŝ∗
n Ŝ⊛

n ŜLEn ŜFRÉn ŜQn ŜQINVn

Frobenius 5.76 14.64 14.75 7.39 5.93 7.75 6.45 6.33 6.04 16.08 8.23
Inverse Stein 0.15 0.33 0.71 0.18 0.16 0.22 0.17 0.17 0.16 0.46 0.22
Minimum Variance 1.10 2.72 2.75 1.37 1.14 1.16 1.15 1.16 1.15 1.17 1.36
Stein 0.15 0.69 0.31 0.29 0.21 0.16 0.17 0.17 0.19 0.22 0.51
Inverse Frobenius 0.05 0.14 0.84 0.10 0.07 0.05 0.06 0.05 0.07 0.07 0.13
Symmetrized Stein 0.33 1.02 1.02 0.47 0.37 0.37 0.34 0.34 0.35 0.69 0.74
Weighted Frobenius 0.23 1.02 0.50 0.38 0.32 0.23 0.25 0.26 0.28 0.34 0.74
Inverse Weighted Frob. 0.29 0.50 5.22 0.34 0.30 0.44 0.33 0.34 0.31 0.91 0.41
Log-Euclidian 0.29 0.86 0.76 0.43 0.33 0.32 0.30 0.30 0.31 0.60 0.64
Fréchet 0.29 0.77 0.59 0.37 0.30 0.35 0.30 0.30 0.30 0.70 0.50
Quadratic 0.29 4.21 1.01 1.29 1.00 0.46 0.65 0.67 0.80 0.30 2.93
Inverse Quadratic 0.26 0.50 9.45 0.38 0.50 1.10 0.68 0.74 0.58 2.63 0.27

6. Monte Carlo Simulations

The goal of this section is to illustrate on simulated data that there is generally great benefit in using the shrinkage
stimator that is tailored to the loss function one has selected.

.1. General setup

The population eigenvalues are distributed as follows: 20% are equal to 1, 40% are equal to 3, and 40% are equal to 10.
his is a challenging problem originally introduced by [2]. We use the 12 loss functions from Tables 1–3. For each one,
e compute the FSOPT estimator specific to the particular loss function, as well as all 7 bona fide shrinkage estimators
resented in the paper. We use the same notation as [22]: Ŝ◦

n is the estimator optimal with respect to Frobenius, Inverse
Stein and Minimum Variance losses; Ŝ∗

n is the one optimal with respect to Stein and Inverse Frobenius losses; and Ŝ⊛
n the

one optimal with respect to the Symmetrized Stein’s loss. In addition, the identity matrix (rescaled to have same trace as
the sample covariance matrix), the sample covariance matrix, and the linear shrinkage estimator of [18] are also computed
for reference purposes. The results are averaged over 1000 simulations.

6.2. Nonsingular case

To produce the results of Table 5, the matrix dimension is p = 100 and the sample size is n = 200. In each row,
the performance of the best bona fide estimator is printed in bold. One can see that the winner is always the estimator
tailor-made for the loss function of the given row. Sometimes the difference with the other estimators is quite stark.
Obviously, the FSOPT always dominates, but usually the excess loss of the best bona fide estimator is quite small. This
finding reinforces the message that the asymptotically optimal estimators listed in the present paper perform as well as
they ought to, even in finite samples.

Regarding the other (reference) estimators, linear shrinkage does better than the two ingredients that it interpolates,
the scaled identity matrix and the sample covariance matrix, with respect to all but one of the 12 loss functions. This is
good news because in theory its shrinkage intensity is optimized with respect to the Frobenius loss only. Linear shrinkage
performs honorably across the board for such a simple estimator: it even manages to beat some nonlinear shrinkage
estimators in almost every row, typically a couple of them. Needless to say, linear shrinkage never beats the nonlinear
shrinkage formula optimized to the loss function in the given row, which shows that it ‘leaves some money on the table’
and that shrinking nonlinearly (in the appropriate way) delivers yet another round of improvement over and above linear
shrinkage.

6.3. Comparison of shrinkage formulas

Confirming the ordering of Proposition 1, Fig. 3 gives further insight into the loss functions by showing how the
7 estimators shrink the sample eigenvalues in this case.

The Quadratic and the Inverse Quadratic shrinkage formulas stand out as ‘outliers’, as shown by Proposition 1.
In Table 5, the estimators ŜQn and ŜQINVn display erratic performances when measured against other loss functions than
their own. The other estimators are better able to deliver respectable performance across foreign loss functions. The
estimators Ŝ◦

n and Ŝ∗
n have strong backing, from the Minimum-Variance and Stein’s loss, respectively; the Log-Euclidian

estimator ŜLEn represents a‘neutral’ compromise that has strong foundations in the differential geometry of the manifold
of tensors (a.k.a. positive definite matrices).
18
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Fig. 3. Comparison of 7 nonlinear shrinkage formulas. For a sample eigenvalue on the x-axis, the value on the y-axis corresponds to the output of
a given shrinkage formula.

Table 6
Average losses computed for various estimators for p = 200 and n = 100. The first column gives the name of the loss function and the remaining
columns give the average losses (over 1000 simulations) for a given estimator. In each row, the best (that is, smallest) number is in bold face.
Loss function FSOPT Identity Linear Ŝ◦

n Ŝ∗
n Ŝ⊛

n ŜLEn ŜFRÉn ŜQn ŜQINVn

Frobenius 11.25 14.64 11.77 11.36 15.34 12.59 12.60 11.69 22.04 17.56
Inverse Stein 0.27 0.33 0.28 0.28 0.42 0.31 0.32 0.29 0.73 0.36
Minimum Variance 2.22 2.72 2.27 2.23 2.26 2.24 2.25 2.24 2.30 2.36
Stein 0.29 0.69 0.51 0.50 0.30 0.36 0.35 0.41 0.40 1.07
Inverse Frobenius 0.09 0.14 0.13 0.13 0.09 0.11 0.10 0.11 0.10 0.16
Symmetrized Stein 0.66 1.02 0.79 0.77 0.72 0.67 0.66 0.69 1.07 1.43
Weighted Frobenius 0.40 1.02 0.71 0.70 0.41 0.48 0.47 0.56 0.46 1.93
Disutility 0.45 0.50 0.46 0.46 0.69 0.50 0.52 0.47 1.29 0.53
Log-Euclidian 0.59 0.86 0.69 0.67 0.64 0.60 0.59 0.61 0.91 1.12
Fréchet 0.57 0.77 0.61 0.60 0.70 0.59 0.59 0.58 1.03 1.01
Quadratic 0.40 4.21 2.72 2.65 0.80 1.42 1.37 1.90 0.49 8.42
Inverse Quadratic 0.32 0.50 0.52 0.53 1.85 0.95 1.03 0.73 4.15 0.32

6.4. Singular case

Table 6 presents further results when p = 200 and n = 100.
Once again, the pattern is confirmed overall, except for one violation: ŜLEn beats Ŝ⊛

n both ‘home’ and ‘away’: with respect
to the Log-Euclidian loss and, unexpectedly, with respect to the Symmetrized Stein’s loss also. (In other simulations not
reported here, we double-checked that Ŝ⊛

n does beat ŜLEn with respect to the Symmetrized Stein’s loss when dimension
is high enough, as implied by large-dimensional asymptotic theory.) Both of these estimators plow the same narrow but
interesting field of estimators that are equivariant with respect to matrix inversion, so it is not completely surprising that
the estimator that beats Ŝ⊛

n on its home turf shares the same desirable property.
Remarks regarding the two simple estimators (scaled identity and linear shrinkage) essentially go in the same direction

as in Section 6.2. We excluded the sample covariance matrix because it is not invertible, so most of the loss functions
return +∞.

6.5. Comparison with simpler alternatives: the matrix as a whole

We examine two alternative approaches that make compromises in order to obtain formulas that are simpler than the
ones developed in this paper. On the one hand, linear shrinkage [18] compromises by forcing all eigenvalues to be shrunk
19
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Fig. 4. PRIAL as a function of the spread of the bulk of the population eigenvalues for 3 bona fide estimators under 8 loss functions.

towards the same target with the same shrinkage intensity, and by considering only the Frobenius loss; on the other
hand, the spiked-model approach [5] compromises by assuming that the bulk of the population eigenvalues (meaning:
all of them except for a vanishing fraction of them, called spikes) are equal.

In this part, we take both linear shrinkage and spike shrinkage ‘outside of their comfort zone’ by considering 8 different
oss functions, on the one hand, and by considering specifications where the bulk of the population eigenvalues can be
istinct, on the other hand. Most applied researchers will be interested to know how robust the simplified formulas are
gainst violations of the framework under which they have been derived.
The 8 loss functions that we consider are the ones in the intersection of the 12 considered in this paper with the

8 for which [5] provide closed-form spike shrinkage: (1) Frobenius, (2) Stein, (3) Inverse Frobenius, 4) Inverse Stein,
5) Symmetrized Stein, (6) Fréchet, (7) Quadratic, and (8) Inverse Quadratic. The code for spike shrinkage was taken
irectly from [4]. As far as the population eigenvalues are concerned, the initial specification is to have a single spike
t 10, and the p − 1 bulk eigenvalues equal to 1. From this base, we will allow for heterogeneity in the bulk by keeping
alf of the bulk equal to 1, while setting the other half equal to τ ∈ [1, 5]. It is only fair to allow bulk eigenvalues to

be distinct: after all, this is the generic case in real-world applications. We put 100 eigenvalues in the bulk, plus (as
mentioned above) a single spike, for a total of p = 101 eigenvalues. We take the (limiting) concentration ratio to be
c = 1/2, which implies n = 202.
20
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where Li
n denotes one of the eight loss functions listed above, Ŝ∗,i

n denotes the FSOPT estimator tailored to each specific
loss function as per Tables 1–3, S̃n denotes the estimator under consideration (whether linear shrinkage, spike shrinkage,
or nonlinear shrinkage), and the expectation is approximated by the average of 1000 Monte Carlo simulations. By
construction, the PRIAL of the sample covariance matrix is 0% whereas the PRIAL of the FSOPT estimator is 100%. Therefore,
the PRIAL measures how much of the potential for improvement relative to the sample covariance matrix is attained by
a given estimator S̃n.

One can see that, even though the dimension is not overly large (p ≈ 100), nonlinear shrinkage captures nearly 100%
of the potential improvement with respect to all loss functions, regardless of the spread of the bulk eigenvalues. Linear
shrinkage has more of a mixed performance, but still generally manages a PRIAL of at least 50%. It beats the sample
covariance matrix for all 8 loss functions, which shows that its attractiveness extends far beyond the Frobenius loss. It
also always (weakly) beats spike shrinkage as long as τ ≥ 2.5. Note that linear shrinkage is the only estimator that keeps
the same formula throughout, so it is ‘fighting with one hand tied behind the back’ when it has to compete under the 7
loss functions different from Frobenius loss.

As expected, the performance of spike shrinkage is near-perfect when its specification matches reality (τ = 1: all bulk
igenvalues are equal), but it monotonically degrades as soon as the bulk population eigenvalues become heterogeneous.
his drop in performance is not so pronounced with the Inverse Frobenius, Inverse Stein and Inverse Quadratic losses,
ut it is very pronounced with the 5 other loss functions. There is even a case (τ = 5 and Fréchet loss) where spike

shrinkage underperforms the sample covariance matrix, which results in a negative PRIAL. This is a result that should
be expected purely from theory: Unlike linear and nonlinear shrinkage, spike shrinkage can actually be worse than the
sample covariance matrix even in the large-dimensional asymptotic limit.

Compared to the two simpler alternatives, nonlinear shrinkage does better across the board. In particular, there are
scenarios where the optimal nonlinear shrinkage formula is (nearly) linear; and, even then, nonlinear shrinkage performs
just as well as linear shrinkage, for all practical purposes. Similarly, there are scenarios where the spiked covariance
model holds perfectly true (bulk maximum equal to one); and, even then, nonlinear shrinkage performs just as well as
spike shrinkage, for all practical purposes.

The overall conclusion is that, among the simpler formulas, linear shrinkage can ‘leave some money on the table’ when
the optimal shrinkage is highly nonlinear whereas spike shrinkage is vulnerable to the risk that its stringent specification
of bulk-eigenvalue equality is violated by reality. Only the full-blown nonlinear shrinkage formulas derived in this paper
avoid both pitfalls and deliver state-of-the-art enhancement of the sample covariance matrix across the board.

6.6. Comparison with simpler alternatives: focus on the spike

There might be a perception that nonlinear shrinkage does better on the bulk, whereas spike shrinkage does better on
the spike. This is hard to justify formally, as the loss functions used in the spike literature pertain to the whole covariance
matrix, placing no special ()over-)weight on the spike. Nonetheless, in Table 7, which appears in the supplementary
material, we isolate the spike’s contribution to the overall loss, for the 8 loss functions from Section 6.5. This is easy
to do because every one of these loss functions can be decomposed as a sum of individual contributions attributable to
the p eigenvalues. Fig. 5 displays the corresponding Monte Carlo simulation results (obviously in terms of risk instead of
loss now).

The performance of the sample covariance matrix can be so erratic as to not even be on the same scale as the other
estimators in many scenarios. The risk contribution of the FSOPT is zero by construction. The pattern is that spike shrinkage
and nonlinear shrinkage estimate the spike equally well when the spike model’s assumption of equal bulk eigenvalues is
satisfied, or nearly satisfied. However, as the bulk spreads out, nonlinear shrinkage estimates the spike more accurately
than spike shrinkage for all 8 loss functions where the two methods overlap.

7. Conclusion

In this paper, we have

• developed a new estimator of the angle between any sample eigenvector and any population eigenvector by
exploiting a sophisticated equation from random matrix theory (RMT);

• doubled the number of loss functions that can be handled from 6 to 12 (compared to related earlier work), which
can only be achieved by the new technique of angle estimation;

• proposed a classification of loss functions by their finite-sample optimal shrinkage formulas;
• increased the number of asymptotically optimal nonlinear shrinkage formulas from 3 to 7 (compared to related

earlier work);

• established an ordering of the nonlinear shrinkage formulas (from largest to smallest);
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Fig. 5. Normalized contribution of the spike to the overall risk of the covariance matrix for 8 loss functions, as a function of the spread of the bulk
of population eigenvalues. The setup is the same as in Fig. 4, except that we run 10,000 simulations instead of 1000 simulations.

• delivered two infinite families of loss functions and their (correspondingly infinite family of) optimal nonlinear
shrinkage formulas, which can only be achieved by the new technique of angle estimation;

• and introduced a new loss function founded on the economic concept of utility maximization.

As a simpler alternative approach, Donoho, Gavish, and Johnstone [5] consider a ménagerie of 26 loss functions under
the spiked covariance model of [13]. The key distinction in this model is between the bulk, which is comprised by
eigenvalues packed shoulder-to-shoulder like sardines, and the spikes, which are a few select eigenvalues large enough
to separate from the bulk. Donoho et al. [5] treat the spikes carefully, but they just collapse the bulk. This approach
is perfectly legitimate under the assumption that they make, namely, that all bulk population eigenvalues are equal.
However, in many applications, such an assumption is unrealistic or may not be known to hold. In the general case,
22
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ot all bulk population eigenvalues are equal, so valuable information can be gleaned from the angle between sample
nd population eigenvectors, and from applying differentiated shrinkage inside the bulk. Monte Carlo simulations show
hat the resulting nonlinear shrinkage performs, for all practical purposes, just as well as spike shrinkage when all bulk
opulation eigenvalues are equal, but performs often much better when they are not. Therefore, in this context, the KISS
Keep it simple, statistician!) principle does not seem to benefit applied researchers: By upgrading from spike shrinkage to
ull-blown nonlinear shrinkage, they have, for all practical purposes, nothing to lose but much to gain. In addition, at least
urrently, spike shrinkage, unlike nonlinear shrinkage, is only available for the case where the dimension is smaller than
he sample size, which limits practical applications.

Having said this, Donoho et al. [5] roll out a clever technology that convincingly documents three closely interrelated
acts that have not garnered sufficient attention in this field:

1. The choice of loss function has a profound effect on optimal estimation.
2. Eigenvalue inconsistency: The sample eigenvalues are spread, biased, and shifted away from their theoretical

(population) counterparts by an asymptotically predictable amount.
3. Eigenvector inconsistency: The angles between the sample eigenvectors and the corresponding population eigen-

vectors have nonzero asymptotic limits.

uch fundamental truths need to be hammered in again and again, in every possible way.
Finally, we may say a word about the choice of loss function. 12 of them have been solved already, yielding seven

ifferent nonlinear shrinkage formulas, in addition to the two infinite families, which should be more than enough to
atisfy any reasonable need. By definition, it is the duty of the end-user to pick the loss function, but perhaps some
ight-touch guidance can help orient readers through a forest with so many trees. For anyone interested in using a
ovariance matrix estimator to minimize variance, risk, or noise in any sense, certainly the Minimum Variance loss
unction is the appropriate one; an additional advantage is that for this loss function a new technology has arisen that is
o more complex than kernel density estimation, and so is extremely fast and scalable to ultra-high dimensions [23]. For
esearchers concerned with the decision-theoretic aspects of the problem, a loss function based on the Kullback–Leibler
ivergence (also called relative entropy), such as Stein’s loss, is the natural candidate. For other applications, such as fMRI
ensors, where it is important to regard eigenvalues close to zero as being ‘as distant’ as eigenvalues close to infinity, then
he Log-Euclidian loss function is well suited: It appears a good compromise because it produces shrunken eigenvalues
hat lie in between the ones from the Minimum-Variance loss and the ones from Stein’s loss. For all other categories of
roblems, integrating over all possible permutations/unknown directions, and using some approximations from random
atrix theory, as per Section 4 of [8] may be used to zoom in on a specific loss function attuned to the situation at hand.
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