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Let F, be an estimator of an [FRA survival function F and let 4 be such that
0 < F(A) < |. The main result constructs an IFRA estimator by splicing the smallest
increasing failure rate on the average majorant and greatest increasing failure
rate on the average minorant of the restrictions of F, to the intervals [0, 4]
and [A4, oc), respectively. The resulting etimator F, has the property that
sup, |F,— F| <ksup, |F,— F|, where k> 2, and k =2 if and only if 4 is the median
of F. As a consequence, il F, represents the empirical survival function, or the
Kaplan-Meier estimator, the estimator F, inherits the strong and uniform
convergence properties, as well as the optimal rates of convergence of the empirical
survival function and Kaplan-Meier estimator respectively. Simulations show a
substantial improvement in mean-squared error when comparing F, to those IFRA
estimators available in the literature. Under suitable conditions, asymptotic
confidence intervals for F(/,) are also provided. € 1994 Academic Press, Inc.

I. INTRODUCTION

Let F be a distribution function on (0, ), and let F=1—F be its
corresponding survival function. The empirical distribution function F,
enjoys many good properties as an estimator of F. For example, £, is
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unbiased and mean square consistent, as well as almost surely uniformly
consistent with optimal rates O(n~') and O(n~'?(loglog n)'’?) respec-
tively. Moreover, as shown by Dvoretzky er al. (1956), F, is asymptotically
minimax among the collection of all continuous distribution functions.
When F, however, is know to satisfy certain nonparametric constraints, F,
does not typically belong to the constrained class of distributions in ques-
tion and then it is of interest to search for estimators belonging to the class
and sharing many of the good properties F, has in the unrestricted case.

Several authors have considered the estimation of a distribution function
subject to membership in a constrained class. Grenander (1956) proved
that the maximum likelihood estimator of a concave distribution function
F is the least concave majorant C, of the empirical distribution function
F,. Consistent estimators of IFR distributions were obtained by Marshall
and Proschan (1965). Boyles and Samaniego (1984) provided estimators
for NBU survival functions and proved their strong uniform consistency in -
compact sets, Barlow and Scheuer (1971), hereafter referred to as BS
(1971), considered an estimator for an IFRA distribution and a proof of
the strong consistency of the estimator was given there as well as in Barlow
et al. (1972). When F is convex, Kiefer and Wolfowitz (1976) showed the
greatest convex minorant of F, to be asymptotically minimax. Wang (1988)
showed that the greatest star-shaped minorant (GSM) of F,, is closer to the
true star-shaped F than F, is in the sup norm.

The focus of this paper is the IFRA class. Recall that F is IFRA if and
only if its hazard function is star-shaped. That is, if and only if

F
——ln—g is nondecreasing for te (0, o0). (1)

Since the IFRA class of distribution is the smallest class which contains the
exponential distribution and is closed under the formation of coherent
systems and weak limits (see Birnbaum ez al. (1966)), it has found an
important place in reliability theory. Its importance also derives from the
fact that it arises in connection with shock models and wear processes.
See, for example, Esary et al. (1973), Esary and Marshall (1975), and
A-Hameed and Proschan (1973, 1975).

It is clear that any distribution function which is constant on an interval
does not satisfy (1.1) and hence F, is not IFRA. The search for alternatives
to F, which belong to the IFRA class and possess good properties goes
back to BS (1971). It is well known (e.g., Boyles et al. (1985)) that the
maximum likelihood estimator (MLE) in this case converges but to the
wrong distribution. For example, when F(x)=x, 0<x <1, the MLE of F
converges to [(1 —x)/(1 + x)]* rather than to (1 — x). Barlow and Scheuer
(1971) constructed an estimator F* using isotonic regression ideas, and a
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proof of the strong consistency of F* was given in BS (1971, p. 155) and
Barlow et al. (1972, p. 259). However, some of the conditions assumed in
their proof do not hold for all TFRA distributions. More precisely, a
condition needed to prove the strong consistency of F¥ is that

lim max |H(X,)~H(X, =0 as, (1.2)

n—-on lIgisn—1

where H and H, are the true and empirical failure rate average functions
defined by H(z)=log(l — F(¢))/t and H,(t)=log(l — F,(2))/t, respectively,
and where X,,, .., X, represent the order statistics. However, as shown by
Boyles (1981), for the case F(¢)=1—e"",

Pr{lHn(X[l))_H(X(l))l >€} ? (1 - 1/’1)""’“7“ -»e"(“‘c);])

and hence (1.2) does not hold. The strong consistency of the isotonic
regression estimator continues to be an open question.

Wang (1987b) gives a nice treatment of the optimal asymptotic character
of the estimator G,, whose hazard function C, is the GSM of the sample
hazard function [0, A]. In particular, it is shown there that G, is n'/%-
equivalent to the sample distribution function F, in the sense that
sup, <; n'2 |G, — F,| < 0, for any 1 with F(1) <1, provided F is, essen-
tially, strictly IFRA. When C¥ is the GSM of the sample hazard function
on (0, o), under more stringent conditions (see Theorem 2 of Wang
(1987b)), it was also shown that sup, _, n'? |F,— G¥ -5 0, where G* is
the distribution function with hazard rate function C} and F(1) < 1. This
implies that G, and G} are weakly uniformly consistent on compact sets.
The conditions of Theorem 1 of Wang (1987b) are not, for example,
satisfied when F has a Weibull distribution with shape parameter 1 <a <2,
and the conditions of Theorem 2 of Wang (1987b) do not hold for the
Weibul distribution with shape parameter a>1. The estimation of an
IFRA survival function based on censored data has been presented in
Wang (1987a), where estimators are constructed which converge weakly
and uniformly on compact sets.

Thus, the problem of the existence of strong uniform consistent
estimators for an IFRA distribution, which belong to the IFRA class,
remains open. The purpose of the present paper is to find estimators
of F which are members of the IFRA class and have good properties
under a minimal set of conditions. In particular, it is shown that the
estimator

ﬁn(t):{supls:sA(Fn(s}) > t<A, (1.3)

ian SsSl(Fn(s))m’ t>Aa
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where F,=1—F, and A is such that 0 < F(4) < 1, is IFRA and inherits the
consistency properties of F,, and its rates of convergence. More specifically,
it is shown that

sup |F,(x)— F(x)| <k sup |F,(x)— F(x)|  for some k3>2,

X

where k=2 if and only if A is the median of F.

The organization of the paper is as follows. Section 2 defines two IFRA
transforms which map an arbitrary function f with support /< [0, oc) into
IFRA functions f, and f,. The fixed points of these transforms are the
IFRA functions. It is shown that f, corresponds to the greatest IFRA
minorant (GIFRAM) of /. Similarly, f, defines the smallest IFRA majorant
(SIFRAM) of f. Section 3 considers the main result which constructs an
IFRA estimator by splicing the SIFRAM and the GIFRAM of the restric-
tions of F, to the intervals [0, 4] and [4, o), respectively. The estimator
F, inherits the consistency properties of F, and its convergence rates. In the
case of no censoring, letting F, be the empirical survival function, F, enjoys
strong uniform consistency with optimal rates O(n~'*(log log n)'/?). In the
case of censored data, F, may be chosen to be the Kaplan-Meier estimator
and then F, inherts all the consistency properties of F,. Csorgd and
Horvath (1983) provide a nice treatment of the strong uniform consistency
results for the product-limit etimator.

2. THE IFRA TRANSFORMS

Let f be a nonnegative real-valued function with domain /< [0, o),
where I=[a, b). By a slight abuse of the terminology, f is said to be
IFRA if —log f is star-shaped. Clearly, when f is a survival function, the
terminology agrees with the usual definition of an IFRA distribution
function.

Let f; and f, be the greatest IFRA minorant (GIFRAM) and the
smallest IFRA majorant (SIFRAM) of f, respectively. That is,

Sfi(x)=sup{g(x): —In g is star-shaped on Jand g< [} @1
f2(x)=inf{g(x): —In g is star-shaped on /and g > f'}. '

It is not obvious that f; and f, are well-defined, and it is not clear that
functions g exist such that g< f (g <f) and —In g is star-shaped. Consider
the following functions:

hi(t)y= inf (f(s5))", asi<éb (2.2)
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and
hy(t)= sup (f(s)?, a<git<b. (2.3)

t<s<b

Then it is easy to see that 4, and s, are IFRA with 4, < fand 4,2 fso
that the sets of functions over which the supremum and the infinum are
taken in (2.1) are not empty. To motivate (2.2), note that if fis IFRA, then
(f(1))"* is nonincreasing so that (f(2))"* =inf, . ,(f(s))"". If fis not IFRA,
f violates the previous identity and (2.2) represents the adjustment needed
to map f into an IFRA function. Similar comments apply to (2.3).
Moreover, it turns out that 2, = f| and 4, = f, as the next theorem shows.

THEOREM 2.1. Let f be nonnegative with domain 1< [0, ), and let h,
and h, be defined as in (2.2) and (2.3). Then,

(1) f=h=h,ifand only if [ is IFRA.
(it} h,(h,) is the GIFRAM (SIFRAM) of f.

Proof. To show (i), note that if f is IFRA, then (f(¢))"" is non-
increasing so that inf, ., . ,(f(5))”* =sup, <, <»(f(s))” = f(¢). Since h,, h,
are IFRA, the converse follows immediately. To prove (ii), let g be any
IFRA function with g < f. Then by (i),

g(t)=inf (g(s))”< inf (f(5))" =h,(1).

ass<t ass<!

Hence A, is the GIFRAM of f. A similar argument shows that 4, is the
SIFRAM of /. |

It is worthwhile noting that while (2.2) defines a survival function when
fis a survival function, the transform (2.3) may map a survival function F
to a function F*, with F* =1 for all x. This occurs for distributions with
slowly or regularly varying tails. To see this, let F(¢)=h(tr) 1~ where h is
slowly varying at infinity and « > 0. It follows that

—Ink 1
I hy(1) = ¢ inf {——"S—(S—)Jra%}:o,

s=t

since —In h(s)/s >0 and Ins/s— 0. When F has bounded support, (2.3)
defines a true survival function. Thus, whether or not (2.3) defines a sur-
vival function depends on the tail heaviness of F. One important special
case for which A, maps f into a survival function is that of distributions
with exponential tails. Rojo (1988, 1991) discusses a general concept of tail-
heaviness and treats the case of exponentially tailed distributions in
particular.
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3. ESTIMATION OF AN IFRA DISTRIBUTION FUNCTION

The SIFRAM and GIFRAM of F, are unsatisfactory as etimators of F.
Neither achieves uniform consistency because each has poor performance
near one of the tails of F (i.e, either near zero or near cc). However, it is
possible to exploit the best properties of each estimator as the following
construction will demonstrate.

Let F, be a survival function which is estimating the TFRA distribution
F. Let A be such that 0 < F(4) < 1. Define

SuptsssA(Fn(s))’/S, ’<A5

= 3.1
inf, o, (F() 1> A (3.1)

ﬁn(t)={

Note that the estimator (3.1) is constructed by splicing, at the point A4, the
SIFRAM and the GIFRAM of the restrictions of F, to_the intervals [0, 4]
and [4, o), respectively. It follows from (3.1) that F,(4)=F,(4), while
F()=F,(¢t) for t<A, and F,(t)<F,(¢) for t=A. Thus, F(t)—0 as
t > . Also, it follows_easily from (3.1) that F, is nondecreasing and
right-continuous. That F, is IFRA follows easily by noting that

. —~In F,(s)
- f —n ca,
—inF (1) Jicisa s
r ~InF
sup ——2 "(s), 1= A,

A<s<t

is nondecreasing in ¢.
The main result will now be proven. The proof hinges on properties of
convex functions and the following technical result.

LemMma 3.1. Let h, g be bounded functions on the interval [a,b]. Then,

| inf A(y)— inf g(y)I< sup |A(y)—g(»)l, (3.2)

ag<y<b asys<obd asy<b

and hence, also, |Sup, <, <, h(¥)—S0P, <, <s &(V) SSUP. <, <p |H(Y)—g(¥)].

Proof. Let {y,} be a sequence in [a,b] for which g(y,) <
inf,c ,<p 8(¥) + 1/n. Assume without loss of generality that
inf,cycph(y) —infuc <y g(»)=4>0. Then h(y,)>inf,c,ophl(y)=
infoc,cp g(V)+A28(y,)+A—1/n; that is, h(y,)—g(y,)2A4—1/n It
follows that sup, ., ., [A(y)— g(»)| = 4, completing the proof. |

We now turn our attention to the main result of the paper.
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THEOREM 3.2. Let F be IFRA and F, be an estimator of F. Let F, be
defined as in (3.1). Then,

sup |F. (1) — F(1)) < max { }sup \F(t)— o))

!

F(4) F(4)
Proof. Using Lemma 3.1 and the fact that F is IFRA, it is easy to see
that

sup |F,(1)= F(r)| =sup | sup (Fy(s))"— sup (F(s))"”"|
t< A (A (<5< A EEY {
<sup  sup |(F, ()" — (F(s))"|.
t€A 1€5€4
Now, since F(A4)< F(s) for se[¢, A], it follows from the concavity of x~,
when ¢ <s, that

(Fu(s))" — (F(s))" _ (F(4))™”

— - <— = (F(A4))" L,
F,(s)— F(s) F(A4)
Therefore,
sup sup [(F,(s))"” —(F(s))”| <sup sup (F(4))"~'|F,(s)— F(s)|
I<A t1<s<A <4 <5< 4
1 - -
S——sup [F,(s) — F(5)].
(A)ssA

On the other hand,
sup |F,(t)—F(t)l =sup | inf (F,(s))”— inf (F(s))"|

tz A tzA A<s<t ALs<t

<sup sup |F,(s)"” — (F(s))"|.
124 A<s<1t
Now, for se[4,t], F(t)<F(s)<F(4). It then follows from the
convexity of x”, when t>s, that [(F,(s))” — (F(s))*V/[F.(s)— F(s)] <
[1—(F(A4))"*]/[1— F(A)]. Therefore,

sup |F,(1)— F(t)| <sup sup

12 A t2A A<s<t

{1 ~ (F(4))”

€ }an(s)—F(s)l
1 - F(A)

1 o -

S——T— su IFH(S)—'F(S)I,
1—F(A) r;g

from which the result follows. |

The following corollary is immediate.
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COROLLARY 3.3. Let F, denote the empirical survival function. Then I%,,
defined by (3.1) is a strong uniform consistent estimator of F with optimal
rate of convergence O(n~"?(log log n)'?).

A closed form of I:'",, useful for computational purposes is obtained from
(3.1). Let k be the unique integer such that X,, < 4 <X, ,,. Then,

i—1 X k 1/A
max{ max (1—(i——)) ,<1——) }, t< A4,
{itt<X;i< A4} n n

n(t)= i 172.4} k t/A . (33)
min{ min (1——) ,(1——) }, t2 A,
{i:rA<Xi< 1) n n

We now turn our attention to the censored case. Let X, ..., X, be a
random sample from the IFRA distribution F. In the same set-up as in
Csorgé and Horvath (1983), another random sample Y,,.., Y, with
(left-continuous) distribution function H censors on the right the distribu-
tion F. As a result, the observations available consist of the pairs (X}, d;),
1<j<n, where Z,=min(X;, Y;) and 9, is the indicator of the event
{Z,=X,}. Let F, be the Kaplan—-Meier (1958) estimator of F defined by

n—N; ,— 1\
[1 <7~_—JN—) , 1< X,

Fn(t)= lgj<niXj<t Jin

0, 1> X,

I>

where X,, denotes the nth order statistic, and N;., =37 _, Iiy, <y,

Note that the distribution G of Z,; is given by G(r) = F(¢) H(t) for each
t. Csorgé and Horvath (1983) provide a nice treatment of the closeness of
F, to F as well as the rates of convergence of F, to F. For a distribution
function F*, let Tp. = inf{t: F*(z)=1}. Also define d,(FF,) =
SUP _ o < < 7¢ |F(1) — F,(t)|. The following corollary gives the strong
uniform convergence properties of F, when F, is the Kaplan-Meier
estimator, and follows directly from Theorem 3.2 and Corollary 2(ii) in
Csorgé and Horvath (1983).

COROLLARY 3.4. Let F, be the Kaplan-Meier estimator for the IFRA
survival function F._If Ty<Ty<oo, then F, defined by (3.1) has the
property that d,(F, F,) converges to zero with probability one.

4. SIMULATIONS

Simulations were performed to compare the MSE behavior of the
estimator (3.1) with the MSE of the empirical survival function and those
estimators proposed by Wang (1987b) and Barlow et al. (1972). Five types
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of distributions were considered: the standard exponential; the Gamma
distribution with unit scale and shape parameter equal to two; and the
Weibull distributions with unit scale and shape parameters, a=1.1, 1.25,
1.5. These were selected since it is believed that the tail-heaviness of the
underlying distribution has an effect on the behavior of Wang’s estimator.
That is, the lighter the tail of the underlying distribution, the lesser the
problem Wang’s estimator has in estimating the tail of the distribution.

The isotonic regression estimator was computed, as given on p. 258-259
of Barlow et al. (1972) with equal weights of 1/n, and Wang’s estimator
was computed by using the following expression:

- '—i /XY s
F(s)={max (1—(—1—)) l}, Xy 1) Ss< Xy,

k<j<n n

Although the strong uniform consistency of the estimators defined by
(3.1) does not depend on the 0 < A < oo selected, the mean-squared error
properties of the estimators are clearly affected by the selection of 4. Since
the estimator F, agrees with G, as defined by Wang (1987b) on [0, 4), it
is clear that as A4 increases, the maximum MSE of F, on [0, 4) will
increase since the estimator G, does not perform well in the right tail of the
distribution. Similarly, as 4 decreases, the maximum MSE of F, on (4, )
will increase. Simulations—the results of which are not presented

4.0 T i T —r v T T T T
» .
P4 —a— Spliced
g —  Wang
TR —#—  Isotonic
T
(1]
s
@
3
=2
(72}
S 20f
[}
=
©
I
N
T
S ok
c
]
-~
(7]
L
0.0 — . .
0.00 0.20 0.40 0.60 0.80 1.00
Exp[-x]

Fic. 1. Sample size is 30 from the exponential, 10,000 replicates.
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FiG. 2. Sample size is 30 from gamma (2, 1), 10,000 replicates.

here—were performed choosing A as the median of F. These simulations
showed that the spliced estimator consistently beats Wang’s estimator in
the right tail, while also being superior to the isotonic regression estimator
on the left tail. Clearly, in applications the value of the median of F is
rarely known and hence a criterion for selecting 4 must be proposed. Since
the median of F performs well as a choice for 4, one possible criterion for
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Fic. 3. Sample size is 30 from the Weibull (1.25,1), 10,000 replicates.
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selecting A is to let 4 be the sample median. Simulations showed that the
resulting estimator, although still better than Wang’s estimator and the
isotonic regression estimator in the right and left tails, respectively, when
compared to the empirical survival function, showed a substantial increase
in MSE.

An alternative criterion for selecting 4 is now proposed based on the
intuitive notion that an IFRA estimator close to F, will behave, in MSE,
similar to F,. Select A to minimize sup, |F,(¢t)— F,(z)]. An easy argument
shows that 4 must then be selected to be one of the order statistics. As the
value of k such that 4= X, minimizes sup, |F,()— F,(t)| may not be
unique, we select & to be the smallest integer, 4> 2, minimizing the
expression

sup |F,(t)— F, (1)

=max{max{ max (F,.(X(,_,,))X“~l>f’“f'—(F,,(X(.»_,,))},

1<i<k i—1<j<k

s {(Fn(X(i))) - k mln 1 (FH(X(j)))X“H)/XU)}}.

k+1<isn—1 <jsi

The results of the simulations, presented in Figs. 1-3, were obtained with
this particular selection of A. Sample sizes of 15 and 30 were generated
with 10,000 replications. In all cases considered, similar results were
obtained and Figs. 1-3 are a representative sample of those results,

In the figures, the mean square errors of the estimator defined by
(3.1), and those of Wang and Barlow ef al., were standarized by dividing
by F(x) F(x)/n, the mean square error of the empirical survival function.
One notes from Figs. 1-3 that, as expected, the spliced estimator con-
sistently beats Wang’s estimator in the right tail, although the difference
in MSE decreases with a decrease in the heaviness of the tail of the
underlying distribution. Also, the spliced estimator behaves better, in terms
of MSE, than the isotonic regression estimator when estimating the left
tail.

5. AsyMPTOTIC CONFIDENCE INTERVALS AND BANDS

The development of confidence intervals for F(t,) and confidence bands
for F based on F, appears to be a challenging technical problem in its full
generality. In this section, asymptotic confidence intervals for F(t,) will be
presented when t,< A4 and F is assumed to satisfy the conditions of
Theorem 1 in Wang (1987b). Under similar conditions, confidence bands
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for F on compact intervals are also possible. These results are stated in the
following theorem.

THEOREM 5.1. Let F satisfy the assumptions of Theorem 1 of Wang
(1987b), and let F, be defined by (3.1). Let | f||® =sup, << | f(x)]. Then

(i) /1 (Fy(to)— Flto)) =5 N(O, F(to) Flty)) for to< A.
(i) VnlF,—F|25 2|82, where t,<t,<A, and % is a
Brownian bridge.

Proof. Note that F,(1)=1—G,(t) for t < A, where G,(¢) is as defined in
Wang (1987b). It follows from Corollary 1 of Wang (1987b) that
IF,—F 250 for a<b<A and hence, /n(F,(t)—F,(1))-50, for
1< A. Since, \/n (F, (1)~ F(1) = /n (F(0) = F(t)) +/n (F() = F(1)), (i)
follows immediately. A similar argument yields (ii), after noting that [|-||%
is a ||-|| ® -continuous function. ||

The reader is referred to Manija (1949) for the details of the asymptotic
distribution of ||/ (F,— F)||%.

6. AN EXAMPLE
To illustrate the effect of transforming the empirical survival function

into an IFRA survival function, the data given by Pike (1966) have been
used. The date represent the times in days, after the start of the experiment,

1.0 ¥ T T T T T T T — T W T T
09 k .
08 b @ T IFFIA.Estimator i
Empirical

0.7 b

06 ] ]
05 |- _

04 { ]

Survival Probability

0.3 [ § 4

0.2 t' ~

~

o T . 7

0.0 - 4 e i t — — 1
40 60 80 100 120 140 160 180 200
Time of Diagnosis of Carcinoma (in Days)

FiG. 4. The IFRA estimator and the empirical survival function for the carcinoma data.
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at which carcinoma was diagnosed for a group of rats exposed to the
carcinogen DMBA and are given as follows: 43, 64, 88, 90, 92, 106, 109,
113, 116, 120, 127, 130, 134, 146, 165, and 204. Pike (1966) fitted the data
by a Weibull distribution with shape parameter 3. Figure 4 illustrates the
estimator (3.1) with A selected to minimize sup, |F,(t)— F (¢)| which in
this case gives 4 =64; the empirical distribution function is also shown
for comparison purposes. As expected, F,(t)>F,(t) for t<A while
F(A)=F,(A) and F,(t)<F, (1) for 1> A.

n
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