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Estimation of a Normal Covariance Matrix
with Incomplete Data under Stein’s Loss*

YOSHIHIKO KONNO

Chiba University, Chiba 263, Japan

Suppose that we have (n —a) independent observations from N,(0, 2') and that,
in addition, we have ¢ independent observations available on the last (p — ¢) coor-
dinates. Assuming that both observations are independent, we consider the problem
of estimating 3" under the Stein’s loss function, and show that some estimators
invariant under the permutation of the last (p —¢) coordinates as well as under
those of the first ¢ coordinates are better than the minimax estimators of Eaton.
The estimators considered outperform the maximum likelihood estimator (MLE)
under the Stein’s loss function as well. The method involved here is computation of
an unbiased estimate of the risk of an invariant estimator considered in this article.
In addition we discuss its application to the problem of estimating a covariance
matrix in a GMANOVA model since the estimation problem of the covariance
matrix with extra data can be regarded as its canonical form. ¢ 1995 Academic

Press, Inc

1. INTRODUCTION

Suppose that we observe S:pxp following a Wishart distribution
W,(Z.,n—a) with n—a>p+ 1. Partition 2 into (3!' 12), where X, is
¢ xc. It is also assumed that the extra data X, X, ..., X, are available such
that each X;: (p—c¢)x 1 follows a N, (0, X,;) distribution independently.
The problem considered here is estimating 2 based on a sufficient statistic
(S, W), where W=3"_, X, X

In this paper we employ the Stein’s loss function,

L(Z Z)y=tr(2Z ') —logdet(£X ')—p, (1)

and evaluate the performance of an estimator by considering its risk func-
tion R(2, 2)= E[L(2, 2')], where the expectation is taken with respect to
the joint distribution of (S, W).
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Anderson (1957) derived the maximum likelihood estimator (see also
Anderson and Olkin, 1985). Later Eaton (1970) obtained the best lower
triangular invariant estimator under the loss function (1). The method
involved there utilizes a representation of Bayes invariant procedures in
terms of Haar measure from Zidek (1969). It is pointed out in Eaton
(1970) that this estimator is minimax because of the result in Kiefer (1957),
and that the maximum likelihood estimator is inadmissible under the
loss (1) since it is also lower triangular invariant and different from the best
one (see also Eaton, 1989, and Krishnamoorthy, 1991, for this argument).
More recently, Krishnamoorthy (1991) considered a class of estimators
which are invariant under the permutation of the first ¢ coordinates and
showed that some estimators are better than Eaton’s minimax estimator
under the loss function (1). Furthermore, Krishnamoorthy (1991) pointed
out that an estimator should be invariant under the permutation of the last
(p —¢) coordinates as well as under that of the first ¢ coordinates and
proposed an estimator having such a property. However, he did not show
its minimaxness. In this paper we prove that his estimator is better than the
minimax estimator of Eaton (1970) under the loss (1), which shows that his
estimator is also minimax. The method involved here is a widely applied
approach in eigenvalue estimation problems such as Stein (1973, 1977),
Haff (1991), Dey and Srinivasan (1985), Loh (1988, 1991a, b), Muirhead
and Verathaworn (1985), Bilodeau (1992), and Konno (1991) that is, com-
putation of an unbiased estimate of the risk of certain invariant estimators
from which the promising estimators are derived.

For notation, let 2,,,=2%,—2,X5'%,, and define §,;, and the
partition of S like 2. In Section 2, we reduce the problem considered here
to three: first, the estimation problem of X', , based on §,,, [distributed
as W.(Z,,,n—a—p+c)] under the loss function tr(Z,,,X. %)~
log det(.f“_zz;'l_‘z)—c; second, that of 2,, based on (S,,, W) [S,,+ W
being distributed as W, .(X,,,n)] under the quasi-loss (2,25 )+
ctr(X, 85 ) —logdet(£,,Z,,')—(p—c); and third, that of X,X)
based on (5,55, S;.2) given S,; [the conditional distribution of §,,S5,'
given S,, being distributed as N, o Z 125, 2“_2@52’2')] under the
loss matrix (£—X,,25,") 2,5(E—2,25,"), where Cex(p—c) is an
estimator of X ,X},'. Also, we obtain a representation of the minimax
constant risk of Eaton’s estimator which plays an important role in
deriving an improved estimator.

Considering the first problem, Krishnamoorthy (1991) obtained
improved estimators for £ which are invariant under the permutation of
the first ¢ coordinates. By making use of the result in Bilodeau and
Kariya (1989), Kubokawa er al. (1992) have taken up the third problem, in
essence, in the context of estimating the regression coefficient in a
GMANOVA model. As pointed out implicitly in Krishnamoorthy (1991),
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the main difficulty in deriving an invariant estimator under the
permutation of the last (p—c¢) coordinates is the second one. In
Section 3, we tackle the second problem and obtain an unbiased estimate
for E[tr(fnZz’z')+c tr()fzzSz"z‘)—log det(X,,)], where ZX,, is an
orthogonally invariant estimator depending on (S.., W). We apply the
Wishart identity and calculus on eigenstructure in terms of S,, + W, fixing
a certain random variable which is independent of S,, + W, and derive a
partially differential inequality which may be regarded as an extension of
the result concerned with a normal covariance matrix estimation in
Stein (1977). In Section 4, obtaining solutions to this inequality, we show
the minimaxness of Krishnamoorthy’s estimator. In Section 5, we apply the
result obtained in the previous sections to the problem of estimating a
covariance matrix in GMANOVA, since it can be reduced to the estima-
tion problem of the covariance matrix with incomplete data.

2. REDUCTION OF THE PROBLEM AND THE MINIMAX RISK

Let G (p) be a group of p x p lower triangular matrices, G (p) its sub-
group with positive diagonal elements, and €, a group of p x p orthogonal
matrices. Furthermore, let G be a group consisting of p x p nonsingular

matrices of the form
g= (g 11 glz)
0 g» ’

where g,, is ¢ x ¢, and let G, be a subgroup of G, where g,, €0, g,,€C, _,
and g,» =0. Group actions on sample and parameter spaces are defined as

(S, W)—(gS¢’, g, Wgs)  and 2—gly, VgeG.

I Z,ZN\/% 0
Z=<‘ 1225 )( 1.2 )( 11 0 ) 2)
0 I, . 0 IN\ELE, I .

p -«

Write X as

which are called the partial Iwasawa coordinates, being an analogue of
rectangular coordinates in the Poincaré upper half plane (see Terras, 1988
for this). It is also worth noting that the group actions defined above
induce the actions given as

(Sll.2a S22’ SIZS_‘;’ZI’ W)

—(g11511284, gzzszzg’n»gnS\:Snlgzél + 8\28221~ 222 Wg5)
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In the light of (2), we introduce estimators of the form

W om s (I, ENE,, ON/I O
T(Z ’ ,Z ’é)z( >< 3 ><A’ )’ (3)
1125 “~22 0 1,, . 0 2L \E 1,, .

where £, ,:cx¢, £, (p—c)x(p—c), and Eiex (p —c) depend only on
Si12, (Sx, W), and (S, 85,', S,,,), respectively. When &= S,S,,', it turns
out that £, , and Z,, are invariant respectively under the groups of trans-
formations of G (¢) and G;(p—c) if and only if 7 is invariant under

G r(p), and respectively under ¢, and ¢, _ if and only if 7 is invariant

under G,. Furthermore, note that the estimator (3) is the maximum
likelihood estimator if £, ,=(n—a) 'S;2 Zn=n"'S,+ W), and
5=S,2S;;2‘, and that it is the constant risk minimax estimator of
Eaton (1970) if

fu.zleDl\lTlla (4)
)jzzz[(Tzszlle)il'*'CSz’zl] ! and é=512${21’
where S, =TT and S,,+ W=T,T,for T,eG;(c)and T,e G} (p—c),
and D, =diag(d,,, .., d,.) and D,=diag(d,,, ..., d,, ) with
dij=n—a—p+2c+1-2i dy=n+p—c+1-2i (5)
Noting that
sa_( L0 )(z ) —212222‘>
=255, I, 0 Zi'\0 1, ’
we may see that
L(r, Z)=tr(Z,,2,3) —logdet(£),,2,5) —¢
+tr(2,,25') —logdet(£ X5 ) — (p—c¢)
+Hr[(§ = 2025 ) EnlE~2uZy') Z0h]
Furthermore, we have
E[r(S1:85' = £1225") 20080285 = Z0225") 2051 S W]
:CE[tr(fzzsil) | S5, W1,
since the conditional distribution of §,,5,," given Sy is N, . (2122 5"

212®85"), Z,, depends only on (S,,, W), and W is independent of S.
On account of these, we may see that
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R(z, E[tr(Z“,E,7 )— log det(2 N—¢]
+EM( 2,2 Y +etr(Z l)—log det{X,,S,," ) —(p—c)]
+E[tr{(£—212222 ) En(E—225" 2%
~ (81282 = 21225 ) 20(8518,, — 225" 10211 (6)

if T has the form (3). Denote the first, the second, and the last two expecta-
tions in the right hand side of (6) by R, (£,5, 21,5) Ry (55, 25,), and 45,
respectively. Hence we can split the original problem into three parts as
shown below:

1. Estimation of 2, , is based on S, .~ W (2 ,,n—a—p+c)
under the Stein’s loss function tr(2,,,%,,') — log det(Z,,, % ,,}) — ¢. So the
results obtained by Stein (1973, 1977), Haff (1991), Dey and Srinivasan
(1985), Perron (1992), Sheena and Takemura (1992), and a host of others
are applicable.

2. Suppose that we observe S,, and W, where S,,+ W and §5,,
follow W, (X, n)and W, (X2,,n—a) distributions, respectively, and
consider the estimation of 2, based on (S,,, W) under the quasi-loss

Lo(20, Z0) =tr(Z5 2 )+ e tr( 25, 8,," ) —log det( £, X5, ) — (p—¢).
(7

Note that (7) is not a loss function in the strict sense since it is not equal
to zero even if X,, estimates its parameter correctly. However, we can
regard it as a loss function without inconvenience.

3. Estimation of ¢ =X, X,," is based on SMSM | S, and S, , being
distributed independently as N, , ({2 ,1®S,7 ) and W (25, n
a— p+c), respectively. We define a loss matrix (é &) Z,z'(g—q) and
evaluate an estimator é of ¢ with its risk matrix R;(E, ¢)=E[({—¢)
25, HéE —&) | S5, W] Here an estimator £, is better than another
estimator &, if R;(g,, &)~ Rx(c,, ¢) is non-negative definite for all ¢ and
212- Note that E[[I‘(C’\—L)Zna(g~g) 2L 1=E[trZ,R 1(<: &)] since
X,, depends only on (S,,, W). Hence, if ¢ is a better estimator than
S1,S5," with respect to this criterion, then 4, <0.

Here we derive a representation of the risk of Eaton’s minimax estimator.
We denote this estimator by 2 =¢(Z¥,, X¥ §,,S,."), where £, and
23 are given in (4).

THEOREM 2.1.  Let y; be a chi-squared random variable with k degrees of
Sfreedom and let B be a (p—c¢)x{p—c¢) positive definite random matrix
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where B=T58,,T, and S,,+ W=T,T5 with T, G} (p—c). Then the
minimax risk is obtained as
R(EM, Z)=R,(EM L)+ Ry (Z¥,1,_.)

with

Rl(ff{,z’]()z z log(dh)_E(lOg An—a -ptc- i+])9

i=1

[) -
R, (2,1, =73 {log(dy)~E(log x, ;,1)}

i=1

+ Elogdet[{, .+ cdiag(d,,',...d;,_.)B],

2,p—c¢

where d,; and d,; are given by (5). Furthermore, let b, b,, .., b be

1 Yp—-¢

eigenvalues of B~'. Then W=T[_(1—b,) has the same distribution
as nll"zilllz(n a—i+1,a) Ij‘ a>p—c and as l_lj'l=lz(n (p—c)-i+1Lp-¢) !f
p—c>a, where Z, .., is a beta random variable with parameters k /2

and k,/2.

Proof. To find the risk of £, just note that this is the best lower
triangular invariant estimator of X,,, based on S,,, and hence the
result follows from James and Stein (1961). It is easily seen that
R, (EM, 2, =E,[tr ¥ + ctr(Z¥ S5, ) —log det ¥ — (p—c)], where E,
denotes the expectation taken with respect to the joint distribution of
Sp+W~W,_.(I,_.,n) and Syu~W, .(I,_.,n—a), since Z¥ is
invariant under group actions of lower triangular matrices. Using the
standard distribution theory, we can see that B is independent of S,, + W.
By virtue of an application of Bartellet’s decomposition theorem to
S, + W, we may see that E,[T,D;'T,| B]=1, ., from which it follows
that
E (5 + 20 20" )| BY=E,[tr{T,D, ' T (I

p- <

+¢D;'B)!
+c¢D; 'B(I, +¢D;'B) '} |Bl=p—c
In addition note that
logdet[(T, D, 'T3) ' +¢S5']
=logdet[{, .+cD; 'T,S,,'T>] —log det(S,, + W) + log det(D,).
Finally, using Theorem 10.5.3 and Corollary 10.5.4 in Muirhead (1982), we

can see that the eigenvalues of B~' have the distribution claimed in this
theorem, which completes the proof.
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3. UNBIASED ESTIMATOR OF Risk

In this section we develop an unbiased estimate of the risk of an
orthogonally invariant estimator proposed in Krishnamoorthy (1991).
Let S,,,=R,L,R| and Sn+W R,L,R,, where Ry e(,, R,e(,
Ll—dlag(ln,... L) with 1, = - 2/, and L,=diag(/,;,,..., 1, ,_.) with
bz 2L, .

Furthermore, let

&, (L,)=diag(é, (L), ... #:.(L})) and
@, (L,)=diag(¢, (L), v 2, (L2)),

where ¢,, and ¢,, (i=1, .., ¢ or p—¢) are non-negative functions from L,
or L, to [0, ¢), respectlvcly Consider an estimator of the form (3) where
i SD 52‘71»

Zi2=R @, (LR, (8)
and
f;zz: [R2¢2(L2) R,2+"Szz]]xl~ (9)

In (8) and (9), we assume that ¢,, and ¢,, are differentiable on the regions
> >0} and {{;;> -~ >1,, .}, respectively.

For the sake of simplicity, we remove the constant terms with respect to
Y from the risk function, and define R*=R} + R¥ with R*
E[tr(Z,,,2 %) —log det(2,,,)] and R¥ = E[tr(Z X5 ) +ctr(X,, S5, ) —
log det(2,,)].

THEOREM 3.1. Consider an estimator t of the form (3), where
= S8, and 2,1, and £, are given by (8) and (9). Except for the terms
constant with respect to X, an unbiased estimate of the risk R*(z, 2') is given
as R* =R} + R¥ with

¢ll -
L= 1

. Cfn—a—p-—1 2 04,
R¥= {—-——————:,— ——+2
l ,Z:x 1$1 ¢y oy, ,-g,»

ﬁ;=pzl'{(n_p+('+])wu_ wu¢2( 2 Z (¢"l+2 Z I [ }
- 2i 2

y
lZi 21 i=1 612] j>i

+log(¢lt } (10)

+ctr(2,,85,") —log det(X,,), (11)

where Ry%,, R, = {w,).



ESTIMATING COVARIANCE WITH EXTRA DATA 315

Proof. From Dey and Srinivasan (1985), it is easily seen than an
unbiased estimate of R} is equal to (10). For R¥ put B=
LY?R,S;,'R, L2 Then B is independent of V = S,, + W, whose distribu-
tion is W, (X5, n). Using the Wishart identity (see Halfl, 1979) given B,
we get

E[tr(Z, 2, ) B1=EQR2tr(2Zn)+ (n—p+c—1)t(Z,, V1) B],
from which it follows that
R¥ (24, £0) = ER2t(Z2E )+ (n—p+e—1)tr(EpV ")
+ctr(2,,85,") —log det(£,,)], (12)
where 9 =((1+6;)/2) /dv; for V={(v;) and a Kronecker’s delta J,.

Denote the (i, j)th elements of X,, and % 5 by u; and u¥, respectlvely
Note that
a ujk Uppi + u/'muki
= S = 13
(q A, km uﬂ l +5km ( )
for a symmetric matrix X', Using (13), the chain rule, and the symmetry
of 2',,, we may observe that

146, 0

km
2 o0, — u" (14}

tr(j222 Z u/k u,m

i Jk.m

See the Appendix for verification of (14). From Haff (1991), we have the
derivatives

1+<) i,
n=Finl;
2 ﬁv int jn
and
1+6, ¢ 1 it
5 A tim=3 e rir'm+r'rim’
2 avy - 2,§m12m—12,( m Lt

where V=R,L,R5, L2=diag(lz,, - lz,p_c), and R,=(r;). Recall that
U =3 i @on Py + ¢8*7', where S,,' = (s*). So, using the derivatives
mentioned above and the symmetry of v, we may get that

1+6; ¢

,’_jZ/}m Up Uiy 3 a y o knl¢2n;rmn|
a f ((U?-'*‘Cl)“ )( i ¢2)
ZZ[Z o} e § T B j]' (>
i Lj=1 2 =i 2 ,/
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Also, we recall that

1+0; @
, Y ke
C E ll{/\ U, '—"_‘2 - M

i jokom if
Z[ _cuf,vq)z,._'— 3 {w,,-—( +(w + @, P2 — ) }:l (16)
/71 [2i > 12/’ 2/ ._:_/2/

See the Appendix for verification of (15) and (16). Consequently, sub-
stituting (15) and (16) into (14) and simplifying this, we sum up that

- r e Wy UJ”¢‘), P ¢‘>; i T W
tr(g):Zl): Z l:] ! Z U)l/ ol Z T-——[l]
i=1 2i 20 2i 2i 2

j=1 f>i =/

After some simplification, we can arrive at the desired result.

4. ALTERNATIVE ESTIMATIONS

In Krishnamoorthy (1991), a Monte Carlo study simulation indicated
that a simple estimator invariant under the permutation of the first ¢-coor-
dinates and of the last (p — ¢)-coordinates is minimax. However, it has not
been established that this estimator is minimax analytically. Here we prove
it by showing that its risk 1s smaller than the minimax risk.

THEOREM 4.1. Consider the estimator £™ of the form(3), where
(=S1,85" and 27\, and L%, are given by (8) und (9), respectively, and
assume that @, and @, are given componentwise us

1 { 1')
¢11:% (i=1,.,¢) and ¢z,=(1"
1/ 20

(i=1,..,p—c), (17)

where d,; and d,; are given by (5). Then X is minimax under the loss (1).

Proof. From (6) and the result in Dey and Srinivasan (1985) and
Krishnamoorthy (1991), it remains to prove that 27" is better than X} with
respect to the quasi-loss (7). By virtue of (12), it follows that the risk of
7 except for the constant terms, is given as

—p+c+1) w,,

R (3%, 2= £ T {12 r2y
i 20 2i

j>i

+etr(EnS )—Iogdet(f’z”z)}
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since 0¢,,/8l,;= 0 for i # j. Note that

.y —1
W, — Wy . @y Iy w,;— 1, 0,
=(p—c—i)—+ ) ———.
2 Li— 1y Iy; FZ‘,- 15 1y — 1)

Recall the relation B=L!?R,S,,'R,LY* and the fact that D,=
diag(d,,, .., d, ,_ .), where dy; > --- >d, ,_.. Since the distribution of B is
orthogonally invariant, we have that, for j> |,

J>i

Elly, ' wi~15'w,]= E[(Dy + ¢B)"— (D, + ¢B)"1 <0,
where we denote by (D,+cB)" the (i, i)th element of the matrix
(D, +cB) ' Noting that B is independent of L,, we may see that

-1 1
l5 wii_IZj W

DA

from which it follows that

Z(n+p—c+1-—2i)w,,
. Ly

i

R}(57, I, < E[ +etr(E2,55') —log det(f';z)]

= E[tr(R,E7 Ry DL Ly )+ ctr(27,55"') — log det(27,)]
=E[tr(Z7{R, D,L; 'Ry +¢S5'}) —log det(£7)]
=E[ —log det(f'z"z)] +(p—rc).

Furthermore, note that

log det[R, D, L; 'R+ ¢S,,'] —log det(2,,)
=logdet[I, .+cD;'HBH']—logdet((S,,+ W)Z,,'")+logdet(D,),

where H is a (p —¢) x (p — ¢) orthogonal matrix. Since the distribution of
H is independent of B, it follows that HBH' has the same distribution
as B. Hence it follows that Rz(fg’z, Ezz)st(f%, 25,), which completes
the proof.

Remark. 4.1. The estimator given in Theorem 4.1 can be further
improved upon just be replacing ¢, in (7) with its superior due to Dey and
Srinivasan (1985) when the dimension of the first c-coordinates is greater
or equal to 3.

Following the arguments in Bilodeau and Kariya (1989) and
Kubokawa et al. (1992), we can find the shrinkage-type estimators &g for

683/52/2-11
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2,2, based on (S,,5,,", S;,,) to improve upon S,,S,," with respect to
the risk matrix R;, provided ¢ > 3. For instance, we may choose & as

; —<1J"F’ Siiz)
S

> )Ss (18)

where 4 is a scalar function of F=1tr 5,,5,,,5,,5,,' and S,,,, satisfying
the following conditions:

. 2(¢—2)
0<Ah(F, S —————,
(1) h(F, Sy,2) n—a_p+3
. Sh(F, S|;5)
__...w._--_zo’
(11) F
(’Qh(F, S]17) ((‘}h(F, Snv)) . . .
(1) = ==} is non-negative definite.
Sy a(sll.Z)ij

Combining this shrinkage-estimator &, with the estimator given in
Theorem 4.1, we immediately obtain the following theorem.

THEOREM 4.2. Consider the estimator X" =t(27,, £, &) where
(2712, 2%5) are described in Theorem 4.1 and & is given by (18). Then 2" is
minimax under the loss (1).

Remark 4.2. In Krishnamoorthy, a Monte Carlo simulation study was
performed to compute the risk saving involved in the orthogonally
invariant minimax estimator £, given in Theorem 4.1. He showed that the
percentage risk improvements of the estimator %, over MLE and the mini-
max estimator given by (4) are about 15.6% and 10.1%, respectively, when
the covariance matrix was chosen to be an identity matrix for p=5, ¢ =2,
n=25, and ¢=15. See Krishnamoorthy (1991) for the details.

5. CovAaRIANCE ESTIMATION IN GMANOVA MODEL

The model considered here can be summarized as follows;
Yinxp~NABC, I,® %), (19)

where A:nxa (n>a)1s a known design matrix of rank a, C:cxp (c<p)
1s a known matrix of regression matrix of rank ¢, and B:a x ¢ is a matrix
of unknown parameters. The maximum likelihood estimator for 2 is given
as

nEme=8+3C,(C,3¢,) ' w(C,3C,) O3, (20)
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where S: pxp =Y {I,—A(A'4) 'A'}Y, W:(p—c)x(p—c)=C,Y' A(A'A)""
A'YC,, and C,: px (p—c) is a matrix satisfying CC,=0and C,C,=1, ..
Note that the estimate (20) does not depend on the choice of C,.
von Rosen (1991) showed that the estimator (20) is negatively biased and
proposed an unbiased estimator whish is a function solely of £ .. On the
other hand, Kariya (1989) referred to this problem with a view to deriving
the best equivariant estimator in connection with the treatment of a model
admitting an ancillary statistic. However, it has not been studied
exhaustively from a decision-theoretic perspective. In this section, we
consider the problem of estimating £ in the model (19) under the loss
function

L& 5y=tr(EE ") —log det(EE ") — p, (21)

and, by means of the result in the preceding sections, we propose an
estimator which is better than both the maximum likelihood estimator and
an unbiased estimator of von Rosen (1991) with respect to the loss func-
tion (21). To analyze the problem states, we reduce it to a canonical form.
Define I as

Iipxp=(C(CC) 5 C,),

and write S and X as S=7"57"and X =I"ETI. Then it is easily seen that
S is distributed as W, (2, n—a) and independent of W. Furthermore, it
turns out that S,, + W is distributed as W, (ZX,,, n) where the partitions
of S and X are defined as in Section 2. Note that ' ' =(C"; C,). If we
restrict our attention to an estimator of the form

F=(cic,) i), (22)

where Z: px p is an estimator of £ based on (S, W), the loss function (21)
is expressed as

LE 5y =tr(EX ) —log det(EX ) — p.

Hence comparison among estimators of the form (22) under the loss func-
tion (21) corresponds to comparison among estimators 2 based on (S, W)
under the loss function (1), where (S, W) have the joint distribution stated
above. By virtue of the relation /,—S5~'C(C§~'C") "' C=C,(C,8C,)"'C,§
(see Siotani er al., 1985, p. 311), we can see that S,,,=(CS~'C")~". From
the identity I,,—C'(CC’)’l C=C,C,, we may observe that C'S,,S5,' +
C,=8c,(C,8C,) !, from which it follows that

1(' SIZS?.E’_I
0 1

p—c

(' C,) ( ) — (€3 3C,(C,3C,) ). (23)
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On account of these and writing (20) as
Sc,(c,8¢,)" ' C,y'Yc,(c,5¢,) ' C,5+C(CSTIC) G
we may summarize that the estimator (20) corresponds to the estimator

o (e SuSy (S 0 0
Eme=V\o 1 N0 Su,ewlsy's, 1, )

P

Similarly, the unbiased estimator of von Rosen (1991),

So=5 te,C(CE 1O ' C, (24)

mle
where
an—a—2p—c)—1)

(n—a—p+e—1)n—a—p+c)

€)=

corresponds to the estimator

> (1( Slzszzl><“+"1)51|.z 0 )( 1, 0 )
ne .= .
o1, . 0 (S + W)\S85'Sy 1, .

Since X, and X, are invariant under the group actions of a lower
triangular matrix, they are improved by the minimax estimator of
Eaton (1970), from which it follows that they are also improved by the
estimators given in Section 4 under the loss function (21). Our proposed
estimator in the model (19) is written as

= I, S,8,N\/Z,, 0 1, 0 \/C
Fo(c:c, 2222 2 . (25
( "(0 ! )( 0 222><53;Su I ><C) (23)

F r
where 2, and 2, =[R,®,(L,) Ry +c(C,8C,) '] ' are given in
Theorem 4.1 with (CS 'C’) '=R,L,R, and C,5C,+W=C,Y'YC, =
R, L, R5. On account of (23), we may conclude that (25) is rewritten as

5=3c,(C.8C,) '£,(C.8C,) 'C.5+CE,,C. (26)

Our estimator is also independent of the choice of C,, since it is invariant
under the permutation of the last (p — ¢) coordinates.
Summing up these arguments we may obtain the following theorem.

THEOREM 5.1.  The estimator (26) has uniformly smaller risk than the
estimator (20) and (24) with respect to the loss function (21).

We assume that both matrices 4 and C are of full rank. But this is not
essential since the technique adopted above will apply by replacing the
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inverse of the matrix and the parameters (a, ¢) by the generalized inverse
of the matrix and the ranks of 4 and C.

Chinchilli and Elswick (1985) considered the mixed MANOVA-
GMANOVA model expressed as

Y~N(A,B,C+ A,B,,I,® %), (27)

where ¥, C, and £ are as desribed in (19). However, 4, and 4, are n x a,
and »nxa, design matrices, the argument matrix [A,; 4,] being of full
rank a4, +a,, and B, and B, are ¢, x ¢ and a, x p unknown matrices. They
obtain the maximum likelihood estimator for the model (27) as

EZ gl + L§l C()(C:)gl C(})il WI(CLISI Cr)) ! C(’)§I’

~ AV A, A’,A2>l Al

S, =X"1,—(A4;; 4 X

x o (G0 ) (e
and W, = C, X' A(A’A) ' A'XC, with X = (I,— A>(A34,) 'A5)Y and A =
A, (I,— A,(A3A4,) ' A%). Since IS, I' is distributed as W, (X, n—a, —a,),
being independent of W, where W, follows the W, (2, a,) distribu-

tion, an improved estimator for the model (27) is easily obtained from
Theorem 5.1 by replacing S and W with S, and W,.

where

APPENDIX

The notation and terminology in Section 3 are as follows.

The calculation in line (14). We have

. ¢
tr(22,,)= z Eb_ Uy

izj Y
= Z Z akm uJ"' ¢ uk'"
5y ksm Ju ovy;

1464, & 146,08
U, -
2 6Hkm i 2 au,_','

km

=X X

ij k.m
- _ Z L‘./ku”1"+ u/mukf 1 + 5’1_6_ ukm
km 2 2 oy
L+d; @ .,

= - Z ujkuim 2 % u

i jkom i
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The calculation in line (15). We have

1+o,J a
Z u zm Z I\nl¢7n| mny
i j k.m

’I n

146, ¢
i v
Z u_/k Uim Z |:2¢2n| rnm| 2 .. rkn]
i j.k,m n cry

,‘

" 1o, 2 ‘v, ©

N -
4 ¢"n| i' ¢
+ Z rkn| mny 2m;
i

¥
= Z U Uy, Z |:¢2”l Fon, z =

1 / (rilr/m + r/'lrilu)
ijkom 1y gy t2n Tt
A
("¢"n
<y
+ Z rknl rmn} r;

iny¥iny Al
" 2

5 0, (w?j+wiiwﬂ')(¢2i—¢2;)
: [Z Wy 011/ +’}>_:i 12,-— 12,- .
The calculation in line (16). Write the (k, m)th element of S,,' as

A 12 — 12
s - Z rkm [2m bnmglznz rmn:
ny,n

for B= {(b;). Similarly, we get that

1+6, ¢
. iy Sk
[4 E Uy lpy —(— =8

P
i jok.m 2 ¢ Uii

= 2(. Z u Tk ulm bll|llj [rkn[ rmlnl

2" 2mp
ik mony, ng

ol
g
I“L)

~ 2m
cvy

L1446, @
+(12”112"2)— l‘2r — rknl]
i’

nm
w2 Ory,

- Y

1 12 172
|:12n| im Yk rkn1[2n, bnlnz[z r
i fokomong m

na ny u im rin|
_ Z {rl\l /n| ViU rmm [ 7;1« bnlnz [ 2n
[ 12!1[ - 1’/

rkl“/l\ r/lrnu uunr

172 2
mny 2m bnlm 2n| }:l
12;1; - ,21
Then, i

using the relations B=L}?R;S,,'R,L}* and ¢§5,,'=2.,
R,®, R, we can obtain the desired result

22
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