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Abstract

The Fisher information for the canonical link exponential family generalised linear mixed model is derived.
The contribution from the fixed effects parameters is shown to have a particularly simple form.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Linear mixed models are an extension of linear models for which covariance structure is based
on random effects and their covariance parameters. A further extension is generalised linear mixed
models, which specifically cater for non-normal response variables. The use of such models has
increased dramatically in the past decade. For example, they are now the main vehicle for analysis
of longitudinal data (e.g. [1,2]). Their use in semiparametric regression is advocated in some recent
literature (e.g. [6]).

The popularity of linear mixed models has been accompanied by vigorous research on analytic
results and computational methods. McCulloch and Searle [5] provides a comprehensive summary
of the developments that took place in the 20th Century. In the case of the normal response linear
mixed model with variance component structure they give an elegant and succinct expression for
the Fisher information matrix of the model parameters. The result is reproduced in Section 2. It is
revealing in that asymptotic independence of fixed effects and variance components is apparent
and useful in that asymptotic sampling variances may be obtained.

In this note, we derive an explicit expression for the Fisher information for generalised linear
mixed models for exponential family response variables. Potentially, this analytic result can be
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used in the same way that Fisher information matrices are used for standard error approximations
in generalised linear models and normal linear mixed models.

In Section 2 we briefly review the Fisher information results for normal linear mixed models.
New results for generalised mixed models are presented in Section 3 and their ramifications are
discussed.

2. Normal linear mixed models

The normal linear mixed model is given by

y|u ∼ N(X� + Zu, R).

Here � is the vector of fixed effects, with corresponding design matrix X, and u is the vector of
random effects, with corresponding design matrix Z. The random effects vector u has density
f (u) and is such that E(u) = 0. Most commonly, the random effects distribution is Gaussian:
u ∼ N(0, G) for some covariance matrix G. More details are given in Chapter 6 of McCulloch
and Searle [5].

Regardless of the random effects distribution, the Fisher information matrix of � is XT V−1X
where V = cov(y) = ZGZT + R is the covariance matrix of y. Now consider the special case of
variance component covariance structure

Zu =
r∑

i=1

Ziui , G�2 = blockdiag
1� i � r

(�2
i Iqi

) and R = �2
0In, (1)

where Id denotes the d × d identity matrix, qi is the length of ui and n is the length of y. The
full parameter vector is (�, �2) where �2 ≡ (�2

0, . . . , �
2
r ). Let its Fisher information matrix be

written as

I (�, �2) ≡ −E{H�,�2 log f (y; �, �2)} =
[

I�� I��2

IT
��2 I�2�2

]
, (2)

where f (y; �, �2) denotes the density of y and H�,�2 denotes the Hessian matrix with respect to
(�, �2). From above I�� = XT V−1X. Also, regardless of f (u; �2), I��2 = 0 which indicates an
asymptotic independence between the maximum likelihood estimators of � and �2. In the special
case of u being normally distributed the I�2�2 block has an explicit expression that results in

I (�, �2) =
[

XT V−1X 0

0 1
2 [tr{ZT

i V−1Zj (ZT
i V−1Zj )

T }]0� i,j,� r

]
, (3)

where Z0 ≡ I. This is Eq. (6.62) of McCulloch and Searle [5]. In the ensuing discussion, these
authors describe asymptotic sampling variances based on I (̂�, �̂2)−1 where �̂ and �̂2 denote the
maximum likelihood estimators.

3. Generalised linear mixed models

As mentioned previously, generalised linear mixed models extend linear mixed models to non-
normal response situations. Alternatively, generalised linear mixed models extend generalised
linear models by allowing for the incorporation of random effects. A useful class of generalised
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linear models is that corresponding to the one-parameter exponential family with canonical link
as treated in McCullagh and Nelder [4]. If y is a random vector and X is a general design matrix
with corresponding parameter vector � then the model may be expressed in terms of the density
function of y as

f (y) = exp{yT (X�) − 1T b(X�) + 1T c(y)}, (4)

where, for example, b(x) = exp(x) for the Poisson model and b(x) = log(1+ex) for the Bernoulli
model. For a general vector v = [v1, . . . , vd ]T , b(v) denotes the vector [b(v1), . . . , b(vd)]T . The
mixed model extension of (4) is

f (y|u) = exp{yT (X� + Zu) − 1T b(X� + Zu) + 1T c(y)},
where u is the vector of random effects and Z is a corresponding design matrix. As in Section 2
let f (u) denote the density of u and retain the convention that E(u) = 0.

Result 1. Regardless of the random effects density f (u)

I�� = XT cov[y − E{E(y|u)|y}]X. (5)

Remark 1. While (5) is exact, calculation of the (conditional) moments in this expression can
be quite difficult. Generally, they involve intractable multivariate integrals although, for some
specific cases (e.g. random intercept models), some integrals simplify to low-dimensional forms.
Algorithms and approximations for dealing with such integrals have been the subject of a great
deal of research in the past several years [5, Chapter 10]. Such research is ongoing.

Now consider the special case of variance component structure where G = G�2 is given by (1).
Then the full parameter vector is (�, �2) where �2 ≡ (�2

1, . . . , �
2
r ). The full Fisher information

matrix takes the form of (2) where I�� is given by Result 1. The contribution from the variance
component vector has the following simplified expression:

I�2�2 = E

[
E

{
D�2f (u; �2)

f (u; �2)

∣∣∣ y
}T

E
{

D�2f (u; �2)

f (u; �2)

∣∣∣ y
}]

, (6)

where D�2f (u; �2) denotes the derivative vector of f (u; �2) with respect to �2 (see Appendix).
For general f (u; �2) no further simplification of (6) is possible. However, in the case of u ∼

N(0, G�2) an explicit expression can be obtained. It depends on previously defined expressions
and the (

∑r
i=1 qi)

2 × r binary matrix I = [I1| . . . |Ir ] where

Ii = vec{blockdiag(Oq1 | . . . |Oqi−1 |Iqi
|Oqi+1 | . . . |Oqr )}

and Od denotes the d × d matrix of zeroes.

Result 2. If u ∼ N(0, G�2), where G�2 is given by (1), then

I�2�2 = 1
4IT (G−1

�2 ⊗ G−1
�2 ) cov[vec{E(uuT |y)}](G−1

�2 ⊗ G−1
�2 )I.

The off-diagonal block is

I��2 = XT E
(

[y − E{E(y|u)|y}]E
{

D�2f (u; �2)

f (u; �2)

∣∣∣y})
. (7)
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In general, this matrix is non-zero. This indicates that the maximum likelihood estimators of fixed
effects and variance components are not asymptotically independent in the general exponential
family setting. In the special case of normal u we have

Result 3. If u ∼ N(0, G�2), where G�2 is given by (1), then

I��2 = 1
2 XT E

(
[y − E{E(y|u)|y}] vec[{G−1

�2 E(uuT |y) − I}G−1
�2 ]T

)
I.

Remark 2. Approximate standard errors for the maximum likelihood estimates �̂ and �̂2 can be
obtained from the diagonal entries of I (̂�, �̂2)−1. However, as pointed out in Remark 1, imple-
mentation is often hindered by intractable multivariate integrals. Additionally, dependence among
the entries of y induced by u means that central limit theorems of the type: I (̂�, �̂2)−1{(̂�, �̂2) −
(�, �2)} converges in distribution to a N(0, I) random vector, have not been established in gen-
eral and, hence, interpretation of standard errors is cloudy. Nevertheless, there are many special
cases, such as m-dependence when the data are from a longitudinal study, for which central limit
theorems can be established.
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Appendix. Derivations

Differential calculus preliminaries: Let f be a scalar-valued function with argument x ∈ Rd .
The derivative vector of f, Df (x), is the 1 × d vector whose ith entry is �f (x)/�xi . The Hessian
matrix of f is the d × d matrix Hf (x) = D{Df (x)T }. Magnus and Neudecker [3] and Wand [7]
describe techniques for finding derivative vectors and Hessian matrices.

For a general smooth log-likelihood �(�) with parameter vector � the Fisher information is

I (�) ≡ E{−H�(�)} = E{D�(�)T D�(�)}.
Either expression for I (�) could be used. For generalised linear mixed models the second one
leads to more direct derivation of the Fisher information.

Derivation of Result 1: The log-likelihood is

�(�, �2) = log
∫

f (y, u; �, �2) du,

where

f (y, u; �, �2) = exp{yT (X� + Zu) − 1T b(X� + Zu) + 1T c(y)}f (u; �2).

The first differential is

d��(�, �2) =
∫

f (y, u; �, �2)[{y − b′(X� + Zu)}T X d�] du
f (y; �, �2)

= [y − E{E(y|u)|y}]T X d�

and so

D��(�, �2) = [y − E{E(y|u)|y}]T X.
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Therefore,

I�� = E{D��(�, �2)T D��(�, �2)} = XT E
(
[y − E{E(y|u)|y}]⊗2

)
X,

where, for a general vector v, v⊗2 ≡ vvT . Result 1 then follows from the fact that
E[E{E(y|u)|y}] = E(y).

Derivation of Result 2: We have f (u; �2) = (2�)−q/2|G�2 |−1/2 exp(− 1
2 uT G−1

�2 u) and

d�2f (u; �2) = (2�)−q/2(− 1
2 )|G�2 |−3/2|G�2 | tr(G−1

�2 d�2 G�2) exp(− 1
2 uT G−1

�2 u)

+ (2�)−q/2|G�2 |−1/2 exp(− 1
2 uT G−1

�2 u)(− 1
2 )uT {−G−1

�2 (d�2 G�2)G−1
�2 }u

= 1
2f (u; �2) tr{(G−1

�2 uuT − I)G−1
�2 d�2 G�2}

= 1
2f (u; �2) vec{(G−1

�2 uuT − I)G−1
�2 }T d�2 vec(G�2)

= 1
2f (u; �2) vec{(G−1

�2 uuT − I)G−1
�2 }T I d�2

courtesy of the identity tr(AT B) = vec(A)T vec(B) and the result vec(G�2) = I�2. It follows
immediately that, for u ∼ N(0, G�2),

D�2f (u; �2)

f (u; �2)
= 1

2
vec{(G−1

�2 uuT − I)G−1
�2 }T I (8)

and, because of (6),

I�2�2 = 1
4IT E

(
vec[{(G−1

�2 E(uuT |y) − I)G−1
�2 }]⊗2

)
I. (9)

Noting that E{E(uuT |y)}=E(uuT )=G�2 and the matrix identity vec(ABC)=(CT ⊗ B) vec(B),
the expectation in (9) becomes

cov[vec{G−1
�2 E(uuT |y)G−1

�2 }] = cov[(G−1
�2 ⊗ G−1

�2 ) vec{E(uuT |y)}]
= (G−1

�2 ⊗ G−1
�2 ) cov[vec{E(uuT |y)}](G−1

�2 ⊗ G−1
�2 ).

Result 2 then follows immediately from this expression and (9).
Derivation of Result 3: This result follows immediately from (7) and (8).

References

[1] P. Diggle, P. Heagerty, K.-L. Liang, S. Zeger, Analysis of Longitudinal Data, second ed., Oxford University Press,
Oxford, 2002.

[2] G.M. Fitzmaurice, N.M. Laird, J.H. Ware, Applied Longitudinal Analysis, Wiley, New York, 2004.
[3] J.R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, second

ed., Wiley, Chichester, 1999.
[4] P. McCullagh, J.A. Nelder, Generalized Linear Models, second ed., Chapman & Hall, London, 1990.
[5] C.E. McCulloch, S.R. Searle, Generalized, Linear, and Mixed Models, Wiley, New York, 2000.
[6] D. Ruppert, M.P. Wand, R.J. Carroll, Semiparametric Regression, Cambridge University Press, New York, 2003.
[7] M.P. Wand, Vector differential calculus in statistics, Amer. Statist. 56 (2002) 55–62.


