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a b s t r a c t

This letter shows how themain result contained in a paper recently appeared in the Journal
of Multivariate Analysis was in fact a particular case of a more general theorem published
three years before.

© 2011 Elsevier Inc. All rights reserved.

The Journal of Multivariate Analysis has recently published a paper, [3], containing a characterization of the multivariate
normality of a random vector based on the measure of the set of the normal one-dimensional marginals that a non-normal
vector can have.

The goal of this letter is to bring to your attention a more general result, that of [1], that was previously known and that
the authors and referees were apparently unaware of.

The two results have been obtained using quite different techniques. While the result in [3] follows from a study of the
properties of themoments of a randomvectorwith density, the one in [1] uses the randomprojection techniques introduced
in [2].

Next we state the main results of [3] (Theorem 1) and of [1] (Theorem 3.6) for comparison.

Theorem (Shao and Zhou). A p-dimensional random vector X with a Lebesgue density is not normally distributed if and only if
the set of vectors u in the unit (p − 1)-dimensional sphere such that uTX is normally distributed, has measure 0 with respect to
the uniform measure on the unit sphere.

Theorem (Cuesta-Albertos et al.). Let H be a separable Hilbert space with scalar product ⟨·, ·⟩ and let X be an H-valued random
element. Let µ be a dissipative measure on H. If the set
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{u ∈ H : ⟨u, X⟩ is normal}

has positive µ-measure, then X is normal.

From here, the following corollary immediately follows.

Corollary. Under the same hypotheses as in the preceding theorem, it happens that X is normal if and only if the set

A = {u ∈ H : ⟨u, X⟩ is normal}

has µ-measure zero.

The definition of dissipativemeasure appears in [1]. It is a trivial fact that, in the finite dimensional case, every absolutely
continuous distribution is dissipative. As a consequence, this result includes the case in which we are in a p-dimensional
space and we choose the vector u with a uniform distribution on the unit ball. Since the projection of X on u is the same as
the projection of X on u/‖u‖ we have that the corollary includes Theorem 1 in [3] with the advantage that not only is this
corollary valid in separable Hilbert spaces, but also it requires no assumption on the distribution of the random vector X .
Thus, this result broadly contains Theorem 1 of [3].
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