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a b s t r a c t

Sliced inverse regression (SIR) is a widely used non-parametric method for supervised
dimension reduction. Conventional SIR mainly tackles simple data structure but is
inappropriate for data with array (tensor)-valued predictors. Such data are commonly
encountered in modern biomedical imaging and social network areas. For these complex
data, dimension reduction is generally demanding to extract useful information from
abundant measurements. In this article, we propose higher-order sufficient dimension
reduction mainly by extending SIR to general tensor-valued predictors and refer to it as
tensor SIR. Tensor SIR is constructed based on tensor decompositions to reduce a tensor-
valued predictor’s multiple dimensions simultaneously. The proposed method provides
fast and efficient estimation. It circumvents high-dimensional covariance matrix inversion
that researchers often suffer when dealing with such data. We further investigate its
asymptotic properties and show its advantages by simulation studies and a real data
application.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Sliced inverse regression was proposed by Li [16]. It is a major supervised dimension reduction technique in non-
parametric regression problems. It assumes that the response variable Y ∈ R1 depends on the predictor X ∈ Rp only
through K(K < p) unknown linear combinations of the predictor. Let B = (β1, β2, . . . , βK ) ∈ Rp×K . This relationship can
be described as Y ⊥⊥ X |BTX , where ‘⊥⊥’ stands for independence. To build SIR into the sufficient dimension reduction (SDR)
framework, BTX is called a sufficient reduction of X [1,2]. Thematrix B itself is not identifiable since it can be replaced by any
non-singular transformation of its columns. However, the linear space spanned by the columns of B is identifiable, denoted
as SB, or Span(B). As a consequence of this structure one can reduce the dimension of the predictor X by replacing it with
its projection PSBX onto the subspace SB, without loss of information on the conditional distribution of Y |X; that is,

Y ⊥⊥ X |PSBX . (1)

When K is the smallest column rank of B such that (1) holds, the subspace SB is called the central dimension reduction sub-
space (CS), denoted as SY |X . The goal of SIR is to estimate SY |X . We provide a brief review of the SIR procedure in Section 2.1.

Conventional SIR is simple and useful for dimension reduction of a vector-valued predictor X ∈ Rp. However, it is
inefficient to tackle problems with more general tensor-valued predictors, such as an m-mode tensor X ∈ Rp1×p2×···×pm .
This type of data is commonly encountered in applications. For instance, EEG (electroencephalography) signals in biomedical
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engineering, gene expression in bioinformatics and images in pattern recognition are usually formed as two-mode tensors.
Video sequences, spatial data and data in social networks often contain three- or multi-mode tensor predictors. Such data
are often referred to asmultivariate relational data because the tensor-valued predictors represent intrinsic spatial, repeated
measured, or other correlated structure among variables. In the EEGdata, for example, the brain signals of each subject forms
a 256 × 64 matrix (two-mode tensor) with its rows and columns representing time and location information respectively.
Due to the curse of dimensionality, SDR is desirable for such complex data. However, vectorizing these higher-order
predictors could and typically does lose important information about the data structure and decrease estimation accuracy.

SDR for tensor-valued predictors has received increasing attention in recent literature. Pioneering work was done by Li
et al. [17], where the authors proposed the idea of dimension folding and developed a class of moment-based dimension
folding methods, including dimension folding SIR, to reduce a tensor predictor’s multiple dimensions simultaneously. Their
methods apply to many moment-based dimension reduction approaches but, as will be shown in later sections, are not
very efficient, in operation, for dealing with higher-order tensor predictors. Other works include longitudinal SIR studied by
Pfeiffer et al. [21] and dimension folding PCA and PFC developed by Ding and Cook [7]. These two studies focused only on
two-mode tensor predictors, X ∈ Rp1×p2 .

In this paper, we propose a higher-order SDR approach by extending SIR to general m-mode tensor-valued predictors;
we refer to it as tensor SIR. The proposed method makes more efficient use of the tensor structure and leads to

√
n

consistent and asymptotically normal estimator of the sufficient reduction subspace.We further compare tensor SIRwith the
aforementioned methods in the two-mode tensor case. Tensor SIR outperforms dimension folding SIR by (i) circumventing
high-dimensional covariance matrix inversion; (ii) alleviating computational cost and improving estimation accuracy; and
(iii) having easy interpretation and good theoretical properties. In comparison to longitudinal SIR, tensor SIR places fewer
restrictions on the covariance structure of vec(X). It provides themaximum likelihood estimation of the sufficient reduction
when X|Y is matrix-normally distributed and cov[vec(X)] has a Kronecker structure.

The rest of this paper is organized as follows. Section 2 introduces tensor SIR for two-mode tensor predictors, called two-
tensor SIR. Section 3 is devoted to the development of tensor SIR for more general m-mode tensor predictors. We develop
the asymptotic properties for the proposed methods in Section 4. Section 5 establishes connections between tensor SIR
and other high-order SDR methods. Sections 6 and 7 contain simulation results and data analyses. Discussion is given in
Section 8.

2. Two-tensor SIR

Without loss of generality, we assume that the predictors discussed in this paper have mean zero. Let PB = B(BTB)ĎBT

be the projection onto Span(B), and PT
B(A) = AB(BTAB)ĎBT be the projection onto Span(B) relative to A, where B ∈ Rp×d and

A ∈ Rp×p (A > 0) are two matrices, and Ď is the Moore–Penrose inverse. Before introducing tensor SIR, we provide a brief
review for the conventional SIR.

2.1. A review of SIR

In the classical setting, X ∈ Rp is a predictor vector and Y ∈ R1 is a response variable. SIR serves to reduce the
predictor’s dimension by finding the CS SY |X so that the projected predictor PSY |X X retains the full information on Y |X . Let
SY |X = Span(η), where η ∈ Rp×d (d ≤ p). Let Σ and Σ̂ be the covariance and sample covariance matrices of X . Under the
linearity condition (Condition 3.1 in [16]), E(X |ηTX) is a linear function of ηTX . That is, E(X |ηTX) = AηTX , where A has an
explicit expression A = Ση(ηTΣη)Ď (Proposition 4.2, [2]). Therefore,

E(X |Y ) = E[E(X |ηTX, Y )|Y ] = E[E(X |ηTX)|Y ] = PT
η(Σ)E(X |Y ), (2)

which indicates E(X |Y ) ∈ Span(Ση). Correspondingly, Σ−1Span{cov[E(X |Y )]} ⊆ SY |X . Conventional SIR estimates SY |X by
the sample estimate Σ̂−

1
2 times the leading d eigenvectors of cov[Σ̂−

1
2 Ê(X |Y )]. To allow relatively easy estimation of the

inverse mean E(X |Y ), the response Y is replaced with a discrete version by partitioning the range of Y into certain slices.
One estimates E(X |Y ) by the intraslice mean.

2.2. Two-tensor SIR

To introduce the idea of tensor SIR, we first consider a simple case when the predictor X ∈ Rp1×p2 is two-mode tensor-
valued (matrix-valued) and the response Y is univariate. We propose an SDR procedure called two-tensor SIR. It is a special
case of tensor SIR dealing with matrix-valued predictors.

The sufficient dimension reduction for X ∈ Rp1×p2 is defined as follows. Let ‘⊗’ stand for the Kronecker product.

Definition 1 (Li et al. [17]). Let B1 ∈ Rp1×d1 (d1 ≤ p1) and B2 ∈ Rp2×d2 (d2 ≤ p2) be two semi-orthogonal matrices that
satisfy

Y ⊥⊥ X|BT
1XB2. (3)
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(i) Then Span(B2) ⊗ Span(B1) is called a dimension folding subspace. (ii) If d1 and d2 both are the smallest column dimen-
sions such that (3) holds, then Span(B2) ⊗ Span(B1) is called the central tensor (dimension folding) subspace (CTS) for Y |X,
denoted as SY |◦X◦.

The key idea is to reduce the predictor’s rowand columndimensions simultaneouslywhile preserving itsmatrix structure
without loss of information on Y |X. The column spans of the semi-orthogonalmatrices B1 an B2 indicate the row and column
SDR directions respectively. Li et al. [17] proposed dimension folding SIR to estimate the CTS for X ∈ Rp1×p2 . Their method
relies on the linearity condition on vec(X) and thus the estimation is built on vec(X). Two-tensor SIR considers a matrix-
formed linearity condition and leads to more efficient estimation for the CTS. We propose the methodology below and
provide a connection between the two methods in Section 5.

Let α ∈ Rp1×d1(d1 ≤ p1) and β ∈ Rp2×d2(d2 ≤ p2) be two full rank matrices. Assume that the conditional means
E(X|αTX) and E(X|Xβ) are linear functions of αTX and Xβ respectively. In other words, there exist two uniquely defined
matrices A ∈ Rp1×d1 and B ∈ Rp2×d2 such that

E(X|αTX) = AαTX, E(X|Xβ) = XβBT . (4)
Condition (4) means that the linearity holds along each mode (row and column) of the two-mode tensor predictor. It

is different than the linearity condition directly imposed on vec(X), which is commonly used by other higher-order SDR
methods in literature. We will provide a comparison between the different linearity conditions in Section 5.1.

Under (4), the matrices A and B are uniquely determined.

Lemma 1. Let Ω1 = E(XXT ) and Ω2 = E(XTX) be the column and row covariance matrices of X. If condition (4) holds for full
rank matrices α and β , then A = Ω1α(αTΩ1α)−1 and B = Ω2β(βTΩ2β)−1.

Now suppose that SY |◦X◦ = Span(B2 ⊗ B1). Two-tensor SIR only requires a special case α = B1 and β = B2 for the
linearity condition (4). Then according to Lemma 1, it follows that

E(X|Y ) = E[E(X|BT
1X, Y )|Y ] = E[E(X|BT

1X)|Y ] = PT
B1(Ω1)

E(X|Y ), (5)

Similarly, we observe E(X|Y ) = E(X|Y )PB2(Ω2). Therefore,

E(X|Y ) = PT
B1(Ω1)

E(X|Y )PB2(Ω2). (6)

Let Γ1 and Γ2 be the bases of Span(Ω1B1) and Span(Ω2B2) respectively. Then the CTS is equivalent to SY |◦X◦ = (Ω−1
1 ⊗

Ω−1
1 )Span(Γ1 ⊗ Γ2). Correspondingly, (6) can be reformulated as

E(X|Y ) = PΓ1E(X|Y )PΓ2 , (7)
or equivalently,

E[vec(X)|Y ] = PΓ2⊗Γ1E[vec(X)|Y ]. (8)
Eqs. (7) and (8) indicate that in addition to the fact Span{E[vec(X)|Y ]} ⊆ Span(Γ2 ⊗ Γ1), the relations Span{E(X|Y )PΓ2} ⊆

Span(Γ1) and Span{E(XT
|Y )PΓ1} ⊆ Span(Γ2) hold. They suggest that after projecting the row (column) space of E(X|Y )

onto Span(Γ2) (Span(Γ1)), the column (row) space of the projected matrix is a subspace of Span(Γ1) (Span(Γ2)). Let
covc[A] = E[AAT

] be the column covariance matrix for any random matrix A. Then the column spaces of covc[E(X|Y )PΓ2 ]

and covc[E(XT
|Y )PΓ1 ] are contained in Span(Γ1) and Span(Γ2) respectively. These relationships provide the basic idea for

tensor SIR to estimate the CTS and, as stated in the following proposition, they can be derived byminimizing the discrepancy
function

E∥E(X|Y ) − PΓ1E(X|Y )PΓ2∥
2
F, (9)

where ∥ · ∥F stands for the Frobenius norm.

Proposition 1. Let (Γ1, Γ2) be the minimizers of the objective function

E∥E(X|Y ) − PG1E(X|Y )PG2∥
2
F, (10)

over all semi-orthogonal matrices G1 ∈ Rp1×d1 and G2 ∈ Rp2×d2 . Then
(i) For fixed G1, the columns of the minimizer Γ2 over G2 consist of the d2 eigenvectors of the matrixΣR = E[E(XT

|Y )PG1E(X|Y )]
corresponding to its d2 largest nonzero eigenvalues.

(ii) For fixed G2, the columns of the minimizer Γ1 over G1 are given by the d1 eigenvectors of the matrix ΣL = E[E(X|Y )PG2
E(XT

|Y )], corresponding to its d1 largest nonzero eigenvalues.

According to Proposition 1, for an iid sample (Xi, Yi), i = 1, . . . , n, by slicing the responses into H categories, one can
apply the following algorithm to estimate Γ1, Γ2 and the CTS.
1. Generate initial values of Γ10 and let Γ̂1 = Γ10.
2. Given fixed Γ̂1, for each slice Js, s = 1, . . . ,H , compute the sample mean within the category by X̄s =


Yi∈Js Xi

ns
, where ns

is number of observations within category s. Compute the weighted column covariance matrix Σ̂R =
H

s=1
ns
n X̄

T
s Γ̂1Γ̂

T
1 X̄s

and take the d2 eigenvectors of Σ̂R corresponding to its d2 largest eigenvalues to form the columns of Γ̂2.
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3. For fixed Γ̂2, compute the weighted column covariance matrix Σ̂L =
H

s=1
ns
n X̄sΓ̂2Γ̂

T
2 X̄T

s and take the d1 eigenvectors of
Σ̂L corresponding to its d1 largest eigenvalues to form the columns of Γ̂1.

4. Repeat 2 and 3 and iterate with the updated estimators until the objective function
H

s=1
ns
n ∥X̄s − PΓ̂1

X̄sPΓ̂2
∥
2
F converges.

Then the CTS SY |X is estimated by (Ω̂−1
2 ⊗ Ω̂−1

1 )Span(Γ̂2 ⊗ Γ̂1), where Ω̂1 =
1
n

n
i=1 XiXT

i and Ω̂2 =
1
n

n
i=1 X

T
i Xi.

Two-tensor SIR is well connected with conventional SIR and is easily interpreted. The algorithm shows that in order
to reduce the dimension of each mode, one first needs to project the column space of the other mode into its sufficient
reduction subspace and then apply SIR for the reduced predictors. Hence two-tensor SIR can be treated as an adaptive SIR
procedure. We will show more advantages of this method in Sections 4 and 5.

3. Multiple mode tensor SIR

3.1. Methodology

In this section, we develop tensor SIR for a generalm-mode tensor predictorX ∈ Rp1×p2×···×pm and a univariate response
Y ∈ R1. Let M = {1, 2, . . . ,m}. We first review some important tensor operations and properties.

Definition 2 (k-th Mode Product). The product of anm-mode tensor X ∈ Rp1×p2×···×pm and a matrix Ak ∈ Rdk×pk(k ∈ M), is
a p1 × · · · × pk−1 × dk × pk+1 × · · · × pm dimensionalm-mode tensor, denoted by X ×k Ak, with its i1 · · · ik−1jkik+1 · · · im-th
element defined as

(X ×k Ak)i1···ik−1jk ik+1···im =

pk
ik=1

Xi1···ik−1 ikik+1···imAjk ik .

Definition 3 (Tensor Matricization). The k-th mode unfolding matrix of an m-mode tensor X ∈ Rp1×p2×···×pm is defined as
X(k) ∈ Rpk×(pk+1···pmp1···pk−1), k ∈ M, where the i-th row of X(k) contains all elements of X that have the k-th index equal to i.

For example, let B ∈ R3×4×2 be a three-mode tensor formed as

B[ , , 1] =

1 2 3 4
5 6 7 8
9 10 11 12


B[ , , 2] =

13 14 15 16
17 18 19 20
21 22 23 24


,

then the unfolding along the third mode gives

B(3) =


1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24


.

Based on Definitions 2 and 3, the following properties hold. For Ak ∈ Rpk×dk (k ∈ M),
(i) Y = X ×k AT

k ⇔ Y(k) = AT
kX(k);

(ii) Y = X ×1 AT
1 ×2 AT

2 ×3 · · · ×m AT
m ⇔ Y(k) = AT

kX(k)(Am ⊗ · · · ⊗ Ak+1 ⊗ Ak−1 ⊗ · · · ⊗ A1);
(iii) vec(Y) = vec(Y(1)) = (Am ⊗ · · · A1)

Tvec(X) = (
1

j=m Aj)
Tvec(X).

For further background on tensor operations, see [12–15]. The vectorization of a tensor is usually defined by vectorizing
its first mode unfolding matrix; that is, vec(X) = vec(X(1)). Hence in (iii), the index order of Aj (j ∈ M) is from m to 1. In
general, the choice of the unfolding order is not important as one can always convert vec(X(k)) to vec(X(1)) by elementary
row exchange.

The goal of SDR for an m-mode tensor predictor X is to reduce the predictor’s multiple dimensions simultaneously so
that the reduced m-mode tensor contains full information about the response Y while preserving the tensor structure. The
formal definition is given below.

Definition 4. Let B1 ∈ Rp1×d1 , B2 ∈ Rp2×d2 , . . . , Bm ∈ Rpm×dm be m semi-orthogonal matrices. If d1, d2, . . . , dm are the
minimum column dimensions such that Y ⊥⊥ X | X ×1 BT

1 ×2 BT
2 · · · ×m BT

m, then Span(
1

j=m Bj) is the CTS for X, denoted
as SY |X ◦m .

For tensor-valued predictors, we assume that the linearity condition holds along each mode of the predictor. Let αk (k ∈

M) be full rank pk × dk, dk ≤ pk, matrices. Assume that E(X(k)|α
T
kX(k)) is a linear function of αT

kX(k), k ∈ M. That is, there
exist matrices Ak ∈ Rpk×dk such that

E(X(k)|α
T
kX(k)) = Akα

T
kX(k), k ∈ M, (11)

or equivalently,

E(X|X ×k αT
k ) = X ×k Akα

T
k , k ∈ M, (12)

Then Ak (k ∈ M) are uniquely determined by the following lemma.
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Lemma 2. Let Ωk = E(X(k)XT
(k)) be the k-th mode covariance matrix of X. If condition (11) holds for full rank matrices αk, then

Ak = Ωkαk(α
T
k Ωkαk)

−1, k ∈ M.

Let Span(
1

j=m Bj) be the CTS of Y |X. Similar to the two-mode tensor case, Tensor SIR only requires that the linearity
condition (11) holds for αk = Bk, k ∈ M, but not all full rank dk matrices. Then according to Lemma 2, using the same
argument in (5), we have E(X(k)|Y ) = PT

Bk(Ωk)
E(X(k)|Y ), or equivalently, E(X|Y ) = E(X|Y ) ×k PT

Bk(Ωk)
, k ∈ M. Therefore, by

continuing operation on E(X|Y ) over all k ∈ M, we have

E[X|Y ] = E[X|Y ] ×1 PT
B1(Ω1)

×2 PT
B2(Ω2)

×3 · · · ×m PT
Bm(Ωm). (13)

Now let Γk be the bases of Span(ΩkBk), k ∈ M. Then SY |X ◦m = (
1

j=m Ω−1
j ) · Span(

1
j=m Γj) and (13) can be reformu-

lated as
E(X|Y ) = E(X|Y ) ×1 PΓ1 ×2 PΓ2 ×3 · · · ×m PΓm . (14)

The basis matrices Γk (k ∈ M) can be found as follows.

Proposition 2. Let (Γ1, Γ2, . . . , Γm) be the minimizers of the objective function

E∥E(X|Y ) − E(X|Y ) ×1 PG1 ×2 PG2 ×3 · · · ×m PGm∥
2
F, (15)

over all semi-orthogonal matrices Gk ∈ Rpk×dk (k ∈ M). Then for fixed G1, . . . ,Gk−1,Gk+1, . . . ,Gm, the columns of the min-
imizer Γk over Gk are given by the leading dk eigenvectors of the matrix Σk = E[E(X(k)|Y )(

1
j=m, j≠k PGj)E(X

T
(k)|Y )], Σk ∈

Rpk×pk (k ∈ M).

Correspondingly, for an iid sample (Xi, Yi), i = 1, . . . , n, supposed that the responses are sliced into H categories. Let
X̄s =


yi∈Js Xi/ns be the samplemeanwithin slice Js and let X̄s(k) be the k-th unfoldingmatrix of X̄s, where ns is the number

of observations in Js, s = 1, . . . ,H . Based on Proposition 2, tensor SIR estimates of the CTS can be obtained in the following
way:
1. Generate initial values of Γ̂ (0)

k ∈ Rpk×dk , k = 2, . . . ,m, such that the column space of Γ̂ (0)
k is chosen to be the dominant

eigenspace of the sample estimate of covc[E(X(k)|Y )]. For notation convenience, let Γ̂k = Γ̂
(0)
k .

2. Update Γ̂1, . . . , Γ̂m sequentially by forming the columns of Γ̂k as the leading dk eigenvectors of

Σ̂k = n−1
H

s=1

nsX̄s(k)


1

j=m,j≠k

PΓ̂j


X̄T

s(k)
, k ∈ M,

given Γ̂j, j ∈ M, j ≠ k.
3. Iterate step 2 until the objective function n−1H

s=1 ns∥X̄s − X̄s ×1 PΓ̂1
×2 · · · ×m PΓ̂m

∥
2
F converges. The CTS is then

estimated by Span(
1

j=m Ω̂−1
j Γ̂j), where Ω̂j = n−1n

i=1 X(j)iX
T
(j)i

is the sample column covariance matrix of X(j), j ∈ M.

Similar to the discussion in Section 2, this algorithm can be treated as an adaptive SIR algorithm formultiplemode tensor
predictors.

3.2. Kronecker tensor SIR

In the conventional setting X ∈ Rp, Cook [3] showed that SIR provides the MLE for the central subspace when X |Y is
multivariate normal. It would be interesting to see whether tensor SIR yields theMLE for the CTS.We propose an alternative
tensor SIR procedure that requires a special structure for cov[vec(X)] and leads to the MLE. The procedure is described
below. A statistical justification is given in Section 5.4.

Assume that cov[vec(X)] has the Kronecker structure

cov[vec(X)] = Vm ⊗ Vm−1 ⊗ · · · ⊗ V1 =

m
j=1

Vj, (16)

where Vj ∈ Rpj×pj , j ∈ M. It can be shown that each separate covariance matrix Vj corresponds to the j-th unfolding
matrix with Vj = E[X(j)XT

(j)]/
m

i=1,i≠j tr(Vi). Then similar to conventional SIR, tensor SIR can be developed based on the

standardized scale Z = X ×1 V
−1/2
1 ×2 V

−1/2
2 × · · · × V−1/2

m . Suppose that SY |Z ◦m = Span(
1

j=m βj). One can apply the

algorithm in Section 3.1 to estimate βs using the standardized predictor Z = X ×1 V̂
−1/2
1 ×2 V̂

−1/2
2 × · · · × V̂−1/2

m , where
V̂j = Ω̂j = n−1n

i=1 X(j)iX
T
(j)i

. The scalar
m

i=1,i≠j tr(Vi) is not essential for the CTS estimation. Therefore, by the equivalence

property, the CTS of Y |X is estimated by (
1

j=m Ω̂
−1/2
j )ŜY |Z ◦m . Since this procedure relies on the Kronecker structure on

cov[vec(X)], we call it as Kronecker tensor SIR, shortened as tensor SIR-K.
When Condition (11) holds but cov[vec(X)] does not have the Kronecker structure, tensor SIR-K tends to provide biased

estimation because the transformationZ = X ×1 V
−1/2
1 ×2 V

−1/2
2 ×· · ·×V−1/2

m does not standardize the predictor properly.
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4. Large sample properties

In this section, we show that the tensor SIR estimator is
√
n consistent for the CTS, and that it is asymptotically normal

under certain regularity conditions. Let Γ1 = (γ1,1, . . . , γ1,d1), Γ2 = (γ2,1, . . . , γ2,d2), . . . , Γm = (γm,1, . . . , γm,dm) be the
column expressions of the minimizers of (15). Then the bases of the CTS can be represented as {

1
k=m(Ω−1

k γk,jk), j1 =

1, . . . , d1, . . . , jm = 1, . . . , dm}, which are the principal directions of tensor SIR. Since Ωk are estimated at rate
√
n, the rate

for estimating the CTS is determined by how well Γk can be estimated. Therefore, we first study the asymptotic properties
for Γk, k ∈ M.

Let ζk = {(i, j) : vec(X(k)) =


i,j Ti,jvec(X)} be a set of indexes to transform vec(X(k)) to vec(X), where Ti,j is an
elementary matrix produced by exchanging row i and row j of the identity matrix Iu. Denote the transformation matrices

(i,j)∈ζk
Ti,j by Tk, k ∈ M. It follows that vec(X(k)) = Tkvec(X). The following lemma provides an alternative expression of

Σk, k ∈ M.

Lemma 3. The matrix Σk = E[E(X(k)|Y )(
1

j=m, j≠k PΓj)E(X
T
(k)|Y )] is equal to

d1
j1=1

· · ·

dk−1
jk−1=1

dk+1
jk+1=1

· · ·

dm
jm=1


1

l=m,l≠k

γl,jl


⊗ Ipk

T

TkΩT T
k


1

l=m,l≠k

γl,jl


⊗ Ipk


,

where Ω = cov{E[vec(X) | Y ]}.

Let λk,1 > λk,2 > · · · > λk,dk ≥ 0 be the first dk eigenvalues of Σk, k ∈ M. According to Proposition 2, the columns of Γk
consist of the corresponding eigenvectors of Σk. Therefore, the following equation system d1

j1=1

· · ·

dk−1
jk−1=1

dk+1
jk+1=1

· · ·

dm
jm=1


1

l=m,l≠k

γl,jl


⊗ Ipk

T

TkΩT T
k


1

l=m,l≠k

γl,jl


⊗ Ipk

 γk,jk = λk,jkγk,jk (17)

holds for jk = 1, . . . , dk, k ∈ M.
From (17), all of the leading eigenvalues and eigenvectors {λk,jk , γk,jk , jk = 1, . . . , dk, k ∈ M} can be expressed as func-

tions of Ω . Correspondingly, the sample estimates Γ̂1, . . . , Γ̂m are functions of Ω̂ , where Ω̂ =
H

s=1
ns
n vec(X̄s)vec(X̄s)

T .
Hence if the asymptotic distribution of Ω̂ is obtainable, the statistical properties of Γ̂k can be derived based on a delta
method. We adopt the idea of Zhu and Ng [24] to establish the asymptotics for Ω̂ .

Let g(Y ) = E[vec(X)|Y ] be themean inverse regression function of vec(X) on Y , let ϵ = vec(X)−g(Y ) be the regression
error, let u =

m
i=1 pi be the vectorized tensor dimension and let u−k =

m
i=1,i≠k pi. The function g(Y ) ∈ Ru is said to have

a total variation of order r if for any closed interval [−δ, δ] with fixed real number δ > 0,

lim
n→∞

1
nr

sup
Pn([−δ,δ])

n−1
i=1

∥g(Y ∗

(i+1)) − g(Y ∗

(i))∥F = 0,

where Pn([−δ, δ]) = {(Y ∗

(1), . . . , Y
∗

(n)) : −δ ≤ Y ∗

(1) ≤ · · · ≤ Y ∗

(n) ≤ δ} is the collection of all n-point partitions of [−δ, δ].
In addition, g(Y ) is called non-expansive in the metric of G(Y ) in both sides of δ0, if there exist a non-decreasing function
G(Y ) ∈ R1 and a real number δ0 > 0 such that for any two points Y1, Y2 ∈ (−∞, −δ0] or Y1, Y2 ∈ [δ0, ∞],

∥g(Y1) − g(Y2)∥F ≤ |G(Y1) − G(Y2)|.

The asymptotic distribution of Ω̂ is established based on the following regularity assumptions.

Assumption 1. Each slice has the same number of observations, cn.

Assumption 2. E(∥vec(X)∥4+b) < ∞ for some nonnegative number b.

Assumption 3. The inverse regression function g(Y ) has a total variation of order r > 0.

Assumption 4. g(Y ) is non-expansive in the metric of G(Y ) on both sides of a positive number δ0, such that G4+b(t)P(y >
t) → 0 as t → ∞.

Lemma 4. Given Assumptions 1–4with b > 0, when c = O(nτ ), where τ = 1/2−max{2r, 2/(4+b)} > 0,
√
n[vec(Ω̂ −Ω)]

converges in distribution to a normal random vector W with mean zero and covariance matrix

cov[vec(X) ⊗ vec(X) − ϵ ⊗ ϵ].
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Based on the relationship between Γ̂1, . . . , Γ̂m and Ω̂ and the asymptotic results from Lemma 4, the asymptotic distri-
bution of Γ̂1, . . . , Γ̂m is then obtained.

Theorem 1. Under the linearity condition (11) and the conditions in Lemma 4,
√
n[vec(Γ̂1, . . . , Γ̂m) − vec(Γ1, . . . , Γm)]

converges in distribution to JmW, where Jm = {vec(Γ1)/∂vec(Ω)T , . . . , vec(Γm)/∂vec(Ω)T } with

∂γk,jk/∂vec(Ω) =


γk,jk ⊗ vec


1

j=m, j≠k

PΓj


⊗


λk,jk Ipk − E


E(X(k) | Y )


1

j=m, j≠k

PΓj


E(XT

(k) | Y )

+T

× (Kpk,u−kTk ⊗ Tk) (jk = 1, . . . , dk, k ∈ M).

The important point of Theorem 1 is the consistency and asymptotic normality of the estimates Γ̂k, k ∈ M. This proves
that tensor SIR provides

√
n consistent estimation for the CTS as Ω̂k converges toΩk at rate

√
n. The following theorem gives

the asymptotic normality of the tensor SIR estimator. Let Σ = cov[vec(X)] and let Q = E{cov[vec(X) | Y ]}.

Theorem 2. Under the linearity condition (11) and the conditions in Lemma 4,
√
n[vec(Ω̂−1

1 Γ̂1, . . . , Ω̂−1
m Γ̂m) − vec(Ω−1

1 Γ1, . . . , Ω−1
m Γm)]

converges in distribution to HW1, where W1 follows a multivariate normal distribution with mean zero and covariance matrix
N(0, cov[(vec(X)T ⊗ vec(X)T , ϵT ⊗ ϵT )T ]), and

H =

∂vec(Ω−1
1 Γ1)/∂vec(Σ)T ∂vec(Ω−1

1 Γ1)/∂vec(Q )T

· · · · · · · · · · · ·

∂vec(Ω−1
m Γm)/∂vec(Σ)T ∂vec(Ω−1

m Γm)/∂vec(Q )T

 .

The expression of H is given in the Appendix. Theorem 2 shows an important statistical property of tensor SIR, since no
asymptotic studies have been given in the literature for higher-order SDR, including dimension folding SIR and longitudinal
SIR.

5. Connections with other higher-order SDR methods

To the best of our knowledge, all of the higher-order SDR studies were proposed for matrix-valued predictors. Thus, we
analyze the relationship between two-tensor SIR and the other methods for X ∈ Rp1×p2 .

5.1. Comparison of different linearity conditions

In literature, the higher-order SDR methods, such as dimension folding SIR, longitudinal SIR and dimension folding PCA
and PFC, require a linearity condition imposed directly on vec(X). That is, E[vec(X)|ηTvec(X)] is linear function of ηTvec(X)
for the basis matrix η ∈ Rp1p2×d(d ≤ p1p2) of the CTS. Since η is usually unknown, this condition is generally satisfied when
the distribution of vec(X) is elliptically symmetric [16]. In comparison, two-tensor SIR uses the tensor-formed linearity
condition (4). It requires elliptical symmetry only along eachmodeofXbut the differentmodes neednot be jointly elliptically
symmetric. However, joint elliptical symmetry is requisite when we directly impose the linearity condition on vec(X). In
addition, longitudinal SIR further requires the Kronecker structure (16) on cov[vec(X)] for m = 2. It can be shown that
when the linearity condition holds for vec(X) and cov{vec(X)} has the Kronecker structure, Condition (4) is satisfied. Yet
the reverse direction does not necessarily hold. In other words, when the tensor-formed linearity condition is satisfied,
cov[vec(X)] needs not be Kronecker structured. The simulation in Section 6.1 can serve as a counter example. For higher-
order tensors, the tensor-formed linearity condition is weaker.

5.2. Two-tensor SIR and dimension folding SIR

Dimension folding SIR relies on the linearity condition on vec(X). Under this condition, Li et al. [17] showed that
U(Y ) = Σ−1E[vec(X)|Y ] is contained in a subspace of the CTS, where Σ = cov[vec(X)]. This subspace is called the Kro-
necker envelope of the U(Y ), denoted as E⊗(U). It is the Kronecker product of two smallest subspaces S◦U and SU◦ such that
Span{U(Y )} ⊆ SU◦ ⊗ S◦U , for any Y . Dimension folding SIR then estimates E⊗(U) by minimizing

E ∥ U(Y ) − (b ⊗ a)ωY ∥
2
F, (18)
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over a ∈ RpL×uL(uL ≤ dL), b ∈ RpR×uR(uR ≤ dR), and ωY ∈ RuLuR , where Span(b) = SU◦, Span(a) = S◦U , and ωY is a
vector-valued latent function of Y . When Σ = IpLpR , (18) can be equivalently formulated as

E ∥ E(X|Y ) − aνYbT ∥
2
F, (19)

where νY ∈ RuL×uR is the matrix form of ωY . Given a and b, the minimizer of (19) over all νY is νY = (aTa)−1aT
E(X|Y )b(bTb)−1. Therefore, the objective function of dimension folding SIR reduces to

E ∥ E(X|Y ) − PaE(X|Y )Pb ∥
2
F, (20)

which is equivalent to the objective function of two-tensor SIR. Hence a key difference between the two methods lies in
how the predictors are standardized. Dimension folding SIR standardizes the predictors by the large covariance matrix
cov[vec(X)]. When cov[vec(X)] does not have a Kronecker structure, the objective function of dimension folding SIR gen-
erally cannot be converted to a matrix form. In contrast, two-tensor SIR performs standardization by using the two smaller
matrices E(XXT ) and E(XTX). This standardization leads to the following desirable properties of two-tensor SIR: (1) It allevi-
ates computation cost and avoids inversion of a large covariancematrix. (2) It provides eigenbased subspace estimation that
can be easily generalized tom-mode tensor predictors. (3) Two-tensor SIR shows good theoretical properties. It provides

√
n

consistent estimator for the CTS and is asymptotically normal under certain regularity conditions. (4) When the predictor is
vector-valued, tensor SIR coincides with conventional SIR.

5.3. Two-tensor SIR and longitudinal SIR

Longitudinal SIR [21] addresses dimension reduction for data with longitudinal predictors, a special form of matrix-
valued predictors. It estimates the SIR directions, or the basis of the CTS, by Span(Ω̂

−1/2
2 η̂2 ⊗ Ω̂

−1/2
1 η̂1), where the

columns of η̂1 and η̂2 contain the leading d1 and d2 eigenvectors of the sample estimates of Ψ1 = E[E(Z|Y )E(ZT
|Y )] and

Ψ2 = E[E(ZT
|Y )E(Z|Y )], respectively. Here Z denotes the standardized predictor. Longitudinal SIR requires the linearity

condition on vec(X) and the Kronecker structure (16) on cov[vec(X)]. Thus, it is more restrictive than two-tensor SIR. In
contrast, two-tensor SIR-K requires the equivalent conditions of longitudinal SIR, but it uses the leading eigenvectors of the
sample estimates of Σ1 = E[E(Z|Y )PΓ2E(Z

T
|Y )] and Σ2 = E[E(ZT

|Y )PΓ1E(Z|Y )] for estimation. Two-tensor SIR-K has more
efficiency gains because it projects E(Z|Y ) onto each sufficient reduction direction before estimating the other direction,
which can remove redundant information in estimation. This provides intuition regarding the asymptotic efficiency shown
in Section 5.4.

5.4. Two-tensor SIR and dimension folding PFC

Dimension folding PFC [7] is a model-based SDR method for matrix-valued predictors. It gains efficiency by
flexibly modeling the conditional mean function E(X|Y ). When X|Y is matrix normal, dimension folding PFC inherits
optimal asymptotic properties from maximum likelihood estimation. The matrix normal distribution is formulated as
Np1×p2(0,M1,M2), where M1 = E(XXT )/tr(M2) and M2 = E(XTX)/tr(M1) are the column and row covariance matrices
of X. For more background on this distribution, see [6]. The following proposition establishes the connection between two-
tensor SIR and dimension folding PFC.

Proposition 3. Under the matrix normality of X|Y , when Y is categorical and cov[vec(X)] has the Kronecker structure (16)
(m = 2), two-tensor SIR-K is equivalent to dimension folding PFC and thus provides the MLE of the CTS.

Proposition 3 implies that whenX|Y is matrix-normal and cov[vec(X)] satisfies the Kronecker condition (16), two-tensor
SIR-K provides the optimal estimation for the CTS.

6. Simulation

In this section, we assess the performance of tensor SIR and compare it with other methods numerically. To access the
accuracy of the CTS estimation, we used the criterion

∥PŜ − PS∥F, (21)

where Pŝ is the projection onto the estimate Ŝ of the CTS S, to measure the distance between the estimated and true
projection matrices.

6.1. Two-mode tensor predictors

We first consider the simulation setup from Li et al. [17]. Let d1 = d2 = 2 and p1 = p2 = p = 5, 10. The response Y is a
binary variable and was generated from the Bernoulli distribution with success probability equal to 0.5. The matrix-valued
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Table 1
Comparison of the CTS estimation among different higher-order SDR methods for two-
mode tensor predictors when a = 4. Each entry is the mean of the estimation errors (21)
over 500 samples.

Method n = 100 n = 200 n = 300 n = 500 n = 800

p1 = p2 = 5
2-T SIR 0.4310 0.3048 0.2518 0.1926 0.1524
2-T SIR-K 0.4366 0.3066 0.2528 0.1931 0.1527
DF-SIR 1.0697 0.7212 0.5785 0.4425 0.3433
L-SIR 0.4366 0.3066 0.2528 0.1931 0.1527
p1 = p2 = 10
2-T SIR 0.6429 0.4553 0.3717 0.2902 0.2295
2-T SIR-K 0.6527 0.4568 0.3736 0.2910 0.2299
DF-SIR 1.9465 1.2478 0.9816 0.7452 0.5764
L-SIR 0.6527 0.4568 0.3736 0.2910 0.2299

Table 2
Comparison of the CTS estimation among different higher-order SDR methods for two-
mode tensor predictors when a = 50. Each entry is the mean of the estimation errors
(21) over 500 samples.

Method n = 100 n = 200 n = 300 n = 500 n = 800

p1 = p2 = 5
2-T SIR 0.2922 0.2081 0.1707 0.1298 0.1047
2-T SIR-K 2.1731 1.1536 0.5523 0.1826 0.1213
DF-SIR 0.9921 0.6845 0.5510 0.4148 0.3297
L-SIR 2.2038 1.2521 0.6517 0.1928 0.1256
p1 = p2 = 10
2-T SIR 0.3518 0.2473 0.2045 0.1591 0.1244
2-T SIR-K 2.6990 0.8116 0.3005 0.1897 0.1371
DF-SIR 1.8507 1.1761 0.9360 0.7069 0.5524
L-SIR 2.7020 0.9182 0.3237 0.1929 0.1387

predictor X was generated based on the conditional distribution of X given Y , which was taken to be multivariate normal
with conditional mean

E(X|Y = 0) = 0p×p, E(X|Y = 1) =


aI2 02×(p−2)

0(p−2)×2 0(p−2)×(p−2)


and conditional variance

var(Xij|Y = 0) =


0.1 if (i, j) ∈ A,
1 if (i, j) ∉ A,

var(Xij|Y = 1) =


1.5 if (i, j) ∈ A,
1 if (i, j) ∉ A,

where A is the index set {(1, 1), (1, 2), (2, 1)}. Let ei ∈ Rp be the vector with i-th element equal to 1 and all other elements
equal to zero. It can be shown that the CTS is Γ2 ⊗ Γ1, where Γ1 = Γ2 = (e1, e2), and the linearity condition (4) holds.
However, cov[vec(X)] = E[cov{vec(X) | Y }] + cov[E{vec(X) | Y }] does not exactly have a Kronecker structure.

We applied two-tensor SIR, two-tensor SIR-K, dimension folding SIR and longitudinal SIR for the simulated data and
evaluated their estimation accuracy based on (21). The comparison results for a = 4 are listed in Table 1 with the shortened
names 2-T SIR, 2-T SIR-K, DF-SIR and L-SIR, respectively. It can be seen that two-tensor SIR provides the most accurate
estimation. Two-tensor SIR-K and longitudinal SIR perform similarly to Two-tensor SIR because cov[vec(X)] has a close
Kronecker structure when a = 4. All of the three methods outperform dimension folding SIR as the latter is computed
based on vec(X) that requires more parameters in estimation. We also applied conventional SIR and observed much larger
estimation errors compared to the other methods. Thus it is not a good competitor and is not listed in the table.

We now vary the conditional mean E(X|Y = 1) by choosing a = 50 and keep all other settings the same. In this case,
the signal of cov[E{vec(X) | Y }] is strong and thus the Kronecker structure of cov[vec(X)] is violated significantly. Table 2
shows that the performance of tensor SIR is not affected but the accuracy of tensor SIR-K and longitudinal SIR is dramatically
decreased. The latter two methods highly rely on the Kronecker decomposition of cov[vec(X)], resulting in less efficiency
when this assumption is not well satisfied.

6.2. Three-mode tensor predictors

We next evaluated the performance of tensor SIR for three-mode tensor predictor X ∈ Rp1×p2×p3 . Let p1 = p2 = p =

5, 10, p3 = 2 and d1 = d2 = 2, d3 = 1. The response Y is a binary variable and is generated from Bernoulli (0.5). The tensor
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Table 3
Comparison of the CTS (or CS) estimation among different SDRmethods for three-mode
tensor predictors when a = 4. Each entry is the mean of the estimation errors over 500
samples.

Method n = 100 n = 200 n = 300 n = 500 n = 800

p1 = p2 = 5
T-SIR 0.3237 0.2290 0.1908 0.1458 0.1160
T-SIR-K 0.3270 0.2305 0.1917 0.1463 0.1161
SIR 2.1782 2.0897 2.0183 1.9315 1.8699
p1 = p2 = 10
T-SIR 0.4669 0.3335 0.2723 0.2103 0.1666
T-SIR-K 0.4750 0.3350 0.2730 0.2107 0.1668
SIR 2.2108 2.2240 2.2132 2.1718 2.1009

Table 4
Comparison of the CTS (or CS) estimation among different SDRmethods for three-mode
tensor predictors when a = 50. Each entry is the mean of the estimation errors over
500 samples.

Method n = 100 n = 200 n = 300 n = 500 n = 800

p1 = p2 = 5
T-SIR 0.2181 0.1536 0.1269 0.0998 0.0773
T-SIR-K 2.8284 2.8284 2.8203 2.8203 2.7977
SIR 2.2145 2.2205 2.2194 2.2184 2.2154
p1 = p2 = 10
T-SIR 0.2525 0.1781 0.1461 0.1144 0.0898
T-SIR-K 2.8284 2.8284 2.8184 2.8140 2.7734
SIR 2.2318 2.2294 2.2297 2.2309 2.2312

predictor X was generated based on the conditional distribution of X given Y that is multivariate normal with conditional
mean

E{X[, , 1]|Y = 0} = E{X[, , 2]|Y = 0} = E{X[, , 2]|Y = 1} = 0p×2p,

E{X[, , 1]|Y = 1} =


aI2 02×(p−2)

0(p−2)×2 0(p−2)×(p−2)


and conditional variance

var{X[i, j, k]|Y = 0} =


0.1 if (i, j) ∈ A,
1 if (i, j) ∉ A,

var{X[i, j, k]|Y = 1} =


1.5 if (i, j) ∈ A,
1 if (i, j) ∉ A,

where A is the index set {(1, 1, 1), (1, 2, 1), (2, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 2)}. It can be seen that the CTS of X|Y is
Γ3 ⊗ Γ2 ⊗ Γ1, where Γ1 = Γ2 = (e1, e2), the same as that in the two-mode case, and Γ3 = (1, 0)T . Similar to the
two-mode example, the tensor linearity condition (11) is satisfied for the data. However, cov[vec(X)] cannot be exactly
decomposed into the Kronecker structure (16) (m = 3). The larger the value of a, the stronger the violation of the Kronecker
assumption. As dimension folding SIR and longitudinal SIR were proposed only for matrix-valued predictors, we applied
tensor SIR, tensor SIR-K to estimate the CTS and added the results of conventional SIR for comparison. When p1 = p2 = 10,
the sample covariancematrix Σ̂ = cov[vec(X)] is singular and the ridge-regression-type inverse (Σ̂ +0.001I200)−1 is used
for conventional SIR. The results based on (21) were summarized in Table 3 for a = 4, where Ŝ and S in (21) indicate the
estimated and the true CS of Y |vec(X) for conventional SIR.

It shows the similar phenomenon as that in the two-mode case. Tensor SIR provides the most accurate estimation for
the CTS over all sample sizes. Tensor SIR-K performs closely to tensor SIR because of the weak violation of the Kronecker
structure on cov[vec(X)]. Both tensor SIR procedures beat conventional SIR considerably.

We now vary the conditional mean E{X[, , 1]|Y = 1} using a = 50 so cov[vec(X)] deviates significantly from the
Kronecker structure. From Table 4, we see that tensor SIR outperforms tensor SIR-K noticeably as it does not impose any
constraint on cov[vec(X)]. Tensor SIR-Khighly depends on theKronecker constraint. It can performworse than conventional
SIR when cov{vec(X)} deviates strongly from the Kronecker structure.

In application, we recommend tensor SIR since it is less restrictive. When the Kronecker condition holds, tensor SIR and
tensor SIR-K perform closely according to our empirical studies.



226 S. Ding, R.D. Cook / Journal of Multivariate Analysis 133 (2015) 216–231

Fig. 1. Scatter plots by dimension reduced predictors X11, X12 with (sL, sR) = (95, 15). The triangles indicate alcoholic subjects. The circles represent
nonalcoholic subjects.

7. Application

We now analyze the EEG data using tensor SIR. The EEG data contains 122 subjects, which are divided into alcoholic
and control groups with 77 subjects and 45 subjects respectively. For each subject, the predictor contains measurements
from 64 channels of electrodes placed on the subject’s scalp and sampled at 256 times. The 64 sites were matched among
individuals. Thus, the predictor X is formed as a matrix of dimension 256 × 64, and the response Y is a binary variable
indicating groups. Since the row and column dimensions of the predictor are moderately large, it is very likely that only
a few row linear combinations and a few column linear combinations are relevant to classify the response. Moreover, as
n ≪ pL × pR, conventional classification methods, such as linear discriminate analysis (LDA) and quadratic discriminate
analysis (QDA) cannot be directly applied to the data. Consequently, higher-order SDR tools are desirable to reduce the
predictor’s row and column dimensions.

Assume that the observations of the subjects are independently and identically distributed. To evaluate the performance
of tensor SIR, we compared its classification rate with the other methods. We used leave-one-out cross validation to obtain
training datasets, (Xi, Yi), i = 1, . . . , 122, i ≠ j, and test datasets (Xj, Yj) for j = 1, . . . , n. Two-tensor SIR, dimension
folding SIR and longitudinal SIR were applied to each training set and then QDAwas employed to the reduced training data,
(Γ̂ −1

1 Ω̂−1
1 XiΩ̂

−1
2 Γ̂1, Yi), i = 1, . . . , 122, i ≠ j, to obtain the classification rule. This classification rule is then used for the

corresponding test dataset (Γ̂ −1
1 Ω̂−1

1 XjΩ̂
−1
2 Γ̂1, Yj).

Since two-tensor SIR circumvents vectorization of the predictors, it can be directly applied to the original EEG data
without any prescreening work. In this case, it correctly classified 88 out of 122 subjects with (dL, dR) = (1, 2), while
longitudinal SIR classified 75 subjects under the same setting. Dimension folding SIR, however, cannot bedirectly applieddue
to the high dimension of vec(X), which is equal to 256×64 = 16, 384. In order tomake comparisonwith dimension folding
SIR, we applied the procedure in Li et al. [17] to prescreen the predictor’s row and column dimensions to (sL, sR) = (15, 15)
first and then performed higher-order SDR and QDA with (d1, d2) = (1, 2). As a result, two-tensor SIR correctly classified
97 subjects out of total 122 subjects based on the reduced two-dimensional predictor vector Γ̂ −1

1 Ω̂−1
1 XΩ̂−1

2 Γ̂1 = (x11, x12).
Both dimension folding SIR and longitudinal SIR provided 92 out of 122 correct decisions. We also tried to prescreen the
predictors to other different dimensions, such as (sL, sR) = (10, 10), (30, 30), (95, 15). In all cases, tensor SIR showedmore
accurate classification rates than the other twomethods. Fig. 1 demonstrates the separation of the two groups by two-tensor
SIR and longitudinal SIR when (sL, sR) = (95, 15). Tensor SIR shows better separation.

8. Discussion

We proposed a new approach for sufficient dimension reduction of tensor-valued predictors and refer to it as tensor
SIR. In comparison to the existing higher-order dimension reduction methods, tensor SIR is asymptotically consistent and
normal under certain regularity conditions. It requires the linearity condition on each mode of the tensor-valued predictor,
which is less restrictive than the conditions required by the other methods. In addition, the tensor SIR procedure enhances
estimation accuracy and improves computation efficiency. It can be treated as an adaptive SIR and is easily implemented.

To determine the reduced dimensions, one can apply cross-validation to select (d1, d2, . . . , dm) that provides the smallest
prediction or classification error. One can also apply the procedure described in Dong and Li [8] that adapts the bootstrap
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idea in [23] to evaluate the multivariate correlation [9] between the original estimated principal tensor SIR components
C = (

m
j=1 Γ̂j)vec(X) and the estimated bootstrap tensor SIR components Cb = (

m
j=1 Γ̂ b

j )vec(X). The multivariate
correlation is defined as

{var(Cb)}
−

1
2 cov(Cb, C){var(C)}−1cov(C, Cb){var(Cb)}

−
1
2 , (22)

where Γ̂ b
j is the b-th bootstrap sample estimate of Γj. Let λ1, . . . , λl be the nonzero eigenvalues of (22) and let r2(Cb, C) =l

i=1 λi be the eigenbased correlation coefficient. The optimal dimension combination is then selected to maximize the
average bootstrap sample correlation r̄2 =

1
B

B
b=1 r

2(Cb, C).
As pointed out by a referee, some of the results in Section 2.2 overlapwith results in Chapter 8 of Kim’s Ph.D. thesis [11]. In

particular, the two assumptions in (4) are the sameas the two conditions inAssumption 3, Chapter 8, of [11] and our Lemma1
is equivalent to Kim’s Lemma 2. Although the problem settings are very similar, thework shown in Section 2.2was proposed
independently, and the two-tensor SIR approach is different from themethod proposed in Kim’s thesis. Two-tensor SIR does
not impose the Kronecker covariance structure on the predictors, and it is an adaptive procedure that employs an iterative
algorithm to estimate each component of the CTS based on all others.

The core of this article focuses on extending SIR to tensor-valued predictors. However, the same logic can be used to study
tensor SAVE [5] and other tensor SDRmethods (see, for instance, [4,18]) based on the tensor-formed linearity condition (11).
Furthermore, we can relax the linearity condition (11) and use the recent results in [19,20] to develop semiparametric tensor
SDR methods. These extensions are under investigation.
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Appendix

Proof of Lemmas 1 and 2. We demonstrate the proof of 1 first. For convenience, we only show A = Ω1α(αTΩ1α)−1 since
the expression of B can be similarly derived. Consider

E{E(X|αTX)(αTX)T } = E{E(XXTα|αTX)} = E(XXT )α = Ω1α.

Based on the fact that E(X|αTX) = AαTX, we have E{E(X|αTX)(αTX)T } = E(AαTXXTα) = AαTΩ1α. Therefore, A =

Ω1α(αTΩ1α)−1.
The proof of Lemma 2 can be done based on the same logic and thus is omitted.

Proof of Propositions 1 and 2. To prove Proposition 1, it is easy to see that the objective function (10) is equivalent to

E{tr{[E(X|Y ) − PG1E(X|Y )PG2 ]
T
[E(X|Y ) − PG1E(X|Y )PG2 ]}} = tr{E[E(XT

|Y )E(X|Y )]} − tr{E[PG2E(X
T
|Y )PG1E(X|Y )]}.

Thus,minimizing (10) is the same asmaximizing L = tr{E[PG2E(X
T
|Y )PG1E(X|Y )]} = tr{GT

1E[E(X|Y )PG2E(X
T
|Y )]G1}. Then for

fixedG2, theminimizer Γ̂1 overG1 is obtained by choosing its columns to be the first d1 eigenvectors of E[E(X|Y )PG2E(X
T
|Y )].

Similarly, L can be written as tr{GT
2E[E(X

T
|Y )PG1E(X|Y )]G2} and thus the minimizer Γ̂2 can be similarly proved.

The proof of Proposition 2 can be similarly done since the objective function (15) is equivalent to

E

E[X(k)|Y ] − PΓkE[X(k)|Y ]


1

j=m, j≠k

PΓj


2

F

, k ∈ M. (A.1)

Treating Γj (j ∈ M, j ≠ k) fixed, the estimate Γ̂k is obtained.

Proof of Lemmas 3 and 4. For Lemma 3, we consider the column-wise expression of
1

j=m, j≠k Γj,

1
j=m, j≠k

Γj =


1

l=m, j≠k

γl,1,


2

l=m, j≠k

γl,1


⊗ γ1,2, . . . ,

1
l=m, j≠k

γl,dl



=


1

l=m, j≠k

γl,jl


j1=1,...,d1

······
jm=1,...,dm

.
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Then
1

j=m, j≠k PΓj =
1

j=m, j≠k ΓjΓ
T
j = [

1
l=m, j≠k γl,jl ] j1=1,...,d1

······
jm=1,...,dm

[
1

l=m, j≠k γl,jl ]
T
j1=1,...,d1

······
jm=1,...,dm

and

E(X(k)|Y )


1

j=m, j≠k

PΓj


E(X(k)|Y )T = E(X(k)|Y )


1

l=m, j≠k

γl,jl


j1=1,...,d1

······
jm=1,...,dm


1

l=m, j≠k

γl,jl

T

j1=1,...,d1
······

jm=1,...,dm

E(X(k)|Y )T .

For any arbitrary jl (l = 1, . . . ,m, l ≠ k), by taking vectorization operation, we have

E(X(k)|Y )


1

l=m, j≠k

γl,jl


=




1
l=m, j≠k

γl,jl

T

⊗ Ipk

 E[vec(X(k))|Y ]

=




1
l=m, j≠k

γl,jl

T

⊗ Ipk

 TkE[vec(X)|Y ].

Hence

E


E(X(k)|Y )


1

j=m, j≠k

PΓj


E(X(k)|Y )T



=

d1
j1=1

· · ·

dk−1
jk−1=1

dk+1
jk+1=1

· · ·

dm
jm=1


1

l=m,l≠k

γl,jl


⊗ Ipk

T

Tkcov{E[vec(X)|Y ]}T T
k


1

l=m,l≠k

γl,jl


⊗ Ipk


.

The proof of Lemma 4 can be done by following the proofs of Theorems 1 and 2 in [24]. Note that
√
n(Ω̂ − Ω) =

√
n[(Σ̂ − Q̂ ) − (Σ − Q )] = −M1 − M2 − M3 + M(1)

4 − M(2)
4 ,

whereM1,M2,M3 andM(2)
4 are the same defined as T1, T2, T3 and T (2)

4 in [24], only with the predictor x replaced by vec(X),
and M(1)

4 = n−
1
2
n

i=1[vec(Xi)vec(Xi)
T

− εiε
T
i − Ω]. Under the conditions in Lemma 4, the elements in M1,M2,M3 and

M(2)
4 are all equal to op(1), as shown in [24], and vec(M(1)

4 ) converges to N(0, cov[vec(X) ⊗ vec(X) − ϵ ⊗ ϵ]).

Proof of Theorem 1. The main procedure is to show the gradient matrices ∂γk,jk/∂vec(Ω). Inspired by Hung et al. [10], we
apply the perturbationmethod to derive these results. LetΩ be perturbed toΩ(ε) = Ω+εΩ∗

+o(ε).With this perturbation,
the eigenequation system becomes

Σk(ε)γk,jk(ε) =

 d1
j1=1

· · ·

dk−1
jk−1=1

dk+1
jk+1=1

· · ·

dm
jm=1


1

l=m,l≠k

γl,jl(ε)


⊗ Ipk

T

TkΩ(ε)T T
k ·

×


1

l=m,l≠k

γl,jl(ε)


⊗ Ipk

 γk,jk(ε) = λk,jk(ε)γk,jk(ε), jk = 1, . . . , dk, k ∈ M, (A.2)

where λk,jk(ε) = λk,jk +ελ∗

k,jk
+o(ε) and γk,jk(ε) = γk,jk +εγ ∗

k,jk
+o(ε) satisfying γk,jk(ε)

Tγk,jk(ε) = 1 and γk,jk(ε)
Tγi,ji(ε) = 0,

for i ≠ k. Therefore,

Σk(ε) =

d1
j1=1

· · ·

dk−1
jk−1=1

dk+1
jk+1=1

· · ·

dm
jm=1


1

l=m,l≠k

(γl,jl + εγ ∗

l,jl + o(ε))


⊗ Ipk

T

(TkΩT T
k

+ εTkΩ∗T T
k + o(ε))


1

l=m,l≠k

(γl,jl + εγ ∗

l,jl + o(ε))


⊗ Ipk


= Σk + εΣ∗

k + o(ε), k ∈ M,

where

Σ∗

k =

d1
j1=1

· · ·

dk−1
jk−1=1

dk+1
jk+1=1

· · ·

dm
jm=1


1

l=m,l≠k

γl,jl


⊗ Ipk

T

TkΩ∗T T
k


1

l=m,l≠k

γl,jl


⊗ Ipk



+

d1
j1=1

· · ·

dk−1
jk−1=1

dk+1
jk+1=1

· · ·

dm
jm=1


1

l=m,l≠k

γ ∗

l,jl


⊗ Ipk

T

TkΩT T
k


1

l=m,l≠k

γl,jl


⊗ Ipk


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+

d1
j1=1

· · ·

dk−1
jk−1=1

dk+1
jk+1=1

· · ·

dm
jm=1


1

l=m,l≠k

γl,jl


⊗ Ipk

T

TkΩT T
k


1

l=m,l≠k

γ ∗

l,jl


⊗ Ipk


.

Let Λ = [
1

l=m, j≠k γl,jl ] j1=1,...,d1
······

jm=1,...,dm

and Λ∗
= [

1
l=m, j≠k γ ∗

l,jl
] j1=1,...,d1

······
jm=1,...,dm

be two matrices with their columns formed by1
l=m, j≠k γl,jl and

1
l=m, j≠k γ ∗

l,jl
, jl = 1, . . . , dl for all l ∈ M and l ≠ k, respectively. Then

Σ∗

k =

d1
j1=1

· · ·

dk−1
jk−1=1

dk+1
jk+1=1

· · ·

dm
jm=1


1

l=m,l≠k

γl,jl


⊗ Ipk

T

TkΩ∗T T
k


1

l=m,l≠k

γl,jl


⊗ Ipk


+ E[E(X(k) | Y )(Λ∗ΛT

+ ΛΛ∗
T
)E(XT

(k) | Y )].

The expression of Σ∗

k can be further simplified by showing its last term equal to zero. Since tensor SIR can be modeled as

X(k) | Y = Γkνy


1

l=m,l≠k

Γl

T

+ e,

where νy = Γ T
k E(X(k) | Y )(

1
l=m,l≠k Γl) represents a coordinate mean structure and e ∈ Rpk×u−k is a random error with

mean zero and constant covariance matrix, it follows

E[E(X(k) | Y )(Λ∗ΛT
+ ΛΛ∗

T
)E(XT

(k) | Y )] = E


E(X(k) | Y )


1

l=m,l≠k

(ΓlΓ
∗
T

l + Γ ∗

l Γ T
l )


E(XT

(k) | Y )



= E


Γkνy


1

l=m,l≠k

Γl

T
 1

l=m,l≠k

(ΓlΓ
∗
T

l + Γ ∗

l Γ T
l )

Γkνy


1

l=m,l≠k

Γl

T
T

= E


Γkνy


1

l=m,l≠k

(Γ ∗
T

l Γl + Γ T
l Γ ∗

l )


νT
y Γ T

k


.

Nowwe show that the middle term
1

l=m,l≠k(Γ
∗
T

l Γl + Γ T
l Γ ∗

l ) is equal to zero. Consider the fact that γl,jl(ε)
Tγl,jl(ε) = 1 for

all l ∈ M, we have

(γl,jl + εγ ∗

l,jl + o(ε))T (γl,jl + εγ ∗

l,jl + o(ε)) = γ T
l,jlγl,jl + ε(γ T

l,jlγ
∗

l,jl + γ ∗
T

l,jl γl,jl) + o(ε) = 1.

Hence γ T
l,jl

γ ∗

l,jl
+ γ ∗

T

l,jl
γl,jl = 0 for all l ∈ M. Similarly, γ T

l,jl
γ ∗

i,ji
+ γ ∗

T

l,jl
γi,ji = 0 for all i ≠ l, based on the fact that

γl,jl(ε)
Tγi,ji(ε) = 0, i ≠ l. Therefore, for any l ∈ M,

Γ ∗
T

l Γl + Γ T
l Γ ∗

l =


γ ∗

T

l,1
...

γ ∗
T

l,dl

 (γl,1, . . . , γl,dl) +

γ T
l,1
...

γ T
l,dl

 (γ ∗

l,1, . . . , γ
∗

l,dl) = 0.

Correspondingly, E[E(X(k) | Y )(Λ∗ΛT
+ ΛΛ∗

T
)E(XT

(k) | Y )] = 0 and

Σ∗

k =

d1
j1=1

· · ·

dk−1
jk−1=1

dk+1
jk+1=1

· · ·

dm
jm=1


1

l=m,l≠k

γl,jl


⊗ Ipk

T

TkΩ∗T T
k


1

l=m,l≠k

γl,jl


⊗ Ipk


. (A.3)

From (A.2), using the result of Lemma 2.1 in [22], we have

γ ∗

k,jk =

λk,jk Ipk −

d1
j1=1

· · ·

dk−1
jk−1=1

dk+1
jk+1=1

· · ·

dm
jm=1


1

l=m,l≠k

γl,jl


⊗ Ipk

T

TkΩT T
k ·


1

l=m,l≠k

γl,jl


⊗ Ipk


+

Σ∗

k γk,jk

=


λk,jk Ipk − E[E(X(k) | Y )


1

j=m,j≠k

PΓj


E(XT

(k) | Y )]

+

Σ∗

k γk,jk . (A.4)
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The combination of (A.3) and (A.4) gives

∂γk,jk/∂vec(Ω) =


γk,jk ⊗ vec


1

j=m, j≠k

PΓj


⊗


λk,jk Ipk − E[E(X(k) | Y )


1

j=m, j≠k

PΓj


· E(XT

(k) | Y )]

+T

× (Kpk,u−k ⊗ Iu)(Tk ⊗ Tk),

for jk = 1, . . . , dk, k =∈ M. Then by applying the deltamethod and the result in Lemma 4, we finish the proof of Theorem 1.

Proof of Theorem 2. Theorem 2 is established based on the delta method. Since Γk, k ∈ M, are functions of Ω , they
are functions of (vec(Σ)T , vec(Q )T )T as Ω = Σ − Q . Moreover, it can be shown Ωk are functions of Σ . Note that
Ωk = E(X(k)XT

(k)) =
u−k

j=1 E(X(k),jXT
(k),j), where X(k),j denotes the j-th column of X(k). On the other hand,

Σ = E[vec(X)vec(X)T ] = E[vec(X(1))vec(X(1))
T
] = TkE[vec(X(k))vec(X(k))

T
]T T

k

= TkE[(XT
(k),1, . . . ,X

T
(k),u−k

)T (XT
(k),1, . . . ,X

T
(k),u−k

)]T T
k .

Therefore, Ωk =
u−k

j=1 I
j
kT

T
k ΣTkI

jT
k where T T

k = T−1
k , I

j
k = [0 . . . 0 Ipk 0 . . . 0] ∈ Rpk×pku−k is a block matrix with its j-th

column block equal to Ipk and all other column blocks equal to zero. This shows that Ωk, k ∈ M, are functions of Σ . Thus,
vec(Ω−1

1 Γ1, . . . , Ω−1
m Γm) is a function of (vec(Σ)T , vec(Q )T )T . The sample analogues similarly hold.

Under the conditions in Lemma 4, following the proof of Theorem 2 in [24], we have
√
nΩ̂ = n−

1
2
n

i=1 ϵiϵ
T
i . Along with

the fact that
√
nΣ̂ = n−

1
2
n

i=1 vec(Xi)vec(Xi)
T , we have

√
n


vec(Σ̂)

vec(Ω̂)


−


vec(Σ)
vec(Ω)


converges in distribution to a normal random vector W1 with mean zero and covariance matrix cov[(vec(X)T ⊗

vec(X)T , ϵT ⊗ ϵT )T ]. Therefore, applying the delta method, we can conclude that
√
n[vec(Ω̂−1

1 Γ̂1, . . . , Ω̂−1
m Γ̂m) − vec(Ω−1

1 Γ1, . . . , Ω−1
m Γm)]

converges in distribution to HW1, where H is the gradient matrix given in Theorem 2 with

∂vec(Ω−1
k Γk)/∂vec(Σ)T = ∂vec(Ω−1

k Γk)/∂vec(Ωk)
T

· ∂vec(Ωk)/∂vec(Σ)T

+ ∂vec(Ω−1
k Γk)/∂vec(Γk)

T
· ∂vec(Γk)/∂vec(Σ)T

and ∂vec(Ω−1
k Γk)/∂vec(Q )T = ∂vec(Ω−1

k Γk)/∂vec(Γk)
T
· ∂vec(Γk)/∂vec(Q )T , k ∈ M. Then the expression of H is given by

∂vec(Ω−1
k Γk)

∂vec(Ωk)T
=

∂(Γ T
k ⊗ Ipk)vec(Ω

−1
k )

∂vec(Ωk)T
= −(Γ T

k ⊗ Ipk)(Ω
−1
k ⊗ Ω−1

k ) = −(Γ T
k Ω−1

k ⊗ Ω−1
k ),

∂vec(Ωk)/∂vec(Σ)T = ∂(
u−k

j=1 I
j
kT

T
k ΣTkI

jT
k )/∂vec(Σ)T =

u−k
j=1 I

j
kT

T
k ⊗ I

j
kT

T
k , ∂vec(Ω−1

k Γk)/∂vec(Γk)
T

= Idk ⊗ Ω−1
k and

∂vec(Γk)/∂vec(Σ)T = −∂vec(Γk)/∂vec(Q )T = ∂vec(Γk)/∂vec(Ω)T , where ∂vec(Γk)/∂vec(Ω)T is shown in Theorem 1.

Proof of Proposition 3. Weconsider the dimension folding PFCmodel (8.3) in [7].When the range of the response is divided
into h slices, the fitting function f (Y ) in (8.3) is naturally determined as (I(Y ∈ H1) − n1/n, I(Y ∈ H2) − n2/n, . . . , I(Y ∈

Hh) − nh/n)T . Let Sd(A) be the subspace spanned by the leading deigenvectors of A and Sd(A, B) = A−1/2Sd(A−1/2BA−1/2).
Based on Corollary 1 in Ding and Cook [7], the MLE of the CTS is equal to Sd2(Ω̂2, Σ̂fitR) ⊗ Sd1(Ω̂1, Σ̂fitL), where

Σ̂fitR = n−1
H

s=1

nsX̄sM̂−1
2 Γ̂2Γ̂

T
2 M̂−1

2 X̄T
s , Σ̂fitL = n−1

H
s=1

nsX̄T
s M̂

−1
1 Γ̂1Γ̂

T
1 M̂−1

1 X̄s.

To prove Proposition 3, using the results in Section 3.2, it is sufficient to show that Sd1(Ω̂1, Σ̂fitL) = Span(Ω̂
−1/2
1 β̂1)

and Sd2(Ω̂2, Σ̂fitR) = Span(Ω̂
−1/2
2 β̂2). We only demonstrate the first equation since the second one is satis-

fied based on the first equation. Since Sd1(Ω̂1, Σ̂fitL) = Ω̂−1
1 Spand{n−1H

s=1 nsX̄sM̂−1
2 Γ̂2Γ̂

T
2 M̂−1

2 X̄T
s }, it is equal to

Ω̂−1
1 Spand{n−1H

s=1 nsX̄sΩ̂
−1/2
2 β̂2β̂

T
2 Ω̂

−1/2
2 X̄T

s } based on the equation Ω̂
−1/2
2 β̂2 = M̂−1

2 Γ̂2. This equation holds by initiating
Γ20, β20, Ω20 and M20 such that Ω

−1/2
20 β20 = M−1

20 Γ20.
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