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a b s t r a c t

Performance accuracy of the Euclidean Distance Discriminant rule (EDDR) is studied in
the high-dimensional asymptotic framework which allows the dimensionality to exceed
sample size. Under mild assumptions on the traces of the covariance matrix, our new
results provide the asymptotic distribution of the conditional misclassification rate and
the explicit expression for the consistent and asymptotically unbiased estimator of the
expected misclassification rate. To get these properties, new results on the asymptotic
normality of the quadratic forms and traces of the higher power of Wishart matrix, are
established. Using our asymptotic results, we further develop two generic methods of
determining a cut-off point for EDDR to adjust the misclassification rates. Finally, we
numerically justify the high accuracy of our asymptotic findings along with the cut-off
determination methods in finite sample applications, inclusive of the large sample and
high-dimensional scenarios.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we focus on the discrimination problem which is concerned with the allocation of a given object, x, a
random vector represented by a set of features (x1, . . . , xp), to one or two populations, Π1 and Π2 given by Np(µ1, Σ) and
Np(µ2, Σ), respectively, whereµ1 ≠ µ2 and common covariancematrixΣ is non-singular. Let {xgj}

Ng
j=1 be a random sample

of independent observations drawn from gth populationNp(µg , Σ), g = 1, 2. Let alsoN = N1+N2 denote the total sample
size and set n = N − 2. We are interested to explore the discrimination procedure that can accommodate p > n cases, with
the main focus on the performance accuracy in the asymptotic framework that allows p to grow together with n.

Clearly, the classical discriminant procedures, like Fisher linear discriminant rule, cannot be used when p > n since the
sample covariance matrix is singular and hence cannot be inverted. An intuitively appealing alternative considered in this
study focuses on geometrical properties of the sample space and re-formulates the classification problem in terms of the
Euclidean distance discriminant rule (EDDR): assign a new observation x to the ‘‘nearest’’ population Πg , i.e. assign to Πg
if it is on average closer to the data from Πg than to the data from the other population. Matusita’s papers (see [3,4]) are
perhaps the oldest references dealing with the discriminant rule based on distance measures, including the case when the
multivariate distributions underlying the data are not specified.
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Recently, Aoshima and Yata [2] have been considered the EDDR for the high-dimensional multi-class problem with
different class covariance matrices. In particular, they derived asymptotic conditions which ensure that the expected
misclassification rate converges to zero. Recent paper by Srivastava [8] used the Moore–Penrose inverse of the estimated
covariance matrix and suggested a second-order approximation of the expected error rate in high-dimensional data.

We, in this study, focus on the asymptotic behavior of the misclassification rates of EDDR. Continuing with the normality
assumption, with µg acting as the center of the Πg ’s distribution we define

T0(x) = ∥x − µ2∥
2
− ∥x − µ1∥

2, (1.1)

and its sample based version asT (x) = ∥x − x2∥2
− ∥x − x1∥2 (1.2)

where ∥ · ∥ denotes the Euclidean norm and xg ’s denote the sample mean vectors, g = 1, 2. Hence, each term in (1.1) and
(1.2) represents the distance between the observed vector x and the centroid of Πg ’s or its sample based counterpart.

The natural advantage of using T (x) for classifying high-dimensional data is its ability to mitigate the effect of
dimensionality on the performance accuracy. Indeed, as it is seen from (1.2),T (x) utilizes only the marginal distribution
of the p variables, thereby naturally reducing the effect of large p in implementations. But the dimensionality has impact on
the classification accuracy. To show this, we first point out that classifierT (x) has a bias. In fact,

E[T (x)|x ∈ Πg ] = (−1)g−1
∥µ1 − µ2∥

2
+

N1 − N2

N1N2
trΣ, g = 1, 2,

and thus the impact of dimensionality is implied by the quantity (N1 − N2)trΣ/(N1N2). In this study, we introduce the
bias-corrected versionT (x) defined as

T (x) = ∥x − x2∥2
− ∥x − x1∥2

−
N1 − N2

N1N2
tr S, (1.3)

where the subtraction of (N1−N2)/(N1N2)tr S in (1.3) is to guarantee that E[T (x)|x ∈ Πg ] = (−1)g−1
∥µ1−µ2∥

2, g = 1, 2.
Here, S = (1/n)

2
g=1

Ng
j=1(xgj − xg)(xgj − xg)′.

Now, the EDDR given by T (x) places a newobservation x toΠ1 if T (x) > c̃ , and toΠ2 otherwise, where c̃ is an appropriate
cut-off point. Then, for a specific c̃ , the performance accuracy of EDDR will be represented by the pair of misclassification
rates that result. Precisely, we define the conditional misclassification rate of EDDR by

ce(2|1) = Pr(T (x) ≤ c̃|x ∈ Π1, x1, x2, S)

and its expected version by e(2|1) = E[ce(2|1)], where the expectation is taken with respect to x1, x2 and S. Our main
objective is to derive characteristic properties of both conditional and expected misclassification rate in high-dimensional
data.

In many practical problems one type of misclassification rate is generally regarded as more serious than the other,
examples include e.g. medical applications associated with the diagnosis of diseases. In such a case, it might be desired
to determine the cut-off c̃ to obtain a specified probability of the error, or at least to approximate a specified probability.
Then, one might base the choice of c̃ on the expected misclassification rate. This method, denoted in what follows by M1,
suggests to set a cut-off point c̃ such that

M1 : e(2|1) = E[ce(2|1)] = α,

where α is a value given by experimenters.
On the other hand, one may exploit the confidence of the conditional error rate when determining c̃; we denote this

method by

M2 : Pr(ce(2|1) < eu) = 1 − β,

where 1 − β is the desired level of confidence and eu is an upper bound.
Both determination methodsM1 andM2 have been established by using large sample approximation, see [1,5,6]. In this

study, we extend the consideration to the high-dimensional case. Our main theoretical results provide the asymptotically
unbiased and consistent estimator of e(2|1) and the limit distribution of ce(2|1) under general assumptions covering the
case when p > n. In fact, M1 and M2 procedures can be considered as specific examples of using our generic results in the
theory of EDDR in high-dimensions.

The remaining part of the paper is organized as follows. In Section 2, we derived the asymptotically unbiased and
consistent estimator of e(2|1). Further, the limiting approximations of the cut-off point defined by M1 are established by
using this estimator. In Section 3, two estimators of the confidence-based cut-off point defined byM2 are proposed, forwhich
the asymptotic normality of the conditional error rate is shown. Section 4 summaries the results of numerical experiments
justifying the validity of the suggested cut-off estimators for various strength of dependence underlying the data along with
a number of high-dimensional scenarios where p far exceeds the sample size. We conclude in Section 5.
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2. Evaluation of the expected misclassification rate

Getting the closed-form expression for the expected error is too demanding, therefore we first shall derive its asymptotic
approximation, and then based on this result, propose the consistent and asymptotically unbiased estimator of e(2|1) in high
dimensions. We further show how these results can be used to provide the cut-off by the determination procedureM1.

Let δ = µ1 − µ2, ai = trΣ i/p (i = 1, . . . , 8), ∆i = δ′Σ iδ (i = 1, . . . , 7) and ∆0 = δ′δ. We make the following
assumptions for the consistency and unbiasedness of the estimator of e(2|1).

(A1): N1,N2, p → ∞ with 0 < lim(N1,N2,p)→∞
p
n = r0 < ∞,

N1,N2 → ∞ with 0 < lim(N1,N2)→∞
Ni

n+2 = ri < 1 (i = 1, 2),
(A2): 0 < limp→∞ ∆i = ∆∗

i < ∞ (i = 0, 1), 0 < limp→∞ ai = a∗

i < ∞ (i = 1, 2),
(A3): lim(N1,N2,p)→∞

∆3
n → 0, lim(N1,N2,p)→∞

a4
n → 0.

Assume henceforth x ∈ Π1. The symmetry of our classification rule makes the probability of error if the mean of x is µ1
the same as that under µ2. Then for the conditional distribution of T (x) given (x1, x2, S) it holds that

T (x)|(x1, x2, S) ∼ N


−2U −

N1 − N2

N1N2
tr S, 4V


,

where

U = (x1 − x2)′(x1 − µ1) −
1
2
(x1 − x2)′(x1 − x2),

V = (x1 − x2)′Σ(x1 − x2).

Now the expected error rate e(2|1) of T (x) can be expressed in terms of U and V as

e(2|1) = E[ce(2|1)] = E


Φ


U + (N−1

2 − N−1
1 )pâ1/2 + c

√
V


, (2.1)

where the expectation is with respect to U, V and â1, c = c̃/2, â1 = tr S/p andΦ(·) is the cumulative distribution function
of the standard normal distribution.

In order to proceed to asymptotic approximation of e(2|1), we need some preparatory stochastic evaluation of U and V .
We introduce the auxiliary random variables

z1 = N−
1
2 Γ ′Σ−

1
2 (N1x1 + N2x2 − N1µ1 − N2µ2),

z2 =


N

N1N2

−
1
2

Γ ′Σ−
1
2 (x1 − x2 − µ1 + µ2),

and observe that z1 and z2 are independent and identically distributed as Np(0, Ip), where Γ is an orthogonal matrix such
that Σ = Γ ΛΓ ′ and Λ is a diagonal matrix of eigenvalues of Σ . By means of z1 and z2, we further define

U0 = −
1
2
∆0, (2.2)

U1 =
1

√
N

δ′Γ Λ
1
2 z1 −


N1

NN2

 1
2

δ′Γ Λ
1
2 z2 +

1

(N1N2)
1
2
z ′

1Λz2 −
N1 − N2

2N1N2
(z ′

2Λz2 − pa1), (2.3)

U2 =
(N1 − N2)p

2N1N2
(â1 − a1), (2.4)

and observe that by using (2.2)–(2.4) the numerator in (2.1) can be decomposed as

U +
(N1 − N2)pâ1

2N1N2
= U0 + U1 + U2. (2.5)

By analogy with U, V can also be decomposed by first defining V0 and V1 as

V0 = ∆1 +
Npa2
N1N2

,

V1 = 2


N
N1N2

 1
2

δ′Γ Λ
3
2 z2 +

N
N1N2

(z ′

2Λ
2z2 − pa2) (2.6)
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and then observing that V = V0 + V1. Let

U∗

0 = −
1
2
∆∗

0, V ∗

0 = ∆∗

1 +
r0a∗

2

r1r2
.

To evaluate the second moments, we apply Lemma A.3 (see supplemental material, Appendix A) and obtain

E


U +

(N1 − N2)pâ1
2N1N2

− U0

2


= HU(∆1, a2) + o(n−1),

E[(V − V0)
2
] = HV (∆3, a4) + o(n−1),

where

HU(∆1, a2) =
1
N2

∆1 +
(N2

1 + N2
2 )pa2

2N2
1N

2
2

, HV (∆3, a4) =
4N
N1N2

∆3 +
2N2pa4
(N1N2)2

.

Under the assumptions (A1)–(A3), it holds that

E


U +

(N1 − N2)pâ1
2N1N2

− U0

2


→ 0, E[(V − V0)
2
] → 0. (2.7)

Chebyshev’s inequality, (2.7), U0 = U∗

0 + o(1) and V0 = V ∗

0 + o(1) imply that

U +
(N1 − N2)pâ1

2N1N2

P
−→ U∗

0 , V
P
−→ V ∗

0 , (2.8)

where
P
−→ denotes convergence in probability.

Since Φ(·) in (2.1) is a continuous function of U and V , it follows from (2.8), by the continuous mapping theorem, thatΦ

U + (N1 − N2)pâ1/(2N1N2) + c

√
V


− Φ


U∗

0 + c
V ∗

0

 P
−→ 0.

On the other hand, it naturally holds thatΦ

U + (N1 − N2)pâ1/(2N1N2) + c

√
V


− Φ


U∗

0 + c
V ∗

0

 < 1.

Hence, by the dominated convergence theorem we have

E

Φ

U + (N1 − N2)pâ1/(2N1N2) + c

√
V


− Φ


U∗

0 + c
V ∗

0




→ 0. (2.9)

Further, by applying Jensen’s inequality to (2.9) we getE

Φ


U + (N1 − N2)pâ1/(2N1N2) + c

√
V


− Φ


U∗

0 + c
V ∗

0


≤ E

Φ

U + (N1 − N2)pâ1/(2N1N2) + c

√
V


− Φ


U∗

0 + c
V ∗

0




→ 0.

The above results are summarized in the following lemma.

Lemma 2.1. Under assumptions (A1)–(A3)

e(2|1) → Φ


U∗

0 + c
V ∗

0


. (2.10)

In words, Lemma 2.1 provides a closed form expression for the limiting term of e(2|1). Hence, to identify the cut-off point
for T (x), we derive a consistent and unbiased estimator of e(2|1) by plugging-in consistent estimators of U∗

0 and V ∗

0 into the
right hand side of (2.10).

As U∗

0 and V ∗

0 are functions of ∆∗

0, ∆∗

1 and a∗

2 , we begin by obtaining their consistent estimators.
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Lemma 2.2. Let estimators of ∆∗

0, ∆∗

1, a
∗

2 be defined as

∆0 =δ′δ −
Np

N1N2
â1, (2.11)

∆1 =δ′

Sδ −
Np

N1N2
â2, (2.12)

â2 =
n2

p(n + 2)(n − 1)


tr S2 −

(tr S)2

n


, (2.13)

respectively, whereδ = x1 − x2. Then under assumptions (A1)–(A3)

∆0
P
−→ ∆∗

0,
∆1

P
−→ ∆∗

1, â2
P
−→ a∗

2.

Proof. To show consistency of a1 and a2, we use exact expressions for the variances of these estimators derived in [7] as

E[(â1 − a1)2] =
2a2
np

, (2.14)

E[(â2 − a2)2] =
8(n + 2)(n + 3)(n − 1)2

pn5
a4 +

4(n + 2)(n − 1)
n4

(a22 − p−1a4). (2.15)

Then by applying Chebyshev’s inequality to (2.14), (2.15), a1 − a∗

1 = o(1) and a2 − a∗

2 = o(1), it can be seen that

â1
P
−→ a∗

1, â2
P
−→ a∗

2. (2.16)

To show consistency of ∆0 and ∆1, we first consider the following random variables

∆0 =δ′δ −
Np

N1N2
a1, ∆1 =δ′

Sδ −
Np

N1N2
a2

and evaluate the first two moments ofδ′δ andδ′

Sδ. We rewrite

δ′δ = δ′δ + 2


N
N1N2

1/2

δ′Σ1/2z +
N

N1N2
z ′Σz,

and

δ′

Sδ = δ′Sδ + 2


N
N1N2

1/2

δ′SΣ1/2z +
N

N1N2
z ′Σ1/2SΣ1/2z, (2.17)

where z ∼ N (0, Ip). Then it easily follows that

E[∆0] = ∆∗

0 + o(1), E[∆1] = ∆∗

1 + o(1) (2.18)

and

Var[∆0] =
4N
N1N2

∆1 +
2N2p
N2

1N
2
2
a2, (2.19)

Var[∆1] =
2a22N

2p2

nN2
1N

2
2

+
4a2∆1Np
nN1N2

+
2a4N3p
nN2

1N
2
2

+
2∆2

1

n
+

4∆3N2

nN1N2
. (2.20)

By applying Chebyshev’s inequality to (2.18)–(2.20), we obtain

∆0
P
−→ ∆∗

0,
∆1

P
−→ ∆∗

1. (2.21)

Finally, from (2.16), (2.21), a1 − a∗

1 = o(1) and a2 − a∗

2 = o(1), we see that consistency of ∆0 and ∆1 imply consistency of∆0 and ∆1. �

Now by substituting the estimators of ∆∗

0, ∆∗

1, a
∗

2 into the limiting term in Lemma 2.1. The consistent estimator of e(2|1)
is given by Φ((U0 + c)V−1/2

0 ), whereU0 = −∆0/2 andV0 = ∆1 + Npâ2/(N1N2).
The following theorem is provided by the consistency of estimators ∆0,∆1 and â2, continuous mapping theorem and

dominated convergence theorem.
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Theorem 2.1. Under assumptions (A1)–(A3)

Φ


(U0 + c)V−1/2

0


P
−→ e(2|1) and E


Φ


(U0 + c)V−1/2

0


→ e(2|1).

By the results of Theorem 2.1 and Lemma 2.1, theM1-based cut-off point for EDDR using T (x) is provided by

ĉ1 = V 1/2
0 zα −U0,

where zα is the α-percentile of N (0, 1) and α ∈ (0, 1).

3. Asymptotic distribution of the conditional misclassification rate

Our objective in this section is to establish the asymptotic distribution of ce(2|1), for which we need some auxiliary
notations and assumptions.Webegin bymodifying the high-dimensional asymptotic framework fromSection 2 by replacing
the Assumption (A3) with (B3) as follows:

(B3): 0 < lim
p→∞

∆i = ∆∗

i < ∞ (i = 2, 3), 0 < lim
p→∞

ai = a∗

i < ∞ (i = 3, 4),

p
n

= r0 + o


1
√
n


,

Ni

n + 2
= ri + o


1

√
n


(i = 1, 2),

∆i = ∆∗

i + o


1
√
p


(i = 0, 1), a2 = a∗

2 + o


1
√
p


,

lim
(N1,N2,p)→∞

∆i
√
n

→ 0 (i = 4, 5), lim
(N1,N2,p)→∞

ai
√
n

→ 0 (i = 5, 6).

As ce(2|1) is a function of the variable set of (U, V ), we first obtain the joint asymptotic distribution of (U, V ).

Lemma 3.1. Let

U = U +
(N1 − N2)pâ1

N1N2
.

Then under assumptions (A1), (A2) and (B3) the following holds

√
n
U

V


−


U∗

0
V ∗

0


D
−→ N2(0, Θ),

where

Θ = lim
(N1,N2,p)→∞

n


HU(∆1, a2) HUV (∆2, a3)
HUV (∆2, a3) HV (∆3, a4)


,

HUV (∆2, a3) = −
2
N2

∆2 −
N(N1 − N2)pa3

(N1N2)2
,

and
D
−→ denotes convergence in distribution.

Proof. Let d1 and d2 denote two non-random values which satisfy 0 < lim(N1,N2,p)→∞ |d1| < ∞ and 0 < lim(N1,N2,p)→∞ |d2|
< ∞, and introduce the random variable

Q =
√
n

d1
U − U∗

0


+ d2


V − V ∗

0


.

The asymptotic normality ofQ would imply that the joint distribution ofU and V is asymptotically normal. Thus, Lemma 3.1
will be proven if we show the normal convergence of Q under (A1), (A2) and (B3). We introduced the following notations

ω1 =
d1

√
n

√
N

Λ
1
2 Γ ′δ,

ω2 =
2d2

√
nN

√
N1N2

Λ3/2Γ ′δ −
d1

√
nN1

√
NN2

Λ1/2Γ ′δ,

Ω3 =
d1

√
n

√
N1N2

Λ,

Ω4 =
d2

√
nN

N1N2
Λ2

−
d1

√
n(N1 − N2)

2N1N2
Λ.
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Now, since â1 − a1 = Op(n−1) by (2.14),

Q = ω′

1z1 + ω′

2z2 + z ′

1Ω3z2 + z ′

2Ω4z2 + op(1)

under the assumptions (A1), (A2) and (B3). Note also that

ω′

1ω1 =
d21n
N

δ′Σδ,

ω′

2ω2 =
4d22nN
N1N2

δ′Σ3δ +
d21nN1

NN2
δ′Σδ −

4d1d2n
N2

δ′Σ2δ,

trΩ2
3 =

d21n
N1N2

trΣ2,

trΩ2
4 =

d22nN
2

N2
1N

2
2
trΣ4

+
d21n(N1 − N2)

2

4N2
1N

2
2

trΣ2
−

d1d2n(N2
1 − N2

2 )

N2
1N

2
2

trΣ3.

By combining these terms, we now obtain the asymptotic variance of Q as

σ 2
Q = lim

(N1,N2,p)→∞

n{d21HU(∆1, a2) + 2d1d2HUV (∆2, a3) + d22HV (∆3, a4)}

and observe that (A1), (A2) and (B3)

0 < σ 2
Q < ∞. (3.1)

Furthermore, the following convergence results hold

ω′

1Ω3ω2 → 0, ω′

2Ω4ω2 → 0, trΩ2
3Ω4 → 0 and trΩ3

4 → 0. (3.2)

Now by using (3.1) and (3.2), and by applying (A.1) from Lemma A.1 (see supplemental material, Appendix A), we obtain

ω′

1Ω3ω2

σ 3
Q

→ 0,
ω′

2Ω4ω2

σ 3
Q

→ 0,
trΩ2

3Ω4

σ 3
Q

→ 0 and
trΩ3

4

σ 3
Q

→ 0. (3.3)

(3.3) in combination with Lemma A.1 shows that the asymptotic normality of Q holds, which completes the proof. �

Now we are ready to state our main results on the distribution of ce(2|1). Besides the distribution of the latter we also
find the asymptotic distribution of the logit transform of ce(2|1). Our motivation to make this particular type of transform
will be clear below.

Theorem 3.1. Let the logit transform of ce(2|1) be defined by

ℓ(2|1) = log
ce(2|1)

1 − ce(2|1)

and let the operator ∇(u,v)(·) for a function f (u, v) be defined as

∇(u,v)f (u, v) =


∂ f
∂u

,
∂ f
∂v

′

.

Then in the framework (A1), (A2) and (B3) ce(2|1) and ℓ(2|1) are asymptotically normal, i.e.

(i)
√
n(ce(2 | 1) − e0)

D
−→ N


0, τ 2 ,

(ii)
√
n(ℓ(2 | 1) − ℓ0)

D
−→ N


0, τ 2

ℓ


with

e0 = Φ


U∗

0 + c

V ∗1/2
0


, ℓ0 = log

e0
1 − e0

, τ 2
= ∇

′

(U∗
0 ,V∗

0 )Θ∇(U∗
0 ,V∗

0 ), τ 2
ℓ =

τ 2

(1 − e0)e0
,

where ∇(U∗
0 ,V∗

0 ) is defined as

∇(U∗
0 ,V∗

0 ) =


V ∗

−1/2

0 φ


U∗

0 + c
V ∗

0


, −

(U∗

0 + c)

2V ∗3/2
0

φ


U∗

0 + c
V ∗

0

′

.
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Proof. By using asymptotic normality of (U, V ) and by applying Lemma A.4 (see supplemental material, Appendix A) to the
function

g(U, V ) = Φ

U + c
V 1/2


it easily follows that

∇(ũ,v)g(ũ, v) =


∂g
∂ ũ

,
∂g
∂v

′

=


v−1/2φ


ũ + c
√

v


, −

(ũ + c)
2v3/2

φ


ũ + c
√

v

′

.

Then we obtain
√
n(g(U, V ) − Φ((U∗

0 + c)V ∗
−1/2

0 ))
D
−→ N


0, ∇ ′

(U∗
0 ,V∗

0 )Θ∇(U∗
0 ,V∗

0 )


.

The statement (ii) can be proven similarly. �

Now we are ready to explore the determination methodM2which chooses the cut-off point c to get the desired level of
confidence 1 − β of a pre-specified upper bound eu. By the asymptotic normality of ce(2|1) and ℓ(2|1), we propose to set
the cut-off points for the EDDR using T (x) as

(i) c2,1 s.t. c2,1 = −U∗

0 + V ∗
1/2

0 zγ ,

(ii) c2,2 s.t. c2,2 = −U∗

0 + V ∗
1/2

0 zγℓ
,

(3.4)

where

γ = eu −
τ

√
n
z1−β , γℓ =

eu
(1 − eu) exp(τℓz1−β/

√
n) + eu

.

Remark 3.1. If γ ∉ [0, 1] then (i) is not defined. This motivates our logit transform of ce(2|1) which yields the result (ii)
where γℓ ∈ [0, 1] always.

For practical use, the unknown parameters∆∗

0, ∆∗

1, ∆∗

2, ∆∗

3, a
∗

1, a
∗

2, a
∗

3 and a∗

4 in (i)–(ii) should be replaced by their consistent
estimators. To ensure consistency, the asymptotic framework (A1)–(A3) is modified by replacing (A3) with

(B′3) : 0 < lim
p→∞

ai = a∗

i < ∞ (i = 3, . . . , 8), 0 < lim
p→∞

∆i = ∆∗

i < ∞ (i = 2, . . . , 7).

By the consistency results of Lemma A.5 and A.6 (see supplemental material, Appendix A), obtained under the
assumptions (A1), (A2) and (B′3), we propose estimators forM2-based cut-off points derived in (3.4), as

(i) ĉ2,1 s.t. ĉ2,1 = −U0 +V 1/2
0 zγ̂ ,

(ii) ĉ2,2 s.t. ĉ2,2 = −U0 +V 1/2
0 zγ̂ℓ

,
(3.5)

where

γ̂ = eu −
τ̂

√
n
z1−β , γ̂ℓ =

eu
(1 − eu) exp(τ̂ℓz1−β/

√
n) + eu

.

4. Simulation study

We now turn to numerical evaluation of the asymptotic results and the suggested cut-off points. The goal of the
simulation experiment is threefold: to investigate the finite sample behavior of newly derived asymptotic approximations,
to compare the performance of our approach under independence with that for dependent data with various dependence
strength, and to investigate the effect of choice of the confidence level in combination with the upper bound specification.

The data sets for each Πg , g = 1, 2 are independently generated as

x11, x12, . . . , x1N1

i.i.d.
∼ Np(µ1, Σ), x21, x22, . . . , x2N2

i.i.d.
∼ Np(µ2, Σ), (4.1)

respectively. To assess the performance for dependent data, Σ will be assumed to have band correlation Σ =

σij

,

σij =


ρ|i−j|, |i − j| ≤ 50,
0, |i − j| > 50,

with ρ ranging from 0 to 0.5, which is chosen to fulfill the condition (A2). To constrain the classification complexity, we set

Σ−1/2µ1 = (p)−1/2(51/2, 51/2, . . . , 51/2)′ and µ2 = (0, 0, . . . , 0)′,

through the whole simulation experiment.
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Table 1
Misclassification probability of EDDR based on ĉ1 .

N p
64 128 256 512 1024

Σ = I

64 0.201793 0.202039 0.201824 0.201865 0.201870
128 0.200916 0.201113 0.201099 0.200896 0.200811
256 0.200412 0.200442 0.200533 0.200539 0.200460

ρ = 0.2

64 0.201434 0.201462 0.201832 0.201741 0.201876
128 0.200718 0.201274 0.200788 0.200826 0.200614
256 0.200245 0.200183 0.200339 0.200457 0.200174

ρ = 0.5

64 0.202088 0.200184 0.200799 0.201209 0.201662
128 0.200979 0.199646 0.200136 0.200289 0.200633
256 0.200343 0.199499 0.199728 0.199936 0.200197

To evaluate the effect of high-dimensionality and sample size, we let p = 64, 128, 256, 512, 1024 and N1 = N2, N = 64,
128, 256 for each choice of ρ.

First, as in the previous sections, we focus without loss of generality on evaluation of ce(2|1). For each triple (p,N, ρ), we
generate data according to (4.1), apply EDDR given by T (x) in (1.3) with bothM1-based cut-offs, ĉ1 established in Section 2,
and repeat the whole process independently 105 times. As a result, we get 105 conditional classification errors of T (x):

C (i)
= Φ


U (i)

+ (N−1
2 − N−1

1 )pâ(i)
1 /2 + ĉ(i)

1
√
V (i)


, i = 1, . . . , 105,

which after averaging provides attained error rate

ae(ĉ1) =
1

105

105
i=1

C (i).

This result, being summarized in Table 1, suggest that the EDDR based on ĉ1 is optimally adaptive in a sense that its
performance accuracy is closely approaching the actual value of the misclassification probability, α = 0.2. Stably good
results are obtained when varying the dependence strength ρ, in both large sample and high-dimensional cases. This
provides a finite sample justification of the asymptotic framework (A1)–(A3) which allows for both p > N and p < N
scenarios. As expected, by our asymptotic results obtained in Theorem 2.1 along with consistency of estimators of U∗

0 and
V ∗

0 suggested for the practical use of the cut-off c1, the classification procedure remains accurate even when p grows.
To evaluate the performance of the M2-based cut-offs we use the simulation setting (4.1), with the same variety of

covariance strength, β = 0.05, and two values of eu = 0.2 representing the upper bound on the actual misclassification
probability. Then for each setting, the performance of the classification procedure by T (x) with cut-offs ĉ2,1 and ĉ2,2 given
in (3.5) is analyzed. Proceeding with the same simulation strategy as above for each cut-off choice, we consider the attained
confidence level

acl(ĉ2,i) =

#

Φ


{U + (N−1

2 − N−1
1 )â1/2 + ĉ2,i}/

√
V


≤ eu


105 , i = 1, 2,

which is obtained by averaging the observed confidence level of ce(2|1) of T (x) with ĉ2,i for each, i, over 105 independent
replicates of the data generation step, estimation of parameters and classification.

Performance results, being summarized in Table 2 indicate that the cuf-off ĉ2,2 based on the logit transform is in
general conservative and provides better classification accuracy than ĉ2,1 in both large sample and high-dimensional
settings. Note that Theorem 3.1, the classification procedure based on ĉ2,1 and ĉ2,2, is expected to provide an accurate
asymptotic performance due to the properties of the logit transformanddue to consistency of the estimators of the unknown
parameters suggested in Remark 3.1. The consistency is stated under rather general asymptotic framework proposed in (B′3),
covering both large sample and high-dimensional cases. These asymptotic findings are completely supported by stably good
classification performance obtained for finite sample caseswith both p ≥ N and p < N for various choices of the dependence
strength ρ.

5. Conclusion

This paper contributes to the asymptotic analyses of the EDDR performance in high-dimensional data, with particular
focus on determining a cut-off point to adjust the probabilities of misclassification. Two generic cut-off determination
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Table 2
Attained confidence level.

N p
64 128 256 512 1024

Σ = I

64 acl(ĉ2,1) 0.934 0.931 0.935 0.934 0.933
acl(ĉ2,2) 0.956 0.954 0.956 0.956 0.955

128 acl(ĉ2,1) 0.939 0.938 0.938 0.938 0.938
acl(ĉ2,2) 0.954 0.953 0.954 0.953 0.953

256 acl(ĉ2,1) 0.944 0.943 0.942 0.941 0.942
acl(ĉ2,2) 0.954 0.953 0.952 0.952 0.953

ρ = 0.2

64 acl(ĉ2,1) 0.936 0.935 0.932 0.934 0.933
acl(ĉ2,2) 0.958 0.957 0.955 0.956 0.955

128 acl(ĉ2,1) 0.940 0.936 0.940 0.939 0.940
acl(ĉ2,2) 0.955 0.958 0.955 0.953 0.954

256 acl(ĉ2,1) 0.944 0.944 0.944 0.943 0.941
acl(ĉ2,2) 0.955 0.955 0.954 0.953 0.952

ρ = 0.5

64 acl(ĉ2,1) 0.932 0.939 0.938 0.935 0.933
acl(ĉ2,2) 0.954 0.962 0.960 0.958 0.956

128 acl(ĉ2,1) 0.938 0.945 0.941 0.943 0.939
acl(ĉ2,2) 0.953 0.960 0.957 0.958 0.954

256 acl(ĉ2,1) 0.943 0.948 0.947 0.946 0.943
acl(ĉ2,2) 0.953 0.959 0.958 0.957 0.954

approaches, M1 based on the expected error and M2 based on the upper bound of the actual misclassification probability,
eu with the specified confidence level 1 − β , are proposed.

To establish the cut-off byM1, an approximation of the expectedmisclassification rate alongwith its asymptotic unbiased
estimator, is derived; our result extends the approach of Anderson [1] by considering amore general asymptotic set-up that
allows p > N . Subsequently, the cut-off based on the main term of the asymptotic expression is suggested.

To set up the cut-off based onM2, the asymptotic normality of the conditionalmisclassification rate and its logit transform
are established for a given β and eu in high-dimensions. Based on the asymptotic results, two types of cut-offs are also
established. Our newly derived results extend the asymptotic consideration by McLachlan [5] to a high-dimensional case.

For both M1 and M2 approaches, the practically workable expressions of the theoretical cut-offs are established, for
which we obtain consistent and asymptotic unbiased estimators of a set of unknown parameters. The validity of the new
asymptotic results in a finite sample case is numerically shown by applying the cut-offs in the suggested EDDR classifier
T (x) for a range of confidence levels, various strength of correlation and a set of p and N values.

As both suggested cut-off determination procedures demonstrate stably good accuracy in high dimensions, they can
generally be recommended for practical applications in distance-based classifiers, with EDDR as special case, when it is
desired to set a cut-off point to achieve a specified misclassification rate.
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