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a b s t r a c t

In recent years, procedures for testing distributional sphericity have attracted increased at-
tention, especially in high-dimensional settings. A prominent problem in this context is the
development of robust and efficient test statistics. In this paper, we propose two novel rank
tests inspired by Spearman’s rho and Kendall’s tau for high-dimensional problems. Due to
the ‘‘blessing of dimension’’, estimation ofmasses of nuisance parameters is avoided,which
allows our procedures to work in arbitrary large dimension. The asymptotic normality of
the proposed tests is established for elliptical distributions and their performance is inves-
tigated over a wide range of simulation set-ups.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Assessing sphericity is an important issue in a large number of problems arising, e.g., in biostatistics and geostatistics.
Mathematically speaking, the hypotheses to be tested are

H0 : 6p = σ Ip vs. H1 : 6p ≠ σ Ip, (1)

where 6p denotes the covariance matrix of a p-variate elliptical random vectors. There is a considerable body of work on
this issue, most of which cast in a fixed dimension framework. Under a multivariate normal assumption, a commonly used
method for testing sphericity is Mauchly’s likelihood ratio statistic [11]. John [6,7] also proposed the statistic

QJ =
np2

2
tr


S
tr(S)

−
1
p
Ip
2

,

where S is the sample covariance matrix. John derived that QJ is (locally) the most powerful invariant test for sphericity
under the multivariate normal assumption. Following [6,7], Muirhead and Waternaux [12] modified QJ in order to make it
applicable for the broader class of elliptical distributions.

With the rapid development of technology, however, high-dimensional datasets are now emerging in many areas of
science and industry, e.g., hyperspectral imagery, internet portals, microarray analysis and DNA analysis. For such datasets,
the number of variables is often much larger than the sample size; this is the so-called ‘‘large p, small n’’ paradigm. For this
reason, an interest in sphericity tests for high-dimensional settings has emerged.

Specifically, Bai et al. [1] proposed corrections to the original likelihood ratio test by using random matrix technology
when p/n → c ∈ (0, 1). Ledoit and Wolf [9] showed that the existing n-asymptotic theory remains valid when p goes
to infinity with n, even when p > n. In parallel, Chen et al. [3] could avoid the multivariate normality assumption in their
investigation of a high-dimensional test based onQJ with two accurate estimators of tr(6p) and tr(62

p). They concluded that
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without explicitly specifying the growth rate of p with respect to n, their test statistic is still asymptotically normal under
the diverging factor model. This model, introduced by Bai and Saranadasa [2], states that Xi = 0Zi + µ, where 0 is a p × m
matrix withm ≥ p and Zi = (Zi1, . . . , Zim)⊤ is a random vector satisfying the following conditions:

E(Zi) = 0, var(Zi) = Im, E(Z4
il ) = 3 + ∆ ∈ (0, ∞),

E(Zα1
ik1

· · · Zαq
ikq) = E(Zα1

ik1
) · · · E(Zαq

ikq).
(2)

Here
q

k=1 αk ≤ 8 and k1, . . . , kq are positive integers. Furthermore, Zou et al. [17] studied a sphericity test for amultivariate
t-distribution or a mixture of multivariate distributions, which is, however, not a diverging factor model.

Within a host of sphericity tests for fixed dimension cases, multivariate sign- and/or rank-based covariance matrices
are often used to construct robust tests for sphericity; see Hallin and Paindaveine [5] and Oja [13] for general overviews.
However, when the dimension is larger than the sample size, these methods tend to perform poorly. Zou et al. [17] showed
that the type I error of tests based on multivariate signs, used in Marden and Gao [10], Hallin and Paindaveine [5] and
Sirkiä et al. [16], are much larger than the nominal level because of poor estimates of the location parameters. On this
ground, Paindaveine and Verdebout [15] proposed a high-dimensional sign test assuming known location parameters, and
Zou et al. [17] proposed a bias-correction procedure to the existing test statistic. Unfortunately, these tests can only allow
the dimension to be, at most, the square of the sample size. In contrast, the dimension of many datasets, such as microarray
dataset,can be exponential in terms of the sample size. This motivated us to construct new tests available for ultra-high
dimensional settings.

In this paper, we propose two new rank tests for high-dimensional contexts inspired by Spearman’s rho and Kendall’s tau.
As already shown by Sirkiä et al. [16], such rank statistics yield robust and efficient tests for sphericity, though they require
the estimation of many nuisance parameters. Such estimates were developed, notably by these authors, but they are not
operational in high-dimensional settings because information about the location is unavailable. In addition, the estimators
of tr(�2

p) or tr(42
p) based on the sample symmetrized sign or rank covariance matrix result in a non-negligible bias term,

once the dimension is ultra-high.
The purpose of this paper, therefore, is to propose and investigate improved Spearman’s rho and Kendall’s tau type rank

tests for sphericity in situation of high-dimensional settings. Owing to the ‘‘blessing of dimension’’, the nuisance parameters
do not need to be estimated. Based on the leave-one-out method, there are no bias terms in the proposed test statistics.
Given that location parameters need not be estimated, the data dimension is unrestricted. Furthermore, the asymptotic
normality of these two test statistics is established under the assumption that the underlying distribution is elliptical.
Finally, simulation results reported here suggest that the proposed tests outperform the test of Chen et al. [3], valid under a
multivariate normality assumption, as well as the test of Zou et al. [17] when p/n2 is large enough.

2. High-dimensional rank tests

2.1. High-dimensional Spearman’s rho-type rank test statistic

We begin by introducing a distributional assumption on X :

(A1) X1, . . . ,Xn are generated from a p-variate elliptical distribution with density det(6p)
−1/2gp{∥6

−1/2
p (X − θp)∥}, where

∥X∥ = (X⊤X)1/2 is the Euclidean length of the vector X , θp is the center of symmetry and 6p is a positive definite
symmetric p × p scatter matrix.

Similar to Zou et al. [17], we define 6p = σp3p, where tr(3p) = p and σp is a scale parameter. A test of (1) is equivalent
to a test of

H0 : 3p = Ip vs. H1 : 3p ≠ Ip.

The spatial-rank function is defined as R(X) = E{U(X − Y )|X}, where U(X) = (X/∥X∥)1(X ≠ 0). The spatial-rank
covariance matrix is �p = E{R(X)R(X)⊤}. Under the null hypothesis, �p = τFp−1Ip, where τF is a constant dependent on
gp. Similar to John’s test [6,7], a natural distance measure between �p and τFp−1Ip is

ptr


�p

tr(�p)
− p−1Ip

2

=
ptr(�2

p)

tr2(�p)
− 1.

When p is fixed, we use the sample spatial-rank covariance matrix �n,p to estimate �p, i.e.,

�n,p =
1
n

n
i=1

RiR⊤

i =
1
n3

n
i=1

n
j=1

n
k=1

UijU⊤

ik ,

where Ri =
n

j=1 Uij/n and Uij = U(Xi − Xj). The Spearman’s rho-type rank test statistic is then given by

QS = ptr


�n,p

tr(�n,p)
− p−1Ip

2

=
ptr(�2

n,p)

tr2(�n,p)
− 1.
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It can be shown that when p is fixed, under the null hypothesis one has
n

γS/τ
2
F
QS  χ2

(p+2)(p−1)/2,

where γS and τF are two nuisance parameters that depend on gp and p.
Sirkiä et al. [16] suggested that τF could be estimated by tr(�n,p)/p. In addition, they proposed two estimators for γS .

The first estimation is based on the formula of γS . However, it is restricted by the assumption that Xi is located at the origin,
which is unrealistic in practice. Additionally, if we standardize the samples by the estimated location parameters, as shown
in Zou et al. [17], there would be another non-negligible bias term in QS when p/n2 is large enough. The other estimator of
γS is a complex symmetric U-statistic, which requires O(n5p4) computations. Here the total computational complexity of
QS is of order O(n5p4) + O(p6) because of the inverse of the covariance matrix of vec(�n,p). Obviously, this computational
complexity is too high for high-dimensional data.

Fortunately, Lemma 1 in Appendix states that E(�p) = 0.5p−1Ip{1 + o(1)} under the null hypothesis as p → ∞. Thus,
tr(�p) → 0.5, and we only need to propose a better estimator of tr(�2

p). However, the estimator tr(�2
n,p) results in a

non-negligible bias term in QS when p is ultra-high. Based on the leave-one-out method, we define the following new
estimator of tr(�2

p),

tr(�2
p) =

1
2n(n − 1)(n − 2)(n − 3)


i,j,k,ℓ are not equal

U⊤

ij UkℓU⊤

kj Uiℓ.

Then we define the following high-dimensional Spearman’s rho-type rank test statistic (abbreviated as SR hereafter) as

Q̃S = 4p tr(�2
p) − 1.

Obviously, the value of Q̃S remains unchanged for Zi = aOXi + c , where a is a constant, O is an orthogonal matrix and c is
a vector of constants. Thus, the test statistic Q̃S is invariant under rotations. The following result states the asymptotic null
distribution of Q̃S .

Theorem 1. Under H0 and Assumption (A1), as n → ∞ and p → ∞, Q̃S/σ0  N (0, 1), where σ 2
0 = 4(p−1)/{n(n−1)(p+

2)}.

According to Theorem 1, there are no nuisance parameters in the new proposed test procedure. As n and p go to infinity,
Q̃S is asymptotically normal and the variance σ 2

0 only depends on p and n. This can be viewed as the phenomenon of the
‘‘blessing of dimension’’. Moreover, the complexity of the entire procedure is only O(n4p), which is eventually less than the
classic Spearman’s rho-type rank test procedure.

Theorem 1 also shows that there is no bias term in Q̃S . As a result, the proposed tests do not need a bias correction pro-
cedure as in Zou et al. [17]. Moreover, a relationship between the sample size n and dimension p is not required. On the
contrary, the test proposed by Zou et al. [17] (abbreviated as SS hereafter) requires that the dimension is the square of the
sample size at most. Also, when p/n2

→ ∞, there will be another bias term in the SS test statistic, which is difficult to
compute. Simulation studies will demonstrate these conclusions in Section 3.

Next, we study the asymptotic distribution of Q̃S under the alternative H1 : 3p = Ip + Dn,p. In what follows,

σ 2
1 = σ 2

0 + n−2p−2 8ptr(D2
n,p) + 4tr2(D2

n,p)


+ 8n−1p−2 tr(34
p) − p−1tr2(32

p)

.

Theorem 2. Suppose that ntr(D2
n,p)/p = O(1). Under H1 and Assumption (A1), as p, n → ∞, {Q̃S−tr(D2

n,p)/p}/σ1  N (0, 1).

According to Theorem 2, if p = O(n2), Q̃S has the same power function as the test proposed by Zou et al. [17]. However, when
p/n2

→ ∞, the variance of the SS test statistic will be larger than σ 2
1 because of poor estimation of the location parameter

θp, which will be revisited in Section 3.
As a consequence of Theorem 2, our ST test is consistent. This is formally stated below.

Corollary 1. If ntr(D2
n,p)/p → ∞, the test Q̃S/σ0 > zα is consistent against H1 as n → ∞ and p → ∞.

Under the framework of Theorems 1 and 2, our SR test can be theoretically compared with some existing procedures,
such as the test of Chen et al. [3]. The following corollary is concerned with the limiting relative efficiency with respect to
their test (abbreviated as CZZ hereafter) under the multivariate normality assumption.

Corollary 2. If ntr(D2
n,p)/p = O(1), under multi-normal distributions, the SR test is as asymptotically efficient as the CZZ test.

It is worth pointing out that from a theoretical perspective, comparing the proposed test with the CZZ test under general
multivariate distributions is difficult. This is because the asymptotic validity of the CZZ test relies on the diverging factor
model, while Theorems 1 and 2 rely on elliptical distributions. The distinction and connection between elliptical distribu-
tions and the diverging factor model is far from clear in the literature.
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2.2. High-dimensional Kendall’s tau-type rank test statistic

In this subsection,we consider another efficient sphericity test based onKendall’s tau. The classic Kendall’s tau covariance
matrix is defined as

4n,p =
2

n(n − 1)


i<j

UijU⊤

ij .

Under H0, we have E(4n,p)
.
= 4p = p−1Ip. Then, the Kendall’s tau test statistic is defined as

QK = ptr{tr−1(4n,p)4n,p − p−1Ip}2 = ptr(42
n,p) − 1.

When p is fixed, under the null hypothesis, one has
n
γK

QK  χ2
(p+2)(p−1)/2

where γK is another nuisance parameter which depends on gp and p. Similarly, the estimator of γK in Sirkiä et al. [16] cannot
be used in high-dimensional settings, which requires the original location or anO(n3p4) computation. Owing to the ‘‘blessing
of dimension’’, we do not need this nuisance parameter in high-dimensional data. Moreover, the nature estimator tr(42

n,p)
also results in a non-negligible bias term in QK when p is ultra-high. Thus, based on the leave-one-out method, we propose
to estimate tr(42

p) by

tr(42
p) =

1
n(n − 1)(n − 2)(n − 3)


i,j,k,ℓ are not equal

(U⊤

ij Ukℓ)
2.

Then, we define the following high-dimensional Kendall’s tau-type rank test statistic (abbreviated as SK hereafter) as

Q̃K = p tr(42
p) − 1.

Obviously, the test statistic Q̃K is also invariant under rotation. The asymptotic properties of Q̃K are as follows.

Theorem 3. As n → ∞ and p → ∞,
(i) Under H0 and Assumption (A1), Q̃K/σ0  N (0, 1).
(ii) Under H1 and Assumption (A1), if ntr(D2

n,p)/p = O(1), then

{Q̃K − tr(D2
n,p)/p}/σ1  N (0, 1).

In fact, as shown in the proof of Theorem 3, Q̃K is asymptotically equivalent to Q̃S under both the null and alternative hy-
potheses. Thus, similar to Corollary 1, we can also derive the consistency of the SK test. Moreover, the SK test is as asymp-
totically efficient as the CZZ test under multinormal distributions, via similar arguments as in Corollary 2. We summarize
these results in the following corollary.

Corollary 3. Suppose n → ∞ and p → ∞.
(i) If ntr(D2

n,p)/p → ∞, the test Q̃K/σ0 > zα is consistent against H1.
(ii) If ntr(D2

n,p)/p = O(1), under multinormal distributions, the SK test is asymptotically as efficient as the CZZ test.

Recently, Onatski et al. [14] obtained the power envelope for the sphericity test in the Gaussian case. They computed the
distance between the obtained power envelope and various tests: John’s test [6,7], the Ledoit and Wolf [9] procedure, and
the corrected LRT of Bai et al. [1] together with the Tracy–Widom type tests studied by Johnstone [8].

According to Theorems 2 and 3, the power functions of the SR and SK tests are

βSR(Dn,p) = βSK (Dn,p) = Φ

−zασ−1

1 σ0 + σ−1
1 p−1tr(D2

n,p)


where Φ is the standard normal distribution function. Additionally, σ0/σ1 → 1 and tr(D2
n,p) = h2 under the spiked

alternatives H1 : 6p = σ 2(Ip + hvv′) where v is a p-dimensional vector with ∥v∥ = 1 and p/n → c ∈ (0, ∞). Thus,
the power function of the SR and SK tests under the spiked alternative is

βSR(h, c) = βSK (h, c) = Φ(−zα + 0.5c−1h2).

The CZZ test has the same power function as in Corollaries 2 and 3(ii). According to Proposition 10 in Onatski et al. [14], the
power function of John’s test is

βJ(h, c) = βCZZ (h, c) = βSR(h, c) = βSK (h, c) = Φ(−zα + 0.5c−1h2).

Fig. 1 compares these power functions to the corresponding power envelopes (Proposition 9 in Onatski et al. [14]), where
θ =


− log(1 − h2/c).
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Fig. 1. Asymptotic powers of the tests and the corresponding power envelopes.

3. Simulation

In this section, we consider the following five distribution set-ups for comparison:

(I) The standard multivariate normal.
(II) The standard multivariate t with four degrees of freedom, tp,4.
(III) Mixtures of twomultivariate normal densities κ fp(µ, Ip)+ (1−κ)fp(µ, 9Ip), where fp(·; ·) is the p-variate multivariate

normal density. The value κ was chosen to be 0.8.
(IV) The diverging factor model with the standardized G(4, 0.5) distribution.
(V) The diverging factor model with the standardized t distribution with four degrees of freedom, t4.

Here we choose 0 = Ip, and for each Zi, p-independent identically distributed random variables Zijs were generated
from the diverging factor model for Scenarios (IV) and (V). The first three scenarios are well-known multivariate elliptical
distributions. However, the last two scenarios are not elliptically distributed. We considered sample sizes n ∈ {20, 30} and
dimensions p ∈ {100, 200, 400, 800}.

Proceeding as in Chen et al. [3], we set Xi = AYi, where Yi were generated for Scenarios (I)–(V) and A = diag{21/21⌊vp⌋,
1p−⌊vp⌋}, where ⌊x⌋ denotes the integer part of x. Different levels of v were considered for different sample sizes. We
compared our SR test and SK test with SS test and CZZ test. Tables 1 and 2 report the empirical sizes and power of these four
tests for Scenarios (I)–(III), (IV)–(V), respectively.

First consider the empirical size of these tests. The empirical size of the SR and SS tests was close to the nominal level in
all cases, which were not impacted by their dimension. However, SS was not able to control its empirical size very well in
many cases. Sometimes it was a little conservative, and other times it was larger than the nominal level.

To evaluate the impact of dimension on the bias term of SS, we also report the mean-standard deviation-ratio E(T )/
√
var(T ) and the variance estimator ratio var(T )/ var(T ) of these four tests. Since the explicit form of E(T ) and var(T ) of SS is

difficult to calculate for all tests, we estimated them via simulations. Figs. 2 and 3 report the mean-standard deviation-ratio
of these four tests. Figs. 4 and 5 report the variance estimator ratio of these tests. We observed that the bias term in SS
apparently existed, especially when p/n2 is large. This could be expected because SS can only allow the dimension to be
comparable to the square of the sample size. In contrast, the mean-standard deviation-ratio of our SR and SK test statistics
is approximately zero, which shows that, regardless of the dimension, there is no bias term in our test statistics.

For Scenarios (III)–(V), the variance estimator ratio of SS eventually became larger than one when p/n2 was large. When
the dimension became larger, the bias of the spatial-median estimator also increased the variance of the SS test statistic.
Thus, the empirical sizes of SS are difficult to maintain in these cases. However, the variance estimator ratio of our SR and
SK test statistics were approximately 1. Without estimating the location parameter, the variances of the SR and SK test
statistic did not increase with the dimension. In addition, when the sample was generated from the diverging factor model,
the empirical sizes of the CZZ test were a little larger than the nominal level in most cases. However, under Scenarios (II)
and (III), the mean-standard deviation-ratio of CZZ was less than zero, and the variance estimator ratio eventually became
larger than 1. As such, the empirical sizes of the CZZ test were significantly larger than the nominal level. This result is not
surprising because neither tp,4 nor a mixture of multivariate normal distributions belongs to the diverging factor model.

Next, we compared the power of these tests with both small n = 20, 30, 40 and large sample sizes n = 100, 500. The SR
and SK tests performed similarly, which is consistent with the theoretical results in Section 2. In most cases, the SR and SK
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Table 1
Empirical size and power comparison at the 5% level with n = 20.

(n, p) Size v = 0.15 v = 0.30
SR SK SS CZZ SR SK SS CZZ SR SK SS CZZ

Scenario (I)
(20, 100) 5.8 5.8 3.9 5.8 24 24 16 26 33 33 25 34
(20, 200) 6.3 6.3 5.3 6.5 28 28 23 29 36 36 22 36
(20, 400) 6.3 6.3 4.5 7.6 26 26 14 27 34 33 20 35
(20, 800) 6.0 6.0 6.0 7.6 25 25 21 26 36 36 21 37

Scenario (II)
(20, 100) 5.0 5.3 5.8 9.7 24 26 23 21 30 32 32 25
(20, 200) 4.9 5.8 6.8 10.1 26 28 28 22 32 35 35 27
(20, 400) 5.9 6.7 9.0 11.5 25 27 28 22 32 34 34 27
(20, 800) 5.0 5.7 11.7 10.1 24 26 33 22 34 37 45 28

Scenario (III)
(20, 100) 6.2 6.2 4.8 11.4 21 23 21 19 29 31 28 23
(20, 200) 5.9 5.8 6.7 12.2 25 27 26 22 32 35 30 25
(20, 400) 5.8 6.3 5.0 12.7 25 27 23 21 34 35 28 24
(20, 800) 5.2 5.9 9.2 11.9 24 27 29 21 34 37 29 26

Scenario (IV)
(20, 100) 4.8 5.9 4.9 7.1 24 24 18 25 31 31 25 32
(20, 200) 5.0 5.0 5.8 7.8 27 27 23 28 34 34 25 35
(20, 400) 4.5 4.5 3.4 7.0 26 26 15 27 33 33 20 34
(20, 800) 5.0 5.0 6.6 7.4 25 25 22 26 35 35 19 36

Scenario (V)
(20, 100) 5.5 5.5 5.9 9.8 25 25 20 27 30 30 26 32
(20, 200) 4.9 5.9 5.8 9.7 27 27 18 28 35 35 26 35
(20, 400) 4.6 5.6 5.6 6.8 25 25 21 27 32 32 26 34
(20, 800) 5.7 5.7 4.9 7.6 27 27 19 28 36 36 26 37

Table 2
Empirical size and power comparison at the 5% level with n = 30.

(n, p) Size v = 0.15 v = 0.30
SR SK SS CZZ SR SK SS CZZ SR SK SS CZZ

Scenario (I)
(30, 100) 5.6 5.7 5.2 6.1 39 39 34 41 52 52 48 55
(30, 200) 4.9 4.9 3.6 5.5 42 42 34 43 56 56 51 56
(30, 400) 5.1 5.1 3.0 5.1 40 40 22 41 56 56 43 57
(30, 800) 6.5 6.5 4.2 6.8 41 41 30 42 55 55 47 56

Scenario (II)
(30, 100) 5.7 4.9 5.3 11.6 37 40 38 28 48 51 50 34
(30, 200) 6.0 5.6 5.5 11.0 40 43 41 30 52 56 55 39
(30, 400) 5.2 5.2 6.4 10.8 38 41 41 30 52 55 57 37
(30, 800) 6.5 6.0 7.9 12.0 38 41 42 31 50 53 57 38

Scenario (III)
(30, 100) 4.6 6.3 5.3 14.9 36 41 38 31 48 54 50 37
(30, 200) 4.8 4.5 4.6 13.7 38 42 41 29 50 54 54 35
(30, 400) 5.7 5.5 3.6 16.8 37 41 36 31 52 57 54 37
(30, 800) 5.8 5.0 5.9 13.4 37 41 40 28 51 55 55 35

Scenario (IV)
(30, 100) 4.8 4.8 4.6 6.0 38 38 35 42 51 51 49 53
(30, 200) 5.6 5.8 4.7 6.1 40 40 36 42 55 55 52 56
(30, 400) 5.3 5.3 4.2 5.7 41 41 29 40 55 55 41 56
(30, 800) 5.9 4.9 3.8 7.1 42 42 33 43 57 57 49 57

Scenario (V)
(30, 100) 4.2 4.2 5.8 8.4 36 36 33 39 50 49 45 51
(30, 200) 5.9 5.9 6.2 8.3 37 37 33 38 50 50 44 49
(30, 400) 4.5 4.5 5.0 7.1 40 40 32 40 54 54 50 55
(30, 800) 4.1 5.1 4.7 7.1 40 40 32 41 55 55 47 55

tests performed a little better than the SS test. The variance of the SS test statistic increased faster than those of the SR and
SK test statistics because of the estimation of location parameters. Thus, it is not surprising that the power of SS was smaller
than for these two tests. Moreover, the power of SS was larger than those of SR and SK in some cases, such as for Scenario
(II) with (n, p) = (20, 800). Note, however, that the empirical sizes of SS were larger than the nominal level in these cases,
whichmitigates the conclusion. In addition, our SR and SK tests perform similarly to the CZZ test under normal distributions.
Even under the non-elliptical distributions (Scenarios (IV) and (V)), the difference between CZZ and SR and SKwasmarginal.
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Fig. 2. The mean-standard deviation-ratio of test statistics for Scenarios (I)–(III).

However, under two heavy-tailed elliptical distributions (Scenario (II) and (III)), our SR and SK tests eventually performed
better than the CZZ test.

All these results suggest that the two proposed tests are quite robust and efficient in testing sphericity. Without estimat-
ing the location parameter, the SR and SK tests can control their empirical sizes suitably, and are more powerful than the
SS test when p/n2 is large. For heavy-tailed elliptical distributions, the SR and SK tests performed much better than the CZZ
test both in power and size (see Tables 3–5).

4. Discussion

In this paper, we proposed two new, robust and efficient tests for sphericity based onmultivariate ranks, and established
their asymptotic normalities. Looking into our future work, this approach can be extended to more problems, such as tests
for location parameters. It would also be of considerable interest to relax the multivariate normal assumption into elliptical
distributions, and measure the distance between the power envelope and the multivariate sign/rank based tests.
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Fig. 3. The mean-standard deviation-ratio of test statistics for Scenarios (IV)–(V).

Appendix A. Some useful lemmas

Denote εi = 6
−1/2
p (Xi − θp) and ui = E{U(εi − εj)|εi}. Obviously, E(uiu⊤

i ) = τFp−1Ip, where τF is a constant which
depends on the distribution gp and p.

Lemma 1. τF → 0.5 as p → ∞.

Proof.

E(ε⊤

i εi) = E{(εi − εj)
⊤(εi − εk)}

= E

E

(εi − εj)

⊤(εi − εk)
εi


= E

E

∥εi − εj∥ ∥εi − εk∥U(εi − εj)

⊤U(εi − εk)
εi


= E


E

∥εi − εj∥

εi
2 E E U(εi − εj)

⊤U(εi − εk)
εi


= E


E

∥εi − εj∥

εi
2 E(uT

i ui) = τFE


E

∥εi − εj∥

εi
2

.

In addition, E(∥εi∥
2) = 0.5E(∥εi − εj∥

2). Thus, we only need to show that

E


E

∥εi − εj∥

εi
2

E(∥εi − εj∥
2)

→ 1.

Because εi has an elliptical distribution, εi − εj also has an elliptical distribution. Define the density function of ∥εi − εj∥ is
f (t) = cptp−1g(t) where cp = 2πp/2/Γ (p/2). Thus,
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Fig. 4. The variance-ratio of test statistics for Scenarios (I)–(III).

E


E

∥εi − εj∥

εi
2

E(∥εi − εj∥
2)

=


cptpg(t)dt

2
cptp+1g(t)dt

=
c2p+1

cpcp+2
=

Γ 2
{(p + 1)/2}

Γ (p/2)Γ {(p + 2)/2}
.

From Stirling’s formula,

lim
x→∞

Γ (x + 1)
(x/e)x(2πx)1/2

= 1,

as p → ∞, we have

c2p+1

cpcp+2
→

(p − 1)p−1

pp/2(p − 2)(p−2)/2
= (1 − p−1)p/2{1 + (p − 2)−1

}
(p−2)/2

→ 1.

Hence the proof of Lemma 1 is complete. �

Next, we restate Lemma 4 in Zou et al. [17].

Lemma 2. Suppose u are independently, identically and uniformly distributed on an unit p sphere. For any p × p symmetric
matrixM, we have
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Fig. 5. The variance-ratio of tests for Scenarios (IV)–(V).

E(u⊤Mu)2 ={tr2(M) + 2tr(M2)}/(p2 + 2p),

E(u⊤Mu)4 ={3tr2(M2) + 6tr(M4)}/{p(p + 2)(p + 4)(p + 6)}.

Lemma 3. As n → ∞ and p → ∞,

1
σ0


p

n(n − 1)


i≠j

(u⊤

i uj)
2/τ 2

F − 1


 N (0, 1).

Proof. Define vi = ui/
√

τF . Thus, E(viv⊤

i ) = p−1Ip. Define

Q ′

s =
p

n(n − 1)


i≠j

(u⊤

i uj)
2/τ 2

F − 1 =
p

n(n − 1)


i≠j

(v⊤

i vj)2 − 1.

The expectation of Q ′

S can be easily computed, and hence the details are omitted. We also have

var(Q ′

S) = {n(n − 1)}−2p2E


i≠j

(v⊤

i vj)2
2

− 1

= {n(n − 1)}−2p2

2n(n − 1)E(v⊤

i vj)4 + 4n(n − 1)(n − 2)E{(v⊤

i vj)2(v⊤

i vk)2}

+ n(n − 1)(n − 2)(n − 3)E{(v⊤

i vj)2(v⊤

k vl)2}

− 1

= 4(p − 1)/{n(n − 1)(p + 2)}.

Next, we only need to show the asymptotic normality of Q ′

S . Let F0 = {∅, �}, and for each k ∈ {1, . . . , n}, set Fk =

σ {v1, . . . , vk}. Let Ek(·) denote the conditional expectation of given Fk and E0(·) = E(·). We write Q ′

S − E(Q ′

S) =
n

k=1 Gn,k,
where Gn,k = (Ek − Ek−1)Q ′

S. Then for every n, {Gn,k}
n
k=1 is a martingale difference sequence with respect to the σ -fields

{Fk : 1 ≤ k ≤ n}.
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Table 3
Empirical size and power comparison at the 5% level with n = 40.

(n, p) Size v = 0.15 v = 0.30
SR SK SS CZZ SR SK SS CZZ SR SK SS CZZ

Scenario (I)
(40, 100) 6.3 5.8 6.1 5.3 89 89 88 91 100 100 99 100
(40, 200) 5.7 4.7 4.5 5.6 84 84 79 83 100 100 100 100
(40, 400) 4.6 5.1 5.8 4.9 86 86 50 88 100 100 91 100
(40, 800) 6.2 5.9 5.2 6.2 91 91 79 92 100 100 97 100

Scenario (II)
(40, 100) 6.4 6.5 7.1 16 87 90 88 66 100 100 100 93
(40, 200) 5.9 6.1 6.7 11 73 76 82 52 100 100 100 88
(40, 400) 4.1 3.9 5.2 7.6 81 82 84 53 100 100 100 89
(40, 800) 4.9 6.4 6.1 10 85 87 88 54 100 100 100 91

Scenario (III)
(40, 100) 5.7 6.3 7.3 16 82 87 90 60 100 100 100 91
(40, 200) 5.9 5.8 5.8 13 75 81 83 54 100 100 100 92
(40, 400) 5.3 5.7 5.5 16 81 84 84 59 100 100 100 97
(40, 800) 5.1 6.2 6.1 14 81 84 88 52 100 100 99 93

Scenario (IV)
(40, 100) 5.1 5.8 5.2 6.1 48 48 47 54 65 65 62 68
(40, 200) 5.3 5.4 4.7 4.8 53 53 48 54 77 77 76 77
(40, 400) 5.7 5.2 5.3 5.9 58 58 46 59 72 72 62 73
(40, 800) 4.9 6.1 3.9 6.2 55 55 47 58 71 71 70 71

Scenario (V)
(40, 100) 4.3 4.9 4.1 6.3 55 56 48 60 70 71 64 72
(40, 200) 5.2 5.6 4.2 5.8 49 49 46 45 64 64 64 67
(40, 400) 3.9 4.3 5.1 4.9 50 50 46 54 72 72 71 69
(40, 800) 5.1 5.2 4.8 5.8 58 58 55 59 76 76 73 77

Table 4
Empirical size and power comparison at the 5% level with n = 100.

(n, p) Size v = 0.03 v = 0.06
SR SK SS CZZ SR SK SS CZZ SR SK SS CZZ

Scenario (I)
(100, 100) 4.6 3.9 5.1 4.5 33 30 31 31 71 70 73 75
(100, 200) 5.1 5.0 4.3 3.9 32 31 32 35 83 81 81 84
(100, 400) 4.5 4.0 4.9 4.7 36 31 35 38 86 83 86 86
(100, 800) 4.2 6.2 5.3 5.2 39 44 41 42 85 90 87 88

Scenario (II)
(100, 100) 4.7 5.7 4.4 11 32 30 31 21 71 71 73 46
(100, 200) 5.4 5.2 4.1 14 33 32 33 24 86 79 83 45
(100, 400) 4.9 5.6 5.4 15 37 34 36 31 85 88 86 53
(100, 800) 5.8 5.5 4.9 12 42 37 40 26 89 88 85 52

Scenario (III)
(100, 100) 4.5 4.3 5.7 16 27 32 31 31 74 71 73 55
(100, 200) 5.3 5.3 4.0 15 29 33 32 31 85 80 82 52
(100, 400) 5.5 6.0 5.1 17 34 36 35 38 88 87 87 61
(100, 800) 5.4 5.3 5.2 15 39 38 41 36 86 84 85 58

Scenario (IV)
(100, 100) 5.6 6.3 5.6 4.2 19 24 21 26 54 50 51 58
(100, 200) 4.5 5.8 4.3 4.5 32 30 33 34 69 69 69 71
(100, 400) 4.3 4.5 3.8 3.5 31 35 33 34 71 69 70 72
(100, 800) 4.5 4.7 6.1 8.2 36 37 36 37 69 68 71 72

Scenario (V)
(100, 100) 5.6 5.4 4.6 6.6 18 19 17 19 49 48 46 48
(100, 200) 5.1 4.6 5.7 7.6 19 22 20 28 54 57 58 57
(100, 400) 3.7 4.3 3.7 4.2 28 26 26 30 62 65 65 67
(100, 800) 4.8 5.2 6.3 7.1 36 34 35 39 70 73 72 73

Let σ 2
n,k = Ek−1(G2

n,k). According to the Martingale Central Limit Theorem [4], we only need to show that, as n → ∞,

n
k=1

σ 2
n,k

var(Q ′

S)
→ 1 in probability and

n
k=1

E(G4
n,k)

var2(Q ′

S)
→ 0. (3)
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Define 0k−1 =
k−1

i=1


viv⊤

i − p−1Ip

. We have

n
k=1

σ 2
n,k =

n
k=1

Ek−1(G2
n,k) =

n
k=1

4{n(n − 1)}−2p2

v⊤

k 0k−1vk
2

=
8

{n(n − 1)}2

n
k=1

tr(02
k−1).

By noting that

tr
 n

k=1

02
k−1


=

n
k=1

k−1
i=1

k−1
j=1

tr


viv⊤

i − p−1Ip
 

vjv⊤

j − p−1Ip


=


i≠j

2 {n − max(i, j)} tr


viv⊤

i − p−1Ip
 

vjv⊤

j − p−1Ip


+
n(n − 1)(p − 1)

2p
,

we deduce that

E


n

k=1

σ 2
n,k


=

4(p − 1)
n(n − 1)p

, var


n

k=1

σ 2
n,k


=

128(n − 2)(p − 1)
3{n(n − 1)}3p2(p + 2)

.

Clearly,
n

k=1 σ 2
n,k/var(Q

′

S) → 1.
Finally, we verify the second part of (3). Note that

n
k=1

E(G4
n,k) =

16p4

{n(n − 1)}4


n(n − 1)

2
E

v⊤

k


viv⊤

i − p−1Ip

vk
4

+ n(n − 1)(n − 2)E


v⊤

k


viv⊤

i − p−1Ip

vk
2 v⊤

k (vjv⊤

j − p−1Ip)vk
2

.

Because

E

v⊤

k (viv⊤

i − p−1Ip)vk
4

= O(p−4),

E


v⊤

k (viv⊤

i − p−1Ip)vk
2 v⊤

k (vjv⊤

j − p−1Ip)vk
2

= O(p−4),

it is straightforward to see that
n

k=1 E(G4
n,k) = o{var2(Q ′

S)}. Hence the proof of Lemma 3 is complete. �

Appendix B. Proof of the theorems

Proof of Theorem 1. We can decompose Uij as

Uij = U(Xi − Xj) = E{U(Xi − Xj)|Xi} − E{U(Xi − Xj)|Xj} + ωij.

Under H0, E{U(Xi − Xj)|Xi} = ui. Then, Uij = ui − uj + ωij. Obviously, E(ωij) = 0, E(u⊤

i ωij) = 0 and E(ω⊤

ij ωik) = 0. From
Lemma 1, we have E(ω⊤

ij ωij) = 1 − 2τF = o(1). Furthermore,

Q̃S =
2p

n(n − 1)(n − 2)(n − 3)


i,j,k,ℓ are not equal

U⊤

ij UkℓU⊤

kj Uiℓ − 1

=
4p

n(n − 1)


i≠j

(u⊤

i uj)
2
− 1 −

2p
n(n − 1)(n − 2)


i,j,k are not equal

u⊤

i uju⊤

j uk

+
p

n(n − 1)(n − 2)(n − 3)


i,j,k,ℓ are not equal

u⊤

i uju⊤

k uℓ

+O(pn−4)

i,j,k,ℓ are not equal


u⊤

i uju⊤

i ωkℓ + u⊤

i uju⊤

k ωiℓ + u⊤

i uku⊤

i ωkℓ

+ u⊤

i ujω
⊤

kℓωiℓ + u⊤

i ujω
⊤

ij ωkℓ + u⊤

i ωkℓω
⊤

kjωiℓ + ω⊤

ij ωkℓω
⊤

kjωiℓ


.
= J1 + J2 + J3 + J4.
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Table 5
Empirical size and power comparison at the 5% level with n = 500.

(n, p) Size v = 0.015 v = 0.02
SR SK SS CZZ SR SK SS CZZ SR SK SS CZZ

Scenario (I)
(500, 100) 4.7 5.0 4.7 5.1 72 71 73 74 81 81 80 82
(500, 200) 4.6 5.1 3.8 3.5 71 73 74 73 98 98 98 99
(500, 400) 4.3 5.8 4.3 4.8 81 81 84 86 99 100 99 100
(500, 800) 5.2 4.7 5.2 4.1 93 95 94 96 100 100 100 100

Scenario (II)
(500, 100) 5.7 5.6 4.6 23 70 70 71 39 80 82 81 49
(500, 200) 5.4 4.9 3.7 17 73 74 73 41 98 95 97 58
(500, 400) 4.0 4.8 4.4 21 82 82 84 58 100 100 100 73
(500, 800) 5.9 4.1 4.9 12 93 92 94 54 100 100 100 69

Scenario (III)
(500, 100) 4.8 5.4 5.2 14 68 68 67 42 82 80 81 53
(500, 200) 4.0 5.9 4.0 22 72 73 73 47 97 96 98 68
(500, 400) 4.0 5.9 4.9 16 81 80 82 57 98 99 99 69
(500, 800) 3.9 4.2 5.1 16 94 93 94 63 100 100 100 82

Scenario (IV)
(500, 100) 3.8 4.3 4.5 3.9 59 58 55 63 68 70 67 73
(500, 200) 4.3 5.5 5.3 6.3 68 69 67 71 90 90 90 92
(500, 400) 5.6 4.8 6.2 6.2 90 90 89 91 99 100 99 99
(500, 800) 4.4 5.1 6.1 6.4 90 89 90 90 100 100 99 99

Scenario (V)
(500, 100) 3.9 5.0 4.8 6.6 49 48 48 51 60 61 58 62
(500, 200) 6.2 6.2 6.3 6.8 69 68 67 73 86 85 87 85
(500, 400) 3.9 5.1 5.9 7.3 85 84 86 86 94 94 95 93
(500, 800) 5.2 5.3 6.1 6.2 89 90 90 89 96 98 97 96

According to Lemmas 1 and 3, we have J1/σ0  N (0, 1). Thus, we only need to show the other parts are all op(σ0).

E(J22 ) = O(p2n−2)E(u⊤

i uju⊤

j uku⊤

k ulu⊤

l ui) + O(p2n−3)E(u⊤

i uju⊤

j uku⊤

k uju⊤

j ui)

= O(p−1n−2) + O(p−1n−3) = o(σ 2
0 ),

E(J24 ) = O(p2n−4)E{(u⊤

i uju⊤

k ul)
2
} = O(p−1n−4) = o(σ 2

0 ).

Finally, we consider the first part in J4, leaving the other parts to the reader, as they can be handled in a similar fashion.

E

O(pn−4)


i,j,k,ℓ are not equal

u⊤

i uju⊤

i ωkℓ

2
= O(p2n−3)E(u⊤

i uju⊤

i ωkℓu⊤

s uju⊤

s ωkℓ) + O(p2n−4)E{(u⊤

i uju⊤

i ωkℓ)
2
}

= O(p−1n−3)E(ω⊤

kℓωkℓ) + O(p−1n−4)E(ω⊤

kℓωkℓ)

= o(p−1n−3) + o(p−1n−4) = o(σ 2
0 ).

This completes the proof of Theorem 1. �

Proof of Theorem 2. Define Vi = E{U(Xi −Xj)|Xi}. Using similar arguments as in the proof of Theorem 1, we can show that

Q̃S =
4p

n(n − 1)


i≠j

(V⊤

i Vj)
2
− 1 + op(σ1).

Now, write Vi = (3
1/2
p ui)/(1 + u⊤

i Dn,pui)
1/2, and then

E(V⊤

i Vj)
2

= tr


E

31/2

p uiui
⊤31/2

p (1 + u⊤

i Dn,pui)
−12
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

E

31/2
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⊤31/2

p

2
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E

Ci3

1/2
p uiui

⊤31/2
p


u⊤

i Dn,pui
2

,

where Ci is a bounded random variable between −1 and −(1 + u⊤

i Dn,pui)
−2. Obviously,

tr


E

31/2

p uiui
⊤31/2

p

2
= τ 2

F p
−2tr(32

p) = τ 2
F p

−2
{p + tr(D2

n,p)}.
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From the Cauchy–Schwarz inequality and Lemma 2,

tr([E{Ci3
1/2
p uiui

⊤31/2
p (u⊤

i Dn,pui)}]
2) ≤ Ctr[{E(31/2

p uiui
⊤31/2

p )2}]E{(u⊤

i Dn,pui)
2
}

≤ Cp−4tr(32
p)tr(D

2
n,p) = Cp−4

{p + tr(D2
n,p)}tr(D

2
n,p) = o(p−1n−1)

by the condition tr(D2
n,p) = O(n−1p). Consequently, E(Q ′

S) = ptr(32
p)−1+o(n−1). Using the same procedure as E{(V⊤

i Vj)
2
},

we can show that

E(V⊤

i Vj)
4

= {3tr2(32
p) + 6tr(34

p)}/{p(p + 2)(p + 4)(p + 6)}[1 + O{p−2tr(D2
n,p)}],

E

(V⊤

i Vj)
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i Vk)
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= {tr2(32
p) + 2tr(34

p)}/{p
3(p + 2)}[1 + O{p−2tr(D2

n,p)}].

Consequently,
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

1
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
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(V⊤

i Vj)
2


=


4tr2(32

p)

n(n − 1)p4
+

8{ptr(34
p) − tr2(32

p)}

(n − 1)p4


{1 + o(1)}.

As a result,

E(Q̃S) = tr(D2
n,p)/p + o(n−1),

var(Q̃S) =


4tr2(32

p)

n(n − 1)p2
+

8{tr(34
p) − p−1tr2(32

p)}
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
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Accordingly, it suffices to show that

Tn = {n(n − 1)}−1

i≠j

4p(V⊤

i Vj)
2

is asymptotically normal. Obviously,

var2(Tn) ≥ K max


{tr(34
p) − p−1tr2(32

p)}tr
2(32

p)

n(n − 1)2p4
,

tr4(32
p)

{n(n − 1)}2p4


for sufficiently large n, where K is some constant.

Then we can also use the Martingale Central Limit Theorem [4] to prove asymptotic normality. For this purpose, let
F0 = {∅, �} and for each k ∈ {1, . . . , n}, let Fk = σ {V1, . . . ,Vk}. Let Ek(·) denote the conditional expectation of given
Fk and E0(·) = E(·). We can write Tn − E(Tn) =

n
k=1 Gn,k, where Gn,k = (Ek − Ek−1)Tn. Then for every n, {Gn,k}

n
k=1 is a

martingale difference sequence with respect to the σ -fields {Fk : 1 ≤ k ≤ n}. Let σ 2
n,k = Ek−1(G2

n,k). It suffices to show that,
as n → ∞,

n
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σ 2
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→ 1 in probability and

n
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→ 0. (4)

As E(
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Then
n

k=1

σ 2
n,k = (R1,n + R2,n + R3,n + R4,n + R5,n + C){1 + o(1)},
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where C is a constant, and

R1,n =
32p2

{n(n − 1)}2

tr2(32
p)

n
k=1

(k − 1)


k−1
i=1

V⊤

i 3pVi


tr5(3p)

,

R2,n = −
32p2

{n(n − 1)}2

n
k=1

(k − 1)


k−1
i=1

V⊤

i 33
pVi


tr3(3p)

,

R3,n =
32p2

n2(n − 1)


n

k=1

k−1
i=1

V⊤

i 33
pVi


tr3(3p)

,

R4,n = −
32p2

n2(n − 1)

tr2(32
p)


n

k=1

k−1
i=1

V⊤

i 3pVi


tr5(3p)

,

R5,n =
32p2

{n(n − 1)}2

n
k=1

k−1
i=1

k−1
j=1

(V⊤

i 3pVj)
2

tr2(3p)
.

It suffices to show var(Ri,n) = o{var2(Tn)} for all i ∈ {1, . . . , 6}. Using

var


n

k=1

(k − 1)


k−1
i=1

V⊤

i 3pVi


=


n

i=1

(n − i)2(n + i − 1)2

4


E(V⊤

i 3pVi)
2
−

E(V⊤

i 3pVi)
2

=


n

i=1

(n − i)2(n + i − 1)2

2

 
tr(34

p) − p−1tr2(32
p)


4p2
{1 + o(1)},

we have

var(R1,n)

var2(Tn)
≤ K

tr2(32
p)

tr4(3p)
→ 0.

By carrying out similar procedures we can show that var(Ri,n) = o{var2(Tn)} for all i ∈ {1, . . . , 6}, and hence complete the
proof for the first part of (4) is complete.

To show the second part of (4), start from the fact that
n

k=1

E(G4
n,k) ≤

128p4

n3
E

2V⊤

k 0pVk − tr(02
p)

4

+
128p4

{n(n − 1)}4

n
k=1

E

2V⊤

k 0k−1Vk − tr(0k−10p)

4

.

By some algebra, we get

E

2V⊤

k 0pVk − tr(02
p)

4

≤ K
tr(34

p)

tr(34

p) − p−1tr2(32
p)


tr8(3p)
,

which leads to

1
var2(Tn)

128p4

n3
E{2V⊤

k 0pVk − tr(02
p)}

4
≤ K

tr(34
p)

tr2(32
p)

.

From the Cauchy–Schwarz inequality, tr(D4
n,p) ≤ tr2(D2

n,p) and tr2(D3
n,p) ≤ tr(D4

n,p)tr(D
2
n,p), so tr(34

p) = o(p2) = o{tr2(32
p)}

by the condition tr(D2
n,p) = O(n−1p). Thus,

128p4

n3
E

2V⊤

k 0pVk − tr(02
p)

4

= o{var2(Tn)}.

Similarly, we can get

128p4

{n(n − 1)}4

n
k=1

E

2V⊤

k 0k−1Vk − tr(0k−10p)

4

= o{var2(Tn)}.

This completes the proof for the second part of (4) and the proof of Theorem 2. �
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Proof of Theorem 3. Under H0, similar to Q̃S , we can decompose Q̃K as follows,

Q̃K =
p

n(n − 1)(n − 2)(n − 3)


i,j,k,ℓ are not equal

(U⊤

ij Ukℓ)
2
− 1

=
p

n(n − 1)(n − 2)(n − 3)


i,j,k,ℓ are not equal

{(ui − uj + ωij)
⊤(uk − uℓ + ωkℓ)}

2
− 1

=
4p

n(n − 1)


i≠j

(u⊤

i uj)
2
− 4τ 2

F −
2p

n(n − 1)(n − 2)


i,j,k,ℓ are not equal

u⊤

i uju⊤

j uk

+
p

n(n − 1)(n − 2)(n − 3)


i,j,k,ℓ are not equal

u⊤

i uju⊤

k uℓ + O(pn−3)


i,j,k,ℓ are not equal

u⊤

i uju⊤

i ωjk

+O(pn−4)

i,j,k,ℓ are not equal

u⊤

i uku⊤

j ωkℓ + O(pn−3)

i,j,k,ℓ are not equal

u⊤

i ukω
⊤

ij ωkℓ

+O(pn−3)


i,j,k,ℓ are not equal

{(u⊤

i ωjk)
2
− p−1(1 − 2τF )}

+O(pn−4)

i,j,k,ℓ are not equal

{(ω⊤

ij ωkℓ)
2
− (1 − 2τF )2}.

According to the proof of Theorem 1, we only need to show the last two parts are op(σ 2
0 ). On one hand,

E

O(pn−3)


i,j,k,ℓ are not equal


(u⊤

i ωjk)
2
− p−1(1 − 2τF )

2
= O(p2n−3)E[{(u⊤

i ωjk)
2
− p−1(1 − 2τF )}2]

+O(p2n−2)E[{(u⊤

i ωjk)
2
− p−1(1 − 2τF )}{(u⊤

ℓ ωjk)
2
− p−1(1 − 2τF )}]

= O(p2n−3)[E{(u⊤

i ωjk)
4
} − p−2(1 − 2τF )2]O(p2n−2)[E{(u⊤

i ωjk)
2(u⊤

ℓ ωjk)
2
} − p−2(1 − 2τF )2]

= o(n−3) + o(n−2) = o(σ 2
0 ).

On the other hand,

E


O(pn−4)


i,j,k,ℓ are not equal


(ω⊤

ij ωkℓ)
2
− (1 − 2τF )2

2

= O(p2n−4)E{(ω⊤

ij ωkℓ)
4
− (1 − 2τF )2} + O(p2n−2)E{(ω⊤

ij ωkℓ)
2(ω⊤

is ωkt)
2
− (1 − 2τF )2}

= o(n−2) = o(σ 2
0 ).

Thus, part (i) is proved. Similarly, we can also prove result (ii) under H1. This completes the proof of Theorem 3. �

Appendix C. Proof of the corollaries

Proof of Corollary 1. From Theorems 1–2,

lim inf
n

Pr


Q̃S − pδn,p

σ0
> zα


≥ 1 − lim sup

n
Φ


σ0zα − p−1tr(D2

n,p)

σ1


.

Obviously, σ0/σ1 = O(1) due to tr(34
p) − p−1tr2(32

p) ≥ 0. Denote

γ1n =
8

tr(34

p) − p−1tr2(32
p)


p2
,

γ2n =
8

tr(34

p)tr
2(3p) + tr3(32

p) − 2tr(3p)tr(32
p)tr(3

3
p)


tr2(32
p)p2

.
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First consider the case p/tr(D2
n,p) = o(1). The condition ntr(D2

n,p)/p → ∞ leads to

σ 2
1

p−2tr2(D2
n,p)

= O


p2

n2tr2(D2
n,p)


+ O


tr(34

p)

ntr2(D2
n,p)



= O


tr2(D2

n,p)

ntr2(D2
n,p)


+ o(1) → 0,

which implies the assertion of Corollary 1. For the case p/tr(D2
n,p) = O(1), it can be seen that γ2n/γ1n = O(1). From

Theorem 4(i) in Chen et al. [3], we have γ2n/{np−2tr2(D2
n,p)} → 0 from which the corollary follows immediately. �

Proof of Corollary 2. From Theorem 1 in Chen et al. [3],

Cn − tr(D2
n,p)/p

4n−2 + γ2nn−1
 N (0, 1),

where Cn is the test statistic proposed by Chen et al. [3]. Thus, the asymptotic power function of Cn is

βCn = Φ


−

2n−1
4n−2 + γ2nn−1

zα +
tr(D2

n,p)/p
4n−2 + γ2nn−1


.

According to Theorems 1 and 2, the asymptotic power function of Q̃S is

βQ̃S
= Φ


−

σ0

σ1
zα +

tr(D2
n,p)/p

σ1


.

Obviously, σ0 = 2n−1
{1 + o(1)} as p → ∞. Thus the asymptotic relative efficiency of Q̃S with respect to Cn is 1 in this

case. �

Proof of Corollary 3. From the proof of Theorem 3(ii), Q̃K = Q̃S + op(σ1). Thus, from Corollaries 1 and 2, we can easily
obtain the results. �
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