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a b s t r a c t

People employ the function-on-function regression to model the relationship between
two stochastic processes. Fitting this model, widely used strategies include functional
partial least squares algorithms which typically require iterative eigen-decomposition.
Here we introduce a route of functional partial least squares based upon Krylov subspace.
Our route can be expressed in two forms equivalent to each other in exact arithmetic:
One is non-iterative with explicit expressions of the estimator and prediction, facilitating
the theoretical derivation and potential extensions; the other one stabilizes numerical
outputs. The consistency of estimation and prediction is established under regularity
conditions. It is highlighted that our proposal is competitive in terms of both estimation
and prediction accuracy but consumes much less execution time.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the functional data analysis has enjoyed a rapid development, due to the growing demands of digging
ut the rich information from complicated data structures like trajectories and images. As a fundamental model in
unctional data analysis, the function-on-function regression (FoFR, arguably first proposed by Ramsay and Dalzell [31])
s a generalization of multivariate regression with the coefficient vector evolving into a bivariate coefficient function. It
elps to model the relationship between two stochastic processes.
Excellent contributions have been made to the investigation into FoFR. Among others, Cuevas et al. [8] estimated

he coefficient function by interpolation. [11,12] utilized the Nadaraya–Watson estimator in predicting the conditional
xpectation of response. A more prevailing stream of fitting FoFR, as documented in monographs like ([20], Section
.3; [32], Chapter 16), is to reduce the intrinsically infinite dimension of coefficient function by focusing on a pre-
etermined lower dimensional space. There are various candidates for such a space: It can be a linear space spanned
y wavelets, orthogonal polynomials, penalized splines, etc.; a more recent option is the reproducing kernel Hilbert space
mployed by [25,35]. Nevertheless, one may prefer a data-driven strategy named the functional principal component
egression (FPCR): It constructs the lower dimensional space from leading eigenfunctions of auto-covariance operators.
east-squares-type projections onto such a space were proposed by [5,6,43] as estimators for coefficient function; Wang
37] made the projection through random effect models. Incorporating a regularization into [6], Benatia et al. [3] enabled
PCR even for FoFR with ill-posed auto-covariance operators. It is known that FPCR fails to involve the correlation between
esponse and predictor in truncating the Karhunen–Loève series, resulting in a possible loss in accuracy. A remedy for this
oint is the functional partial least squares (FPLS). FPLS is a terminology shared by a series of algorithms. At least three
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f them are applicable to FoFR: [4] included respective extensions of the nonlinear iterative PLS (NIPALS, [39]) and the
tatistically inspired modification of PLS (SIMPLS, [22]), both initially designed for the multivariate context. SigComp [26]
equentially maximizes penalized Rayleigh quotients subject to constraints on normalization and orthogonality. Although
hese three FPLS algorithms have shown their own numerical advantages, they all have to solve iterative eigen-problems
hich may take time.
Our work chooses to constrain the estimator to a subspace named after (Alexei) Krylov. This idea expands the

lternative partial least squares (APLS, [9], an FPLS algorithm designed for the scalar-on-function regression) and is
bbreviated as fAPLS with initial ‘‘f’’ emphasizing the application to functional response. In the context of scalar-on-
unction regression, APLS is equivalent to NIPALS and SIMPLS. Though this equivalency is unlikely to hold for FoFR, our
APLS is still expected to have little difference with NIPALS or SIMPLS in terms of accuracy. Meanwhile, involving no
igen-problem, fAPLS would inherit multiple features, e.g., closed-form estimators and less running time, from APLS.
The remaining portion of this paper is organized as below. After clarifying the model settings, Section 2 presents

wo equivalent expressions of fAPLS estimator. They facilitate the empirical implementation and theoretical derivation,
espectively. In Section 3 fAPLS is compared with competitors under distinct simulation scenarios. Its performance is
valuated in terms of both accuracy and execution time. We apply fAPLS to two real-world datasets in Section 4. fAPLS
s adaptable to more complex settings, e.g., sparsely observed predictors, correlated subjects or non-linear modeling; we
nclude corresponding discussions in Section 5. More theoretical and computational details, e.g., assumptions, proofs and
ode trunks, are relegated to the Appendix for conciseness.

. Model and method

In what follows, we formalize FoFR before sketching existing FPLS algorithms, viz. NIPALS [4], SIMPLS [4] and
igComp [26]. We then jump to our method which is motivated by Proposition 1.

.1. Model

Let X = X(s) and Y = Y (t) be two L2-processes respectively defined on closed intervals IX and IY ⊂ R. FoFR is
ormulated as

Y (t) = µY (t)+
∫
IX
{X(s)− µX (s)}β(s, t)ds+ ε(t), (1)

where β ∈ L2(IX × IY ) is the coefficient function to be estimated; µX ∈ L2(IX ) and µY ∈ L2(IY ) denote unknown
xpectations of X and Y , respectively. The zero-mean Gaussian process ε(t) has a covariance function continuous on
Y × IY and is uncorrelated with X(s), i.e., cov{X(s), ε(t)} = 0 for all (s, t) ∈ IX × IY . The model (1) becomes

Y (t) = µY (t)+ LX (β)(t)+ ε(t),

efining a random integral operator LX : L2(IX × IY )→ L2(IY ) such that, for each f ∈ L2(IX × IY ),

LX (f )(·) =
∫
IX
{X(s)− µX (s)}f (s, ·)ds.

rite auto-covariance functions rXX = rXX (s, t) = cov{X(s), X(t)} and rYY = rYY (s, t) = cov{Y (s), Y (t)}, continuous
espectively on IX × IX and IY × IY . As well, define a cross-covariance function rXY = rXY (s, t) = cov{X(s), Y (t)} continuous
with respect to (s, t) ∈ IX × IY . Correspondingly, an auto-covariance operator RXX : L2(IX )→ L2(IX ) is given by, for each
f ∈ L2(IX ), RXX (f )(·) =

∫
IX

rXX (s, ·)f (s)ds. One more auto-covariance operator RYY : L2(IY )→ L2(IY ) is defined in complete

analogy to RXX . Let (λj,X , φj,X ) (resp. (λj,Y , φj,Y )) be the two-tuple consisting of the jth leading eigenvalue and eigenfunction
of RXX (resp. RYY ). It is standard for functional data analysis to assume that

∑
∞

j=1 λj,X < ∞ and
∑
∞

j=1 λj,Y < ∞, with
positive λj,X and λj,Y .

Define a linear integral operator ΓXX : L2(IX × IY )→ L2(IX × IY ) such that, for each f ∈ L2(IX × IY ),

ΓXX (f )(s, t) =
∫
IX

rXX (s, s′)f (s′, t)ds′, (s, t) ∈ IX × IY .

Made of ΓXX and β , a p-dimensional Krylov subspace is denoted by

KSp(ΓXX , β) = span{ΓXX (β), . . . ,Γ
p
XX (β)}

in which span{·} denotes the linear space spanned by elements inside braces. Let Γ 0
XX be the identity operator. Thus,

Γ
j
XX : L2(IX × IY )→ L2(IX × IY ), j ∈ Z+, are recursively defined as, for each f ∈ L2(IX × IY ) and each (s, t) ∈ IX × IY ,

Γ
j
XX (f )(s, t) = (ΓXX ◦ Γ

j−1
XX )(f )(s, t) = ΓXX {Γ

i−1
XX (f )}(s, t) =

∫
IX

rXX (s, s′){Γ i−1
XX (f )(s′, t)}ds′.

Noting that Γ j (β) = Γ j−1(rXY ) for all positive j, we indeed incorporate the correlation between X and Y into KSp(ΓXX , β).
XX XX

2
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roposition 1. Under (C1) in the Appendix, true parameter β ∈ KS∞(ΓXX , β) = span{Γ j
XX (β) | j ≥ 1}, with the overline

epresenting the closure.

emark 1. Proposition 1 is not a corollary of [9, Theorem 3.2]. The latter one merely implies an identity weaker than
roposition 1: Fixing arbitrary t0 ∈ IY , univariate function β(·, t0) ∈ span{Γ j

XX (β)(·, t0) | j ≥ 1}.

2.2. Background

We first sketch FPLS algorithms NIPALS, SIMPLS and SigComp. For FoFR, NIPALS seeks to approximate β within
span{uk,N(s)vk′,N(t) | k, k′ ∈ {1, . . . , K }}. The two-tuple (u1,N, v1,N) maximizes {

∫
IY

∫
IX

u(s)rXY (s, t)v(t)dsdt}2 with respect

o (u, v) ∈ L2(IX )×L2(IY ) subject to ∥u∥2 = ∥v∥2 = 1, denoting the L2-norm by ∥·∥2. NIPALS proceeds by updating X−µX
nd Y − µY with their respective projections onto the orthogonal complement of span{

∫
IX
{X(s)− µX (s)}u1,N(s)ds}. rXY is

pdated accordingly. These steps are repeated with all indices eventually raised to K . Similar to NIPALS, SIMPLS begins
ith

(u1,S, v1,S) = argmax
u∈L2(IX ),v∈L2(IY )
∥u∥2=∥v∥2=1

{∫
IY

∫
IX

u(s)rXY (s, t)v(t)dsdt
}2

,

ut it then approximates β by
∑K

k=1
∑K

k′=1 uk,S(s)
∫
IX

uk′,S(s′)rXY (s′, t)ds′, where (uk,S, vk,S), k ∈ {2, . . . , K }, is the solution
to

max
u∈L2(IX ),v∈L2(IY )
∥u∥2=∥v∥2=1

{∫
IY

∫
IX

u(s)rXY (s, t)v(t)dsdt
}2

subject to
∫
IX

uk′,S(s){RXX (u)(s)}ds = 0, k′ ∈ {1, . . . , k− 1}. Assuming that β ≈
∑K

k=1 uk,SC(s)vk,SC(t), SigComp first obtains

u1,SC = argmax
u∈L2(IX )

(1+ PEN1)−1
∫
IX

∫
IX

∫
IY

u(s)rXY (s, t)rXY (s′, t)u(s′)dtdsds′

subject to
∫
IX

u(s){RXX (u)(s)}ds = 1, with PEN1 penalizing the smoothness. The subsequent uk,SC, k ∈ {2, . . . , K }, are
sequentially constructed following orthonormality constraints. Given u1,SC, . . . , uK ,SC, desired functions v1,SC, . . . , vK ,SC are
exactly the last K elements of the solution to

max
b0,b1,...,bK∈L2(IY )

E

⎡⎣∫
IY

{
Y (t)− b0(t)−

K∑
k=1

bk(t)
∫
IX

X(s)uk,SC(s)ds

}2

dt

⎤⎦+ PEN2

with penalty term PEN2.
Inspired by Proposition 1, we propose to approximate β by the least-squares solution

βp,fAPLS = argmin
θ∈KSp(ΓXX ,β)

E ∥Y − µY − LX (θ )∥22 = [ΓXX (β), . . . ,Γ
p
XX (β)]H

−1
p αp, (2)

where Hp = [hjj′ ]1≤j,j′≤p and αp = [α1, . . . , αp]
⊤ denote p× p and p× 1 matrices, respectively, with

hjj′ =

∫
IY

[∫
IX

∫
IX

rXX (s, s′){Γ
j
XX (β)(s, t)}{Γ

j′
XX (β)(s

′, t)}dsds′
]
dt =

∫
IY

∫
IX
{Γ

j
XX (β)(s, t)}{Γ

j′+1
XX (β)(s, t)}dsdt,

αi =

∫
IY

[∫
IX

∫
IX

rXX (s, s′){Γ
j
XX (β)(s, t)}β(s

′, t)dsds′
]
dt =

∫
IY

∫
IX
{ΓXX (β)(s, t)}{Γ

j
XX (β)(s, t)}dsdt.

Proposition 1 justifies (2) by entailing that limp→∞ ∥βp,fAPLS−β∥2 = 0, which is crucial to our theoretical results delivered
later in Section 2.4.

2.3. Estimation and prediction

Suppose n two-tuples (Xi, Yi), i ∈ {1, . . . , n}, are all independent realizations of (X, Y ). We understand that, in practice,
trajectories Xi and Yi are recorded discretely. As long as observation points for each curve are sufficiently dense (see
Section 5 if this denseness assumption is not satisfied), one may presmooth the curves through interpolation or smoothing
techniques, e.g., the penalized B-spline smoothing [32, Chapter 5]; see [40] for error rates associated with penalized
splines. For convenience, we keep using Xi and Yi for smoothed curves.

It is natural to estimate rXX (s, s′) and rXY (s, t) (= ΓXX (β)(s, t)), (s, s′, t) ∈ IX × IX × IY , respectively, by

r̂XX (s, s′) =
1
n

n∑
X cent
i (s)X cent

i (s′), r̂XY (s, t) = Γ̂XX (β)(s, t) =
1
n

n∑
X cent
i (s)Y cent

i (t), (3)

i=1 i=1

3
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w
here X cent
i = Xi−X̄ = Xi−n−1

∑n
i=1 Xi and Y cent

i = Yi−Ȳ = Yi−n−1
∑n

i=1 Yi. Given Γ̂
j
XX (β), one can estimate Γ j+1

XX (β)(s, t)
by

Γ̂ i+1
XX (β)(s, t) =

∫
IX

r̂XX (s, s′){Γ̂
j
XX (β)(s

′, t)}ds′ (4)

in which the integral sign here represents the numerical integral through the trapezoidal rule; Tasaki [36] bounded the
corresponding approximation error.

Plugging (3) and (4) into (2), an estimator for both βp,fAPLS and β comes:

β̂p,fAPLS = [Γ̂XX (β), . . . , Γ̂
p
XX (β)]Ĥ

−1
p α̂p, (5)

where Ĥp = [ĥjj′ ]1≤j,j′≤p and α̂p = [α̂1, . . . , α̂p]
⊤ are respectively consisting of

ĥjj′ =

∫
IY

∫
IX
{Γ̂

j
XX (β)(s, t)}{Γ̂

j′+1
XX (β)(s, t)}dsdt, α̂j =

∫
IY

∫
IX
{Γ̂XX (β)(s, t)}{Γ̂

j
XX (β)(s, t)}dsdt.

Finally, given X0 ∼ X and t ∈ IY ,

g(X0)(t) = E{Y (t) | X = X0} = µY (t)+ LX0 (β)(t) (6)

is predicted by

ĝp,fAPLS(X0)(t) = Ȳ (t)+
∫
IX

X cent
0 (s)β̂p,fAPLS(s, t)ds. (7)

Matrix Ĥ at (5) is always invertible if we were able to work in exact arithmetic. But it is not the case for finite precision
arithmetic: As p increases, the linear system from Γ̂XX (β), . . . , Γ̂

p
XX (β) may be close to singular. As suggested by Delaigle

and Hall [9, Section 4.2], orthonormalizing Γ̂XX (β), . . . , Γ̂
p
XX (β) (with respect to r̂XX ) into ψ̂1, . . . , ψ̂p (see Algorithm 1

or [23, pp. 102]), we reformulate the optimization problem at (2) into the empirical version:

max
c1,...,cp∈R

1
n

n∑
i=1

∫
IY

⎧⎨⎩Y cent
i (t)−

p∑
j=1

cj

∫
IX

X cent
i (s)ψ̂j(s, t)ds

⎫⎬⎭
2

dt. (8)

We then reach a numerically stabilized estimator for β:

β̃p,fAPLS = [ψ̂1, . . . , ψ̂p][γ̂1, . . . , γ̂p]
⊤
=

p∑
j=1

γ̂jψ̂j, (9)

where the p-tuple (γ̂1, . . . , γ̂p) is the maximizer of (8), with

γ̂j =

∫
IY

∫
IX

r̂XY (s, t)ψ̂j(s, t)dsdt.

A prediction for g(X0) at (6), alternative to ĝp,fAPLS(X0) at (7), is thus given by

g̃p,fAPLS(X0)(t) = Ȳ (t)+
∫
IX

X cent
0 (s)β̃p,fAPLS(s, t)ds. (10)

It is worth emphasizing that, in exact arithmetic, β̂p,fAPLS at (5) (resp. ĝp,fAPLS at (7)) is identical to β̃p,fAPLS at (9) (resp.
g̃p,fAPLS at (10)), because {Γ̂XX (β), . . . , Γ̂

p
XX (β)} and {ψ̂1, . . . , ψ̂p} literally span the same space. Nevertheless, in practice

β̃p,fAPLS and g̃p,fAPLS stand out due to their numerical stability for finite precision arithmetic, whereas the more explicit
expressions of β̂p,fAPLS and ĝp,fAPLS make themselves preferred in theoretical derivations.

2.4. Asymptotic properties

Under regularity conditions, Proposition 2 (resp. Proposition 3) demonstrates the consistency in L2 and/or supremum
metric in probability of β̂p,fAPLS (resp. ĝp,fAPLS(X0)). In these results, we allow p to diverge as a function of n, but its rate is
capped to be at most O(n1/2) if ∥rXX∥2 < 1 and even slower otherwise. More discussions on technical assumptions may
be found in the Appendix.

Proposition 2. Holding (C1)–(C5), as n diverges, ∥β̂p,fAPLS − β∥2 = op(1). If upgrade (C5) to (C6), then the convergence
becomes uniform, i.e., ∥β̂p,fAPLS − β∥∞ = op(1), with ∥ · ∥∞ denoting the supremum metric.

Proposition 3. Given X0 ∼ X, conditions (C1)–(C5) suffice for the zero-convergence (in probability) of ∥ĝp,fAPLS(X0)− g(X0)∥2
(i.e., ∥ĝp,fAPLS(X0) − g(X0)∥2 = op(1)), while the uniform version (viz. ∥ĝp,fAPLS(X0) − g(X0)∥∞ = op(1)) is entailed jointly by
(C1)–(C4) and (C6)–(C7).
4
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Algorithm 1 Modified Gram–Schmidt orthonormalization with respect to r̂XX
for j in 1, . . . , p do
ψ̂
[1]
j ← Γ̂

j
XX (β).

if j ≥ 2 then
for j′ in 1, . . . , j− 1 do
ψ̂
[j′+1]
j ← ψ̂

[j′]
j −

{∫
IY

∫
IX

∫
IX

r̂XX (s, s′)ψ̂
[j′]
j (s, t)ψ̂j′ (s′, t)dsds′dt

}
ψ̂j′ .

end for
end if
ψ̂j ←

{∫
IY

∫
IX

∫
IX

r̂XX (s, s′)ψ̂
[j]
j (s, t)ψ̂ [j]j (s′, t)dsds′dt

}−1/2
ψ̂
[j]
j .

end for

2.5. Tuning parameter

Our theoretical results in Section 2.4 are established with diverging but capped p. As well, the divergence rate of p
varies with covariance functions rXX and rXY . It implies that the optimal p must be adaptive to data, neither too small nor
too large. So, we have to tune the value of p. Except for the cross-validation, commonly-adopted tuning schemes like the
generalized cross validation [7] and various information criteria demand an estimator for the degree of freedom which
is absent in our context due to the intrinsic complexity of modeling. We hence take use of the five-fold cross-validation
which was employed too by SigComp. In particular, p is chosen as the minimizer of

CV(p) =
1
5

5∑
k=1

∑
i∈Ik
∥Yi − g̃ (−k)

p,fAPLS(Xi)∥22∑
i∈Ik
∥Yi −

∑
i∈Itest\Ik

Yi/(#Itest − #Ik)∥22
,

here {I1, . . . , I5} is a partition of index set for testing, say Itest; # represents the cardinality; g̃ (−k)
p,fAPLS(Xi) predicts g(Xi) and

is constructed from data points corresponding to Itest \ Ik. Define the fraction of variance explained (FVE) as FVE(p) =∑p
j=1 λj,X/

∑
∞

j=1 λj,X . Then the search for the value of p is limited to [1, pmax], where pmax is set to be the smallest
integer such that FVE(pmax) exceeds a pre-determined close-to-one threshold, e.g., 99%. This FVE criterion is commonly
exploited by FPCR to determine the truncation point of Karhunen–Loève series. Since FPLS algorithms are typically more
parsimonious than FPCR in terms of number of basis functions, pmax formed in this way tends to be large enough.

3. Simulation

In total we went through three simulation scenarios. They varied from one another in µY , X , and β (as specified
later) but shared the analogous setup of error term ε = ε(t) which was a zero-mean Gaussian process with covariance
function E{ε(t), ε(t ′)} = σ 2

ε ρ
|t−t ′|, t, t ′ ∈ [0, 1] (= IX = IY in simulation). Given µY , X , and β , parameters ρ and σ 2

ε

determined the signal-noise-ratio (SNR), viz. the ratio of [
∫
IY

var{LX (β)(t)}dt]1/2 to [
∫
IY

var{ε(t)}dt]1/2. ρ took either 0.1
(low autocorrelation of error term) or 0.9 (high autocorrelation of error term), while two levels of σ 2

ε were set up so that
SNR was moderate and fell between roughly 1 and 10; see Tables 1 and 2 for specific settings of ρ and σ 2

ε . In each scenario,
we generated n = 300 independent and identically distributed (i.i.d.) pairs of trajectories with 80% kept for training
and 20% for testing. Each curve was recorded at 101 equally spaced points {0, 1/101, . . . , 100/101, 1}. We repeated this
procedure 50 times and hence created 50 datasets, for each combination of µY , X , β , ρ, and σ 2

ε . For every artificial dataset,
fAPLS was compared with competitors in terms of the relative integrated squared estimation error (ReISEE) and/or the
relative integrated squared prediction error (ReISPE):

ReISEE =
∥β − β̂∥22

∥β∥22
, ReISPE =

∑
i∈Itest ∥Yi − Ŷi∥

2
2∑

i∈Itest ∥Yi −
∑

i∈Itrain
Yi/#Itrain∥22

,

here β̂ estimates β and Ŷi predicts Yi, i ∈ {1, . . . , n}; Itrain is the index set for training. We summarize ReISEEs and
eISPEs in Table 1; included in Table 2 are average values of p and total execution times.

.1. Simulation I

Assume µY = 0. We took 100, 10, and 1 as the top three eigenvalues of ΓXX , whereas λj,X = 0 for all j ≥
4. Correspondingly, the first three eigenfunctions of ΓXX were respectively set to be (normalized) shifted Legendre
olynomials [17, pp. 773–774] of orders 2, 3, and 4, say P2, P3, and P4, viz.

φ1,X (s) = P2(s) =
√
5(6s2 − 6s+ 1), φ2,X (s) = P3(s) =

√
7(20s3 − 30s2 + 12s− 1),

4 3 2
φ3,X (s) = P4(s) = 3(70s − 140s + 90s − 20s+ 1).
5
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able 1
he averages ×100 (and standard deviations ×100) of ReISPEs and ReISEEs in numerical experiments. Values of ρ and σ 2

ε were designed, whereas
SNR was computed accordingly. Row minimums are underlined. fAPLS stood out because of its favorable mean estimation errors. As for the prediction
accuracy, the outputs of all the four FPLS routes were fairly close.

ρ σ 2
ε SNR fAPLS SigComp NIPALS SIMPLS

Estimation error: mean ReISEE ×100 (standard deviation ×100)
Simulation I 0.1 1 10 33.04 (14.53) 72.63 (25.77) 73.02 (7.12) 42.18 (18.53)

100 1 37.84 (8.80) 84.12 (21.39) 73.71 (5.96) 45.41 (14.27)
0.9 1 11 33.20 (14.64) 72.60 (27.28) 71.82 (8.49) 42.21 (18.57)

100 1 37.84 (10.22) 86.67 (23.26) 73.78 (6.53) 44.44 (16.77)
Simulation II 0.1 1 7 0.89 (0.62) 1.35 (0.48) 7.44 (1.33) 0.95 (0.49)

80 1 13.01 (3.23) 13.05 (5.50) 21.00 (6.69) 12.75 (3.79)
0.9 1 7 1.42 (2.02) 1.68 (0.75) 7.90 (1.63) 1.64 (1.72)

80 1 17.46 (15.45) 21.03 (16.43) 26.55 (12.73) 23.46 (20.67)
Simulation III 0.1 0.05 7 2.33 (5.92) 8.98 (21.21) 4.28 (8.54) 1.99 (5.75)

1 2 7.04 (4.25) 19.32 (26.67) 13.66 (20.08) 8.70 (15.92)
0.9 0.05 7 6.27 (14.55) 6.62 (18.34) 6.22 (11.46) 5.33 (10.82)

1 2 23.53 (30.15) 20.36 (27.07) 27.88 (32.14) 16.68 (26.25)
Prediction error: mean ReISPE ×100 (standard deviation ×100)
Simulation I 0.1 1 10 1.65 (0.39) 1.74 (0.43) 1.94 (0.43) 1.80 (0.45)

100 1 47.69 (5.37) 47.69 (5.40) 47.70 (5.37) 47.62 (5.37)
0.9 1 11 1.56 (0.36) 1.62 (0.43) 1.85 (0.48) 1.71 (0.42)

100 1 46.57 (6.10) 46.57 (6.09) 46.71 (6.08) 46.61 (6.07)
Simulation II 0.1 1 7 2.69 (0.50) 2.57 (0.49) 2.69 (0.50) 2.69 (0.49)

80 1 68.88 (5.33) 68.80 (5.64) 68.89 (5.33) 68.90 (5.40)
0.9 1 7 2.68 (0.63) 2.56 (0.62) 2.70 (0.63) 2.70 (0.63)

80 1 68.90 (6.35) 69.06 (6.48) 68.88 (6.39) 69.14 (6.43)
Simulation III 0.1 0.05 7 28.68 (4.32) 28.62 (4.43) 28.61 (4.39) 28.56 (4.42)

1 2 90.18 (3.48) 90.11 (3.38) 90.21 (3.59) 90.04 (3.50)
0.9 0.05 7 28.37 (5.41) 28.11 (5.57) 28.33 (5.36) 28.37 (5.38)

1 2 89.36 (4.40) 89.16 (4.92) 89.36 (4.48) 89.22 (4.70)
FA – – – 81.10 (3.51) 81.97 (3.94) 80.99 (3.69) 80.75 (3.59)
Gait – – – 62.65 (12.68) 71.23 (15.64) 69.41 (16.12) 65.04 (15.83)

As is well known, they are of unit norm and mutually orthogonal on [0, 1]. The slope function and realizations of predictor
ere respectively given by

β(s, t) = P2(s)P2(t)+ P3(s)P3(t)+ P4(s)P4(t), Xi(s) = ζi1P2(s)+ ζi2P3(s)+ ζi3P4(s),

ith ζij independently distributed as N (0, λj,X ), j ∈ {1, . . . , 3}.
Simulation I was equipped with a true coefficient belonging to KS3(ΓXX , β) and hence was in favor of our proposal.

s expected, fAPLS enjoyed lower estimation errors for this scenario; see Table 1. Nevertheless, as for prediction errors,
he outputs from all the four methods were fairly comparable. We speculated that their extra estimation bias fell outside
he range of ΓXX , viz., {ΓXX (f ) | f ∈ L2(IX × IY )}, and hence impacted little on prediction after taking integrals. ReISEEs
f all methods changed little with ρ or σ 2

ε , while their prediction accuracy was sensitive to σ 2
ε : As σ

2
ε became smaller,

rediction errors were all lowered. Meanwhile, four FPLS routes all chose around two components. The biggest advantage
f fAPLS was on execution time: It ran ten times, one hundred times, and fifty times as fast as SigComp, NIPALS, and
IMPLS, respectively; see Table 2. This phenomenon was not surprising, because, compared with others, fAPLS involves
ewer tuning parameters and no eigen-decomposition.

.2. Simulation II

Define two covariance functions as follows:

Σ1 = Σ1(s, s′) = exp{−(10|s− s′|)2}, Σ2 = Σ2(s, s′) = {1+ 20|s− s′| + (20|s− s′|)2/3} exp(−20|s− s′|).

enerating ζ1, . . . , ζ7 as i.i.d. realizations of the zero-mean Gaussian process with covariance function Σ2, we constructed

µY (t) = ζ1(t), β(s, t) = ζ2(s)ζ3(t)+ ζ4(s)ζ5(t)+ ζ6(s)ζ7(t).

ur setup was finished by sampling Xi, i ∈ {1, . . . , 300}, from the zero-mean Gaussian process with covariance function
1. This setting appeared too in [26, Section 4.1.1].
The performance of four approaches was analogous to that in Simulation I: fAPLS stood out again in terms of estimation

ccuracy. Noting that numbers recorded in Table 1 were magnified 100 times, prediction errors from all routes were pretty
lose. Though the four methods shared the identical search scope for number of components, models from fAPLS and
igComp were typically more parsimonious (viz. of fewer numbers of components) than the remaining two; see Table 2.
specially, when there was more noise, viz. σ 2

= 80, fAPLS led to the simplest model.
ε

6
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able 2
verages (and standard deviations) of component numbers and total running time (in seconds) for numerical experiments. Values of ρ and σ 2

ε were
esigned, whereas SNR was computed accordingly. Row minimums are underlined. SigComp was more likely to build up concise models because
t was accompanied by the smallest average number of components in most cases, while fAPLS typically took the second place. In terms of the
xecution time, the advantage of fAPLS was clear, except in the case of Gait data whose sample size is small.

ρ σ 2
ε SNR fAPLS SigComp NIPALS SIMPLS

Number of components: average number (standard deviation)
Simulation I 0.1 1 10 2.2 (0.4) 2.2 (0.4) 2.1 (0.3) 2.2 (0.4)

100 1 2.1 (0.3) 2.1 (0.4) 2.1 (0.3) 2.1 (0.4)
0.9 1 11 2.2 (0.4) 2.2 (0.4) 2.2 (0.4) 2.2 (0.4)

100 1 2.1 (0.3) 2.1 (0.4) 2.1 (0.3) 2.2 (0.4)
Simulation
II

0.1 1 7 6.2 (1.0) 3.1 (0.2) 10.3 (1.1) 9.9 (1.2)

80 1 2.0 (0.3) 3.5 (1.1) 4.3 (1.3) 4.3 (1.3)
0.9 1 7 6.5 (1.8) 3.0 (0.0) 10.2 (1.4) 10.0 (1.7)

80 1 2.6 (1.9) 4.7 (1.3) 4.6 (1.8) 5.2 (2.7)
Simulation
III

0.1 0.05 7 1.9 (0.5) 1.4 (0.6) 2.2 (0.6) 1.8 (0.7)

1 2 1.3 (0.5) 1.3 (0.5) 2.1 (0.4) 1.4 (0.6)
0.9 0.05 7 2.1 (0.7) 1.5 (0.8) 2.3 (0.5) 2.0 (0.9)

1 2 1.7 (0.9) 1.4 (0.7) 2.3 (0.6) 1.5 (0.8)
FA – – – 4.1 (0.8) 3.3 (0.7) 4.6 (0.5) 4.8 (0.4)
Gait – – – 2.7 (0.9) 4.1 (1.4) 5.0 (1.6) 4.9 (1.5)
Total running time in seconds for all replicates/splits
Simulation I 0.1 1 10 3.0 41.8 350.3 150.2

100 1 3.4 41.4 358.5 149.6
0.9 1 11 3.4 41.2 327.2 148.7

100 1 3.4 40.1 327.3 147.5
Simulation
II

0.1 1 7 36.1 48.6 398.5 241.7

80 1 35.8 51.4 416.3 242.2
0.9 1 7 35.7 50.1 375.0 242.3

80 1 36.4 49.3 377.7 242.9
Simulation
III

0.1 0.05 7 6.9 41.6 327.9 163.2

1 2 6.4 44.0 336.8 164.4
0.9 0.05 7 6.4 41.0 272.0 162.8

1 2 6.4 41.6 275.7 163.6
FA – – – 5.4 71.8 266.4 101.6
Gait – – – 1.6 1.7 29.2 23.5

3.3. Simulation III

We considered a setting similar to the ones in multiple works [13, Section 4.1; 21, Section 4.1; 26, Section 4.1.2]:

µY (t) = 2 exp{−(t − 1)2}, β(s, t) = sin(πs) cos(2π t), Xi(s) =
10∑

m=1

1
m2 {ζi1m sin(mπs)+ ζi2m cos(mπs)},

here ζijm, i ∈ {1, . . . , 300}, j ∈ {1, 2}, m ∈ {1, . . . , 10}, are all i.i.d. standard normal.
This was a scenario where SIMPLS seemed to work generally better than others in estimation. Noticing again that

rrors in Table 1 were 100 times as great as original numbers, the estimation performance of fAPLS was still comparable,
xcept in the case with a large autocorrelated error term (ρ = 0.9) and a small SNR (= 1). As for prediction, though fAPLS
id not correspond to the minimum error for any setting, its outputs remained close to corresponding minimums; see
able 1. Number of components picked up by fAPLS was in average about 0.5 more than those from SigComp but was of
he same level of those from NIPALS and SIMPLS; see Table 2.

. Application

We applied the four approaches, viz. fAPLS, SigComp, NIPALS, and SIMPLS, to two real-world datasets. Their predictive
erformance was evaluated again by ReISPE. We generated 50 ReISPE values for each approach and each dataset, after
epeating the following random split 50 times: Around 20% of all the pairs of trajectories were retained for testing and
he remaining for training.

.1. Fractional anisotropy (FA)

As a magnetic resonance imaging technique, the diffusion tensor imaging (DTI) tractography may measure the
iffusivity of water. In the brain, water diffuses anisotropically along white matter tracts but isotropically elsewhere.
7
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Fig. 1. 100 pairs of CCA- and RCST-FA curves collected in a clinical trial. Each CCA- (resp. RCST-) FA curve consists of FA values measured along
CCA (resp. RCST). Small FA values imply the demyelination of white matter tracts and become indicators of damages on the central nervous system.
An investigation into the spatial association of paired CCA- and RCST-FA trajectories may contribute to the diagnosis of corresponding diseases.

One widely-used diffusivity measure given by DTI is the fractional anisotropy (FA) which ranges from zero to one: FA = 1
eans a diffusion occurring only in the direction of white matter tracts, while the zero FA corresponds to the isotropic
iffusion. Small FA values accordingly may imply a loss of myelin (viz. demyelination) of white matter tracts. In this way,
TI is powerful in characterizing microstructural changes for neuropathology [2], e.g., diagnosing the multiple sclerosis
MS). MS is an immune disorder jeopardizing the central nervous system; the immune system of an MS patient attacks
yelin in the brain, leading to demyelination. Symptoms of MS vary a lot on a case-by-case basis and depend on which
erves are affected. Severe MS can even cause lifelong disability.
Initially collected by the Johns Hopkins University and Kennedy-Krieger Institute, dataset DTI in R package refund [14]

ontains FA values along two sorts of white matter tracts, viz. the corpus callosum (CCA) and right corticospinal tract
RCST) for participants of a clinical trial on MS. At each visit, 93 (resp. 55) FA values along CCA (resp. RCST) were measured
or each participant. These FA values formed the so-called CCA- (resp. RCST-) FA curves. There were altogether 382 pairs of
CA- and RCST-FA curves whose spatial association was previously studied by, e.g., [21,26], through FoFR. We took CCA-FA
urves (Fig. 1a) as predictors and RCST-FA curves (Fig. 1b) as responses, imputing missingness through local polynomial
egression (with the help of R package spatialEco [10]). As illustrated at the second line from the bottom of Table 1,
IMPLS took the minimum mean ReISPE value, whereas ReISPEs from fAPLS were of the lowest variation. But, in fact, the
ifference in ReISPE was extremely close. fAPLS stood out again in its time consumption.

.2. Boys’ gait

Human motion has been a research topic for over two thousands years, dating back to the period of ancient Greece.
t is believed that the gait of an individual is an indicator of his/her neuromuscular development or impairment [29]. A
ound model on people’s gait would help to define the normal and abnormal walking and, as well, to discover causes
nd deviations of abnormality. Dataset gait in R package fda [33] was collected at the Motion Analysis Laboratory at
hildren’s Hospital, San Diego, recording hip and knee angles over one gait cycle for 39 boys. Observed at 20 time points,
ne gait cycle began and ended at the time point when the heel touched the ground. Lian [25] tried to summarize the
ait by depicting how these two joints interacted; they applied FoFR and regressed the knee angle curves on hip angle
urves. Analogously, we took the hip angle curves (Fig. 2a) as predictors and knee angle curves (Fig. 2b) as responses. In
erms of both average and variance of ReISPE values, fAPLS was more accurate than competitors (see Table 1) and also
uilt up the most parsimonious model (see Table 2). For this dataset, it was not apparent to see the advantage of fAPLS
n execution time: SigComp ran almost as fast as fAPLS; see the last row of Table 2. We guessed the small sample size
= 39) reduced the computational burden of SigComp.

. Conclusion and discussion

Fitting FoFR, we suggest fAPLS, an FPLS route via Krylov subspace. fAPLS estimator (5) owns a concise and explicit
xpression. Meanwhile, we introduce an alternative but equivalent version (9), stabilizing numerical outputs. Resulting
n a competitive accuracy in both estimation and prediction, fAPLS consumes less running time than other FPLS routes.
t is out of question that our proposal is far from perfect. One major concern lies at the value of p, viz. the dimension
8
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Fig. 2. Curves of 39 boys’ hip and knee angles within one gait cycle that begins and ends when the heel touched the ground. For each boy, his hip
resp. knee) angle curve is drawn by connecting values of hip (resp. knee) angles observed at 20 time points. A sound model between paired hip
nd knee angle trajectories would reflect boys’ physical growth.

f Krylov subspace: When p is small, e.g., not larger than 10, everything should work out well; otherwise, the space
panned by orthonormalized basis functions, viz. span{ψ̂1, . . . , ψ̂p}, is possible to be distant from its theoretical target
pan{ΓXX (β), . . . ,Γ

p
XX (β)}. The source of this numerical error is twofold: the accumulated error in the recursive estimation

or Γ j
XX (β), j ∈ {1, . . . , p}, and the bias induced by modified Gram–Schmidt orthonormalization. Accordingly, one needs

o reconsider the value of p, in case the five-fold cross-validation in Section 2.5 recommends a large one.
Curves Xi and Yi are expected to be observed so densely that we may enjoy small errors in presmoothing. However,

APLS estimation is still doable without fulfilling this denseness assumption: As long as covariance functions rXX and
XY are estimated, it suffices to obtain fAPLS estimators at (5) and (9). Even for sparsely observed trajectories, one may
stimate both rXX and rXY following the local linear smoothing (e.g., [24,42]) or spline smoothing (e.g., [41]). These
echniques are helpful too in accommodating measurement errors; refer to [44] for the scalar-on-function regression with
ontaminated observations. In the case of geographic data, the spatial correlation (i.e., Xi and Xi′ , i ̸= i′, no longer mutually
ndependent) leads to a potential inconsistency of FPLS estimators; see [34, Theorem 1] for this issue in the multivariate
ontext. A naive correction, transplanted from [34, Section 4.1], is to instead implement the regression on transformed
bservations (X∗i , Y

∗

i ), i ∈ {1, . . . , n}, such that, for all (s, t) ∈ IX × IY , [X∗1 (s), . . . , X
∗
n (s)]

⊤
= V−1/2XX (s)[X1(s), . . . , Xn(s)]⊤

nd [Y ∗1 (t), . . . , Y
∗
n (t)]

⊤
= V−1/2YY (t)[Y1(t), . . . , Yn(t)]⊤, with matrices V XX (s) = [cov{Xi(s), Xi′ (s)}]n×n and V YY (t) =

cov{Yi(t), Yi′ (t)}]n×n. But it is even challenging to recover V XX and V YY sufficiently accurately without specifying the
ependence structure, since there is only one observation for each i. Alternatively and more practically, one can target at
orrecting naive r̂XX and r̂XY for dependent subjects: Paul and Peng [30] offered a solution to this point.
Though all Xi’s (resp. Yi’s) are assumed to share the identical time domain IX (resp. IY ), one may encounter the phase

ariation (also known as time variation, misalignment, etc.), i.e., observed curves suffer the lateral displacement and/or
eformation. For instance, replications of handwriting are likely to take different lengths of time; i.e., while each time the
andwriting is initiated at time 0, the end point differ from replication to replication [28, Section 1.2]. In such cases, it
s heuristic to register curves first, i.e., transform the arguments of Xi and Yi in pre-processing. Specifically, for curves Xi

resp. Yi), introduce smooth and strictly increasing warping functions wpX,i (resp. wpY ,i). The phase variation is anticipated
to be removed from the further analysis by taking use of registered cures X̃i(s) = Xi{wpX,i(s)} and Ỹi(t) = Yi{wpX,i(t)}
ather than original ones. If there exist landmarks of interest, e.g., certain peaks and/or troughs, throughout the data, this
urve registration may be carried out so that these landmarks occur roughly at the same time. Details on registration are
vailable at, e.g., [32, Chapter 7] and more recent [28].
fAPLS has got a naive extension to multiple functional covariates, i.e., associated with each realization Yi ∼ Y , there are

m > 1 functional covariates, say Xij ∼ X·j, j ∈ {1, . . . ,m}, and correspondingly m coefficient functions β (j), j ∈ {1, . . . ,m}.
In particular,

Yi(t) = µY (t)+
m∑

LXij (β
(j))+ εi(t),
i=1

9
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here Yi and Xij are assumed to be independent across all i. Following the idea of (2), an ad hoc estimator for m-tuple
β (1), . . . , β (m)) is thus

(β̂ (1)
fAPLS, . . . , β̂

(m)
fAPLS) = argmin

θ (j)∈KSp(Γ̂X·jX·j ,β
(j)), 1≤j≤m

1
m

m∑
i=1

∫
IY

⎡⎣Yi(t)− Ȳi(t)−
m∑
j=1

∫
IX·j

{Xij(s)− X̄·j(s)}θ (j)(s, t)ds

⎤⎦2

dt,

ith X̄·j = m−1
∑m

j=1 Xij and domains IX·j varying with j. Of course, it becomes necessary to introduce penalties once the
bove minimizer is not uniquely defined.
It appears that fAPLS merely works for linear models, because, without the linear model assumption (1), neither

roposition 1 nor the consistency holds. Fortunately, there is a promising way of applying fAPLS (and other FPLS
lgorithms) to nonlinear modeling: Recursively linearize the procedure of maximizing likelihood and then embed FPLS
lgorithms into the iteratively reweighted least squares [15]. This idea has been successfully applied by [1,38].
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ppendix

We refer to R package FRegSigCom [27] for SigComp and GitHub (https://github.com/hanshang/FPLSR; accessed on
ay 17, 2021) for (functional) NIAPLS and SIMPLS. Our R codes for fAPLS are publicly available too at GitHub (https:

/github.com/ZhiyangGeeZhou/fAPLS; accessed on May 17, 2021). We run the code trunks on a laptop with AMD R⃝ RyzenTM

4500U @6× 2.38 GHz and 16 GB RAM.
Our technical assumptions are summarized as below.

(C1)
∑
∞

j,j′=1 λ
−2
j,X

{∫
IY

∫
IX
φj,X (s)rXY (s, t)φj′,Y (t)dsdt

}2
<∞. Moreover, β belongs to range(ΓXX ) = {ΓXX (f ) | f ∈ L2(IX×IY )}.

(C2) E(∥X∥42) <∞ for all t ∈ IY .
(C3) As n→∞, p = p(n) = O(n1/2).
(C4) Let IX = [0, 1]. Both ∥ξXX∥∞,2 and ∥ηXX∥∞,2 are of order Op(1) as n→∞, with ξXX and ηXX defined as in Lemma A.1

and ∥ · ∥∞,2 defined such that ∥f ∥∞,2 = sups∈IX

{∫
IX

f 2(s, t)dt
}1/2 for f ∈ L2(IX × IX ).

(C5) Additional requirements on p vary with the magnitude of ∥rXX∥2; they also depend on τp, the smallest eigenvalue
of Hp.

• If ∥rXX∥2 ≥ 1, then, as n→∞, n−1τ−2p p4∥rXX∥
4p
2 max(1, τ−2p p2∥rXX∥

4p
2 ) and n−1τ−3p p5∥rXX∥

6p
2 are both of order

o(1);
• if ∥rXX∥2 < 1, then n−1τ−4p = o(1) as n diverges.

(C6) Keep everything in (C5) but substitute ∥rXX∥∞ for ∥rXX∥2. Meanwhile, require that ∥βp,fAPLS − β∥∞ = o(1) as p
diverges, viz. an enhanced version of Proposition 1.

(C7) Stochastic process Y is ‘‘eventually totally bounded in mean’’ (as defined by Hoffmann-Jørgensen [18, (5)–(7)]);
i.e., in our context,

• E(∥Y∥∞) <∞;
• for each ϵ > 0, there is a finite cover of T, say Cover(T), for each set A ∈ Cover(T), such that infn∈Z+ n−1 E
{supt,t ′∈A |Y (t)− Y (t ′)|} < ϵ.

Introducing (C1), He et al. [16, Theorem 2.3] confirmed the identifiability of β and derived its closed form (A.2). (C1) was
lso the foundation of [43]. Assumptions (C2)–(C4) are prerequisites for the convergence of Γ̂ j

XX (β) (= Γ̂
j−1
XX (r̂XY )) which

s uniform in j ≥ 1. One may feel unclear about the technical conditions stated in (C5) for the scenario of ∥rXX∥2 ≥ 1:
irtually a special case is that n−1 max(τ−4p , τ−6p , τ−8p ) = o(1) and p = O(ln ln n). Apparently, p is more restricted when
rXX∥2 ≥ 1 than in the case of ∥rXX∥2 < 1 (for the latter case p is allowed to diverge at the rate of O(n1/2)); that is
hy Delaigle and Hall [9] suggested changing the scale on which X is measured. (C6) is stronger than (C5), enabling us to
onsider the L∞-convergence. At last, we add (C7) as a prerequisite for the uniform law of large numbers for {Yi | i ≥ 1}.
10
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emma A.1. For each (s, s′, t) ∈ IX × IX × IY ,

r̂XX (s, s′) = rXX (s, s′)+ n−1/2ξXX (s, s′)+ n−1ηXX (s, s′), r̂XY (s, t) = rXY (s, t)+ n−1/2ξXY (s, t)+ n−1ηXY (s, t),

here, with identity operator I : R→ R,

ξXX (s, s′) =
1
√
n

n∑
i=1

(I − E)[{Xi(s)− µX (s)}{Xi(s′)− µX (s′)}], ηXX (s, s′) = −n{X̄(s)− µX (s)}{X̄(s′)− µX (s′)},

ξXY (s, t) =
1
√
n

n∑
i=1

(I − E)[{Xi(s)− µX (s)}{Yi(t)− µY (t)}], ηXY (s, t) = −n{X̄(s)− µX (s)}{Ȳ (t)− µY (t)},

and ∥ξXX∥2, ∥ηXX∥2, ∥ξXY∥2, and ∥ηXY∥2 all equal Op(1) as n diverges.

Proof of Lemma A.1. It is an immediate implication of Delaigle and Hall [9, (5.1)]. □

Lemma A.2. Assume (C1) and (C2) and that there is C > 0 such that, for all n, we have p ≤ Cn−1/2 (i.e., condition (C3)).
Then, for each ϵ > 0, there are positive C1, C2, and n0 such that, for each n > n0,

Pr

⎡⎣ p⋂
j=1

{
∥Γ̂

j
XX (β)− Γ

j
XX (β)∥2 ≤ n−1/2∥rXX∥

j−1
2 {C1 + C2(j− 1)}

}⎤⎦ ≥ 1− ϵ.

Assuming one more condition (C4),

Pr

⎡⎣ p⋂
j=1

{
∥Γ̂

j
XX (β)− Γ

j
XX (β)∥∞ ≤ n−1/2∥rXX∥i−1∞ {C1 + C2(j− 1)}

}⎤⎦ ≥ 1− ϵ.

roof of Lemma A.2. Since ΓXX (β) = rXY and Γ̂XX (β) = r̂XY , Lemma A.2 is simply implied by Lemma A.1 when p = 1. For
nteger j ≥ 2 and each (s, s′, t) ∈ IX × IX × IY ,⏐⏐⏐Γ̂ j

XX (β)(s, t)− Γ
j
XX (β)(s, t)

⏐⏐⏐ = ⏐⏐⏐Γ̂XX {Γ̂
j−1
XX (β)− Γ j−1

XX (β)}(s, t)+ {(Γ̂XX − ΓXX )Γ
j−1
XX (β)}(s, t)

⏐⏐⏐
≤

{∫
IX

r̂2XX (s, s
′)dw

}1/2 [∫
IX
{Γ̂

j−1
XX (β)− Γ j−1

XX (β)}(s′, t)dw
]1/2

+

[∫
IX
{r̂XX (s, s′)− rXX (s, s′)}2ds′

]1/2 {∫
IX
Γ

j−1
XX (β)(s′, t)ds′

}1/2

.

t implies that, by the triangle inequality,

∥Γ̂
j
XX (β)− Γ

j
XX (β)∥2 ≤ ∥r̂XX∥2∥Γ̂

j−1
XX (β)− Γ j−1

XX (β)∥2 + ∥r̂XX − rXX∥2∥Γ
j−1
XX (β)∥2.

n iteration it gives that

∥Γ̂
j
XX (β)− Γ

j
XX (β)∥2 ≤ ∥r̂XX∥

j−1
2 ∥Γ̂XX (β)− ΓXX (β)∥2 + ∥r̂XX − rXX∥2

j−1∑
j′=1

∥r̂XX∥
j−j′−1
2 ∥Γ

j′
XX (β)∥2. (A.1)

or each ϵ > 0, there is n0 > 0 such that, for all n > n0, we have

1− ϵ/2 ≤ Pr(∥r̂XX − rXX∥2 ≤ C0n−1/2) ≤ Pr(∥r̂XX∥2 ≤ ∥rXX∥2 + C0n−1/2),

1− ϵ/2 ≤ Pr(∥r̂XY − rXY∥2 ≤ C0n−1/2),
11
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ith constant C0 > 0, by Lemma A.1. It follows (A.1) that

1− ϵ

≤ Pr

( p⋂
j=1

[
∥(Γ̂ j

XX − Γ
j
XX )(β)∥2 ≤ C0n−1/2

{
(∥rXX∥2 + C0n−1/2)j−1 +

j−1∑
j′=1

∥rXX∥
j′
2∥β∥2(∥rXX∥2 + C0n−1/2)j−j

′
−1

}])

≤ Pr

( p⋂
j=1

[
∥(Γ̂ j

XX − Γ
j
XX )(β)∥2 ≤ C0n−1/2∥rXX∥

j−1
2

{(
1+

C0n−1/2

∥rXX∥2

)j−1

+ ∥β∥2

j−1∑
j′=1

(
1+

C0n−1/2

∥rXX∥2

)j−j′−1}])

≤ Pr

( p⋂
j=1

[
∥Γ̂

j
XX (β)− Γ

j
XX (β)∥2 ≤ n−1/2∥rXX∥

j−1
2 {C1 + C2(j− 1)}

])
, (since p ≤ Cn1/2)

here C1 = C0 exp(CC0/∥rXX∥2) and C2 = ∥β∥2C1.
Suppose (C4) holds. Similar to (A.1),

∥Γ̂
j
XX (β)− Γ

j
XX (β)∥∞ ≤ ∥r̂XX∥

j−1
∞
∥Γ̂XX (β)− ΓXX (β)∥∞ + ∥r̂XX − rXX∥∞

j−1∑
j′=1

∥r̂XX∥j−j
′
−1

∞
∥Γ

j′
XX (β)∥∞

≤ ∥r̂XX∥j−1∞ ∥Γ̂XX (β)− ΓXX (β)∥∞ + ∥r̂XX − rXX∥∞
j−1∑
j′=1

∥r̂XX∥j−j
′
−1

∞
∥rXX∥j

′

∞
∥β∥∞.

imicking the argument above for the L2 sense, one obtains that

Pr

⎛⎝ p⋂
j=1

[
∥Γ̂

j
XX (β)− Γ

j
XX (β)∥∞ ≤ n−1/2∥rXX∥j−1∞ {C1 + C2(j− 1)}

]⎞⎠ ≥ 1− ϵ,

ith, at this time, C1 = C0 exp(CC0/∥rXX∥∞) and C2 = ∥β∥∞C1. The identity that ∥β∥∞ <∞ originates from the continuity
f eigenfunctions φi,X ’s and φi,Y ’s (refer to the Mercer’s theorem). □

roof of Proposition 1. From condition (C1), He et al. [16, Theorem 2.3] derived the unique closed-form of β . In particular,
or each (s, t) ∈ IX × IY ,

β(s, t) = Γ −1XX (rXY )(s, t) =
∞∑

j,j′=1

∫
IY

∫
IX
φj,X (s)rXY (s, t)φj′,Y (t)dsdt

λj,X
φj,X (s)φj′,Y (t). (A.2)

Introduce βp ∈ L2(IX × IY ) such that

βp(s, t) =
p∑

j=1

φj,X (s)
λj,X

∫
IX
φj,X (s′)rXY (s′, t)ds′.

It follows that

ΓXX (βp)(s, t) =
p∑

j=1

φj,X (s)
∫
IX
φj,X (s′)rXY (s′, t)dw.

Now

[(λ1,X I − ΓXX ) ◦ · · · ◦ (λp,X I − ΓXX )](βp) = 0

in which the left-hand side equals
∑p

i=j ajΓ
j
XX (βp) with a0 =

∏p
j=1 λj,X > 0. Therefore,

βp = −

p∑
j=1

aj
a0
Γ

j
XX (βp).

enote by Pp : range(ΓXX ) → range(ΓXX ) the operator that projects elements in range(ΓXX ) to span{fjj′ ∈ L2(IX × IY ) |
jj′ (s, t) = φj,X (s)φj′,Y (t), 1 ≤ j ≤ p, j′ ≥ 1}. Thus βp = Pp(β). Since Γ

j
XX (βp) = Pp[Γ

j
XX (β)], one has

Pp

⎡⎣β + p∑ aj
a0
Γ

j
XX (β)

⎤⎦ = 0,

j=1

12
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i
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P
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T

mplying that, for all p,

Pp(β) ∈ {Pp(f ) | f ∈ KS∞(ΓXX , β)}.

aking limits as p→∞ on both sides of the above formula, we obtain β ∈ KS∞(ΓXX , β) and accomplish the proof. □

roof of Proposition 2. Recall βp,fAPLS (2) and β̂p,fAPLS (5) and notations in defining them. The Cauchy–Schwarz inequality
mplies that

|ĥjj′ − hjj′ | ≤ ∥Γ̂
j
XX (β)− Γ

j
XX (β)∥2∥Γ̂

j′+1
XX (β)∥2 + ∥Γ̂

j′+1
XX (β)− Γ j′+1

XX (β)∥2∥Γ
j
XX (β)∥2

≤ ∥Γ̂
j
XX (β)− Γ

j
XX (β)∥2∥r̂XX∥

j+1
2 ∥β∥2 + ∥Γ̂

j′+1
XX (β)− Γ j′+1

XX (β)∥2∥rXX∥
j
2∥β∥2.

By Lemmas A.1 and A.2, for each ϵ > 0 and p ≤ Cn1/2, there are positive n0, C3 and C4 such that, for all n > n0,

1− ϵ

≤ Pr

[ p⋂
j,j′=1

{
|ĥjj′ − hjj′ | ≤ ∥Γ̂

j
XX (β)− Γ

j
XX (β)∥2(∥rXX∥2 + C0n−1/2)j

′
+1
∥β∥2 + ∥Γ̂

j′+1
XX (β)− Γ j′+1

XX (β)∥2∥rXX∥
j
2∥β∥2

}]

≤ Pr

( p⋂
j,j′=1

[
|ĥjj′ − hjj′ | ≤ n−1/2∥rXX∥

i+j′
2 {C3 max(j, j′)+ C4}

])
.

hus

∥Ĥp − Hp∥
2
2 ≤

p∑
j,j′=1

|ĥjj′ − hjj′ |
2

= Op

⎛⎝1
n

p∑
j,j′=1

∥rXX∥
2j+2j′
2

⎞⎠+ Op

⎧⎨⎩1
n

p∑
j,j′=1

max(j2, j′2)∥rXX∥
2j+2j′
2

⎫⎬⎭
=

{
Op(n−1p4∥rXX∥

4p
2 ), if ∥rXX∥2 ≥ 1,

Op(n−1), if ∥rXX∥2 < 1.
(A.3)

Here ∥ · ∥2 is abused for the matrix norm induced by the Euclidean norm, i.e., for arbitrary A ∈ Rp×p′ and b ∈ Rp′×1,
∥A∥2 = supb:∥b∥2=1 ∥Ab∥2 is actually the largest eigenvalue of A. It reduces to the Euclidean norm for vectors. It is
analogous to (A.3) to deduce that

∥̂αp − αp∥
2
2 =

p∑
j=1

|α̂j − αj|
2
=

{
Op(n−1p3∥rXX∥

2p
2 ), if ∥rXX∥2 ≥ 1,

Op(n−1), if ∥rXX∥2 < 1.
(A.4)

Denote by τp the smallest eigenvalue of Hp. Noting that ∥H−1p ∥2 = τ
−1
p , for p ≤ Cn1/2,

∥(Ĥp − Hp)H−1p ∥2 ≤ τ
−1
p ∥Ĥp − Hp∥2 =

{
Op(n−1/2τ−1p p2∥rXX∥

2p
2 ), if ∥rXX∥2 ≥ 1,

Op(n−1/2τ−1p ), if ∥rXX∥2 < 1.

Introduce random matrix Mp ∈ Rp×p such that I − H−1p (Ĥp − Hp) + Mp = {I + H−1p (Ĥp − Hp)}−1, i.e., Mp =

{I + H−1p (Ĥp − Hp)}−1H−1p (Ĥp − Hp)H−1p (Ĥp − Hp). Therefore,

∥Mp∥2 ≤ ∥I + H−1(Ĥp − Hp)∥−12 ∥H
−1(Ĥp − Hp)∥22 ≤ (1− ρ)−1τ−2p ∥Ĥp − Hp∥

2
2,

provided that τ−1p ∥Ĥp − Hp∥2 ≤ ρ < 1 (refer to Delaigle and Hall [9, (7.18)]). Revealed by the identity that Ĥ−1p =

{I + H−1p (Ĥp − Hp)}−1H−1p ,

∥Ĥ−1p − H−1p ∥2 ≤ {∥H
−1
p (Ĥp − Hp)∥2 + ∥Mp∥2}∥H−1p ∥2

=

{
Op(n−1/2τ−2p p2∥rXX∥

2p
2 )+ Op(n−1τ−3p p4∥rXX∥

4p
2 ), if ∥rXX∥2 ≥ 1,

Op(n−1/2τ−2p )+ Op(n−1τ−3p ), if ∥rXX∥2 < 1.
(A.5)
13
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C

w

ombining (A.4), (A.5) and the identity that

∥αp∥2 =

⎡⎣ p∑
j=1

{∫
IY

∫
IX

rXY (s, t)Γ
j
XX (β)(s, s

′)dsds′
}2
⎤⎦1/2

≤

⎧⎨⎩
p∑

j=1

∥rXY∥22∥Γ
j
XX (β)∥

2
2

⎫⎬⎭
1/2

=

{
O(p1/2∥rXX∥

p
2), if ∥rXX∥2 ≥ 1,

O(1), if ∥rXX∥2 < 1,
(A.6)

we reach that

∥Ĥ−1p α̂p − H−1p αp∥2 ≤ ∥Ĥ
−1
p ∥2∥̂αp − αp∥2 + ∥Ĥ

−1
p − H−1p ∥2∥αp∥2

=

{
Op(n−1/2τ−1p p3/2∥rXX∥

p
2)+ Op(n−1/2τ−2p p5/2∥rXX∥

3p
2 )+ Op(n−1τ−3p p9/2∥rXX∥

5p
2 ), if ∥rXX∥2 ≥ 1,

Op(n−1/2τ−1p )+ Op(n−1/2τ−2p )+ Op(n−1τ−3p ), if ∥rXX∥2 < 1,

=

{
Op(n−1/2τ−1p p3/2∥rXX∥

p
2)+ Op(n−1/2τ−2p p5/2∥rXX∥

3p
2 )+ Op(n−1τ−3p p9/2∥rXX∥

5p
2 ), if ∥rXX∥2 ≥ 1,

Op(n−1/2τ−2p )+ Op(n−1τ−3p ), (since τp ≤ hjj = O(1)) if ∥rXX∥2 < 1.
(A.7)

For each (s, t) ∈ IX × IY ,

|β̂p,fAPLS(s, t)− βp,fAPLS(s, t)|2

=

⏐⏐⏐⏐⏐[Γ̂XX (β)(s, s′), . . . , Γ̂
p
XX (β)(s, s

′)]Ĥ−1p α̂p − [ΓXX (β)(s, s′), . . . ,Γ
p
XX (β)(s, s

′)]H−1p αp

⏐⏐⏐⏐⏐2

≤

⏐⏐⏐⏐⏐⏐⏐∥Ĥ
−1
p α̂p − H−1p αp∥2

⎡⎣ p∑
j=1

{Γ̂
j
XX (β)(s, s

′)}2

⎤⎦1/2

+ ∥H−1p αp∥2

⎛⎝ p∑
j=1

[{Γ̂
j
XX − Γ

j
XX }(β)(s, s

′)]2

⎞⎠1/2
⏐⏐⏐⏐⏐⏐⏐
2

≤ 2∥Ĥ−1p α̂p − H−1p αp∥
2
2

⎡⎣ p∑
j=1

{Γ̂
j
XX (β)(s, s

′)}2

⎤⎦+ 2∥H−1p αp∥
2
2

⎡⎣ p∑
j=1

{Γ̂
j
XX (β)(s, s

′)− Γ j
XX (β)(s, s

′)}2

⎤⎦ .
Thus, ∥β̂p,fAPLS − βp,fAPLS∥2 is bounded as below:

∥β̂p,fAPLS − βp,fAPLS∥
2
2 ≤ 2∥Ĥ−1p α̂p − H−1p αp∥

2
2

p∑
j=1

∥Γ
j
XX (β)∥

2
2 + 2∥H−1p αp∥

2
2

p∑
j=1

∥Γ
j
XX (β)− Γ̂

j
XX (β)∥

2
2

≤ 2∥Ĥ−1p α̂p − H−1p αp∥
2
2

p∑
j=1

∥Γ
j
XX (β)∥

2
2 + 2τ−2p ∥αp∥

2
2

p∑
j=1

∥Γ̂
j
XX (β)− Γ

j
XX (β)∥

2
2, (A.8)

here, owing to (A.7),

the first term of (A.8) =
{
Op(n−1τ−2p p4∥rXX∥

4p
2 )+ Op(n−1τ−4p p6∥rXX∥

8p
2 )+ Op(n−2τ−6p p10∥rXX∥

12p
2 ), if ∥rXX∥2 ≥ 1,

Op(n−1τ−4p )+ Op(n−2τ−6p ), if ∥rXX∥2 < 1;

the order of the second term of (A.8) is given by (A.6) and Lemma A.2, i.e.,

the second term of (A.8) =
{
O(n−1τ−2p p4∥rXX∥

4p
2 ), if ∥rXX∥2 ≥ 1,

Op(n−1τ−2p ), if ∥rXX∥2 < 1.

In this way we deduce

∥β̂p,fAPLS − βp,fAPLS∥
2
2

=

{
Op(n−1τ−2p p4∥rXX∥

4p
2 )+ Op(n−1τ−4p p6∥rXX∥

8p
2 )+ Op(n−2τ−6p p10∥rXX∥

12p
2 ), if ∥rXX∥2 ≥ 1,

Op(n−1τ−4p )+ Op(n−2τ−6p ), if ∥rXX∥2 < 1.
(A.9)

A set of necessary conditions for the zero-convergence (in probability) of (A.9) is contained in (C5). Once they are fulfilled,
ˆ
we conclude the L2 convergence (in probability) of βp,fAPLS to β , following Proposition 1.

14
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We complete the proof by bounding the estimating error in the supremum metric:

∥β̂p,fAPLS − βp,fAPLS∥
2
∞
=

[Γ̂XX (β), . . . , Γ̂
p
XX (β)]Ĥ

−1
p α̂p − [ΓXX (β), . . . ,Γ

p
XX (β)]H

−1
p αp

2
∞

≤ 2∥Ĥ−1p α̂p − H−1p αp∥
2
2

p∑
j=1

∥Γ
j
XX (β)∥

2
∞
+ 2τ−2p ∥αp∥

2
2

p∑
j=1

∥Γ̂ i
XX (β)− Γ

j
XX (β)∥

2
∞

(A.10)

=

{
Op(n−1τ−2p p4∥rXX∥

4p
∞)+ Op(n−1τ−4p p6∥rXX∥

8p
∞)+ Op(n−2τ−6p p10∥rXX∥

12p
∞ ), if ∥rXX∥∞ ≥ 1,

Op(n−1τ−4p )+ Op(n−2τ−6p ), if ∥rXX∥∞ < 1,

where (A.10) is the counterpart of (A.8). ∥β̂p,fAPLS−βp,fAPLS∥∞ converges to zero (in probability), once (C6) is satisfied. The
zero-convergence (in probability) of ∥β̂p,fAPLS − β∥∞ follows if we assume that ∥βp,fAPLS − β∥∞ → 0 as p diverges. □

Proof of Proposition 3. Notice that

∥ĝp,fAPLS(X0)− g(X0)∥2 ≤ ∥Ȳ − µY∥2 + ∥X̄ − µX∥2∥β∥2 + ∥X0 − X̄∥2∥β̂p,fAPLS − β∥2,

∥ĝp,fAPLS(X0)− g(X0)∥∞ ≤ ∥Ȳ − µY∥∞ + ∥X̄ − µX∥2∥β∥∞ + ∥X0 − X̄∥2∥β̂p,fAPLS − β∥∞.

The finite trace of RXX (resp. RYY ), viz.
∑
∞

j=1 λj,X = E(∥X − µX∥
2
2) < ∞ (resp.

∑
∞

j=1 λj,Y = E(∥Y − µY∥
2
2) < ∞), entails

that ∥X̄ − µX∥2 = oa.s.(1) (resp. ∥Ȳ − µY∥2 = oa.s.(1)); see [19, (2.1.3)]. The proof is complete once we verify the
zero-convergence (in probability and under (C7)) of ∥Ȳ − µY∥∞ following Hoffmann-Jørgensen [18, Theorem 2]. □
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