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A Mixed Limit Theorem for Stable Random Fields*
T. V. KURIEN AND JAYARAM SETHURAMAN

Florida State University

A mixed distributional limit theorem for a stable random field of index 0 <a <2
is derived. These random fields are of special interest in pattern analysis, in par-
ticular, in pattern synthesis. This paper considers the case when the underlying
graph that the random field is defined on is linear. This result is encouraging insofar
as it shows that the mixed limit theorems do exist in the stable case. The final
limiting distribution can be written in terms of the stable process of index a in
D[0,1]. 1 1993 Academic Press, Inc.

1. INTRODUCTION AND SUMMARY

A picture or image can be considered to be a collection of gray levels
located at the vertices of a set, that is to say, that it can be represented by
the collection {Y,:ae V'}, where Y, represents a gray level located at the
site « in the set V. For instance, a raster image on a TV screen can be
viewed as a collection of gray levels Y, ;, located at site (i) in the set
{0, .., n} x {0, .., n}. More structure can be given to the set of sites V' by
considering a graph G = (V, e} with vertex set V and edge set e. The graph
structure can be so chosen as to reflect the relations that we would expect
to see between sites in the particular class of images under consideration.

A random image can therefore be modeled by a collection of random
variables Y, located at the vertices a of a graph G = (V, ¢). Gibbs distribu-
tions have been used to specify the distribution of random images because
the graph structure G can be tailored to take into account the dependencies
intrinsic to the structure of the images arising in practice.

The general pattern analysis problem can be broadly described as
follows. There is a true image / which cannot be observed. However, a
deformed version ¥ of I can be observed. The physical process deforming
the true image 7 is due to the process of observation itself. This physical
process could be mathematically modeled as an additive noise or by some
other process. The pattern analysis problem is to reconstruct the true
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image 7 based on the observed image /¥ by using a statistical procedure
that is optimal in some sense.

Bayesian image analysis first formulates a prior distribution for 7 which
incorporates what is known about the structure of the true image /. Gibbs
distributions have been used as prior distributions in Bayesian image
analysis by Geman and Geman (1984). The next step in Bayesian image
analysis is to update the prior notion of I using /. This gives rise to a
posterior distribution on the set of images. Under fairly general condi-
tions, the posterior distribution is a Gibbs distribution. The posterior
mean or the posterior mode is usually used as an estimate of the true
image I.

Bayesian image analysis has had a good deal of success in dealing with
pattern analytic problems. The HANDS project at Brown University (see
Grenander et al,, 1991) is an application of Bayesian image analysis to
recognizing biological shapes like human hands. For Bayesian image
analysis, it is necessary to generate an observation from the posterior
distribution, and this is commonly done using the Gibbs Sampler; see
Geman and Geman (1984), which in turns uses the algorithm in Metropolis
et al., (1953). In fact, we can simulate observations from the prior distribu-
tion using the same Gibbs Sampler to evaluate its suitability for the
problem at hand. This is called pattern synthesis. However, these methods
are not very fast and require a good deal of computer time.

A natural question that now arises is whether we can replace simulations
with direct mathematical approximations of such distributions when the
number of vertices (sites) of the graph is very large. The answer to this
question is in the affirmative, for special graphs, provided that the number
of vertices increases to infinity and the scale of gray levels present at each
site increases at a certain rate. Results that describe this kind of behavior
are called mixed limit theorems and have been studied previously by Chow
and Grenander (1985), Grenander and Sethuraman (1993), and by Chow
(1990).

A graph of interest in pattern analysis i1s the linear connection graph G,
whose vertices are {0, ..,n} and edge set is {(i,i+1):0<i<n}.

A random configuration on G, is a collection of random variables
Y=(Y,, .., ¥,) which reside at the vertices of G,. Suppose that the joint
distribution of Y has a density (with respect to Lebesgue measure) which
is proportional to

[14(%=5=2) 11 e, (1)

i=1

where >0, A(-) be a symmetric density and Q(-) is a non-negative
function on ‘R.



154 KURJEN AND SETHURAMAN

The function A is called the acceptor function in the pattern analysis
literature. The acceptor function models the local dependence between
the Y;’s. When the acceptor function A4 is a symmetric density which is
decreasing on R 7, the gray levels Y, and Y, at neighboring sites i and ;j will
tend to be more alike. When the acceptor function 4 is a symmetric density
which is increasing on ™, the gray levels Y; and Y, at neighboring sites
i and j will tend to be more different. In the equation above, the factor of
&? represents a coupling parameter which controls the global dependence in
the configuration, and is often called temperature. When we set e=n"", as
we do later, it reflects the increase in the scale of gray levels present at each
site as the number of sites increase. The joint distribution of the Y/s is a
Gibbs distribution defined on G,.

We will now normalize the random configuration Y to obtain the
normalized configuration X = (X, ..., X,,) defined by

X,=—£ i=0,..,n (1.2)

Let P, be the distribution of X. Consider the mapping, g,(y), from 2" *!
into D[0, 1], which is the usual step function mapping based on y=
(Yo, Vis s Vi), defined as follows:

gn(y)(t)':y[m]’ IE[O’ 1] (13)

In this paper we are interested in the limiting distribution of P,g ',
that is the limiting distribution of the process g,(X)= {X,(¢), re [0, 1]}.
Approximation theorems which establish the convergence of the distribu-
tion of the process g,(X) are called mixed limit theorems.

Grenander and Sethuraman (1993) considered random configurations
given by the model (1.1) and a cyclical graph which is like G, except that
0 is identified with n+ 1. They looked at the case where =1, e=n"",
A(-)=exp(—x%/2), and Q(x) is essentially of the form exp(—x?/2), and
showed that a process formed from the normalized configuration X
converges to a Gaussian process in C(M), where M is the circle of unit
circumference. Chow (1990) considered random configurations given by the
model (1.1) with the graph G,. He looked at the case where f=1,e=n",
A(-) has a second moment, and Q(x) is essentially of the form exp(—x?/2),
and showed that a process formed from the normalized configuration X
converges to a Gaussian process in C[0,1]. Both of these papers
considered other mixed limit theorems for random configurations, and
showed, under some conditions that all the limits were Gaussian processes
with a known covariance structure.

All the cases considered so far correspond to the situation in which the
acceptor function A4 has thin tails. In this paper we consider the case where
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the acceptor function A has thick tails. We show that, under certain
conditions, the stochastic process g,(X) constructed from the random
configuration converges to a process which can be expressed in terms of a
stable process. This result is found in Theorem 1.

The conclusion of Theorem ! is an approximation to the limiting
distribution of a Gibbs distribution. If we could conveniently simulate
observations from this limiting process, then this would result in greater
computational efficiency since the Gibbs Sampler would not have to be
used. This paper shows the existence of mixed limit theorems in the stable
case. In order to directly simulate observations from the limiting process,
a certain functional integral will have to be evaluated, and this remains an
open problem at the present.

2. Mixep LiMIT THEOREMS

Before stating the main theorem of this paper, Theorem 1, we need some
notations concerning a stable process. Let f,(x) be the symmetric stable
density with index o, O<a<2. Let 7, T, .., T, be ii.d. random variables
with density function f,(x). Let T=(T7,, .., T,). Let S be a normalization
of T and be defined by S=(S,,..,S,)=(n""*T,,..,n""*T,). Then R,,
the probability distribution of S has density function proportional to

[T fuln's,). (2.1)
i=1
Consider the mapping, #,(s), from 2" into D[0, 1], which is the usual step
function mapping based on the partial sums of s=(s,, .., s,), defined as
follows:
(]
ha(s)(0)=0, h,(s)(t)= Y s, for te(0, 1]. (2.2)

i=1

Then h,(S)(1) is a process in D[0, 1] with distribution R* € R, 4" and
converges to the distribution R* of a stable process { F'(¢), re [0, 1]]. See,
for instance, Breiman (1968). As usual, we endow the space D[0, 1] with
the topology based on the Skorohod metric. This stable process has the

properties
V(ioy=0,
{V,.(1), 1€ [0, 1]} has independent increments, and

V(1)—V.(s) < [t—s|*Tfort,se[0,1].
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Note that R* is the distribution of the stable process starting from 0 since
R*(V(0)=0)=1. We also need to talk about R¥, the distribution of the
stable process starting from x,, defined by R¥(C)= R*(C - x,) for each
Borel set C in D[0, 1]. Clearly, R¥(V(0)=x,)=1.

We specialize the model (1.1) further by assuming that
I}y Q(x)=exp(—x?/2),
(IT) A(x)=f,(x)where 0 <a <2, and

11
R

After these preliminaries, we now state the main theorem of this paper.

THEOREM 1. Let the joint distribution of the random configuration Y be
given by the model (1.1) satisfying conditions (1), (11), and (I11). Let e=n"".
Let X be the normalized configuration as defined in (1.2). Then P,g, ' the
distribution of the step function process constructed from X, converges
weakly to a distribution P*, as n — 0. The distribution P* can be described
in terms of the stable process R¥ starting from x,, as

_W/2m) [, e cexpl—(1/2) | (1) di] dR%(y) dxo
j'exp[—(l/z){jx(r)2 dt— (f x(1) a’t)z}] dR*(x)

for C in the Borel o-field in D[0, 1].

P*(C) (23)

The proof of this theorem is given after the following two results. The first
of these results is from Sethuraman (1961) and is stated as in Lemma 1.

LEMMA 1. Let A, be a sequence of probability measures on (¥ x%¥,
oA X B), where I and ¥ are topological spaces and s/ and # are the
appropriate Borel a-fields. Let v, be the marginal distribution of A, on ¥ and
A, [} be the conditional probability measure of A, given X = x. Suppose that

v,(A) = v(A4) forall Aess (2.4)
and
A, ()= A () weakly, for almost all x w.r.t. v (2.5)

Then, A, — A weakly where

A(A x B):j A (B) dv(x)

A

for each measurable rectangle A x Be of x 4.
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An easy way to verify condition (2.4) is to use Scheffé’s theorem and
verify the sufficient condition

dv, dv
2 ) (2.6)

for some measure M on (%, &) which dominates v, and v.
The second result that we need is a result on D[0, 1] given below.

LEMMA 2. Let f-'R —> R be continuous and x,,— x€ D[0, 1]. Then,
1
Selifm) = [ f(x(0) d.

Proof of Lemma?2. Let y,=f(x,) and y=f(x). The y,—y in D[0, 1]
since f is a continuous map. Define

)= Yalifn)  if (i—1)/n<i<iln
Znlt _{y,,(O) if 1=0.

Then, (1/n) X7_, y,(i/n)=[gz,(t) dr. We now show that z,(s) - y(s) ae.
Lebesgue on [0, 1].

Since x, — x in D[0, 1], there exist 4, which are strictly increasing and
continuous mappings of [0, 1] — [0, 1] such that

SUp [ Ya(44(8)) = y(s)| =0, and  sup|4,(s)—s| -0

Let se[0,1] be a continuity point of y(-). There exists i, such that
(i,—V)/n<s<i,/n. Let s} =21_"(i,/n). Then z,(s) = y,(4,(s})) and s} — 5.
Hence

124(8) = Y() S 1 yalZa(s¥)) = (s + 1 p(s75) — ¥(s)]
< sup | yu(4,(5)) = y(s) + | p{s) — ¥(s)]

-0

if s is a continuity point of y(-). Hence z,(s)— y(s), as asserted. Since
the number of discontinuity points of y(-) is countable, z,(s) — y(s) a.e.
Lebesgue.
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Since y,, and hence z, are uniformly bounded, we have from the
Dominated Convergence Theorem that

fol y (1) dt — jol x(1) dt.

This proves Lemma 2. |

Proof of Theorem 1. For any x,e 2" and any function x(-)e D[0, 1],

define
1 n : 2
k,(x, x,) = exp |: -3 {ré + El (x (é) + x0> }:|, (2.7)

k(x, xo)zexp[—% jol (x(r)+x0)2dt:|, (2.8)

Pxo)=]  ky(x,x))dR}(x), and (2.9)
PO, 1]

p(xo) =j k(x, xo) dR*(x). (2.10)
Dro. 1]

Using the fact that the model defined by (1.1) satisfies (I}, (IT), and (III),
and e =n"", we see that the pdf of P, is proportional to

ﬁ f,((n"“(xf—-’f;1))6)(;)[—i Z xf]. (2.11)
i=1 2n 7,

Define U,=X,— X, ,, i=1,.,n and write U= (U4, .., U,). Let @, be
the distribution of (X, U). The density function of @, is proportional to

ﬁ f(n'""u;) exp [ —51; {-"5+ i ( Z u,-+xo>zﬂ

i=1 i=1 Nj=1

I—[ fz(n”uui)kn(hn(u), .’Co), (212)
i=1

where we have the notations from (2.2) and (2.7).

Consider the product space #'x D[0,1]. Points in this space are
denoted as (x,, x), (¥,, V), etc. Let @F be the distribution of (X, 4,(U))
under Q,,.

Note that

g.(X)(1)=Xo+h,(U)z) for re[0,1]. (2.13)
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Thus to study the limiting properties of g,(X)(r) under P, we need
to study the limiting properties of X, + A, (U)(¢) under Q,, which is the
distribution of X+ X under Q*.

Let QF ., be the conditional distribution of X given X,=x, under Q%
and let u,= QXX ' be the distribution of X, under Q.

By examining the density functions in (2.12) and (2.1), and using the
notations in (2.2), (2.7), and (2.9) we see that

dQ:XO( )_kn(xa xO)
Ry T paxo)

and (2.14)

g&= Pn(xo) (215)

dxo jafx pn(yO) d)"o.
We show that

ox ., converges weakly to Q% (2.16)
where
d :() k(x) x())
= 217
ar+ = i) @1
and that
Ha— U, weakly (2.18)
and, in fact, that
d d d ;
e B pointwise, where —% — _r__p(_r(i*. (2.19)
dxy  dxg dxo jf‘x p(yo) dyq

If x, = x in D[O, 1], it follows from Lemma 2 that

L'y x(imy - fl xX(t)d:,  and (2.20)
n 0

12 (if -»f (1) dt 221
p x,(i/n) Ox ) (2.21)
and thus

g(xn)kn(xn’ XO)'—’g(X)k(X, xO)

for any bounded continuous function g: D[0,1] — #'. Since R* — R*
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weakly, we have by an application of Theorem 5.5 of Billingsley ( 1968),
that

J (%) kn(x, xo) dRX( —»jg(x (x, xo) dR*(x) (2.22)
and

Plx0) = [ kol o) dR2(x) = [ K(x, xa) dR*(x) = p(ixo) (223)

which together imply that

J g(x) k(x, xo) dR*(x)

p(xo) |

[ 2x)dQ, (x) -

and this proves (2.16). Also

=fm1] j’; exp[—in{ngrZ( (;)+zo)2}]dzodR,’f(x)
e G )=

X°*P[—%{ﬁ>.~7X(n) (22 ) ] e

2njexp[—% {jx(z)z dt—(jx(t)dz)z}] dR*(x) (2.24)

by another application of (2.20) and (2.21). It can be directly verified that

fp(yo) dyo = \/fifexp [ —% “ x(1)* dt — (j x(1) dt)z}] dR*(x).

(2.25)

Hence the numerator and denominator in the density function of U, given
in (2.15) converge to p(x,) and j'p( Yo) dyo, respectively. This implies that
(2.19) and (2.18).
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We now use Lemma 1. Identify &, %, and A, in Lemma 1 with 2,

D[0,1], and QF, respectively. The assertions in (2.16) and (2.19) verify
(2.6) and (2.5). Thus Q) —» Q* weakly, where

0*(4xB)=| QX(B) du(xo)

=f J k(x, xo) dR*(x) _ p(xo) dxo

Xoed “xeB p(xo) J.fm P(yo) dyo

C(/3/27) f e 4 fee m XL —(1/2) § (x(2) + Xo)* dr] dR*(x) dx,
- [expl — (1/2){{ x(1)* dr — ([ x(1) d1)?} ] dR*(x)

where we have used (2.25) in the last step. Thus

]

0¥ X,+Xe()
_ (13/27) [f o+ ve e €XPL—(1/2) § (x(1) + x0)* dt ] dR*(x) dxq
jexp[ —(1/2){j x(2)> dt — (f x(2) dt)*}] dR*(x)
_ (18/21) (§ e c expl— (1/2) § (1)* de ] dR%(y) dx,
Jexpl—(1/2){] x(1)* dt — (f x(1) dt)*} ] dR*(x)
where R%¥ is the stable process of index « starting from x,.

Since P,g,'(C)=0XX,+ Xe C), this shows that P,g ' — P* weakly
where P* is as defined in (2.3). This completes the proof of Theorem 1. |}

Remark 1. The assumption made on the functional form of Q(-) can be
weakened to include non-Gaussian density functions. This can be done by
using the methods in Chow (1990).
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