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The Kaplan—Meier Estimate for Dependent
Failure Time Observations
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In some long term medical follow-up studies, a series of dependent and possibly
censored failure times may be observed. Suppose that these failure times were
generated from the same distribution function, and inferences about it are of our
main interest. In this article, we show that under rather weak conditions for the
dependence among the observations, the Kaplan—Meier estimator is still consistent
and asymptotically normal. For a special dependent case in which highly stratified
data are observed, a valid estimate for the limiting variance of the Kaplan-Meier
estimate is also provided. Our proposal is illustrated with an examply. © 1994
Academic Press, Inc.

1. INTRODUCTION

In the analysis of survival data it is often quite useful to summarize the
survival experience of particular groups of study patients using the sample
survival function, for example, the Kaplan and Meier (1958) (KM)
estimator. If the failure time observations in the sample are assumed to be
mutually independent, the KM estimator is consistent and asymptotically
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normal (see Breslow and Crowley, 1974; Gill, 1980). Furthermore, for each
study time point ¢, Greenwood’s formula (Cox and Oakes, 1984, p. 50)
provides a valid estimate for the asymptotic variance of the KM estimate
at t. For a large sample, inferences about the survival experience can then
be made based on this asymptotic theory.

However, it is not clear that these large sample properties for the
KM estimate still hold when observations are dependent. For example, in
the Diabetes Control and Complications Trial, DCCT (The DCCT
Research Group, 1986), patients are randomly assigned to receive either
experimental or standard therapy. The purpose of the study is to assess the
relationship between glycemic control and the development or progression
of early vascular complications in persons with insulin-dependent diabetes
mellitus. Experimental therapy involves the use of an intensive insulin
regimen designed to maintain near normal glycemic levels in the absence of
severe hypoglycemia. Standard treatment is designed to maintain subjects
free of clinical symptoms related to hyper- or hypoglycemia while receiving
up to two insulin injections daily. In the prevention study of this trial, one
of the principal outcomes is the initial appearance of background
retinopathy for individual eyes of the study patients. Therefore, for patients
in each treatment group, it is natural to treat each eye as a sample unit and
use the KM estimate based on event times from individual eyes to
summarize their “failure” experience. However, the event times of the two
eyes of each patient are expected to be correlated. It is important to know
if the resulting KM estimate is still consistent and asymptotically normal.
Moreover, Greenwood’s formula may not be valid in this case.

In this article, we study large sample properties of the KM estimator for
cases in which the underlying failure times may be dependent. The
conditions under which the KM estimate is consistent and asymptotically
normal are rather mild. For highly stratified data, for example, in the
DCCT, these conditions are trivially satisfied. A valid estimate of the
asymptotic variance for the KM estimate in the stratified case is also
provided. Since the DCCT is an ongoing trial and its data are not yet
available to the public, our new proposal is illustrated with a small-scaled
data set from an animal study.

2. THE CONSISTENCY OF THE KAPLAN-MEIER ESTIMATE

Let Xy, .., X, be a sequence of failure times which may not be mutually
independent, but have a common continuous marginal distribution
function F. Let C,, .., C, be the corresponding censoring times which
are assumed to be independent of the X, and may be regarded as
nonrandom constants. The observations consist of Z,=min(X;, C,) and
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d;=1Ixccy i=1,..,n, where I is the indicator function. The Kaplan-
Meier estimator for 1 — F is

) 4,
1-k0=11 (1 7Y, (zf))’

it Z;ist

where Y,(t)=%7. 1z, When there is no censoring, convergence
(in probability) of F,(t)=n"13"_, Ix,<n to F(t) should hold if the
correlation between [y, .,y and [y, <. decreases to zero as i increases to
infinity. Now, let

N,,(t)= Z I(Z,‘<I,A,-=1)’ Gn(t)=n_l z I(C,>l)’
i=1

i= i=1

and j,,(t):jo' Tl,v—(%—) (2.1)

Note that A, is the usual so-called Nelson estimator for the underlying
cumulative hazard function A(t) = —log(1 — F(¢)). Also, let

te=sup{t: F(t)<1}, and tg=sup{s:liminfG,(r)>0}. (22)

Then under some mild conditions on X’s, F, is still consistent. This is
summarized in

THEOREM 1. Let ¢(1), #(2), ... be a sequence of nonnegative numbers such
that

lcov (Iix, < sys Lixinre)) S @L0), (2.3)
Jor all k, i, s, and 1.
(i) If #(i)— 0 as i — oo, then for 1 <min(zty, 15),

sup |F (1)~ F(1)] -0,  in probability, as n — 0. (2.4)

O0<r<t
(i) If3X, ¢(i) < oo, then for 1 <min(tp, 15),

sup |F ()= F(t)l =0  as, asn— . (2.5)

[E ]

(ili) If 1z<15 and F(1.—)=1, then under the assumptions of (i),
(2.4) holds for t =1y, while under the assumptions of (ii), (2.5) holds for

T=Tp.

Proof. See the Appendix.
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Theorem 1 indicates that if for a fixed & the dependency between X, and
X, ., becomes weaker and weaker as i increases, then F, is consistent. For
highly stratified data, for example, the paired failure time observations in
the DCCT, these conditions in (i) and (ii) are trivially satisfied.

3. THE LARGE-SAMPLE DISTRIBUTION FOR THE KM ESTIMATOR

To obtain the asymptotic distribution of the KM estimate for the
dependent case, a stronger condition on {X,, i>1} than those in (i) and
(ii) of Theorem 1 is needed. A sequence {X,, i>1} is called ¢-mixing for
a sequence of nonnegative constants {@(i), i>=0}, where ¢(i) - 0 as i — o0,
if for any k, any set 4 generated by X, j<k and any B generated from
X, jzk4+i

|P(B| A)— P(B)| < 8(i). (3.1)

An example of ¢-mixing sequence of random variables is m-dependent
sequence. The {X;, i=1} is an m-dependent sequence if {X, .., X,} and
{X.s;+1s Xuijy2, -} are independent classes of random variables for each
n>=1 and j>m. Naturally, the highly stratified failure times can be easily
ordered as an m-dependent sequence.

Now, let

t
M()=Iz<0-1— L Iz, dA(s),

and M (t)=3¥7_, M(t). Then for t >0

n'*(E, (1)~ F(1)) j’l—F(s—))d[n”zM("’(S)]

1—F(¢) F(s) Y, (s) (32)

(see Gill, 1980, 3.2.13). If X’s are mutually independent, M (s) is a
martingale in s. The limiting distribution of F, can be derived from
Rebolledo’s martingale central limit theorem (Gill, 1980). For dependent
cases, we summarize the results in

THEOREM 2. Suppose that {X;;i= 1} is ¢-mixing in the sense of (3.1)
with ¥ (i) i* < co. Assume that

H(s,z)=1iml Y E{M,(s) M;(1)} (3.3)
"o R y<ijgn

exists for s, t<r<min(;rp, 1¢) and that lim, G, (1)=G(?) for t<t<
min(tg, 175). Then n'*(F,— F)/(1 — F) converges weakly in 2[0,7] to a
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zero-mean Gaussian process W with W(0)=0. The covariance function of
W is

B o= | eilLE)

o G —FwIGw—Fo1 Y

This implies that n'*(F,, — F) converges weakly to (1—F)W.
Proof. See the Appendix.

Note that if {X;} is stationary, then (3.3) is satisfied. If X’s are
independent, then E{M,(s) M;(¢t)} =0 for i#j and E{M,(s) M,(1)}=
(67 ° El ¢, ) dF(u). It follows then that E[W(s) W(¢)]= ("' dF(u)/[(1 —
F(u))? G(u)]. Furthermore, for stratified observations, the convergence of
(3.3) holds under some mild conditions and a consistent estimator for (3.4)
is presented in the next section.

4. THE KM EstiMATOR WITH HIGHTLY STRATIFIED OBSERVATIONS

Consider now a special case in which survival times are highly stratiefied.
Let the observations in the ith stratum be denoted by {X,,j=1, .., K.},
i=1,..,m The corresponding “failure” indicator 4 is denoted by 4
Assume that the depencency exists only among individual observations
within each stratum. Also assume that the size of each stratum is small
relative to m. Let M()=lz,<.5,-1,— 6 1(zu>s) dA(s). Then, if
K=max{K,;} = o(m), the resulting KM estimator F, for F is consistent
based on the proof of Theorem 1.

Furthermore, suppose that the corresponding G,(#) converges for
0<t<r, and that K is bounded. Then, from Theorem 2, n'*(F,— F)/
(1 — F) converges weakly to a Gaussian process W with mean 0 and
covariance function (3.4). For the present case, it is easy to see that H(s, )
can be consistently estimated by

. 1= X
H,(s, )=~ Z Z Z {I(z,,ss A=1" f I(Z,,;u)dA (“)}

ni o=t
’ -
X{I(2u$1,451=1)—J‘0 I(Zuzu)dAn(u)}-

It follows that a valid estimator for the asymptotic variance of F,(z) is

i . t et dﬁ
V(t)=n(1 —Fn(t))z _[0 fo 7-(—;%-%
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Unfortunately the data from the DCCT are not available to the public.
We use a smaller data set from a tumorigenesis in a litter-matched
experiment (see Mantel and Ciminera, 1977). In this study, there are two
controls in each litter. Table I gives the weeks of tumor appearance. The
+ indicates the week of death prior to any tumor. In the experiment
conducted, all rats were sacrified at the end of 104 weeks. For each triplet
(X,, X5, X;) in the table, X, is the observation from a drug-treated rat and
X, and X, are the responses from the corresponding litter-matched
controls. Suppose that one is interested in estimating the common marginal
distribution F of the tumor appearance time for the controls. With those
100 controls in Table I, the KM estimates 1 — £* and the corresponding
standard error estimates based on ¥ at various time points are reported in
Table II. For comparisons, we also report the standard error estimates
from the canned statistical package BMDP by ignoring the litter effect. For
this example, the two variance estimates are not drastically different. This
may be due to a weak litter effect. On the other hand, if the failure times
are highly positively correlated in each stratum, one would expect that our
variance estimate tends to be much larger than the standard estimate with
independent observations.

TABLE 1

Time (in weeks) to Tumor Appearance in a
Litter-Matched Tumorigenesis Experiment

Drug
treated Control 1 Control 2
101.0+ 490 104.0+
104.0+ 102.0+ 104.0 +
104.0 + 104.0+ 104.0+
77.0 + 97.0+ 79.0+
89.0+ 104.0+ 104.0+
88.0 96.0 104.0+
104.0 94.0+ 77.0
96.0 1040+ 1040+
82.0+ 77.0+ 104.0+
70.0 104.0+ 770+
89.0 91.0+ 90.0 +
91.0+ 70.0+ 92.0+
39.0 450+ 50.0
103.0 69.0 + 91.0+
930+ 104.0 + 103.0+
850+ 720+ 104.0+
104.0+ 63.0+ 104.0+
104.0 + 1040+ 740+
81.0+ 104.0+ 69.0+

Table continued
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TABLE 1 (continued)

Drug
treated Control 1 Control 2
67.0 104.0+ 68.0
104.0+ 104.0 + 104.0+
104.0+ 104.0 4 104.0+
104.0+ 83.0+ 40.0
87.0+ 1040+ 104.0+
104.0 + 1040+ 1040+
89.0+ 104.0+ 104.0+
78.0+ 104.0+ 104.0+
104.0+ 81.0 64.0
86.0 55.0 94.0 +
34.0 104.0+ 54.0
76.0+ 87.0+ 740+
103.0 73.0 84.0
102.0 104.0+ 80.0+
80.0 104.0 + 73.0+
45.0 79.0+ 104.0+
94.0 104.0+ 104.0+
104.0+ 104.0+ 104.0+
104.0+ 101.0 940+
76.0+ 84.0 78.0
80.0 810 76.0+
720 95.0+ 104.0 +
73.0 104.0+ 66.0
92,0 104.0+ 102.0
104.0+ 98.0+ 73.0+
550+ 104.0+ 104.0 +
49.0+ 83.0+ 770+
89.0 104.0+ 104.0 +
88.0+ 79.0+ 99.0+
103.0 91.0+ 104.0+
104.0+ 104.0+ 79.0
TABLE II

Distribution of Tumor Appearance Time for the Controls

Study time ¢

Standard error

(weeks) KM estimate New BMDP
70 0.9190 0.026 0.028
80 0.8733 0.032 0.034
90 0.8227 0.046 0.041
100 0.8074 0.047 0.043
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5. REMARKS

The consistency and asymptotic normality for the KM estimate
presented in this article hold under rather mild conditions. However, it
seems rather difficult, if not impossible, to obtain a general estimate for the
limiting variance of the KM estimate for the dependence case. A valid
variance estimate is provided for the highly stratified observations in
Section 4. Now, if the sequence {(X;, C;), i=1} is stationary and ¢-mixing
with respect to the ¢ sequence in Theorem 2, then a valid variance estimate
for n'2F,(t) is

(I—Fn(t))z{

n

S DG, 1) DU t)},

10— jl < n'

where

n

DG, 1) = didiz<n 5 lzcolizs 204
onT'Y(Z) o nTYHZ)

This estimate is useful for a survival study when there may be a seasonal
time trend among the observations.

APPENDIX

Proof of Theorem 1. We first show that

sup |A(1)—A(t) =0,(1) (A1)

0<r<r
hods under the assumptions of Theorem 1(i), while

sup |A(t)— A1) =0o(1)  as. (A2)

0<r<t

holds under the assumptions of (ii).
From (2.3) and the assumption that ¢(i) — 0, it is easy to see that for
every 1<,

EB(Y,,(t)—EYn(t))]Z—»Q as n— o0,

which, together with the Chebyshev inequality, implies

n=! Y, ()= G, ()1 - F(t))=0,(1). (A3)
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Likewise,
ne! Nn(z)—j' G, (s) dF(s) =0, (1). (A4)

From (A.3) and (A.4) we next show that A,(t)—A(1)=o0,(1) for every
t < 1. Because F is continuous, so is [ G ,(s) dF(s). Thus for every n and r,
we can find O0=wu,<u,; < --- <u,=t such that % G,(s)dF(s)=n<r".
Note that n here depends on n and r. Furthermore, for fixed r, (A.3) and
(A.4) imply

max {|n*1Y,,(u,-)—Gn(u.-)(1 — Fw))

ogigr
n—xN,,(u,.)_f"'G,,(s)dF(s)}=op(1) (A.5)
0
Now
s (1dNG(s) _ & Na(u) —Na(u;_y)
0= 56 Sz Y, ()
* EN, EN,(u;_
;Z (uEY( ‘)(u. l)+0"(l)
‘Zv—_—_"EY( )+o,,(1). (A.6)
Similarly,
i o n
A"(t)>i§1n—IEY,,(u,-_,)-*-op(l) (A7)

But 3)_, mn/EY,(u) > A(1)> Xi_, mn/EY,(u;_,) and $_, mn/EY,(u)—
S m/EY,(u;_,)<r 'n/EY, (1), which can be made arbitrarily
small since r is arbitrary. These along with (A.6) and (A.7) entail
/i,,(t)—A(t)-—-op(l) for each fixed . Now for any ¢ >0, we can choose,
because of continuity of A4,k and O=t,<t, < --- <t,=1 such that
A(t;)— A(t;_,)<e. A simple algebra shows that

sup |4, (1)~ A(1)] < max |4,(1)— A(1,)] + max |A(t;)— A2, )|

0t 1gigk 1<igk
<o,(l)+e,

which implies (A.1) since ¢ is arbitrary.
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For (A.2), we first show that
n~ Y, (t)—EY, (1) =o(1) a.s. (A.8)

for every t<1. Let &;=1 ;. ,,—El,,. By Kronecker’s lemma, (A.8) is
implied by the almost sure convergence of the partial sum S, =3"7_, &/i.
The first step to prove the convergence is to show that the subsequence S,
converges a.s. By the mixing condition,

n+k _
E(S, .= S)P<2 Y Z¢(} i)

i=n+1j=1i
n+k 1 2
<2Z o) X —2<—Z
j=0 i=n+l n =

which implies that S, is an L? Cauchy sequence. Thus there exists a
random variable S such that E(S,— S)*— 0. Again, by (A.9)

1 €K
E(S—8x)*= lim E(S2k+,,—S2k)2<—277 Y (). (A.10)
n— ¢ j=0

Therefore, by a simple application of the Chebyshev inequality and the

Borel-Cantelli lemma, Sy —S as. From the method of subsequences

(cf. Stout, 1974, Lemma 2.3.1) in order to prove S, — S, it suffices to show
1S, — Sx| —0 a.s. (A.11)

2“<n<2“+
as k — oo. Using a dyadic expansion method (cf. Stout, 1974, pp. 16-18)
and the inequality (A.9), we get

BUERVi

E{ max (S§,—Sx)} Z¢ (A.12)

2k < ng 2kl 2k_ !
From (A.12), the Chebyshev inequality and the Borel-Cantelli lemma
follows {A.11). Hence (A.8) holds. Similarly, we can show that

n N, r)—JG s)dF(s)=o(l)  as. (A.13)

From (A.8) and (A.13), we can proceed in exactly the same way as in
proving (A.1) except replacing “o,(1)” by “o(1) as.” to show (A.2). The
details for this are omitted.

By (3.2.12) of Gill (1980), when Y, (¢) >0,

Fn(t)—F(t)_rl—Fn(s—)
1—F() Jo 1—F(s)

dlA4,(s)— A(s)]. (A.14)
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Since 1 - F,(t—)=1—-F (1—)=n""'Y,(1),

' l—ﬁn(‘g—) _
fo e ‘_o,,(l) (A.15)
under the assumptions of (i), while
o 1-Fy )|
jo 4 '_0(1) as. (A.16)

under the assumptions of (ii). Thus (2.4) follows from (A.1), (A.14), and
(A.15), whereas (2.5) follows from (A.2), (A.14), and (A.16).

Finally, part (iii) follows from (i), (ii), and the fact that F(z)11 as
ltpnteg=Tp |

Proof of Theorem 2. From (3.2) it is clear that a key step in proving
Theorem 2 is to establish a weak convergence result for n =12 M'™, We will
show later that n='? M) converges weakly in 2[0,1] to a Gaussian
process W, with W,(0)=0, EW (¢)=0, and

E[W, (s) W, (1)]=H(s, t). (A.17)

Since F, —» F by Theorem 1, it follows from (3.2), (A.1), and (A.17) that

(Fpyn='Y,, n=2M") 2D (F (1 - F) G, W)). (A.18)

Therefore, by the Skorokhod-Dudley-Wichura theorem (Shorack and
Wellner, 1986, p. 47), there exists a special construction (F*,n 'Y*
n~Y2M*), which has the same distribution as (£,, n~'Y,, n~"2M*") and
which converges to (F,(1—F)G, W) as., where W} has the same
probability distribution as W,. The convergence of n~2M * to W¥ is also
in uniform topology since, with probability one, any sample path of the
latter is continuous. Since T <1tg Vv 174, it is clear that

1—F*(u—=) n
TR v < (A1)

lim sup J:

n—s o

Moreover, supyc, ., |n”"?M[t)~ W¥(1) -0 as. This, together with
(A.19) and integration by parts, implies that

f’ 1—F*(u—)dn ' M*u)

o 1—F(u) n~'Y*u)
t1—FX(u—) dW¥u) .

o 1=Fu) n'YXu)

sup

LESE S

0 as. (A.20)
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Likewise, applying integration by parts again, we get

J“l—ﬁ,’:‘(u—) dW ¥ (u)
o 1—Fu) n'Y¥u)
_dWit(u)

o (1 —F(u)) G(u)

sup

0<Igt

-0 a.s. (A.21)

From (A.20) and (A.21) we have

jr 1—FX*(u—)dn "> M}u)
o 1—=Fu) n'Y*uw

[ Awrw) | o
o (1= F(1)) G(w)

In view of (A.22) and (3.2), theorem 2 follows.

It remains to show that n~'?M" converges weakly to W,. Recall that
M"™(t)=Y¥"_, M,(¢). Since F is continuous, we can, without loss of
generality, assume that the X; are U(0, 1} random variables. Applying the
same argument as that in the proof of Lemma 22.1 of Billingsley (1968,
p. 195) it can be shown that

sup

DES T

a.s. (A.22)

E[M™(1) — M"™(5)]* < K, [n* sup EX(M, (1) — M,(5))*
+nsup E(M,(1)— M,(5))’]  (A23)

for some constant K, >0 and all ¢, se [0, 7], nothing that ¥ i* ¢(i) < 0.
Since each X, is uniformly distributed, E[M,(t) — M,(s)]* < |t —s|, which
together with (A.23) gives

E[M™(t)— M™(s)]* < K[n*(t—s)* +n |t —s|] (A.24)

for some K> 0 and all 5, r<t. From (A.24) and exactly the same argument
as that for (22.14)-(22.21) of Billingsley (1968, pp. 198-199) we conclude
that, for every ¢ >0 and > 0, there exists o >0 such that

1
P{ sup —= (M (1) - M"(s))| >
jt—s5/<8,0<5, 1< \/;

for all sufficiently large n. Therefore {n "2 M} is tight. From (A.25), it
also follows that any limiting distribution of {n~'*M ""} is in C[0, z].
Moreover, from the ¢-mixing condition, for any 0<t, < --- <1,<1, and
0<s,< - <s,<1, (MO i=1,.,p}, (M2 ) M),
i=1, . ply ey MUy — MUnse-1(y) i=1,., p}, where [a] denotes

s} <n (A.25)
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the largest integer <a, are symptotically independent. Therefore, any
limiting distribution of (n~'"2M")(¢,),..,n " "?M"(1,)) is a p-variate
normal distribution. On the other hand, from (A.23), it follows that for
fixed s, te [0, 1], n™'M ™ (s) M(¢) is uniformly integrable. This and (3.3)
imply that the finite dimensional distributions of n~Y2M ™ converge to
those of W,. The desired conclusion follows from the tightness of
{n—I/ZM(n)}. .

[
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