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Some Continuous Edgeworth Expansions for
Markov Chains with Applications to Bootstrap

SOMNATH DATTA* AND WILLIAM P. McCoRrMICK

University of Georgia

This paper deals with the first order Edgeworth expansions for sums related to
an ergodic Markov chain with general state space. In the first part of the paper, we
establish certain continuity, w.r.t. the transition probability function and the initial
distribution, in these expansions. In the second part, we illustrate the use of our
continuous expansions in the area of bootstrap. We consider bootstrapping the dis-
tribution of the (sample) mean of a fixed real function of a Markov chain. Under
a conditional non-latticeness condition, the bootstrap is shown to be second order
accurate. As a second application we obtain Edgeworth expansions for the
bootstrap approximation to the sampling distribution of the m.le. of a particular
transition probability in a finite Markov chain. It is shown that the bootstrap is
second order accurate and is therefore superior to the normal approximation, if the
transition probability is irrational. In the other case, the exact asymptotic upper
bound constant in the O(n~'?) rate of bootstrap approximation is determined.
© 1995 Academic Press, Inc.

1. INTRODUCTION

Let (X, B) be a measurable space and {X,:r=1,2,..} be a Markov
chain with state space X. Let p =p(x, 4), with xe X and 4 €B, be its tran-
sition probability function. For k> 1, let

k—1
P(x, )= [1 plx, dx,yy),  with x=x,
X

k=lxg i

denote the k-step transition probability function for the chain.
Assume that for some positive integer k,, and 0 <d < 1,

sup | p0(x, A)—p*(p, A) <9, (1.1)

x, ¥, A
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84 DATTA AND MCCORMICK

where the supremum is taken over all states x, ye X and sets AeB. It is
well known (see, e.g., Nagaev, 1961) that in this case there exists a (unique)
stationary distribution p, for the chain satisfying

sup | pX(x, A) — po(A) <0k, (1.2)

x, A4

for all k=1 where y=6"" and p=§"*,

Let f be a real measurable function on X satisfying jf(x)pu(dx) =0 and
jfl(x)po(dx)< oc. Then the asymptotic variance of the normalized sum
n 12¥" f(X,) exists and is given by

t=1

o?=Ef%(X,)+2 Z Ef (X)) /(X))

t=1

where E stands for the expectation under the stationary distribution.
Classical Edgeworth expansions for the distribution of the standarized
sum

S,=n '"?¢7! if(X,) (1.3)

t=1

received a beautiful treatment using the operator theory by Nagaev (1961).
In this paper, we establish certain continuity in these expansions with
respect to the distribution of the chain (as determined by the initial dis-
tribution and the transition probability function). Inter alia, these results
are nontrivial extensions of those in Datta and McCormick (1993) where
Edgeworth expansions for sums related to a given Markov chain are
obtained under somewhat weaker conditions than those in Nagaev (1961).

Our study of continuous Edgeworth expansions was motivated by their
applications to the theory of bootstrap asymptotics. In Section 3, we con-
sider bootstrapping of a univariate mean related to a Markov chain with
general state space. Our bootstrap samples are generated from an estimated
Markov chain; thus they are different from the so-called moving block
bootstrap. The latter is a general resampling procedure which is usable in
other weakly dependent, e.g., non-Markovian, models as well. See Kiinsch
(1989), Lahiri (1991), and Liu and Singh (1992) for further details. On the
other hand, our approach is, in some sense, simpler and more natural for
the Markovian setup. An added theoretical advantage of the present
approach is that the expansions for the original statistics and its bootstrap
version can be studied in one shot, via a continuous Edgeworth expansion.
In particular, for the case of a mean we show that, under some general
conditions, the bootstrap is correct up to o(n~'?).

We also study the asymptotic accuracy of the (parametric) bootstrap
approximation to the m.le. of a particular transition probability of a finite
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state Markov chain. We establish that bootstrap is second order accurate,

and therefore superior to the classical normal approximation, if the

particular transition probability under study is an irrational number. In the

case when this transition probability is rational we obtain the asymptotic

value of the constant in the O(n~'?) rate of the bootstrap approximation.
All the proofs are presented in Section 4.

2. CoNTINUOUS EDGEWORTH EXPANSIONS

Let us consider more than one possible transition function p for the
chain, each satisfying (1.1). Note that the stationary distribution p, for the
chain is a function of p. Also, we will allow the function fin S, to depend
on p. However, to retain notational simplicity, we will not exhibit this
dependence unless otherwise necessary. Throughout this section we will
assume that | f(x) po(dx)=0, sup, [ [f(»)® p(x,dy)< ¢, and 6>0, for
every p under consideration. This condition will not be repeated.

Following Nagaev (1961), define the following functionals of p:

1
M=—~——1 (2ko 3% (14 2p) + 3), (2.1)
—p
where k, and p are as in (1.1),

M,:supj|f(y)|"p(x,dy), for i=1,2,3, (2.2)

and

o

ps=Ef(X,)+3 i Eff (X)X 0)+3 ) Ef(X) (X, 40)

Lo}

+6 Y Ef(X) (X, D) f(Xisein), (2.3)

Ls=1

where E denotes the expectation when initial distribution is p,,. In addition,
for an initial distribution w satisfying | | f| dw < co, define

to( =10 (PN = 3 E,f(X,),

t=1

where E,, denotes the expectation when the inital distribution is w. It turns
out that both u, and u,, are finite.

Let p’ be a B x B measurable function such that p'(x, -) is a density, w.r.t.
Po, of the component of p(x, -) which is absolutely continuous w.r.t. p,,. For
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an integer k and sets C, DeB with [ p*~"(x, D) po(dx)>0, let j; ¢ p
denote the conditional distribution of the sum Y *_, f(X,) given the event
{X,eC, X,e D}, under the stationary initial distribution.

A continuous Edgeworth expansion will be applicable to situations when
one has a triangular array of summands related to Markov chains and
both the inital distribution and the transition probability function change
with the sample size. Consequently, we introduce a sequence (w,, p,) of
initial distributions and transition probability functions for the chain, as
well as its limit (w, p). We will write w,, = @ to mean that o, converges to
w in total variation. Similarly, the convergence

sup [p,(x, 4)—p(x, A)[ -0
x, A

will be denoted by p,=p.

First we state a continuous version of the first order Edgeworth expan-
sion in the non-lattice case. Recall that we allow the function f to depend
on p. In the statement of the following theorem f, and f will denote the
functions corresponding to p, and p, respectively. Similarly, ¢ and pu;
correspond to the limiting p and u,, corresponds to the limiting p and w.
The object of interest is F,,, , the distribution function of S, (with £, in
place of /) when the initial distribution is w,, and the transition probability
function is p,,.

THEOREM 2.1. Suppose p is a transition probability function satisfying
(1.1) such that there exist a positive integer k and sets C,eB, 1<i<4,
satisfving the following conditions:

(1) i . ¢ IS a non-lattice distribution

(i) pol(Cy)>0,po(C4)>0, [, p* VUx, C3) poldx) >0, (2.4)
(u‘) 0<inf\'e('|.y€('1p/(x9)')s
0<inf\-e(‘3.ye('4["(-\',)")SSUP\»ex,ye(uPI(x’)")<‘30- (2Sb)

Let o be a probability on B satisfying }" fldo <. If p,=p,
[ [, dw, — | fde, and w,=> o then

Fo(x)=®(x)+n'? {“—31 (1—x%) ~'l—l£} dlx)+o(n 2y, (2.6)
60° o

uniformly in x, provided in addition that

(iv) sup. (£, (¥)=f(») p(x,dv)—0,
(v) limsup,_ . sup.[|f, ()’ &0/, (2)]) pa(x. dy) < oc
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for some function g satisfying g(x) —» o0 when x — o0, and
(vi) limsup, ., |/2(x)dw,(x)< .

Note that in the above theorem we do not require that the distribution
of f,, be non-lattice. In fact, £, in our second bootstrap application will be
lattice valued for all n. (Only the limiting f needs to be non-lattice) Also
note that the expression n~'?(u,, /o) ¢(x) reflects the influence of the initial
distribution on the expansion. In the case of the stationary distribution
taken as the initial distribution this term vanishes.

Next, we consider the case when f takes values on a lattice given by
{a+mh:meZ}, for some ~o0 <a<o and h>0. Here Z is the set of
integers. Since f'depends on p so do a and h. Suppose, for each n, f,=f(p.)
takes values on a lattice {a,—mh,:meZ} and ¢,=a(p,). As before,
Us, 0, it,, h, etc. correspond to the limiting p and w.

THEOREM 2.2. Ler p be a transition probability function satisfying (1.1)
such that conditions (i) and (iii) of Theorem 2.1 are satisfied and y; ¢, ¢, is
a lattice distribution with span h. Let o be an initial distribution with
{Ifldo <. If p,=p, [f,do,— | fdo, and if ©,= o then

Fo o (xX)=®(x)+n" "2

U3 sy My h(n'*(xe,—n'"a, ))}
= l — —
X {60’3 (1=x7) * o ¢ ( h

- :
X @(x)+o(n1?), (2.7)

uniformly in x, provided h,, — h and conditions (iv)-(vi) of Theorem 2.1 hold.
Here Q(t)=[t]—t+1/2, for teR.

Note that the above theorem is applicable even if 4, is not the span of
the values of f,. We only require the limiting conditional distribution
Ui, c,. ¢, to have span h. Our second bootstrap application presents such a
situation.

Remark 2.1. It can be seen from the proofs that Theorems 2.1 and 2.2
remain true if the conditions | fdw, — | fdw and w, = w are replaced by

Koy ™ o+

3. APPLICATIONS TO BOOTSTRAP: ASYMPTOTIC ACCURACY

As a statistical application of our continuous edgeworth expansion
results, we now consider bootstrapping the sampling distribution of the
mean of a real function of a Markov chain. After this, we consider a second
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application where we bootstrap the sampling distribution of the m.l.e. of a
transition probability of a finite state Markov chain.

Following the seminal paper by Efron (1979), bootstrap has received
tremendous attention in recent years. Limit theorems for bootstrap showing
its (asymptotic) validity and, in some cases, its superiority (in terms of rate
of convergence) over the classical asymptotic theory (e.g., normal
approximation) were obtained by many authors; see e.g., Bickel and
Freedman (1981), Singh (1981), Beran (1982), Babu (1984), Babu and
Singh (1984), Ghosh ef al. (1984), Abramovitch and Singh (1985), Hall
(1988), Bhattacharya and Qumsiyeh (1989), and Helmers (1991). The
above references are only a few of numerous works done in this area.
Although bootstrap was originally described for the iid. setup, similar
ideas can be used for some non-i.i.d. situations as well. Bootstrapping for
non-i.i.d. models was considered by Freedman (1984), Liu (1988), Kiinsch
(1989), Kulperger and Praskasa Rao (1989), Athreya and Fuh (1989,
1992), Bawasa et al. (1990), Lahiri (1991), Liu and Singh (1992), and
Datta and McCormick (1992), among others

Let us suppose that {X,} is a Markov chain as in Section 1 (satisfying
all the conditions therein) with a general state space X. Let g (need not be
centered) be a given real valued function on the state space such that the
conditions (i)-(iii) of Theorem 2.1 are satisfied with f=g—Eg. Also
assume that

sup J ()’ plx, dy) < oo

Letting o denote the (asymptotic) variance of the sum n " 37 g(X,), we
form the pivot

R,=n "?¢"! (i g(X,)—Eg). (3.1)
!

Suppose we are interested in approximating the sampling distribution
(under the stationary distribution) of R,. The first step for this is to
construct a consistent estimator p of p, based on X, X, .., X,; i.e., one
which satisfies p=> p, a.s. (A more exact description of p will depend on the
particular situation at hand; see Remark 3.2 below.) Let p, be the station-
ary initial distribution corresponding to p (which exists, a.s., for large »).
Now generate bootstrap samples in the obvious way: i.e,, generate XT ~ p,,
and having observed X¥, ..., X ¥, generate X*, , ~p(X* -)fori=1,..,n—1
Let P* denote the bootstrap probability and E* its (stationary) expectation.
Let R} denote the bootstrap pivot

R,’f=n"2(6*)'<Zg(X7‘)—E*g>- (3.2)
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Note that E*g = g(x) po(dx) and

0% = [ (g(x) ~ E*g)? foldx) +2 Y. [ (g(x)— E*g)

=1

x (g(y)—E*g) p'(x, dy) po(dx).

As an immediate application of Theorem 2.1, we get the following result.
We use | ||, for the sup norm of real functions on R.

THeOREM 3.1.  Let p satisfy (1.1) and conditions (i1)-(iii) of Theorem 2.1
with f = g — Eg. Suppose p = p a.s. and lim sup,, _, ., sup, | |g(x)>** p(x, dy)
< oo, a.s., for some £ >0. Then, as n — o0,

[P{R,<x}—P*{R}¥<x}|=0(n"?), as.

Remark 3.1. One may take, instead of the above mentioned j,, any
other estimator p, (say) of the initial distribution provided p,=>p, and
[gdpo— [ gdpy, as. Also, it is possible to replace ¢* in the definition of
R* by

kn
5% = (g0)~ E*0)* old) +2 Y. [ (g(x)

t=1

—E*g)g(y)— E*g) poldx) p'(x, dy)
provided k&, /log n — co.

Remark 3.2. Consider a parametric setup where the transition prob-
ability function is indexed by a finite dimensional parameter 8. Suppose, in
addition, that the parametrization 8 ~» p, is continuous in = convergence
topology on the range. Then to get a consistent estimator of p, it suffices
to get one for 6.

On the other hand, in a nonparametric context, it is often possible to
construct a nonparametric estimator of p through density estimation. See,
e.g., Roussas (1969), Rosenblatt (1970), Riischendorf (1977), Yakowitz
(1979), and Roussas (1990).

Remark 3.3. It may not always be possible (or easy)} to construct
estimator p to satisfy p=p, a.s. This condition can be dispensed with.
A careful investigation of the proofs of Theorems 2.1 and 3.1 will show
that all we really need is that the following conditions hold almost
surely (besides the other conditions of Theorem 3.1):

(i) {p:n=n,} satisfies condition (Ul) of Section 4, for some n,.

683/52/1-8
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(i) E*¢"(X)g/(X,. ) (X, i) Eg' (X)) g/ (XL )8 (Xow i),
for all 0<i, j, k, with i+, +k <3, and s> 1.

(1”) ]lm Supn——» L Supug 10 <b Supx Hﬁ‘m'(gs X, )” < ]a fOr some m = 1’
and all 0 <a<b< .

(The complex measure p'"(8, x, -) is defined before Lemma 4.10 with p
replaced by p throughout.)

In particular, these conditions are ecasily verified for the iid. case
yielding Singh’s (1981) result for non-lattice summands. For verifying (i)
in the i.i.d. case one needs to use the facts that j(x, -)=p, and in this case
170, %, VI = 1§ ey (dy ).

Remark 3.4. In a recent paper, Rajarshi (1990) considered a bootstrap
procedure for the mean of a Markov chain using the density estimation
approach described in Remark 3.2. He asserted the first order correctness
(i.e., asymptotic validity) of the procedure and conjectured that it is also
second order correct. Our Theorem 3.1 gives a set of sufficient conditions
for this.

Remark 3.5. 1In this paper, we answer the bootstrap accuracy question
for a standardized mean. A similar question can be addressed for a studen-
tized mean and perhaps, more generally, for a studentized statistic which is
(essentially) a function of several means related to a Markov chain. See,
e.g., Babu and Singh (1984) and Abramovitch and Singh (1985) for the

corresponding developments in the i.i.d. case.

We will now consider a situation where the original sample X, X,, ...,
X, . is a realization, up to some time point »+ 1, of an irreducible and
aperiodic Markov chain {X,: 1> 1} taking values in a finite state space,
taken to be X=1{1, 2, .., N}, for some integer N = 3. It is well known (see
Doob, 1953) that such a chain is ergodic and satisfies (1.1).

Let p=(p,: ! <i,j<N) denote the matrix of transition probabilities for
the chain. A natural estimator of p is p= (p,: 1 <i,j< N), obtained by the
method of maximum likelihood, where

ni' P
ﬁ(’j:#1}n,>()}+6i/1{n,=0:’ 1<’»]<N9 (33)
with

n;= Z Vix<i and ;= Z Vivicixo =iy (3.4)

r=1 t=1
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Consider the following bootstrap scheme for approximating the sampling
distribution of j;: Generate bootstrap samples X¥, X%, ..., X¥, , following
a Markov chain with transition probability matrix p and some initial
distribution @. Then form n}, n¥, and p¥ by (3.3) and (3.4) with X*’s in
place of X’s. Then p¥ will be a bootstrap estimator of p;, and the sampling
distribution of (p¥—p,) over all possible size (n+ 1) bootstrap samples
(given X, X5, .., X,,, ;) will be used as a bootstrap approximation to the
distribution of (p; —p,).

The above scheme was proposed by Basawa et al. (1990) for a finite
Markov chain and independently by Athreya and Fuh (1989) for the more
general case of countable state space. (Actually, Basawa et al. made a slight
modification to make j ergodic. However, it was not really necessary for
the asymptotic results.) Both of these papers proved that the above proce-
dure is asymptotically valid, in the respective setups, but did not provide
any asymptotic accuracy result of the procedure. In this paper, we obtain
a number of results regarding the accuracy of the above bootstrap scheme.
The proofs of the last two results make heavy use of the continuous
Edgeworth expansions of the previous section. When p,, is irrational, the
bootstrap (for a standardized statistic) is accurate up to o(n '?), and is
therefore better than the normal approximation.

In general, a proper choice of & for generating X * will be important to
obtain the second order accuracy for the bootstrap. If we want to estimate
the sampling distribution under the stationary distribution then a natural
and correct choice is @(i) = n;/n. However, as our results will show, for the
statistics of interest here the choice of the initial distribution plays no role,
even up to the second order. This is so because, for the related summands,
U, =0, for all of the initial distribution w.

Once again, let P and P* denote the probabilities governing the
original Markov chain {X,} and the bootstrapped chain {X}*} (given
X, X5, .., X, 1), respectively. Throughout the rest of this section, / and j
will denote two arbitrarily fixed states such that 0 < p, < 1. All the conclu-
sions of the following theorems are valid (P) almost surely. Note that
under P, X, may have any distribution.

THEOREM 3.2. For any x and yeX, as n— 0,

(a) “P{””z(ﬁij—Pij)< . |X1=x}
—P*{n'"2(pr—p,)< - | Xt =y}l
= 0(n~ " (log n)'?),

(@) |P{n/*(py—p,)< - | X;=x}
—P*{n}*(pr—p)< - | XF¥=y}ll.
= 0(n~"(log n)'?),
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(b) I1P{n “Zn(p,—py)<- | X;=x}
= P*{n"PnX(pE-p)< | XF =0l

=0(n "*(loglog n)'?),

L (n i py—py)

» (Ppy(1—p;)*" ‘
12k mk 5

*P*{n A ‘”.'(P::/‘ 1j€,7)< ) |X1*=)'}"
(pipy(1=py)" =

=0(n ")

Next we analyze the O(n ~ ?) rate for the standarized statistics in more
detail. We will need some technical conditions for doing the Edgeworth
expansions. These conditions were introduced in Datta and McCormick
(1993). Some special terminology will be necessary for this purpose. Let
Sc )y, X" be the path space, where s=(s,, 55, ...,5,)eS il p, ., >0,
1<k<n—1. We refer to the elements of S as paths, and for the path
s=(sy, 53, .., 5, ), we define its length, denoted by |s|, as n— 1. For the
fixed states i/ and j under discussion, we will say two paths s, and s,,
starting at i, are of the same type if 5, = (i, 55, ..., 5, ) and 5, = ({, t3, ..., 1,,,)
and either both s, and 1, equal j or neither of them equals j (i.e., either
s,=t,=j or s,#j  and t, #/). We say that a path is a loop at xe X if it
starts and ends with x, but otherwise does not pass through x. Two loops
of the same type at 7 are said to be essentially different if they have different
lengths.

THEOREM 3.3. Let p, be irrational and let there be two essentially
different loops at i. Then as n — oc,

’fp{ nl“zni(ﬁij_pzj,) <. {X _ \’}—P* {” 1“‘2”:*([53_}31])
N ppa (1= D2 ‘ (b1 —py )72

1.2
)s
oA

< - IXI*=,V}

J =o(n~

Sfor any x, yeX.
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THEOREM 3.4. Let p,=k/m, where k and m are two relatively prime
positive integers. Suppose, for some State z #1i, there exist two loops at z, 5,
and s,, are not passing through i, with g.c.d. (|s,|, |52]1)=1. Then

L PN
(pp;(1—p;)N)'"?

— p* {nl/yzn‘*(ﬁﬁ_ﬁg)
Giby(1—, )"

B 1
m(znpip[/(l —Pg'/))

1,2

lim sup »n

n— oo

|-

o

172

for any x, yeX.

4. PRrooFs.

Let G be the space of all bounded B measurable functions on X
equipped with the sup norm. Consider the following linear operators from
G to G defined for every p satisfying (1.1):

Pg(-)= [ &(y)p(-.dv), Pig(-)=[&(y)poldy), and

PO)g()=[g(y)e™p(-, dy), forall geG, (4.1)

where 8 is a real number and / was introduced in Section 1. We denote the
resolvents of P and P(f) by R and R(-, 8), respectively. Let C denote the
complex plane and

I,={zeC:lz—1]=p,} and L={zeC:|z|=p,}, (42)
where p, =(1—p)/3 and p, = (1 + 2p)/3. It is shown in Nagaev (1961) that

if |8l <(2M2M,)~" then I, and I, both lie in the resolvent set of P(6).
Consequently one can define the projection operators

1
P(0)=>=[ Rz 0)dz,  j=1,2, (43)
: 2miJy,

for such @’s. It is easy to see that P(0)= P. Furthermore, it follows from
(1.10) in Nagaev (1957) and Cauchy’s integral formula that P,(0)=P,.
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Let us denote [g du by {g, u> for any g e G and a totally finite complex
measure p on B. For || <(2M?>M,) ', define

CPO) P (O) . pod
A0) = ,
O =P 819 po>
W (0) = log (0) + L 6207, (45)

(4.4)

and for any probability measure » on B,
Ho(0)= <P {8) i, w(B)), (4.6)

where i € G is the constant function taking value 1 and dw(8) =" dw.
For every ¢ >0, define (¢, w, p) =sup S(e, w, p), where

S(e, 0, p)={0<d<(2M*M,) " |¥P(0)+ tins6°) <ea?la)?,
|P(0) <L0207 |Lius0° | < 50207 |\u,(0)— 1 — i, 0| <el|0],
for all 0< (0] <d}.

(Interpret 0 to be zero in the case S is empty.)

Let ¢,, be the characteristic function of the sum > 7_, f(X,), when X,
has distribution «. First we establish a uniform two term expansion of ¢,,,
in a #'?-neighborhood of the origin. Before that, consider the following
conditions on the class of possible transition probability functions for the
chain.

DerFINITION A class P of transition probabilities will be called a
uniformly class if

(Ul) all peP satisfy (1.1) with a common choice of &, and 9,

(U2) for some function g: [0, oc)— [0, o) (not dependent on p),
with g(x) — oc as x — oo,

sup sup [ 1701 (£ (2)) plx, dy) < oo,

pelP xeX

and

definition

(U3) inf,.p0 = o, is positive.

LemMa 4.1.  Let P be a uniformity class of transition probabilities and £
be a class of initial distributions such that sup,, g ,. pj |f1? dow» < oc. Then
Jor any 0<e<1,

definition

8, inf (e, w, p)

we. pelP
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is positive, and for |8| <n'?¢,d,,

71/29 2 t
R e B R D) P
wef2, peP 4 66 o
<Cn 10| {(e4+n 7)o Py o0}, (4.7)

where C is some finite constant which depends on Q and P only through M,
sup M, sup | | f] dow, inl o, sup |u,|, and sup |u,,|.

To prove Lemma 4.1 we need to establish some preliminary results.
Throughout this section | || is used to denote either the operator norm or
the total variation norm. The context will make the use clear. The notation
Il |l 1s used to denote the sup norm of real functions on the reals.

For every p, define functions

a(0)=CP(0) P(0) ¥, po ) and  H(0)=<P,(0) ¥, po >,
where i = 1. Let gV/) stand for the jth derivative of a (j-times differentiable)
function g, j= 1, with g'© =¢. We note the facts (see Lemma 1.2 and the

proof of Lemma 1.4 in Nagaev (1957) for the first three relations and
Lemma 1.2 of Nagaev (1961) for the last one) that

yi0)=0, i=0,1,2, and Y0)= —iu,. (4.8)

LEMMA 4.2. Under assumption (U2) the operator-valued map P(8) is
differentiable three-times and P®)(8) is continuous at O uniformly in peP;
that is,

sup [[P3(0)— P(0)] -0, as 6-0.

peP

Proof. Tt is easy to check that P(8) is differentiable three times with

PO hix) = —i [ € h(y) £ () plx dy).
Take K= K(¢) large enough so that inf, . , g(x) > 2/e. Then

IPOO) = PONONS | e = )P pl, )

+2 0N P, dy),
[ >K]
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<efM9K| sup J Lf ()P plx, dy)

reP xeX

+o sup  [1f() &S p(x, dy), (49)

peP xeX

since for any complex z, |e°—1|<|z{ e, The lemma clearly follows
from (4.9). |

The next four lemmas are in the same spirit as Lemma 4.2, Lemma 4.4
follows by direct differentiation and Lemma 4.3; Lemmas 4.5 and 4.6 can
be proved using Lemma 4.3 and arguments similar to those in the proofs
of Lemmas 4.2 and 4.3. These results are proved in detail in Datta and
McCormick (1991). In this paper we only present an abridged proof of
Lemma 4.3

Lemma 4.3, Under assumptions (Ul) and (U2), the operator valued
map Rz, 8), for zel,, is differentiable three times in 0 and Rz, 0) is
continuous at O uniformly in peP and z€l,, with I, given in (4.2).

Proof. Using the second Neumann series for the resolvent (see Kato,
1984) one can represent R(z, 6), for all sufficiently small (uniformly in
peP) 0, as

o

R(z,0)=> (R(z) A)" R(z) with A4 =P(0)— P(0). (4.10)

4]

Then, by direct differentiation, the uniform continuity of R*'(z, 8) reduces
to that of R(z, ) in view of Lemma 4.2. This in turn can be established
from (4.10) using similar arguments to those in the proof of Lemma 4.2. ||

LemMma 44. Under the same assumptions as in Lemma 4.3, b(6) is
differentiable three times and 6(6) is continuous at O uniformly in peP.

LEMMA 4.5. Under the same assumptions as in Lenvma 4.3, a(B) is
differentiable three times and a*(0) is continuous at O uniformly in peP.
In view of Lemmas 4.4 and 4.5 and the fact that A(0)=1, we have the

following important result.

CoroLLARY 4.1.  Suppose (Ul) and (U2) hold. Then ¥ (6) is differen-
tiable three times and ¥'®(0) is continuous at 0 uniformly in peP.
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LemMA 4.6. Suppose (Ul), (U2), and (2.15) hold. Then
uN0) - ul)(0), as 6-0,

uniformly in pe P and we Q.

LemMma 4.7, Under assumptions (Ul) and (U2), sup,.p |43 < 0.

Proof. For s<it,

Ef (X)) (Xer ) S (Xrri1)] = . [[[ 105GV fP 0, d2)

—po(dz)] p®(x, dy) po(dx)

<{ [ 1760700 2 ) ot

{sup ([ PP, do) 4 po(a] 2 )|

¥

x {sup (Ip"(y, -)—po(-)l)"'z},
< Cp'?,

for some constant C uniformly in peP, and p <1 as in (Ul). It therefore
follows that

sup Y IES0)f(Xos ) f(Xs s e )] <o

peP g 1=}
The other terms in the definition of p; an be handled similarly. |
LemMMA 4.8, Under assumptions (Ul), (U2), and that sup,.q ,cp
[ 1f1? dw < o0, we have

Sup |u(l}| <w'
wef2, pelP

Proof. The proof is similar to that of Lemma 4.7. ||
We are now in a position to prove Lemma 4.1.

Proof of Lemma 4.1. We first consider the proposition that
0,=90,(e)=1infd(e, w, p) > 0. In view of (U2), Lemma 4.7, and the Taylor
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expansion (see (4.8)), the above proposition follows from uniform con-
tinuity (at zero) of W' and p!!’. But these are provided in Corollary 4.1
and Lemma 4.6, respectively.

Next, to prove the uniform expansion write, for (8] <n'?g,d

x9x>
L0 s ‘
'2"(”22 E) —e "2 {1 +n 12 :;3 (IHV}

o .6 LM
<e 72 { n‘]’(n"’~ —>~n 2 s (i0)°
ag

6a°

4 13 go | 024 4
n TO'G e 5 ( 11)

where we have used the inequality
le*— 1= g1 < (=l +31B17) &

for all complex «, # and non-negative y > max(|«/, |8]) (cf. Feller, 1970, p.
534), with

L, 0 o M
_ 12 Y T 0 A ot N T £ o= f2
x—nllf(n 0), f=n 60" (i#)°, and 7y=0°/4.

Note that for all || <n'?6,d,, the restriction y > max(|a|, |]) is satisfied,
by definition of &,.

Using the definition of 5, we see that for |0) <n'’¢,5,, the RHS (4.11)
i1s no more than

o -4 {8]6]3—!-)1 12 712‘;6 96} n U2

Next we have, for |0] < (2M2M,) ', by (1.12) in Nagaev (1961), that
D (0) = 2"(0) P (0) h, 0(0) ) + (P (0) PL(0) Y, w(6)y  (4.12)

and by (1.41) in Nagaev (1961), for |n~'20/c| < (2M*M ) !,

(e 2hnte (e )

| 0
<n M mi) g, (4.13)
g
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where

*=sup M, and m¥ = sup flfl do.

peP wef2, peP

Thus we obtain after some algebra that, for |6| <n'?q .4,

. <n1/2§>_eoz/2_n 112 {—”—3—(1'9)3%-11‘“(1'6)}6"02/2

603 o

<n—1/2 {849212 (1 +n71‘/‘2|£% |9|3>
60

2
—624 o013 12 M5 6y, -1 ﬂ
+e (8[ |>+n -7206|H| )n }a &

2
e (£|0|3+n‘1/2 7;3696><1+n~1/2 [ | |9|)
o o

0 ,
+n 2 2MAM ¥ + m¥ )|———|p§+n’l _____|#g/l:)| g4e 92
[22 g

where we also used the definition of 6,. Clearly, by (Ul)-(U3) and
Lemmas (4.7} and (4.8), the last bound is no more than

Cn "210|{(e+n""2)e " 4 p1}

for some constant C as in the statement of the lemma. This proves the
lemma. ||

LeMMA 4.9. Under the conditions of Theorem 2.1, there exists n, such
that P={p, nzny} forms a uniformity class. Moreover, 6, — 0, U3 , — i3,
and #(l)n - #w‘

Proof. Clearly, condition (v) of Theorem 2.1 shows that for some ng, P
satisfies (U2). It is easy to conclude from p, = p that P satisfies (U1) and

Po.n=Po-
Next, by arguments similar to those in the proof of Lemma 4.7, we get
constants C and r < 1 not depending on » such that

E.f.(X)) (X, )<Cr, forall 1=1,n>1. (4.14)

Now we will show that

Efi(X) (X, o ) > Ef (X)) f(X, 1), for 120
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First, consider the case with +=0. For any K> 0 which is a continuity
point of the distribution function of f2(X, ) under p, we get

Efi(X,)1 THEOE S TR Ef*(X,)1 U< K) (4.15)
in view of condition (iv) of Theorem 2.1. Also,

|E,.fi(X1 ) lzr/flu’, Ns K} Ef,z,(X| ) lgff,m)sl(}'
SK“pO,M_pU”"’O’ as n— oC. (416)

Since E,f2(X,) 1, 20x-x <K Ysup, | |f,(x)]? p,(x, dy), the conclu-
sion for + =0 follows from (4.15) and (4.16) and condition (v) of Theorem
2.1. The proof for other values of r are similar.
Finally, by (4.14), (4.15), and DCT we get that ¢, — g, which in turn
implies (U3) for P. Thus we have proved that P is a uniformity class.
The convergences of y; , and p,, can be proved along the same line as
that of a,,. |

Before stating the next lemma we need to define the following sequence
of complex measures on (X, B):

p (B, x, A)= f e p(x, dy),

A

"0, .\',A)=J p N0, y, A) p O, x,dy),  for m>1,
X

where A€ B, e (— 0, ), and xe X. Define p'”’ similarly.

LEMMA 4.10. Let p,=p and let condition (iv) of Theorem 2.1 hold.
Then, for any mz1 and 0<b< x,

sup [ p(0,x, ) =p" (0, x, )| -0, a5 n-w.
101 <bh xeX

Proof. For m=1, we get
1p(0, x, ) — p (0, x, -

<1 pa ()= P05, )+ 101 [ 1£,00) = £(3)] plx. dy) =0,

uniformly in 8 e [ —b, b], and x € X by the assumptions of the lemma.
Next, we proceed by induction and assume that the assertion is true for
m = m,. Then by a similar triangulation as before,
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Lo+ (0, x, ) = p™* D8, x, )|
< ”le)(H’ X, ')—p“)(e’ X, )“
+SUP HP;’”O)(H’ X, ')“P(m‘))(g’ Xy )” _’Oa

R4

uniformly in 6 e [ b, 5] and x, by the assertion for m=1 and m,. |
Proof of Theorem 2.1. Let
G,(x) = @(x) + 1~ "2(x) {5—3 a —xz)—@}
6o, g,
and

0) = 12838 03 12 Mo, )
7.(0) {1+n 60,3, (i0) +n o (i9)

n

Then by the Esseen lemma (cf. Feller, 1970, p. 533), we get, for any ¢ >0
and a>0,

n'? 1 . 6
nl/zllqun——Gn(X)”xS——"J ) _—|¢nmn <nlyz—>_'})n(0)| df
T i) <nio,s, |0 a,
n’? i
+ — —_—
14 fn'“‘zané. < 0| < n'la,a !Ol

X

D o, (n —12 ;0_) — y,,(O)‘ dd+0(a"). (4.17)

n

The first term is handled by Lemma 4.1, since Lemma 49 P= {p,:n>n,}
is a uniformity class. To handle the middle term use the inequality

1€ 100, (8)] < (sup p(6, x, BTN

with r = (m + 2) k, where we choose m so large that inf, _y p™ =D+ !(x, C))
21po(C,). Here k and C, are as in the conditional non-latticeness
assumption for the limiting p. Next use Lemma 4.10 to conclude

sup | 2,8, x, )l = sup | p7(0, x, ). (4.18)

Going through the proof of Lemma 3.2 in Datta and McCormick (1993)
one can see that

sup |20, x, I < (1~ L{1 —1¢. ;. ,(8)° })
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for some L >0. Here ¢, , ¢, is the characteristic function of the nonlattice
distribution i, ., ,- Consequently,

sup RHS(4.18) < 1,

e K

for any compact K not containing 0. Therefore the middle term of RHS
(4.17) converges to zero. As before, now let a1 oc and ¢ | 0 to conclude that
LHS (4.17)— 0, as n — 0.

Finally, (2.6) obtains from above by using that ¢,— 0, y; , — u3, and
T R |

Proof of Theorem 2.2. The latticeness of the summands is handled in
the same way as in the iid. case. First, we compare F with G, where
# denotes convolution with U(—n "“?(26,)" ', n "?(20,) '). By
Esseen’s lemma we get an inequality similar to (4.17) for n'?|FZ% —G* .
The first term of the bound in this case is dominated by that in (4.17) and
is therefore handled in the same way by Lemma 4.1. We tackle the middle

term of the Esseen bound using the following facts:

(i) we can find constants ¢, A, and B, such that, for all n,
610, (0)] < Ae "7 4 087,

because by Lemma 4.9 {p,:n=n,} forms a uniformity class, for some rn,,
(i1) SUP, < o) < nin |#s ¢, oM<,

since p; ¢, ¢, i a lattice distribution with span 4; consequently,

sup  sup [0, x, )| > sup  sup | p"(O, x, )| <1,

e || <wihy x e<|8 €k x

with r=(m+2)k.
Finally, the comparison of F} and F,, , as well as that of G? and G,
is identical to the i.i.d. case (cf. Feller, 1970, and Datta, 1992). |

Proof of Theorem 3.1. The first order Edgeworth expansion for
P{R,<x} is that of the RHS of (2.6), with f=g— Eg; this is given as
Theorem 3.1 in Datta and McCormick (1993).

Next, fix a sample path (in the probability-one set) for which all the as.
conditions of Theorem 3.1 hold. Then, for that path, the Edgeworth expan-
sion for P*{R* < x} is given by the RHS of (2.6) also, because Theorem
2.1 applies with p,=p and w, = p,. Therefore, the conclusion now follows,
as usual, by the triangle inequality. Since in this case f=g— Eg, it is
particularly easy to check the conditions of Theorem 2.1. Also, take g(x)
(in the notation of Theorem 2.1) to be |x|°. |
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For the proofs of Theorems 3.2-3.4, we will work with the Markov chain
Y, =(X,, X,,1), 121, on S;={(wv): 1 <u,v<N,p, >0}, where X, is
the original Markov chain. To keep the notation simple, we will refer to
(i.e., index) the transition probabilities for Y, also by p. We will select our

frobe f(Y,)=1ix-ix, =5 —Pylix-n- Then
Zf(yr)zni(ﬁij_.”ij) and Uzzpipij(] _Pz_‘/)-
1

Given a sample path, we take p, (in the notation of Section 2) to be p.
Then

LY F)=nXps—py) and  oi=pup;(1-py),
1

where p,; is the stationary probability of state / under j. (Note that, with
probability one, eventually p will be ergodic and hence pj, will be defined.)
It is not hard to argue that, almost surely,

,ﬁl’_ﬁOil = 0(”71(10g”))a

where p,=n,/n. Therefore it is possible to replace p; by p, in the formula
for o without affecting the expansion up to o(n~'?); ie.,

IPHZ¥< | X¥=y}—P*{ZF)< | XF=p}ll,=0(n""?), (419)
almost surely, where

—1/2 ~ A
n_nXpE—py)

PN Y el 1))
(ﬁ.p‘..(]__p"_'))ln and Fx_ X ;
ifg i

Zx= f 2 .
(PoiPy (1 —p N

Proof of Theorem 3.2. We first prove part (c). Use Berry—Esseen for
Markov chain (e.g, Theorem 1 in Nagaev, 1961) twice—once for
Z,=n""n(p,—p;)(p:p;(1 —p;))"* and the other time for ZX*—then
use the triangle inequality and (4.19).

Next, part (b) follows from part (c) by the law of iterated logarithm (see
Chung, 1967 for p; and p; and the triangle inequality.

Parts (a) and (a’) follow from part (b) by Berry-Esseen for p, and
p¥=n¥/n See the proof of Theorem 2.1(a) in Datta and McCormick
(1992) for details of similar arguments. |

Proof of Theorem 3.3. Edgeworth expansions for Z,=n""n,(p,—
i) (pipA1—p;))"/> were obtained in Theorem 4.1 of Datta and
McCormick (1993):
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P{Z,<u| X, =x}

—1;2 (1 _2plj+3pl]Srj)
6([’1‘[’:}/(1 —p:j))l‘dz

=d(u)+n p(u)(l —u’)+o(n"'?), (4.20)

uniformly in v e R, where

Sy;= 2 (P~ =pif).

k=1

In the course of the proof of (4.20), it was shown in Datta and McCormick
(1993) that, under the conditions of Theorem 3.3, one can construct sets
C,—C, and integer k such that f(Y,) under p satisfies the condi-
tions (i)—(ii1) of Theorem 2.1. Clearly, with p, =p, any w,,, and the choice
of f described earlier, the conditions (iv)-(vi) of Theorem 2.1 are satis-
fied whenever p=-p. However, by the strong law for ergodic Markov
chains, the latter convergence takes place almost surely. Also, as stated
earlier, 4, =0 for any w. Therefore, by Theorem 2.1 and Remark 2.1,
P*{Z,< - | X¥=y)} has the same expansion as P{Z,< - | X,=x}, ie,
(4.20), up to o(n '?), almost surely (P). Now use the fact (4.19) to end the
proof. 1

Proof of Theorem 3.4. Note that in this case the limiting f(Y,) is a
lattice with span A= 1/m. 1t can be checked that under the conditions of
Theorem 3.4 one can construct sets C; — C, and integer k£ satisfying the
conditions of Theorem 2.2 with f (see Data and McCormick, 1990). There-
fore by two applications of Theorem 2.2 (once with p,=p for all » and
once with p, = p along almost all sample paths) we get

o i ZL AP

PlZ, <ul X, =x}=Pu)+n""? ‘
{ : ! 6([’;‘1’:‘;(1“%;‘))1'2

—1/2

n 12
+m(pipi/(l _pij))l,cz Q(m("pipij(l"Pij)) u)
xd(u)+o(n "), (4.21)

uniformly in u, and

2 (1=2p,;+3p,;S,) 2

1/2 i/ =y 2

‘ ) (1 —u”)
6(pip|7(1 _pi/))lw

n 1/2

* m(pipij(l _pij))
x ¢(u)+o(n='?), (4.22)

PHZX<ul|XF=y}=®w)+n

o5 QAP (1= py)) w)
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uniformly in u, almost surely, where n‘1=E/ﬁij, with kK =nearest integer
to mp;.
Since

lim sup n'?|shp,p;(1 — p,;) — mpop;(1 — p;)| = o,

n— oo

almost surely (by LIL), we have by arguments similar to those in the proof
of Theorem 3.2 of Datta (1992) that

lim sup || {Q(m(nﬁOiﬁij(l _ﬁij))l/z u)

= QUm(np,py (1= py ) W)} Wl = (21) 7,

almost surely. The proof now ends by the triangle inequality together with
(4.19). |
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