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In this paper, it is shown that a convolution of uniform distributions (a) is more
dispersed and (b) has a smaller hazard rate when the scale parameters of the
uniform distributions are more dispersed in the sense of majorization. It is also
shown that a convolution of gamma distributions with a common shape param-
eter greater than 1 is larger in (a) likelihood ratio order and (b) dispersive order
when the scale parameters are more dispersed in the sense of majorization. � 2001
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1. INTRODUCTION

The uniform distribution, because of its simplicity, serves as an impor-
tant model in many applications in statistics. The uniform distribution is
also of great theoretical importance because of its connection to the
integral transform and unimodal distributions. The gamma distribution is
important in reliability and engineering applications. In this paper various
stochastic orders are considered for convolutions of gamma as well as
convolutions of uniform distributions.

Let X and Y be random variables with distribution functions F and G,
survival functions F� =1&F and G� =1&G, with right continuous inverse
distribution functions F &1 and G&1 respectively.

Definition 1.1. X is smaller than Y in the dispersive order (written
X�disp Y ) if F &1(v)&F &1(u)�G&1(v)&G&1(u) whenever 0<u�v<1.
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Definition 1.2. X is said to be smaller then Y in the hazard rate order
(written X�hr Y ) if G� (x)�F� (x) is increasing in x. When X and Y have
probability density functions f and g respectively, then X�hr Y if, and only
if, f (x)�F� (x)�g(x)�G� (x) for all real x.

Definition 1.3. Let X and Y have density or mass functions f and g
respectively. Then, X is said to be smaller than Y in the likelihood ratio
order (written X�lr Y ) if

f (u) g(v)� f (v) g(u) for all u�v.

In the remainder of this paper, the abbreviations r.v., d.f., and p.d.f. will
be used for respectively random variable, distibution function, and density
function.

Definition 1.4. Let x=(x1 , ..., xn) and y=( y1 , ..., yn) be two real
vectors. Let x[1]� } } } �x[n] be the xi 's ordered from the largest to
the smallest. Then y is said to majorize x (written x �

m
y) if � j

i=1 x[i]�
� j

i=1 y[i] , j=1, ..., n&1 and �n
i=1 x[i]=�n

i=1 y[i] .

Definition 1.5. Let A�Rn, where Rn is the n-dimensional real space.
A function ,: A � R is said to be Schur convex (concave) if

x �
m

y implies ,(x)�(�) ,(y), for x, y # A.

Definition 1.6. Let A and B be subsets of the real line. A function
K(x, y) on A_B is said to be totally positive of order 2 (TP2) if

K(x1 , y1) K(x2 , y2)&K(x1 , y2) K(x2 , y1)�0

for all x1<x2 in A and all y1<y2 in B.

Definition 1.1 makes it clear that the �disp order compares X and Y by
variability and that it is location free. When variances exist, X�disp Y
implies variance (X )� variance (Y ). There are no implications in general
among the three stochastic orders except that the likelihood ratio order
implies the hazard rate order. Letting K(1, y)= f ( y) and K(2, y)= g( y) in
Definition 1.6, it can be seen that establishing X�lr Y is equivalent to
showing that K is TP2 on [1, 2]_(&�, �). See the proof of Theorem 3.3
for an exploitation of this relationship. For more details on these orders,
see Shaked and Shantikumar (1994).
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Majorization makes precise the vague notion that the components of a
vector are ``less dispersed'' than those of another vector (of the same
dimension). Majorization is useful and very powerful in deriving certain
types of inequalities. In this paper, majorization is used to partially order
the vectors of scale parameters of gamma (as well as uniform) distributions
in convolutions to obtain stochastic orderings. For more details on
majorization and its applications, see Marshall and Olkin (1979).

A r.v. X is said to have a gamma distribution with shape parameter
a(>0) and scale parameter *(>0) if its p.d.f. f (x; a, *) is given by f (x; a, *)
=[1�1(a)] *axa&1 exp(&*x), x>0. The main results of this paper are:

(A) A convolution of gamma distributions with a common shape
parameter greater than or equal to 1 is more dispersed (in the dispersive
order) if the vector of scale parameters of the gamma distributions is more
dispersed (in the sense of majorization) (Theorem 3.6).

(B) A convolution of gamma distributions with a common shape
parameter greater than or equal to 1 is larger in the likelihood ratio order
if the vector of scale parameters of the gamma distributions is more dispersed
(in the sense of majorization) (Theorem 3.4).

(C) Result (A) holds for a convolution of uniform distributions.
Result (B) where hazard rate ordering replaces likelihood rates ordering
is valid (Theorem 2.3, Remark 2.2, and Theorem 2.5. respectively).

Recently Kochar and Ma (1999 a, b) proved result (A) for the case of an
integral common shape parameter. Result (B) for a common integral shape
parameter can be proved by using the likelihood ratio order for convolu-
tions of exponential distributions established by Boland et al. (1994).
However, the extensions to the case of a nonintegral shape parameter con-
sidered here are nontrivial.

2. STOCHASTIC ORDERS FOR CONVOLUTIONS OF
UNIFORM DISTRIBUTIONS

This section deals with the dispersive order and hazard rate order for
convolutions of uniform distributions by using majorization.

Proposition 2.1 gives the distribution of a linear combination (with
positive coefficients) of two independent uniform r.v.'s on [0, 1]. This
result is then used to prove that a convolution of two uniform distributions
is more dispersed (in the dispersive order) when the scale parameters of the
uniform distributions are more dispersed in the sense of majorization. This
latter result is needed in proving its generalization (Theorem 2.3).
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Proposition 2.1. Let Y1 and Y2 be two independent r.v.'s each with a
uniform distribution on [0, 1]. Furthermore, let 0<*2�*1 be any constants.
Then, the p.d. f. f, and the d. f. F, of Y=Y1 �*1+Y2 �*2 are given by

f ( y)={
*1*2 y,
*2 ,
*1+*2&*1 *2 y,
0,

0� y�1�*1

1�*1� y�1�*2

1�*2� y�1�*1+1�*2

otherwise

(2.1)

and

0, y�0

*1*2 y2�2, 0�y<1�*1

F( y)={*2 y&*2 �2*1 , 1�*1� y�1�*2

1&[*1+*2&*1*2 y]2�2*1*2 , 1�*2� y<1�*1+1�*2

1, y�1�*1+1�*2 .

(2.2)

Proof. Let Z=Y2 �*2 . Then, routine calculations show that the joint
p.d.f. g( y, z) of Y and Z is given by g( y, z)=*1*2 , 0�( y&z)�1�*1 ,
0�z�1�*2 ; 0, otherwise. From this it follows that

f ( y)=*1*2[min(1�*2 , y)&max(0, y&1�*1)], 0� y�1�*1+1�*2

=0, otherwise.

Now, (2.1) and (2.2) follow from this last result. K

Theorem 2.2 below shows that the convolution F defined in the proof of
Proposition 2.1 is more dispersed when the parameters *1 and *2 are more
dispersed.

The proof of Theorem 2.2 uses a result due to Saunders and Moran
(1978).

Theorem 2.1 (Saunders and Moran, 1978). Let [Fb , b # R] be a collec-
tion of d. f.'s such that Fb is supported on some interval (x (b)

& , x (b)
+ )�(0, �)

and has p.d. f. fb which does not vanish on any subinterval of (x (b)
& , x (b)

+ ).
Then,

Fb�disp Fb* , b, b* # R, b�b*

if and only if F $b( y)� fb( y) is decreasing in y, where F $b is the derivative of Fb

with respect to b.
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Theorem 2.2. Let c>0 be any arbitrary number. For each * # [c�2, c),
let F( } ; *) be the d. f. of the convolution Y1 �*+Y2 �(c&*), where Y1 and Y2

are independent and identically distributed as a uniform r.v. on [0, 1]. Then,

F( } ; *)�disp F( } ; **), *, ** # _c
2

, c+ , *�**.

Proof. Using (2.1) and (2.2) one computes that

F $( y; *)� f ( y; *)

(c&2*) y�2*(c&*), 0� y�1�*
={& y�(c&*)+(c&2*)�2*2(c&*), 1�*� y�1�(c&*)

(c&2*)[(c+*(c&*) y]�2*2(c&*)2, 1�(c&*)� y�1�*+1�(c&*)

which is clearly a decreasing function of y since c&2*�0. The result now
follows from Theorem 2.1. K

Theorem 2.3 generalizes Theorem 2.2. To do this, the following definition
of a dispersive distribution is needed.

Definition 2.1. A r.v. Z (and its d.f. F ) is said to be dispersive if
X+Z�disp Y+Z whenever Z is independent of X and Y and X�disp Y.

Examples of dispersive distributions are: exponential, normal, and
uniform.

Theorem 2.3. Let Y1 , ..., Yn be independent and identically distributed as
a uniform r.v. on [0, 1]. Let, further, *i 's (*i*'s) be any positive numbers
such that (*1 , ..., *n) �

m
(*1*, ..., *n*). Set Y=Y1 �*1+ } } } +Yn �*n and Y*=

Y1 �*1*+ } } } +Yn�*n*. Then, Y�disp Y*.

Proof. It is sufficient to prove the Theorem for the case (*1 , *2) �
m

(*1* , *2*) and *i=* i* , i=3, ..., n. See Lemma 2B.1, p. 21, in Marshall and
Olkin (1979). Now, by Theorem 2.2,

Y1 �*1+Y2 �*2�disp Y1 �*1*+Y2 �*2*. It is known that a convolution of
dispersive r.v.'s is dispersive (Theorem 5(2) of Lewis and Thompson
(1981)). Hence Y3 �*3+ } } } +Yn �*n (=Y3 �*3*+ } } } +Yn�*n*) is dispersive
since each of Yi �*i , being a uniform r.v., is dispersive. The proof is now
completed by using Definition 2.1. K

Corollary 2.1. Let Yi 's be as in Theorem 2.3, *1� } } } �*n , *1*� } } }

�*n* , and (*1 , ..., *n) �
m

(*1* , ..., *n*). Then, for each k=1, ..., n, �k
i=1 Yi �*i

�disp �k
i=1 Yi �* i* .

The proof is similar to that of Corallary 3.2 and will be omitted here.
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The generalization of Theorem 2.3 to a convolution of any uniform dis-
tributions is achieved by using the fact that the order � disp is location free
and Theorem 2.3.

Theorem 2.4. Let X*i
(X*i*

), i=1, ..., n be independent r.v.'s, with X*i

(X*i*
) having a uniform distribution on [ai , bi] ([ai*, bi*]), *i=1�(bi&ai)

(*i*=1�(b i*&ai*)). Let, further, that (*1 , ..., *n) �
m

(*1*, ..., *n*). Set X=
X*1

+ } } } +X*n
and X*=X*

1
*+ } } } +X*n*

. Then, X�disp X*.

Proof. Write X*i
=Y*i

�*i+ai (X*i*
=Y*i*

�*i*+ai*), where Y*i
=(X*i

&ai)�
(bi&ai) (Y*i*

=(X*i*
&ai*)�(bi*&ai*)). Thus, Y*i

's (Y*i*
's) are independent

and identically distributed, each with a uniform distribution on [0, 1].
By Theorem 2.3, Y�disp Y*, where Y=Y*1

�*1+ } } } +Y*n
�*n and Y*=

Y*
1
* �*1*+ } } } +Y*n*

�*n* . Now, Y+a�disp Y�disp Y*�disp Y*+a*, where
a=�n

i=1 ai and a*=�n
i=1 a i* . But Y+a=X and Y*+a*=X*.

Thus, X�disp X*. K

The definition of an increasing failure rate (IFR) distibution is needed in
proving the second main result.

Definition 2.2. A. d.f. F is an increasing failure rate (IFR) distribution
if F� (t+x)�F� (t) is decreasing in - �<t<� for each x�0.

Now for the final results.

Theorem 2.5. Under the assumptions of Theorem 2.4, X�hr X*.

Proof. By Theorem 2.4, X�disp X*. X has an IFR distribution since a
convolution of IFR distributions is IFR (Barlow, Marshall and Proschan
(1963)). The result now follows from the fact that if X�disp Y and X or Y
is IFR, then X�hr Y (Bagai and Kochar, 1986). K

Remark 2.1. Theorem 2.5 can be proved more directly as follows.
Using Proposition 2.1, one can prove that Y1 �*1+Y2 �*2�hr Y1 �*1*+
Y2 �*2* if (*1 , *2) �

m
(*1*, *2*). Now, a sum of independent uniform r.v.'s,

being a sum of independent r.v's, each with an IFR d.f. is IFR. It then
follows from Lemma 1.B.5 in Shaked and Shantikumar (1994) that
Y�hr Y*.

Remark 2.2. The hazard rate order X�hr X* in Theorem 2.5 cannot be
replaced by the stronger order X�lr X*. Consider n=2. Let a1=a2=
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a1*=a2*=0 and let (*1 , *2) �
m

(*1*, *2*) and let f and f * be the p.d.f 's of X
and X* respectively. Then, from Proposition 2.1 it follows that

f *(x)� f (x)=*1* *2* �*1*2 , x # [0, 1�*1*)

=*2* �*1 *2x, x # [1�*1*, 1�*1).

Thus, while f *(x)� f (x) is increasing in x # [10, 1�*1*), it is decreasing in
x # [1�*1* .1�*1). Hence,

(*1 , *2) �
m

(*1* , *2*) does not imply that X�lr X*. K

3. LIKELIHOOD RATIO AND DISPERSIVE ORDERS FOR
CONVOLUTIONS OF GAMMA DISTRIBUTIONS

In this section, stochastic orders for convolutions of gamma distributions
will be considered. Specifically, it will be shown that a convolution of
gamma distributions with a common shape parameter larger than or equal
to 1 is larger (a) in likelihood ratio order (Theorem 3.4) and (b) dispersive
order (Theorem 3.6) when the scale parameters of the gamma distributions
are more dispersed in the sense of majorization.

The following results comparing two gamma distributions with either a
common shape parameter or a common scale parameter using the disper-
sive order will be useful in proving Corollaries 3.1, 3.2, and Remark 3.2.
Remark 3.2 and Theorem 3.4 respectively extend Theorem 3.1 and
Theorem 3.2 to convolutions of gamma distributions.

Theorem 3.1 (Saunders and Moran, 1978). Let F &1(:) denote the :th
quantile of a gamma distribution with p.d. f. f ( y, a, *)=[*aya&1�1(a)] exp
(&*y), y>0. Then, F &1(;)&F &1(:) is increasing with a while F &1(;)�
F &1(:) is decreasing with a, for ;>:.

The following companion result may be of independent interest.

Theorem 3.2. Under the assumptions of Theorem 3.1, F &1(;)&F &1(:)
decreases with *, for ;>:.

The proof of Theorem 3.2 follows from a straightforward application of
Theorem 2.1, and it will be omitted here.

Proposition 3.1 giving the distribution of a convolution of two gamma
distributions with a common shape parameter greater then or equal to 1
leads to Theorem 3.3 establishing the likelihood ratio order for convolu-
tions of two such gamma distributions.
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Proposition 3.1. Let Yi , i=1, 2 be two independent gamma r.v.'s
with Yi having the p.d.f. f ( y; a, *i)=[ ya&1*a

i �1(a)] exp(&*i y), y>0; 0,
otherwise. Assume, without loss of generality, that *1>*2 . Then, the p.d. f.
h( y; a, *1 , *2) of Y1+Y2 is given by

h( y; a, *1 , *2)=|
%

0
g(w, y; a, *1 , *2) k(w; a, *1 , *2) dw, (3.1)

where

k(w; a, *1 , *2)=(1&w2�%2)a&1�[B(a, a) 22(a&1)%] (3.2)

g(w, y; a, *1 , *2)=[1�1(2a)](*1*2)a y2a&1 cosh(wy) exp(&cy�2),

y>0, 0<w<% (3.3)

and where c=(*1+*2), %=(*1&*2)�2 and B(a, b) is the beta function with
parameters a>0, b>0.

Proof. Routine calculations show that the p.d.f. h( y; a, *1 , *2) of
Y1+Y2 is given by h( y; a, *1 , *2)=[ y2a&1�1(2a)][�1

0 [x(1&x)]a&1

(*1*2)a exp[&[*1x+*2(1&x)] y]�B(a, a)] dx, y>0. Now, change the
variable x of integration to u=(2x&1) % to obtain

h( y; a, *1 , *2)=[ y2a&1�1(2a)](*1*2)a exp(&cy�2)

_|
%

&%
(1&u2�%2)a&1 exp(&yu)�[B(a, a) 22(a&1)%] du.

To complete the proof, split the interval (&%, %) of integration into (&%, 0)
and [0, %), and to evaluate the integral over (&%, 0), make the change of
variable u=&w. K

Theorem 3.3. Let Y*i
(Y*i*

), i=1, 2 be independent gamma r.v.'s,
Y*i

(Y*i*
) having p.d. f. f ( y; a, *i)=[ ya&1*a

i �1(a)] exp(&* i y), y>0; 0,

otherwise f (( y; a, *i*)). Then, Y*i
+Y*2

�lr Y*
1
*+Y*

2
* if (*1 , *2) �

m
(*1*, *2*).

Proof. Without loss of generality assume that *1�*2 and *1*�*2* .

Because (*1 , *2) �
m

(*1*, *2*), it then follows that *2*�*2�*1�*1* . It is
necessary to distinguish three cases: (i) *1*=*1 , making (*1 , *2)=(*1*, *2*),
(ii) *1*{*1 , *1 {*2 , and (iii) *1*{*1 and *1=*2 . In case (i), the theorem
is trivially true. Case (iii) will be dealt with at the end of the proof, and
case (ii) will be treated first. Let h(1, y)=h( y; a, *1 , *2), k(1, w)=
k(w; a, *1 , *2), and g(w, y)= g(w, y; a, *1 , *2)�(*1*2)a. Then, the p.d.f. of
Y*1

+Y*2
, by (3.1), is h(1, y)=(*1*2)a �%

0 g(w, y) k(1, w) dw. Similarly, let
the p.d.f. of Y*

1
*+Y*

2
* be given by h(2, y)=(*1* *2*)a �%*

0 g(*, y) k(2, w) dw,
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where h(2, y)=h( y; a, *1*, *2*), k(2, y)=k(w; a, *1*, *2*) and %*=(*1*&*2*)�2.
To prove that h(2, y)�h(1, y) is increasing in y (as required), one way is to
appeal to the basic composition formula of Karlin (1968, p. 17) directly for
the situation at hand, and show that h(i, y) is TP2 in i # [1, 2] and
y # (0, �). The other one is to use a version of Theorem 1.C.11 in Shaked
and Shantikumar (1994). To apply Karlin's result here, note that cosh(w2 )�
cosh(w1 ) is increasing in y whenever w1�w2 . This follows from the identity
cosh(w2 )�cosh(w1 )=cosh [(w2&w1) y]+tanh(w1 y) sinh[(w2&w1) y] and
the fact that all the three functions on the right hand side are increasing in

y for y>0 and w1�w2 . Then, since (*1 , *2) �
m

(*1*, *2*) implies %*>%, it
follows that the ratio (1&w2�%V 2)�(1&w2�%2) is increasing in w whenever
0<w<%. Thus, g(w, y) is TP2 in w # (0, %) and y # (0, �), and k(i, w) in
i # [1, 2] and y # (0, �) (thus proving that h(2, y)�h(1, y) is increasing in
y>0).

In case (iii), h(1, y)=[ y2a&1(c�2)2a�1(2a)] exp(&cy�2), y>0, where
c=*1*+*2*. Thus,

h(2, y)�h(1, y)=[(*1* *2*)a�(c�2)2a] |
%*

0

_[(1&x2�%*2)a&1�B(a, a) 22(a&1)%*] cosh(xy) dx

which is increasing in y since (i) cosh(xy) is increasing in y # (0, �) for
each x�0, and (ii) (1&x2�%*2)a&1�0 for 0<x<%*. K

Theorem 3.4. Let Y*i
(Y*i*

), i=1, ..., n be independent gamma r.v.'s with
a common shape parameter, Y*i

(Y*i*
) having the p.d. f. f ( y; a, * i)=[1�1(a)]

*a
i ya&1 exp(&*i y), y>0, a�1 ( f ( y; a, *i*)). Let (*1 , ..., *n) �

m
(*1* , ..., *n*).

Then, �n
i=1 Y*i

�lr �n
i=1 Y*i*

.

Proof. It suffices to prove the theorem for the case that (*1 , *2) �
m

(*1* , *2*) and *i=* i* , i=3, ..., n. It is known (Theorem 2.1 (d) of Keilson
and Sumita, 1982) that if X�lr Y and Z is independent of X and Y, and
is dispersive, then X+Z�lr Y+Z. Take X=Y*1

+Y*2
, Y=Y*

1
*+Y*

2
* and

Z=�n
i=3 Y*i

=�n
i=3 Y*i*

. Then by Theorem 3.3 X�lr , Y and Z, being a
convolution of dispersive r.v.'s, is dispersive and independent of (X, Y ).
Now, the result follows from the above result of Keilson and Sumita. K

Corollary 3.1. Let the hypotheses be as in Theorem 3.4, where *1�
} } } �*n , *1*� } } } �*n* and (*1 , ..., *n) �

m
(*1* , ..., *n*). Then. for k=1, ..., n,

�k
i=1 Y*i

�lr �k
i=1 Y*i*

.

The proof is omitted here since it is similar to that of Corollary 3.2.
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Remark 3.1. The result in Theorem 3.4 is not true if the gamma dis-
tributions in the convolution have differing shape parameters. Consider the
convolution of two gamma distributions, one with shape parameter 2 and
scale parameter 3, the other with shape and scale parameters each equal to
1. Then, using Proposition 3.1, one can show that the p.d.f. f1( y) of the
convolution is given by

f1( y)=(9�4)[exp(&y)&exp(&3y)&2y exp(&3y)], y>0.

Similarly, the convolution of the two gamma distributions with shape
parameters 2 and 1 and equal scale parameters 2 and 2 has p.d.f. f2( y)
given by

f2( y)=4y2 exp(&2y), y>0.

Thus,

r( y)= f1( y)� f2( y)=(9�16)[exp(2y)&1&2y]�y2 exp( y).

From this it follows that r(0.5)=0.98024>0.90824=r(1), yet (3, 1)
majorizes (2, 2). K

Remark 3.2. Results similar to the ones in Theorem 3.4 for convolutions
of gamma distributions with a common scale parameter hold as follows. Let
Y*i

(Y*i*
), i=1, ..., n be independent gamma r.v.'s with Y*i

having the p.d.f.
f ( y; ai , b)=[1�1(ai] baiyai&1 exp(&by), y>0; 0, otherwise ( f ( y; ai*, b)),
where ai�1 and *i=1�a i (ai*�1 and *i*=1�ai*). Further, suppose

(*1 , ..., *n) �
m

(*1*, ..., *n*). Then, 1�*1*+ } } } +1�*n*�1�*1+ } } } +1�*n (by
the Schur convexity of ,(*1 , ..., *n)=�n

i=1 1�*i) and �n
i=1 Y*i

(�n
i=1 Y*i*

)
has a gamma distribution with p.d.f. f.( y; a, b)( f ( y; a*, b), where
a=�n

i=1 1�*i (a*=�n
i=1 1�*i*). It follows from Theorem 3.1 that

�n
i=1 Y*i

�disp �n
i=1 Y*i*

. Also, f ( y; a*, b)�f ( y; a, b)=[1(a)�1(a*] ya*&a

which is increasing in y. Hence �n
i=1 Y*i

�lr �n
i=1 Y*

1
* . K

The next result shows that a convolution of two gamma distributions
with a common shape parameter greater than or equal to 1 is more dispersed
when the scale parameters are more dispersed in the sense of majorization.

Theorem 3.5. Let c>0 be any number. For each * # [c�2, c), let
F( y; a, *) be the d.f. of the convolution of two gamma distributions with a
common shape parameter a and scale parameters * and c&*. Then,

F( } ; a, *)�disp F( } ; a, **) if *, ** # [c�2, c) and *�**.
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Proof. The result will be proved by using Theorem 2.1. It will be shown
first that

[*(c&*)�(c&2*)] F $( y; a, *)

=F( y; a, *)&F( y; a+1, *)

=[caf ( y; a+1, *)+*(c&*) f ( y; a, *) y]�[2a*(c&*)], *{c�2
(3.4)

and second that

f ( y; a+1, *)�f ( y; a, *) is increasing in y (3.5)

so that

F $( y; a, *)� f ( y; a, *) is decreasing in y.

Note that F( y; a, *)&F( y; a+1, *)�0 (which follows from (3.5)) and
(c&2*)�0.

From Proposition 3.1, the p.d.f. f ( y; a, *) of F( y; a, *) can be written as

f ( y; a, *)=- ? [[*(c&*)]a�1(a)]

} [ y�(2*&c)]a&1�2 exp(&cy�2) Ia&1�2((*&c�2) y),

where

Ia&1�2( y)=[2( y�2)a&1�2�- ? 1(a)] |
1

0
(1&t2)a&1 cosh(ty) dt

is a modified Bessel function of the first kind. Differentiating f ( y; a, *) with
respect to * and simplifying the result using the recurrence formula

I$&(z)=I&+1(z)+(&�z) I&(z)

(with z=(*&c�2) y and &=a&1�2) one gets

F $( y; a, *)=[(c&2*)�*(c&*)][F( y; a, *)&F( y; a+1, *)]. (3.6)

The first factor of the right hand side can be simplified by first finding the
Laplace transform of F( y; a, *)&F( y; a+1, *) and then inverting it.
Towards this end, let the Laplace transform L[G( } )] of G( } ) be denoted
by g(s). Making use of the formulas

(1) L[ f ( } ; a, *)]=[*(c&*)]a�[(s+*)(s+c&*)]a,

(2) L[� y
0 G(x) dx]= g(s)�s,
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and

(3) L[ yG( y)]=&g$(s)

one can show that

L[F( } ; a, *)&F( } ; a+1, *)]

=(c+s)[*(c&*)]a�[(*+s)(c&*+s)]a+1

=L[caf ( y; a+1, *)+*(c&*) yf ( y; a, *)]�[2a(c&*) *].

Inverting this Laplace transform and using the result in (3.6), one gets
(3.4).

To show (3.5), note that the convolution F( y; a+1, *) is the convolu-
tion of F( y; a, *) and two exponentials with scale parameters *, and c&*.
Let X, Y, U and V respectively be the r.v.'s associated with these convolu-
tions. Let also W be a r.v. degenerate at 0. Then W�lr U+V, and by the
Keilson and Sumita (1982) result quoted in the proof of Theorem 3.4,

Y =
d

Y+W�lr Y+U+V =
d

X,

where S =
d

T denotes that r.v.'s S and T have the same distribution. This
proves (3.5). A different proof of (3.5) can be based on Theorem 1.C.5 in
Shaked and Shantikumar (1994). K

The second major result of this section which generalizes Theorem 3.5 is
proved next.

Theorem 3.6. Let Y*i
(Y*i*

), i=1, ..., n be independent r.v.'s, Y*i
(Y*i*

)
having a gamma distribution with p.d. f. f ( y; a, *i)=[ ya&1*a

i �1(a)] exp

(&*iy), y>0 ( f ( y; a, *i*)), where a�1. Let (*1 ..., *n) �
m

(*1* , ..., *n*). Then,
�n

i=1 Y*i
�disp �n

i=1 Y*i*
.

Proof. It suffices to prove the result for the case (*1 , *2) �
m

(*1*, *2*)
and *i=*i*, i=3, ..., n. Please see the argument for this given in the proof
of Theorem 2.3. By Theorem 3.5,

Y*1
+Y*2

�disp Y*
1
*+Y*

2
* . (3.7)

Since a gamma distribution with a shape parameter greater than or equal
to 1 is dispersive, it follows from the Theorem S(2) of Lewis and Thomson
(1981) (quoted in the proof of Theorem 2.3) that �n

i=3 Y*i
=�n

i=3 Y*i*
is
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dispersive. This result, (3.7), and the definition of a dispersive distribution
now show that �n

i=1 Y*i
�disp �n

i=1 Y*i*
. K

Corollary 3.2. Let the hypotheses be as in Theorem 3.6, where *1�
} } } �*n , *1*� } } } �*n* and (*1 , ..., *n) �

m
(*1*, ...*n*). Then, for k=1, ..., n

�k
i=1 Y*i�disp �k

i=1 Y*i*
.

Proof. Let %k=�k
i=1 *i&�k

i=1 *i* . Then (*1 , ..., *k) �
m

(*1*, ..., *k*+%k)

since (*1 , ..., *n) �
m

(*1*, ..., *n*). Let Y*k*+%k
be a gamma r.v. with shape

parameter a and scale parameter *k*+%k . It then follows from Theorem 3.6
that �k

i=1 Y*i
�disp �k&1

i=1 Y*i*
+Y*k*+%k

, k�2. Finally, �k&1
i=1 Y*i*

+Y*k*+%k

�disp �k
i=1 Y*i*

, since by Theorem 3.2, Y**k+%k
�disp Y*k*

and �k&1
i=1 Y*i*

is
dispersive. For the case k=1, the result follows since *1=*1*+%1 and Y*1

=Y*1*+%1�disp Y*
1
* . K

Remark 3.3. Theorem 3.6 is not true for a convolution of gamma dis-
tributions with differing shape parameters. Let Ya, * denote a gamma r.v.
with a shape parameter a and scale parameter *. Consider the two r.v's
U=Y100, 5+Y1, 1 and V=Y100, 4+Y1, 2 where the r.v.'s in each sum are
independent. Then, (4, 2) �

m
(5.1) and yet Variance (U )=100�25+1�1=5

<6.5=100�16+1�4=Variance (V ). Now, V�disp U implies that Variance
(V )� Variance (U). Thus, U cannot be greater than V in dispersive order.

Consider a convolution of an arbitrary number n of gamma distributions
with a common shape parameter a�1 and scale parameters *i 's. Then, as
applications of Theorems 3.4 and 3.6, it is possible to construct lower
bounds for (a) the hazard function and (b) the difference between any two
quantiles of the above convolution in terms of corresponding quantities of
a gamma distribuion with shape parameter a and scale parameter *� as
follows, where *� =�n

i=1 *i �n. Since the likelihood ratio order implies the

hazard rate order, and (*� , ..., *� �
m

(*1 , ..., *2), Theorem 3.4 implies that a
lower bound for the hazard function of the convolution at a point x is
given by the hazard function of the gamma distribution at x. Similarly,
Theorem 3.6 implies that the difference between any two quantiles of the
convolution is larger than the difference between the correspoinding
quantiles of the gamma distribution.
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