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1. INTRODUCTION

In this paper we aim to strengthen the Gauss–Markov Theorem (GMT).
As is well known, the GMT states that when the error term e in a linear
regression model

y=Xb+e (1.1)



satisfies the condition

L(e) ¥P(0, S) with S ¥S(n), (1.2)

the Gauss–Markov estimator (GME) defined by

b(S)=(XŒS−1X)−1 XŒS−1y (1.3)

minimizes the risk matrix

RP(b̂, b)=EP{(b̂−b)(b̂−b)Œ} (1.4)

with respect to the ordering of nonnegative definiteness in the class of
linear unbiased estimators:

C0={b̂ ¥ Call | b̂=Cy, C is a k×n matrix satisfying CX=Ik}. (1.5)

Here X is an n×k known matrix of full rank, P —L(e) denotes the
distribution of the error term e, Call the set of estimators of b, S(n) the set
of n×n positive definite matrices, and P(0, S) denotes the class of
distributions wit mean 0 and covariance matrix cS for some c > 0. More
generally, for given m ¥ Rn and F ¥S(n), we set

P(m, F)=the class of distributions on Rn with mean m and
finite covariance matrix cF, where c > 0 is unspecified.

Of course, the risk matrix in (1.4) is the covariance matrix of b̂ ¥ C0 under
(1.2). We shall call b(S) the GME even when S is unknown so long as
(1.2) holds. This GMT implies that, to define a measure of efficiency of an
estimator in C0 in terms of risk matrix, the GME is the estimator to be
compared with, because the covariance matrix of the GME gives the lower
bound for the risk (1.4), provided P=L(e) belongs to the class P(0, S).
For example, an efficiency of an estimator in C0 is often defined by such a
measure as |RP(b(S), b)|/|RP(b̂, b)| or tr{RP(b̂, b) RP(b(S), b)−1}, where
P ¥P(0, S).
However the optimality of the GME depends on the class P(0, S) of
distributions in (1.2) as well as the class C0 in (1.5) of estimators. In fact,
the class C0 is implied by unbiasedness when P(0, S) is first fixed. But as
will be shown in the first part of this paper, this is not true when P(0, S) is
maximally broadened, say to Pmax(S), for the GMT to hold with C0 first
fixed. Notably Pmax(S) contains some distributions in P(m, F) where m ] 0
and F ] S. In Section 2, the problem is formally set up, and the optimality
of an estimator is defined relative to both a class of estimators and a class
of error distributions. In Sections 3 and 4, based on the definition and the
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equivalence relation introduced on the setS(n) of positive definite matrices,
a maximal extension of the GMT is made in its linear framework.
In application, the model in (1.1) and (1.2) is often specified in such a
way that S is unknown but is a function of parameters h, say S=S(h),
which is estimable by the residuals of the ordinary least squares estimator
(OLSE). Typically such models appear as errors are heteroscedastic or
autoregressive. In such a case, b(Ŝ) is often used with S in (1.3) replaced
by an estimator Ŝ. We call such an estimator a generalized least squares
estimator (GLSE). In Section 5, a nonlinear version of the GMT is estab-
lished. First it is shown that when P(e=0)=0, the class C1 of
location equivariant estimators is equivalent to the class of GLSE. Second,
the GME is shown to be optimal relative to a certain pair (D1, Q1(S)) with
D1 … C1 and Q1(S) …Pmax(S). The result is an extension of Kariya (1985),
Kariya and Toyooka (1985), and Eaton (1985).
In the literature, adopting concentration probability as a criterion for
comparison of estimators, Berk and Hwang (1989), which can be viewed as
an extension of Hwang (1985), Kuritsyn (1986), and Ali and Ponnapalli
(1990), established some linear or nonlinear extensions of the GMT. Some
related results are found, for example, in Andrews and Phillips (1987),
Eaton (1986, 1988), and Jensen (1996). In particular, in Eaton (1988), a
class of distributions that possesses a certain kind of symmetric property
under which the GME is optimal in terms of concentration probability is
described.

2. FORMULATION OF THE PROBLEM

To state our problem more specifically, let Pall denote the set of all
distributions on Rn with second moments. The optimality we use is defined
by the following:

Definition 2.1. For a class C(… Call) of estimators and for a class
P(…Pall) of distributions of e, an estimator b̂g is said to be (C, P)-optimal,
if b̂g ¥ C and

RP(b̂g, b) [ RP(b̂, b) holds for all b̂ ¥ C and P ¥P, (2.1)

where the inequality for matrices should be understood in terms of
nonnegative definiteness.

In case of the GMT, the statement along this definition becomes

b(S) is (C0, P(0, S))-optimal. (2.2)
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Based on Definition 2.1, we strengthen this GMT as follows. First, in
Section 4, for given S ¥S(n) and for the class C0, we will derive a maximal
class Pmax(S) of distributions of e for which b(S) is (C0, Pmax(S))-optimal,
where Pmax(S) contains a class P(m, F) with some m ] 0 and F ] S as well
as the class P(0, S) for which the original GMT holds. The GME b(S) is
in particular (C0, P(m, F))-optimal if P(m, F) …Pmax(S). And then C0 is no
longer the class of linear unbiased estimators under P ¥P(m, F), though it
is a class of linear estimators. In fact, the optimality of the GME is
extended even to such a class of distributions under which the GME itself
is biased.
Second, in Section 5, we will extend the class C0 of linear estimators to
the following class of nonlinear estimators,

C1={b̂=b̂(y) ¥ Call | b̂(y)=b(In)+d(e), d is a k×1 vector-valued
measurable function on Rn}, (2.3)

and derive the maximal classes D1(… C1) and Q1(S)(…Pmax(S)) for which

b(S) is (D1, Q1(S))-optimal,

where b(In)=(XŒX)−1 XŒy is the OLSE and e is the OLS residual vector
defined by

e=y−Xb(In)=Ny with N=In−X(XŒX)−1 XŒ. (2.4)

Here, D1 is the class of estimators in C1 that have the second moments, and
Q1(S) is the maximal class of distributions for which (2.1) holds with
C=D1 and P=Q1(S). The class C1 in (2.3) is the class of location
equivariant estimators satisfying

b̂(y+Xa)=b̂(y)+a for any a ¥ Rk,

which was used in Berk and Hwang (1989) in a different context. The class
C1 is also shown to be equivalent to the following class of nonlinear
estimators

C2KT={b̃ ¥ Call | b̃=b̂+aq{e=0}, b̂ ¥ CKT, a ¥ Rk}, (2.5)

where q{e=0} is the indicator function of the set {e=0} … Rn, and the class
CKT is defined by

CKT={b̂ ¥ Call | b̂=C(e) y, C( · ) is a k×n matrix-valued measurable
function on Rn which satisfies C( · ) X=Ik}, (2.6)
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which was adopted in Kariya (1985), Kariya and Toyooka (1985), and
Eaton (1985) to establish a nonlinear version of the GMT. The class CKT is
a nonlinear extension of the class C0 in (1.5), and is directly understandable.
Clearly C0 … CKT … C̃KT=C1. The class CKT contains a GLSE of the form

b(Ŝ)=(XŒŜ−1X)−1 XŒŜ−1y with Ŝ=Ŝ(e), (2.7)

which is often used when S is estimable by the OLS residual e. Also in
Section 5, it is shown that Q1(S) contains several interesting classes of
distributions such as a class of elliptically symmetric distributions under an
appropriate condition.

3. AN EQUIVALENCE RELATION ONS(n)

We introduce an equivalent relation ’ on the set S(n) of n×n positive
definite matrices. Let P —L(e) ¥P(m, F).

Definition 3.1. For any S and Y inS(n),

S ’ Y if and only if b(S)=b(Y) a.s. P. (3.1)

Note that the identity b(S)=b(Y) a.s. P is slightly different from the
functional identity B(S)=B(Y) with

B(W)=(XŒW−1X)−1 XŒW−1,

since the latter requires b(S)=b(Y) for all y ¥ Rn even if the distribution
of y is degenerate.
Now fix S ¥S(n) and let us describe the set of matrices equivalent to

S : {Y ¥S(n) |Y ’ S}. To do so, let

X̄S=S−1/2X(XŒS−1X)−1/2 and Z̄S=S1/2Z(ZŒSZ)−1/2 (3.2)

and form the n×n orthogonal matrix

CS=1
X̄ −S
Z̄ −S
2 , (3.3)

where Z is an n×(n−k) matrix such that

ZZŒ=N and ZŒZ=In−k,
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and it is fixed throughout this paper. Further let g=S−1/2e and define the
two vectors g̃1: k×1 and g̃2: (n−k)×1 by

g̃=CSg=1 X̄
−

Sg

Z̄ −Sg
2=1 g̃1

g̃2
2 . (3.4)

Then it is easy to see that for S ¥S(n) fixed,

b(S)−b=(XŒS−1X)−1 XŒS−1e=(XŒS−1X)−1/2 g̃1, (3.5)

and for any Y ¥S(n),

b(Y)−b=(XŒY−1X)−1 XŒY−1{X(XŒS−1X)−1 XŒS−1+SZ(ZŒSZ)−1 ZŒ} e

=(XŒS−1X)−1/2 g̃1+(XŒY−1X)−1 XŒY−1SZ(ZŒSZ)−1/2 g̃2

={b(S)−b}+{b(Y)−b(S)}, (3.6)

where the matrix identity

X(XŒS−1X)−1 XŒS−1+SZ(ZŒSZ)−1 ZŒ=In (3.7)

is used in the first line of (3.6). The following theorem characterizes the
equivalence relation in (3.1).

Theorem 3.1. (1) For S and Y in S(n), (i) the relation Y ’ S holds if
and only if (ii) XŒY−1SZ=0, which is equivalent to (iii) Y ¥R(S), where

R(S)={F ¥S(n) |F=XUXŒ+SZDZŒS, U ¥S(k), D ¥S(n−k)}

={F ¥S(n) |F−1=S−1XŪXŒS−1+ZD̄ZŒ, Ū ¥S(k), D̄ ¥S(n−k)}.
(3.8)

(2) C0 is isomorphic withS(n)/’ . The map

y : C0 QS(n)/’ , b̂=CyWR([CŒC+N]−1)

is isomorphic, where R(Y) with Y−1=CŒC+ZZŒ is expressed as

R(Y)={W ¥S(n) |W−1=CŒUC+ZDZŒ, U ¥S(k), D ¥S(n−k)}.

Proof. From (3.5) and (3.6), the equality b(Y)=b(S) a.s. holds under
P if and only if

EP{ddŒ}=0 with d — (XŒY−1X)−1 XŒY−1SZ(ZŒSZ)−1/2 g̃2. (3.9)
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By setting EP(e)=m and CovP(e)=cF with c > 0, we obtain

EP{ddŒ}=(XŒY−1X)−1 XŒY−1SZ(ZŒSZ)−1 ZŒ(mmŒ+cF)

×Z(ZŒSZ)−1 ZŒSY−1X(XŒY−1X)−1.

Hence it is shown that a necessary and sufficient condition for (3.9) is that
XŒY−1SZ=0. Thus the equivalence between (i) and (ii) follows. The
equivalence between (ii) and (iii) is obtained from Corollary 1 and 2 in
p. 160 of Rao and Mitra (1971).

(2) Since any b̂=Cy ¥ C0 is a GLSE b(Y) with Y−1=CŒC+N (see
Theorem 3.2 of Kariya and Toyooka (1985)), the result follows from (1).

L

By this theorem, the quotient space S(n)/’ is identified with the set of
equivalence classes {R(W) |W ¥S(n)}, and C0 is in one-to-one correspon-
dence with B0={b(W) |W ¥S(n)}.

4. A MAXIMAL EXTENSION OF THE GAUSS–MARKOV
THEOREM

In the model (1.1), we fix a matrix S ¥S(n) and derive the maximal
class Pmax(S) of distributions of e for which b(S) is (C0, Pmax(S))-optimal.
Note that b̂=Cy in C0 is decomposed as

b̂−b=C{X(XŒS−1X)−1 XŒS−1+SZ(ZŒSZ)−1 ZŒ} e

=(XŒS−1X)−1 XŒS−1e+CSZ(ZŒSZ)−1 ZŒe

=A−1/2g̃1+Hg̃2, (4.1)

where g̃=(g̃ −1, g̃
−

2)Œ is defined in (3.4),

A=XŒS−1X, H=CSZ(ZŒSZ)−1/2 (4.2)

and the matrix identity (3.7) is used in the first line of (4.1). Then the risk
matrix of b̂ is expressed as

RP(b̂, b)=EP{(b̂−b)(b̂−b)Œ}

=A−1/2EP{g̃1 g̃
−

1} A
−1/2+HEP{g̃2 g̃

−

2} HŒ+A
−1/2EP{g̃1 g̃

−

2} HŒ

+HEP{g̃2 g̃
−

1} A
−1/2

=V11+V22+V12+V21 (say), (4.3)

where V12=V
−

21, Vij’s depend on P and RP(b(S), b)=V11.
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Theorem 4.1. Suppose P ¥P(m, F) and fix S ¥S(n).

(1) A necessary and sufficient condition for b(S) to be (C0, P(m, F))-
optimal is that (i) EP{g̃1 g̃

−

2}=0 holds for any P ¥P(m, F), which is equiv-
alent to the condition that (ii) (m, F) ¥M(S)×R(S), where

M(S)=L(X) 2 L(SZ), (4.4)

L( · ) denotes the linear subspace spanned by the column vectors of matrix ·
and R(S) is defined in (3.8).
(2) When b(S) is (C0, P(m, F))-optimal and CovP(e)=cF with F=

XUXŒ+SZDZŒS, then the minimum risk RP(b(S), b) is evaluated as

RP(b(S), b)=˛ccŒ+cU when m=Xc for some c ¥ Rk

cU when m=SZd for some d ¥ Rn−k.
(4.5)

Proof. (1) Suppose first that (i) holds. Then for any b̂ ¥ C0 and for
any P ¥P(m, F), the risk matrix in (4.3) is expressed as RP(b̂, b)=
V11+V22, which is greater than V11=RP(b(S), b), proving the sufficiency of
(i). Conversely, suppose that b(S) is (C0, P(m, F))-optimal. Since for any
a ¥ R and any F: (n−k)×k, the estimator of the form b̂=Cy with C=
(XŒS−1X)−1 XŒS−1+aFŒZŒ belongs to C0, the risk matrix is bounded below
by that of b(S), that is, RP(b̂, b) \ RP(b(S), b) for any a ¥ R, F: (n−k)
×k and P ¥P(m, F). For c ¥ Rk, we set

cŒRP(b̂, b) c=a2f2+2af1+f0,

where fi values are defined as

f0=cŒV11c=cŒRP(b(S), b) c

with V11=A−1/2EP{g̃1 g̃
−

1} A
−1/2,

f1=cŒ{V12+V21} c

with V12=V
−

21=A
−1/2EP{g̃1 g̃

−

2}(ZŒSZ)
1/2 F,

f2=cŒV22c

with V22=FŒ(ZŒSZ)1/2 EP{g̃2 g̃
−

2}(ZŒSZ)
1/2 F.

(4.6)

Note that fi values are free from a, although they depend on c, F, and P.
Here it is easy to see that for some c, F, and P, the term a2f2+2af1 can be
made negative by taking |a| sufficiently small, unless f1=0 for any c, F,
and P, or equivalently, V12+V21=V12+V

−

12=0 for any F and P. From this,
(i) follows.
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Next to show that (i) and (ii) are equivalent, let EP(e)=m, and CovP(e)=
cF with c > 0. Then EP{g̃1 g̃

−

2} is directly calculated as

EP{g̃1 g̃
−

2}=A
−1/2XŒS−1[mmŒ+cF] Z(ZŒSZ)−1/2,

and the condition (i) holds if and only if

A−1/2XŒS−1[mmŒ+cF] Z(ZŒSZ)−1/2=0 for any c > 0,

which is in turn equivalent to

−cXŒS−1FZ=XŒS−1mmŒZ for any c > 0. (4.7)

Since the right-hand side of (4.7) does not depend on c > 0, it is equivalent to

XŒS−1FZ=0 and XŒS−1mmŒZ=0.

By Theorem 3.1, XŒS−1FZ=0 is equivalent to F ¥R(S). On the other
hand, XŒS−1mmŒZ=0 holds if and only if XŒS−1m=0 or ZŒm=0, proving
equivalence between (i) and (ii). Thus the proof is complete, since (2) is
straightforward. L

Corollary 4.2. For fixed S ¥S(n), let

Pmax(S)=1 {P(m, F) | (m, F) ¥M(S)×R(S)}. (4.8)

Then Pmax(S) is the maximal class of distributions for which

b(S) is (C0, Pmax(S))-optimal. (4.9)

From the proof of Theorem 4.1, it is clear that when c is fixed in
CovP(e)=cF in the definition of P(m, F), mmŒ+cF ¥R(S) is necessary
and sufficient for EP{g̃1 g̃

−

2}=0. It is noted that b(lF)=b(F) for any l > 0.

Corollary 4.3. (1) When b(F)=b(S) a.s., m ¥M(S) is necessary
and sufficient for b(S) to be (C0, P(m, F))-optimal.
(2) When m ¥M(S), F ¥R(S) is necessary and sufficient for b(S) to

be (C0, P(m, F))-optimal.

Proof. Since b(F)=b(S) a.s. implies F ¥R(S) under P ¥P(m, F), the
result follows from the proof of Theorem 4.1. (2) is also clear from
Theorem 4.1. L
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Example 4.4. Let m=SZd and F=XUXŒ+SZDZŒS ¥R(S), where
d ¥ Rn−k, U ¥S(k) and D ¥S(n−k). Suppose P=L(e) ¥P(m, F) with
CovP(e)=cF. Then b(S)=b(F) and b(S) is unbiased, since

EP{b(S)}=b+(XŒS−1X)−1 XŒS−1SZd=b.

The risk matrix of b(S) is

RP(b(S), b)=(XŒS−1X)−1 XŒS−1[mmŒ+cF] S−1X(XŒS−1X)−1=cU.

Further for b̂=Cy=b+Ce in C0,

EP{b̂}=b+CSZd.

Hence C0 contains some biased estimators in general. However

RP(b̂, b)=CEP{eeŒ} CŒ=C[mmŒ+cF] CŒ

=CSZddŒZŒSCŒ+cU+CSZDZŒSCŒ \ cU.

Therefore b(S) minimizes RP(b̂, b) with respect to b̂ ¥ C0 and the minimum
is cU.

Example 4.5. Let m=Xc and F=XUXŒ+SZDZŒS ¥R(S), and
suppose L(e) ¥P(m, F) with CovP(e)=cF, where c ¥ Rk, U ¥S(k) and
D ¥S(n−k). Then b(S)=b(F), but the GME b(S) is biased:

EP{b(S)}=b+(XŒS−1X)−1 XŒS−1Xc=b+c.

Then risk matrix of b(S) is

RP(b(S), b)=ccŒ+cU.

Further for b̂=Cy in C0,

RP(b̂, b)=C[mmŒ+cF] CŒ=ccŒ+cU+CSZDZŒSCŒ \ ccŒ+cU.

5. NONLINEAR VERSIONS OF THE GAUSS–MARKOV THEOREM

In this section, we enlarge the class C0 of linear estimators to a subclass
D of the class of location equivariant estimators C1 in (2.3), and establish a
nonlinear version of the GMT that b(S) is (D, Q(S))-optimal for some
class Q(S) of distributions of e, where S ¥S(n) is fixed. Here, while D

contains C0, Q(S) is contained in the class Pmax(S). In other words, there is
a trade-off between D and Q(S): the larger D is, the smaller Q(S) is. In
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fact, to evaluate the risk of b̂ in C1, we need the existence of the second
moments,

EP{b̂Œb̂} <. for any b̂ ¥D,

which is an additional restriction on the class Pmax(S).

Lemma 5.1. C2KT=C1. In particular, if the distribution P=L(e) satisfies
P(e=0)=0, then CKT=C1 a.s. P, where CKT and C2KT are defined in (2.6)
and (2.5), respectively.

Proof. C2KT … C1 follows because any b̃=C(e) y+aq{e=0} ¥ C2KT can be
expressed as

b̃=C(e){X(XŒX)−1 XŒ+N} y+aq{e=0}

=(XŒX)−1 XŒy+{C(e) e+aq{e=0}}

— b(In)+d(e) (say), (5.1)

where the matrix identity X(XŒX)−1 XŒ+N=In is used in the first line of
(5.1). On the other hand, C2KT ‡ C1 follows because any b̂=b(In)+d(e)
¥ C1 can be expressed as

b̂=b(In)+d(e){q{e=0}+q{e ] 0}}

=(XŒX)−1 XŒy+q{e ] 0}d(e)(eŒe)−1 eŒe+d(e) q{e=0}

={(XŒX)−1 XŒ+q{e ] 0}d(e)(eŒe)−1 eŒ} y+d(0) q{e=0}

— C(e) y+aq{e=0} (say), (5.2)

where the equality eŒy=eŒe is used in the third line of (5.2). In particular, if
P satisfies P(e=0)=0, then P(e=0)=0 and hence CKT=C1 a.s. by its
definition. This completes the proof. L

It is noted that if P has a probability density function (pdf) with respect
to Lebesgue measure in Rn, then P(e=0)=0 holds, implying C1=CKT a.s.
From the characterization of C1, it is easy to see that a GLSE b(Ŝ) with
Ŝ=Ŝ(e) belongs to CKT … C1 and that C0 … CKT … C1.
Next we extend the result in Section 3 to specify (D, Q(S)) for which
b(S) is optimal. Let

S1(m, n)={F( · ) |F : RmQS(n) is a measurable matrix-valued function}
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and define an equivalence relation ’ onS1(n, n) by

F( · ) ’ S( · ) if and only if b(F(e))=b(S(e)) a.s. P.

Then the following results are straightforward from Theorem 3.1.

Proposition 5.2. (1) F( · ) ’ S( · ) if F( · ) ¥R1(S( · )), where

R1(S( · ))={F( · ) ¥S1(n, n) |F(e)=XU(e) XŒ+S(e) ZD(e) ZS(e)Œ,

U( · ) ¥S1(n, k), D( · ) ¥S1(n, n−k)}.

(2) C1=B1 withB1={b(F(e)) |F( · ) ¥S1(n, n)}. In fact, as C1=CKT,
b̂(y)=C(e) y is a GLSE with F(e)−1=C(e)Œ C(e)+ZZŒ.

Now b̂ ¥ C1 is expressed as

b̂−b=(XŒX)−1 XŒ{X(XŒS−1X)−1 XŒS−1+SZ(ZŒSZ)−1 ZŒ} e+d(e)

=(XŒS−1X)−1 XŒS−1e+{(XŒX)−1 XŒSZ(ZŒSZ)−1 ZŒe+d(e)}

=A−1/2g̃1+hb̂(g̃2) (say), (5.3)

where the identity (3.7) is used in the first line of (5.3) and

hb̂(g̃2)=(XŒX)−1 XŒSZ(ZŒSZ)−1 ZŒe+d(e)

=(XŒX)−1 XŒSZ(ZŒSZ)−1/2 g̃2+d(Z(ZŒSZ)1/2 g̃2). (5.4)

Here, it is noted that the OLS residual vector e in (2.4) is a function of g̃2:

e=ZZŒe=Z(ZŒSZ)1/2 g̃2.

For a GLSE b(Ŝ) in (2.7), rewriting it as b(Ŝ)=C(e) y with C(e)=
(XŒŜ−1X)−1 XŒŜ−1 yields b(Ŝ)=A−1/2g̃1+hb(Ŝ)(g̃2) with

hb(Ŝ)(g̃2)=C(Z(ZŒSZ)−1/2 g̃2) SZ(ZSZ)−1/2 g̃2.

The risk matrix of b̂ ¥ C1 is decomposed as

RP(b̂, b)=A−1/2EP{g̃1 g̃
−

1} A
−1/2+EP{hb̂(g̃2) hb̂(g̃2)Œ}

+A−1/2EP{g̃1hb̂(g̃2)Œ}+EP{hb̂(g̃2) g̃ −1} A
−1/2

=V11+V22+V12+V21 (say), (5.5)

as long as the four terms are finite. Here since C1 includes C0, it is necessary
to assume (m, F) ¥M(S)×R(S) and to let P=L(e) move over Pmax(S),
so that the linear result in Section 4 should hold in our nonlinear extension.
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Hence we impose the moment condition on C1: EP{b̂Œb̂} <. for any
P ¥Pmax(S), which holds if and only if b̂ belongs to

D1={b̂ ¥ C1 | EP{b̂Œb̂} <. for any P ¥Pmax(S)}. (5.6)

Clearly D1 is the maximal class of estimators in C1 which have the second
moments for any P ¥Pmax(S), and it contains all the GLSEs with second
moments. For a sufficient condition for a GLSE to have finite second
moments, see Kariya and Toyooka (1985).

Theorem 5.3. For a fixed S ¥S(n), let

Q1(S)={P ¥Pmax(S) | EP{g̃1hb̂(g̃2)Œ}=0 for any b̂ ¥D1}. (5.7)

Then

b(S) is (D1, Q1(S))-optimal. (5.8)

The proof is clear from (5.5) and the definitions of D1 and Q1(S).
Clearly Q1(S) …Pmax(S), although D1 ‡ C0. Therefore the nonlinear
version of the GMT in the above theorem is not completely stronger than
the GMT in (2.2).
In other words, the risk matrix of he GME gives the lower bound for the
risk matrices of estimators in D1 whenever P ¥ Q1(S). Hence a measure of
efficiency of an estimator b̂ in D1 should be defined relative to the GME
b(S) in terms of the risk, when P belongs to Q1(S). The measure depends
on P in Q1(S) as well as b̂.
We describe two important subclasses of Q1(S) in (5.7).

Corollary 5.4. For a fixed S ¥S(n), let

Q2(S)={P ¥Pmax(S) | EP{g̃1 | g̃2}=0 a.s. g̃2}, (5.9)

Q3(S)={P ¥Pmax(S) |LP(−g̃1, g̃2)=LP(g̃1, g̃2)}, (5.10)

whereLP( · ) denotes the distribution of · under P. Then

Q3(S) … Q2(S) … Q1(S) (5.11)

holds, and hence

b(S) is (D1, Qi(S))-optimal (i=2, 3). (5.12)

Proof. For any P ¥ Q2(S) and any b̂ ¥D1, it is easy to see that
EP{g̃1h(g̃2)Œ}=0 follows from EP{g̃1 | g̃2}=0, proving Q2(S) … Q1(S).
That Q3(S) … Q2(S) is obvious. L
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In the following we will show that Qi(S)’s (i=2, 3) include some
interesting classes of distributions such as a class of elliptically symmetric
distributions.

5.1. Elliptically Symmetric Distributions

In the model (1.1), suppose that P=L(e) belongs to E(m, F), the class
of elliptically symmetric distributions with mean m ¥ Rn and covariance
matrix cF for some c > 0. Here, L(e) ¥ E(m, F) if and only if L(e) ¥
P(m, F) and

L(CF−1/2(e−m))=L(F−1/2(e−m))

holds for any n×n orthogonal matrices C. For S ¥S(n), a sufficient
condition for b(S) to be (D1, E(m, F))-optimal is that E(m, F) … Q3(S).

Theorem 5.5. Assume m ¥ L(SZ). Then E(m, F) … Q3(S) holds if and
only if F ¥R(S).

Proof. Suppose first that E(m, F) … Q3(S). Since Q3(S) is a subclass of
Pmax(S), the matrix F is clearly in R(S). Conversely, suppose F ¥R(S).
Then E(m, F) …Pmax(S), and for any P ¥ E(m, F), the distribution of
g̃=CSS−1/2e=(g̃ −1, g̃

−

2)Œ under P satisfies

LP(g̃)=LP(g̃1, g̃2) ¥ E(m̃, Q),

where m=SZd with d ¥ Rn−k,

m̃=CSS−1/2m

=1 (XŒS
−1X)−1/2 XŒS−1/2S−1/2SZd

(ZŒSZ)−1/2 ZŒS1/2S−1/2SZd
2

=1 0
(ZŒSZ)1/2 d

2 (5.13)

and

Q=CSS−1/2FS−1/2C −

S

=1 (XŒS
−1X)−1/2 XŒS−1FS−1X(XŒS−1X)−1/2

(ZŒSZ)−1/2 ZŒFS−1X(XŒS−1X)−1/2

(XŒS−1X)−1/2 XŒS−1FZ(ZŒSZ)−1/2

(ZŒSZ)−1/2 ZŒFZ(ZŒSZ)−1/2
2

=1Q11
Q21

Q12
Q22
2 (say).
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Since XŒS−1FZ=0, this implies Q12=Q
−

21=0, from which LP(−g̃1, g̃2)=
LP(g̃1, g̃2) follows, proving P ¥ Q3(S). L

By this theorem, when m ¥ L(SZ), an elliptically symmetric distribution
is a member of Q3(S) if and only if F ¥R(S).

Corollary 5.6. For a fixed S ¥S(n),

b(S) is (D1, Ẽ(S))-optimal,

where

Ẽ(S)=1 {E(m, F) | (m, F) ¥ L(SZ)×R(S)}.

5.2. Semi-elliptically Symmetric Distributions

The second class is the set of distributions given by

E0(m, F)={P ¥P(m, F) | fP ¥F(m, F)},

whereF is the set of pdf’s of the form

fP(e | m, F)=|F|−1/2 q1((e−m)Œ F−1/2X̄FX̄
−

FF−1/2(e−m))

×q2((e−m)Œ F−1/2Z̄FZ̄
−

FF−1/2(e−m)),

for some nonnegative functions q1 and q2 on [0,.) such that >Rk q1(x −1x1) dx1
=1 and >Rn−k q2(x −2x2) dx2=1, where X̄F=F−1/2X(XŒF−1X)−1/2 : n×k and
Z̄F=F1/2Z(ZŒFZ)−1/2 : n×(n−k). Then the pdf of t=CFF−1/2e=(t −1, t

−

2)Œ
with C −

F=(X̄F, Z̄F) is expressed as

fg
P(t1, t2)=q1((t1− n1)Œ (t1− n1)) q2((t2− n2)Œ (t2− n2))

with n=CFF−1/2e=(n −1, n
−

2)Œ.

That is, ti’s are independently and elliptically symmetrically distributed
(i=1, 2).
Fix a matrix S ¥S(n). For this family we still obtain the following
result.

Theorem 5.7. Assume m ¥ L(SZ). Then E0(m, F) … Q3(S) holds if and
only if F ¥R(S).
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Proof. Suppose F ¥R(S). For any P ¥ E0(m, F), let f̃P(g̃1, g̃2) be the
pdf of g̃=CSS−1/2e=(g̃ −1, g̃

−

2)Œ under P. Then the function f̃P is calculated
as

f̃P(g̃1, g̃2)=|FS−1|−1/2 q1((g̃− m̃)Œ G(g̃− m̃)) q2((g̃− m̃)Œ F(g̃− m̃)),

where m̃=CSS−1/2m=(0Œ, m̃ −2)Œ is the same as (5.13), and G and F are n×n
symmetric matrices given by

G=CSS1/2F−1/2X̄FX̄
−

FF−1/2S1/2C −

S

=1 (XŒS
−1X)−1/2 XŒF−1X(XŒS−1X)−1/2

(ZŒSZ)−1/2 ZŒSF−1X(XŒS−1X)−1/2

(XŒS−1X)−1/2 XŒF−1SZ(ZŒSZ)−1/2

(ZŒSZ)−1/2 ZŒSF−1X(XŒF−1X)−1 XŒF−1SZ(ZŒSZ)−1/2
2

=1G11
G21

G12
G22
2 (say)

and

H=CSS1/2F−1/2Z̄FZ̄
−

FF−1/2S1/2C −

S

=10
0

0
(ZŒSZ)1/2 (ZŒFZ)−1 (ZŒSZ)1/2

2

=10
0
0
H22
2 (say),

respectively. Since XŒF−1SZ=0 implies that G12, G21, and G22 are zero
matrices, the pdf f̃P(g̃1, g̃2) is obtained as

f̃P(g̃1, g̃2)=|FS−1|−1/2 q1(g̃
−

1G11 g̃1) q2((g̃2− m̃2)ŒH22(g̃2− m̃2)),

from which LP(−g̃1, g̃2)=LP(g̃1, g̃2) follows, proving P ¥ Q3(S). Since the
converse is clear, the proof is complete. L

Corollary 5.8. For S ¥S(n),

b(S) is (D1, Ẽ0(S))-optimal, (5.14)

where

Ẽ0(S)=1 {E0(m, F) | (m, F) ¥ L(SZ)×R(S)}. (5.15)
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5.3. A Subclass of Q2(S)

Finally we specify a subclass of Q2(S) such that it is not necessarily
contained in Q3(S). Let

A(m, S)={P ¥P(m, F) | fP ¥F(m, F)},

where fP denotes the pdf of P, and F(m, F) denotes the set of pdf’s on Rn

of the form

fP(e | m, F)=|F|−1/2 q(CFF−1/2(e−m)),

where q is a nonnegative function on Rn such that >Rn q(x) dx=1 and

F
Rk
x1q(x1, x2) dx1=0 a.e. x2 with x=1x1

x2
2 ,

x1: k×1 and x2: (n−k)×1. (5.16)

Let t=CFF−1/2e=(t −1, t
−

2)Œ and n=CFF−1/2m=(n −1, n
−

2)Œ. Then the pdf of
LP(t)=LP(t1, t2) is written as

fg
P(t)=f

g
P(t1, t2)=q(t− n)=q(t1− n1, t2− n2),

which implies that EP{t1 | t2}=n1 a.s. t2. Here, fix S ¥S(n) and let
g̃=(g̃ −1, g̃

−

2)Œ=CSS−1/2e. Since n=0 and t=g̃ hold when m=0 and F=S,
the zero integral restriction in (5.16) implies EP{g̃1 | g̃2}=EP{t1 | t2}=0.
Hence it is not restrictive.

Theorem 5.9. Assume m ¥ L(SZ). Then A(m, F) … Q2(S) holds if and
only if F ¥R(S).

Proof. Suppose that F ¥R(S), that is, F satisfies XŒF−1SZ=0. For
any P ¥A(m, F), let f̃P(g̃1, g̃2) be the pdf of g̃=(g̃ −1, g̃

−

2)Œ under P. Then
f̃P(g̃1, g̃2) is calculated as

f̃P(g̃1, g̃2)=|FS−1|−1/2 q(G(g̃− m̃)),

where m̃=CSS−1/2m=(0Œ, m̃ −2)Œ is the same as (5.13), and G is an n×n
nonsingular matrix given by

Q=CFF−1/2S1/2C −

S

=1 (XŒF
−1X)1/2 (XŒS−1X)−1/2

0
(XŒF−1X)1/2 XŒF−1SZ(ZŒSZ)−1/2

(ZŒFZ)−1/2 (ZŒSZ)1/2
2

=1Q11
0
Q12
Q22
2 (say).
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Since Q12=0 follows from XŒF−1SZ=0, we have

f̃P(g̃1, g̃2)=|FS−1|−1/2 q(G11 g̃1, G22(g̃2− m̃2)),

from which P ¥ Q2(S) follows. In fact,

F
Rk

g̃1f̃P(g̃1, g̃2) dg̃1=|FS−1|−1/2 F
Rk

g̃1q(G11 g̃1, G22(g̃2− m̃2)) dg̃1

=|FS−1|−1/2 |G11 |−1 G
−1
11 F

Rk
x1q(x1, x2) dx1

=0 a.e. x2.

implies EP{g̃1 | g̃2}=0 a.s. g̃2, where x1=G11 g̃1 and x2=G22(g̃2− m̃2). The
converse is clear. L

Corollary 5.10. For S ¥S(n),

b(S) is (D1, Ã(S))-optimal,

where

Ã(S)=1 {A(m, F) | (m, F) ¥ L(SZ)×R(S)}.
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