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h i g h l i g h t s

• Many kernel-based learning algorithms have the computational load.
• The Nyström low-rank approximation is designed for reducing the computation.
• We propose the spectrum decomposition condition with a theoretical justification.
• Asymptotic error bounds on eigenvalues and eigenvectors are derived.
• Numerical experiments are provided for covariance kernel and Wishart matrix.
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a b s t r a c t

Many kernel-based learning algorithms have the computational load scaled with the
sample size n due to the column size of a full kernel Gram matrix K . This article considers
the Nyström low-rank approximation. It uses a reduced kernelK , which is n×m, consisting
of m columns (say columns i1, i2, · · · , im) randomly drawn from K . This approximation
takes the form K ≈ KU−1K T , where U is the reduced m × m matrix formed by rows
i1, i2, · · · , im of K . Often m is much smaller than the sample size n resulting in a thin
rectangular reduced kernel, and it leads to learning algorithms scaled with the column
size m. The quality of matrix approximations can be assessed by the closeness of their
eigenvalues and eigenvectors. In this article, asymptotic error bounds on eigenvalues and
eigenvectors are derived for the Nyström low-rank approximation matrix.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Due to the fast advancement of information technology, kernel-based learning algorithms have become popular
nowadays and they play an important role in machine learning with ample applications in statistics, biostatistics, medical
science, image analysis, pattern recognition, engineering, etc. (See, e.g., [4,5,20,1,12].) Kernel functions are flexible building
blocks formodeling complex and nonlinear data structures. The value of a kernel function K(x, y) represents a dot product in
a kernel-inducedHilbert space, often high-dimensional or even infinite dimensional, and can be interpreted as the similarity
measure between the two points, x and y.
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Fig. 1. Reduced kernel and Nyström approximation.

Fig. 2. CUR decomposition.

Many kernel-based learning algorithms have computational load scaled with the sample size n of data collection
{X1, . . . , Xn}. This article considers the Nyström low-rank approximation to kernel-based Grammatrix and provides it with
a theoretical justification. Asymptotic error bounds on eigenvalues and eigenvectors are derived for the Nyström low-rank
approximation matrix. The lack of intuition for the approximation of eigenvectors creates a great surprise on numerical
results of asymptotic error. However, to our best knowledge, there is no other existing article mathematically exploring the
convergence or error bound of eigenvectors for Nyström approximation matrix. The Nyström method is an easy and yet
efficient approach for low-rank approximation, which dramatically cuts down the computational load and memory usage.
See, for instance, Lee and Mangasarian [16], Williams and Seeger [23], Drineas and Mahoney [9], Lee and Huang [15] for
studies of Nyström low-rank approximation for kernel matrices.

Theunderlying kernel functionK(x, y) in this article is assumed continuous, symmetric, nonnegative definite, anddefined
on X × X. Let X be a random variable having continuous distribution F on X ⊂ ℜ

p. Let Xn be the data matrix (random)
consisting of i.i.d. copies of X , i.e., Xn := (X1, . . . , Xn)

T , which is of size n × p; and let Kn := K(Xn,Xn) = [K(Xi, Xj)]
n
i,j=1 be

the full kernel matrix. The key idea of Nyström approximation is to employ a reduced kernel. It randomly selects a portion
of data set to generate a thin rectangular kernel matrix, called reduced kernel and denoted byKn := K(Xn,Xn), whereXn is
a data subset matrix formed by a subset of {X1, . . . , Xn}. Then, it uses this much smaller rectangular kernel matrix to replace
or to generate an approximation to the full kernel matrix. See Fig. 1 for graphical illustration.

The technique of using a reduced kernel matrix has been successfully applied to other kernel-based learning algorithms,
such as least squares support vector machine [21,22], proximal support vector machine [11], Lagrangian support vector
machine [18], active set support vector regression [19], smooth ϵ-support vector regression [14], kernel sliced-inverse
regression [24] and robust kernel PCA [13], among others.

The randomsubsample {K(·, Xik)}
m
k=1 is used as a basis subset to replace the full-sample basis set {K(·, Xi)}

n
i=1. In a training

phase of a kernel algorithm, the thin reduced kernel matrix Kn = K(Xn,Xn) is used as data inputs, where Xn consists of
{Xik}

m
k=1. Notice that the number of observations (the column size of Kn) is not reduced, it is the number of basis functions

(the row size of Kn) that has been cut down. This uniform random subset for kernel basis selection has a link to the popular
uniform design, which is a space filling design. Space filling designs are known to be robust against the worst possible
scenario [10]. Of course, there is always a random luck issue in every random sampling scheme. To improve the quality of
the random subsample used as partial kernel basis, a stratified random subset is suggested. For classification problem, the
random sampling has to be stratified over classes. For regression problem, the random sampling has to be stratified over the
regression responses. Furthermore, the low-rank approximationmatrix actually adopts amodelwith lessmodel complexity,
thus a larger penalty is suggested to enforce better data fidelity. See Lee and Huang [15] for more detailed discussion and
suggestions for practical implementation.

The idea of using a random subset can also be found in a series of works of CUR matrix decompositions ([6–8,17], and
references therein). See Fig. 2 for illustration of a CUR decomposition.

In addition to being continuous, symmetric and nonnegative definite, the kernel function K is assumed square-integrable
X×X

K 2(x, y)dF(x)dF(y) = c < ∞, (1)
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Fig. 3. Connection diagram. The correspondences among variables, lemmas and theorems can be viewed in this diagram. The major goal is to connect
{λnk, unk} (with full kernel matrix) to {λ(m)

nk ,u(m)
nk } (with reduced-rank approximation matrix).

has the following spectrum decomposition

K(x, y) =

∞
k=1

λkηk(x)ηk(y), where


X

ηk(x)ηj(x)dF(x) = δkj, (2)

and is of trace type, i.e.,
∞
k=1

λk < ∞. (3)

For simplicity, we assume eigenvalues of K are strictly positive, distinct, and arranged in descending order

λ1 > λ2 > λ3 > · · · > λk > · · · > 0. (4)

(Notice that the method is designed to work for symmetric nonnegative definite kernels, not for others (see the second
example in Section 4). The number of positive eigenvalues of the kernel needs to be greater than n for n × n data kernel
matrices defined below. If the eigenvalues are not distinct, the corresponding eigenspaces of non-distinct eigenvalues are
of more than one dimension. Thus, the convergence result for eigenvalues still holds, but the convergence for eigenvectors
need to be modified in terms of eigenspaces.) Consider the n × n kernel data matrix (scaled by n−1)

Mn := n−1K(Xn,Xn) = n−1 K(Xi, Xj)
n
i,j=1 = n−1Kn (5)

with eigenvalues λn1 ≥ λn2 ≥ λn3 ≥ · · · ≥ λnn ≥ 0 and corresponding unit eigenvectors unk, k = 1, 2, . . . , n.
Matrices Kn and Mn are both called a full kernel matrix. The eigenvalue decomposition problem for a full kernel matrix
Mn is computationally costly. An alternative is to resort to a reduced kernel by random subset. Since data are i.i.d. copies of
X , without loss of generality, we may assume that the random subset, denoted byX (m)

n , is formed by {X1, . . . , Xm} for some
m < n. Consider the partition ofMn as

Mn =


M11 M12
M21 M22


m

n − m
m n − m

. (6)

The following rank-m approximation matrix is called Nyström approximation toMn

M (m)
n :=


M11
M21


M−1

11 [M11 M12] =


M11 M12

M21 M21M−1
11 M12


. (7)

This approximation is based on a reduced kernel 1
nK(Xn,X (m)

n ) =

MT

11,M
T
21

T , which is of size n × m. Denote the kth
eigenvalue and its associated eigenvector of M (m)

n byλ(m)
nk andu(m)

nk . The aims of this article are

(i) to study the asymptotic orders of magnitude for the full kernel {λnk, unk} and the reduced kernel {λ(m)
nk ,u(m)

nk }, as

compared to the ideal ones

λk,

1
√
nηk(Xn)


, where ηk(Xn) is an n-vector given by ηk(Xn) :=


ηk(X1), . . . , ηk(Xn)

T
;

and
(ii) to find the asymptotic bounds for Mn − M (m)

n in terms of their eigenvalues and eigenvectors, where Mn − M (m)
n is the

difference between the full kernel matrix and the reduced-rank approximation matrix.

Results established in this article are summarized in Fig. 3. Theλ(s)
nk ,u(s)

nk and M (s)
n in the diagramare intermediate variables

defined later in the paragraph of Eq. (17) to prove ourmain results. Notice that, two opposite directions can be chosen for an
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eigenvector. For convenience, the directions of the eigenvectors, unk,u(m)
nk ,u(s)

nk are chosen toward the direction of ηk(Xn) for
each k. The rest of the article is organized as follows. Main results of eigenvalues and eigenvectors error bounds for Nyström
approximation matrix are given in Section 2. Technical lemmas and proofs are placed in Section 3. Two numerical examples
are displayed in Section 4. A list of notation usage is appended at the end of the article.

2. Main results

General assumptions. Throughout the rest of this article, we assume that X is a random variable with continuous distribution
F onX ⊂ ℜ

p, and that the kernel function K is continuous, symmetric, nonnegative definite and satisfies conditions (1)–(4).
Further assume that EK 2+τ (X, X) < ∞ for some τ > 0. (For bounded kernel, e.g., Gaussian kernel, τ can be any positive
number.)

Theorem 1. Let s = nα with 0 < α < τ
2(4+2τ)

. Then, for any α, ν with α < ν < τ
4+2τ − α, we have

s
k=1

(λk − λnk)
2

= Op(ϵn,s) + Op

sn−ν


, (8)

where

ϵn,s =
1
n


∞

k=s+1

λk

2

+

∞
k=s+1

λ2
k .

Furthermore, for any fixed k, we have

λnk = λk + Op
√

ϵn,s

+ Op

√
sn−ν


, (9)

unk =
1

√
n

ηk(Xn) + O(L2)
p

√
ϵn,s

+ O(L2)

p

√
sn−2ν


. (10)

Remark 1. For a bounded kernel K , we can set τ to be any fixed but arbitrarily large number. Since 0 < ν −α < τ
4+2τ −2α,

when τ → ∞, we can take ν −α to be very close to 1
2 − 2α


say ν − α =

1
2 − 2α − δ for small positive δ


. Thus,

√
sn−ν =

n−
1
2 (ν−α)

= n−
1
4 +α+

1
2 δ , and

√
sn−2ν = n−ν+

α
2 = n−

1
2 +

3α
2 +δ . Assume that λk has a polynomial decay, i.e., λk = O(k−β) for

some β > 1. Then,

ϵn,s =
1
n


∞

k=s+1

λk

2

+

∞
k=s+1

λ2
k = O


s−2β+1

= O

n−α(2β−1) .

To balance the order of
√

ϵn,s and
√
sn−ν , we take α =

1−2δ
4β+2 . Then,

√
ϵn,s = O

√
sn−ν


= O


n−

1
4 +

1−2δ
4β+2 +

δ
2


which is very close to O

n−

1
4 +

1
4β+2


when δ is close to 0. If the underlying kernel K has a faster eigenvalue decay (larger β

or an exponential decay), then it leads to faster convergence rates for λnk and unk.

Theorem 2. Let sm = mα with 0 < α < τ
2(4+2τ)

, and let

ϵm,sm =
1
m


∞

k=sm+1

λk

2

+

∞
k=sm+1

λ2
k

ϵ̃m,n =


n − m

n

2
 lm

r=1

1
λr

2 
ϵm,sm + smm−ν


+

∞
k=lm+1

λk

+
n − m
n2

,

where {lm}
∞

m=1 is an integer sequence satisfying

lim
m→∞

 lm
r=1

1
λr

2 
ϵm,sm + smm−ν


+

∞
k=lm+1

λk

 = 0. (11)
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Then, for any α, ν with α < ν < τ
4+2τ − α, we have

n
k=1


λnk −λ(m)

nk

2
= Op(ϵ̃m,n). (12)

Furthermore, for any fixed k, we have

λ(m)
nk = λnk + Op


ϵ̃m,n


, (13)

u(m)
nk = unk + O(L2)

p


ϵ̃m,n


. (14)

Remark 2. The 1
λr
’s in Eq. (11) come from M−1

11 (in Eq. (7) for the Nyström approximation). They amplify the error term,
ϵm,sm + smm−ν in our estimation approach, so smaller lm makes better convergence for the first term of Eq. (11). However,
as m goes to infinity, making the second term


∞

k=lm+1 λk convergent faster to zero requires that lm tends to infinity with
faster rate. Thus, to obtain the optimal convergence rate for ϵ̃m,n, we choose lm such that

lm
r=1

1
λr

2 
ϵm,sm + smm−ν


= O


∞

k=lm+1

λk


(see the example of next remark).

Remark 3. Assume that λk has a polynomial decay, i.e., λk = O(k−β) for some β > 1. Then, ϵ̃m,n = O

l2β+2
m ×

(s−2β+1
m + smm−ν) + l−β+1

m

. Similar to Remark 1, when τ can be arbitrarily large, by taking ν − α =

1
2 − 2α − δ and

α =
1−2δ
4β+2 for some small positive δ, we can get smm−ν

= O

s−2β+1
m


. Therefore, ϵ̃m,n = O


l2β+2
m s−2β+1

m + l−β+1
m


. Now let

lm be the largest integer less than or equal to sbm. Again to balance l2β+2
m s−2β+1

m and l−β+1
m , we take b =

2β−1
3β+1 . Thus, we get

ϵ̃m,n = O

m−

1
2

(β−1)(2β−1)
(3β+1)(2β+1) (1−2δ)


.

When β → ∞, the convergence rate can be as close to the rate of O

m−

1
6


as possible by taking δ close to 0.

Remark 4. In practice, the size of the subsample m is chosen to be much smaller than the sample size n, but according to
the rate of ϵ̃m,n, even for the fastest rate of O


m−

1
6


discussed in Remark 3, m has to be chosen big enough to make the

approximation error small. From the numerical experiments in Section 4, the convergence rate, in fact, can be faster than
the upper bound rateO(ϵ̃m,n). Thus, this upper bound is not tight. Nevertheless, our results in Theorem 2 are enough to show
that the errors converge to zero as both n,m tend to infinity. We will further discuss the issue below in technical lemmas.
Also to our best knowledge, there is no other existing article mathematically exploring the convergence or error bound of
eigenvectors for Nyström approximation.

3. Technical lemmas

Before moving into the mathematical details in this section, let us overview the connection between the following four
lemmas and two theorems. As in Fig. 3, Theorem 1 will be proved using Lemma 2 and Lemma 3, and Lemma 1 will be used
to prove Lemma 3. To prove Theorem 2 we will need Lemma 4 together with Theorem 1.

All the technical lemmas are derived under the General assumptions stated in Section 2. Define

V (s)
n :=

1
√
n


η1(Xn), η2(Xn), . . . , ηs(Xn)


, (15)

which is an n × s matrix, and define A(s)
n := V (s)T

n V (s)
n :=


aij
s
i,j=1. We have the following lemma, which basically says that

these n-vectors {n−1/2ηk(Xn)}
s
k=1 are nearly orthonormal, when n is large.

Lemma 1. Let s = nα with 0 < α < τ
4+2τ . Then, for any 0 < ν < τ

4+2τ − α, we have

A(s)
n = Is + O(∞)

p


n−ν


,
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where the order O(∞)
p (·) is in the sense of being in probability and under the entrywise L∞ matrix norm, i.e., in uniform sense.

Moreover, if s = nα with 0 < α < τ
2(4+2τ)

, then for any α < ν < τ
4+2τ − α, we have

A(s)
n

−1/2
= Is + O(∞)

p


sn−ν


= Is + O(∞)

p


n−(ν−α)


.

(Note that A(s)
n has faster rate than {A(s)

n }
−1/2 in convergence to Is.)

Proof. The (k, l)th entry in A(s)
n is given by akl =

1
n ηk(Xn)

Tηl(Xn) =
1
n

n
i=1 ηk(Xi)ηl(Xi). For a fixed ς > 0, consider the

truncation

Yki =


ηk(Xi), if |ηk(Xi)| < ςn1/(2+τ),
0, otherwise.

Letakl =
1
n

n
i=1 YkiYli and Zkl(Xi) = |YkiYli − E(YkiYli)|. Note that, for j ≥ 2, we have

E{Z j
kl(X)} ≤ var{Zkl(X)}


ς2n2/(2+τ)

j−2
= O


(ς2n2/(2+τ))j−2 , (16)

and for j < 2, we have E{Z j
kl(X)} = O(1). Since E|ηk(X)|4+2τ < ∞, we have for any fixed ς > 0,

P {ηk(Xi) ≠ Yki, ∀k, i ≤ n} ≤ n2P

|ηk(X)| ≥ ςn1/(2+τ)


≤ ς−(4+2τ)E


|ηk(X)|4+2τ I


|ηk(X)| ≥ ςn1/(2+τ)


→ 0, as n → ∞.

Thus, n2P{ηk(Xi) ≠ Yki} → 0 for any fixed k, i ≤ n.
Let δkl be the Kronecker delta. Assume that s is even (otherwise replace s by s − 1). We have, for ς, ε > 0 and small

enough,

P

max
k,l≤s

|akl − δkl| > ε


≤ P


max
k,l≤s

|akl − δkl| > ε


+ P


ηk(Xi) ≠ Yki, k, i ≤ n


≤

s
k,l=1

P


1
n

 n
i=1

(YkiYli − δkl)

 > ε


+ o(1)

≤

s
k,l=1

P


1
n

 n
i=1

(YkiYli − E(YkiYli))

 ≥
ε

2


+ P


1
n

 n
i=1

(E(YkiYli) − δkl)

 >
ε

2


+ o(1)

≤

s
k,l=1

nε
2

−s
E

 n
i=1


YkiYli − E(YkiYli)


s

+ P

|E(Yk1Yl1) − δkl| >

ε

2


+ o(1),

Now, when n is large enough, |E(Yk1Yl1) − δkl| < ε
2 . Therefore, the second term above is zero; and since s is even, we have

P

max
k,l≤s

|akl − δkl| > ε


≤

nε
2

−s s
k,l=1

E


n

i=1


YkiYli − E(YkiYli)

s

+ 0 + o(1)

=

nε
2

−s s
k,l=1


1≤r≤s


1≤j1<···<jr≤n


i1+···+ir=s
i1,...,ir≥1

s!
r

t=1
E

YkiYli − E(YkiYli)

it
i1! · · · ir !

+ o(1).

Since E

YkiYli − E(YkiYli)


= 0, we can only consider the indices with it ≥ 2 for i = 1, 2, . . . , r . Thus the index r is now

considered to be less than s/2. Using the fact E

YkiYli − E(YkiYli)

it
≤ E{Z it

kl (Xi)}, for it ≥ 2 and Eq. (16), we obtain

P

max
k,l≤s

|akl − δkl| > ε


≤

nε
2

−s s
k,l=1


1≤r≤s/2


1≤j1<···<jr≤n


i1+···+ir=s
i1,...,ir≥2

s!E{Z i1
kl (Xj1)} · · · E{Z ir

kl (Xjr )}

i1! · · · ir !
+ o(1),

≤

s
k,l=1

nε
2

−s 
1≤r≤s/2

nr

r!
· r s(ς2n2/(2+τ))s−2r

+ o(1)

≤

s
k,l=1


1≤r≤s/2


2ς2

ε

s

n−(s−r)τ/(2+τ) 1
ς4r

·
r s

r!
+ o(1)

≤ cς,s ε
−sn2−sτ/(4+2τ)

+ o(1),
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where

cς,s =


1≤r≤s/2

(2r)s ς2s−4r

r!
≤


1≤r≤s/2

(2r)s ς2s−4r

e
√
2πre−r r r

≤


1≤r≤s/2

2s ς2s

e
√
2π

ss(e/ς4)r

≤ κasss, for some constants κ and a
= κasnαs.

Therefore, by choosing ε = bn−ν , we have

P

max
k,l≤s

|akl − δkl| > ε


≤ K(a/b)sn−s(τ/(4+2τ)−α−ν)+2

+ o(1) → 0,

as n → ∞, since s = nα and τ/(4 + 2τ) − α − ν > 0. This gives us the first equation. For the second equation, we will use
the equivalent property of ∥A∥2 = sup{∥Au∥2 : ∥u∥2 = 1} and ∥A∥∞ = maxi,j |aij|, i.e.,

∥A∥∞ ≤ ∥A∥2 ≤ s∥A∥∞, where A is an s × smatrix.

Let A(s)
n = PTdiag(θ1, θ2, . . . , θs)P , where PTP = Is. Then,

∥A(s)
n − Is∥2 = ∥diag(θ1, . . . , θs) − Is∥2 = max

i
|θi − 1| ≤ s∥A(s)

n − Is∥∞,

and thenA(s)
n

1/2
− Is


∞

≤
A(s)

n

1/2
− Is


2= max

i

θi − 1


≤ max
i

|θi − 1| ≤ s∥A(s)
n − Is∥∞.

Therefore,

A(s)
n
−1/2

= Is + O(∞)
p


sn−ν


. �

For an integer s ≤ n, letK (s)(x, y) be the truncated kernel at s components and let M (s)
n be its corresponding kernel data

matrix scaled by n, i.e.,

K (s)(x, y) :=

s
k=1

λkηk(x)ηk(y), (17)

M (s)
n :=

1
n

K (s)(Xi, Xj)
n
i,j=1 =:

1
n
K (s)

n . (18)

Denote the leading s eigenvalues of M (s)
n by λ(s)

n1 ≥ λ(s)
n2 ≥ · · · ≥ λ(s)

ns ≥ 0 and corresponding unit eigenvectorsu(s)
nk , k = 1, 2, . . . , s. Note thatK (s)(x, y) is the best rank-s approximation, in the sense ofminimal L2-norm, to the underlying

kernel function K(x, y).

Lemma 2. For any s ≤ n, we have

n
k=1


λnk −λ(s)

nk

2
= Op(ϵn,s), (19)

where λ(s)
nk = 0 for k > s, and ϵn,s =

1
n


∞

k=s+1 λk
2

+


∞

k=s+1 λ2
k . Furthermore, for any fixed k and s = nα with

0 < α < τ
2(4+2τ)

, we have

λ(s)
nk = λnk + Op

√
ϵn,s

, (20)

u(s)
nk = unk + OL2

p

√
ϵn,s

+ OL2

p

√
sn−ν


. (21)

Proof. Note that the condition EK 2(X, X) < ∞ implies that Eη4
k(X) < ∞. By Lemma 2.3 of Bai [3], we have

n
k=1


λnk −λ(s)

nk

2
≤ tr


Mn − M (s)

n

2
=

1
n2

∞
k,k′=s+1

n
i=1

n
j=1

λkλk′ηk(Xi)ηk′(Xi)ηk(Xj)ηk′(Xj). (22)
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Let ηk(Xi)ηk′(Xi)ηk(Xj)ηk′(Xj) = D. Then, by simple calculation, we get

E(D) =


Eη4

k(Xi), if k = k′, i = j,
Eη2

k(Xi)η
2
k(Xj) = 1, if k = k′, i ≠ j,

Eη2
k(Xi)η

2
k′(Xi) ≤


Eη4

k(Xi)


Eη4

k′(Xi), if k ≠ k′, i = j,
Eηk(Xi)ηk′(Xi)Eηk(Xj)ηk′(Xj) = 0, if k ≠ k′, i ≠ j.

(23)

Therefore, the expectation of the R.H.S. of (22) can be bounded by

1
n

∞
k=s+1

λ2
kEη4

k(X) +
n − 1
n

∞
k=s+1

λ2
k +

1
n

∞
k,k′=s+1

k≠k′

λkλk′


Eη4

k(X)


Eη4

k′(X).

Since Eη4
k(X) is uniformly bounded and


∞

k=s+1 λ2
k = o

 1
s


, we have

E
n

k=1


λnk −λ(s)

nk

2
≤

1
n


∞

k=s+1

λk


Eη4

k(X)

2

+
n − 1
n

∞
k=s+1

λ2
k .

Hence,
n

k=1


λnk −λ(s)

nk

2
≤ tr

M (s)
n − Mn

2
= Op


ϵn,s

.

Next, for a fixed k,

∥M (s)
n un,k − Mnun,k∥

2
2 ≤ ∥M (s)

n − Mn∥
2
F = Op(ϵm,n).

Thus, we haveM (s)
n un,k = Mnun,k + OL2

p

√
ϵm,n


= λnkun,k + OL2

p

√
ϵm,n


.

Now, let unk =
n

i=1 αiu(s)
ni , where

n
i=1 α2

i = 1. Then, M (s)
n un,k =

n
i=1 αiλ(s)

ni u(s)
ni . Therefore, we have

n
i=1

αi(λnk −λ(s)
ni )u(s)

ni = λnkunk − M (s)
n un,k = OL2

p


ϵ̃m,n


,

which implies, by estimating its L2 norm, that
n

i=1 α2
i (λnk −λ(s)

ni )
2

= Op(ϵm,n). Note that, by Eqs. (19) and (24),1 we have
(λk − λnk)

2
= Op(ϵm,n) + Op(sn−ν) and therefore

n
i=1

α2
i (λk − λi)

2
≤ 3

n
i=1

α2
i (λk − λnk)

2
+ 3

n
i=1

α2
i (λnk −λ(s)

ni )
2
+ 3

n
i=1

(λ(s)
ni − λi)

2

= 3(λk − λnk)
2
+ Op(ϵm,n) + Op(sn−ν)

= Op(ϵm,n) + Op(sn−ν).

Then, for a fixed k, because of the distinctness assumption of λi’s (see Eq. (4)), these αi’s must satisfy
i≠k

α2
i = Op(ϵm,n) + Op(sn−ν) and α2

k = 1 + Op(ϵm,n) + Op(sn−ν).

Without loss of generality, we can assume that αk > 0, so that αk = 1 + Op(ϵm,n) + Op(sn−ν). (Note that each eigenvector
has two directions so we can always choose the appropriate direction of unk to make αk > 0.) Thus, we have

∥u(s)
nk − unk∥

2
2 = (1 − αk)

2
+


i≠k

α2
i = Op(ϵm,n) + Op(sn−ν),

and we obtain Eq. (21). �

Lemma 3. Let s = nα with 0 < α < τ
2(4+2τ)

. Then, for any α < ν < τ
4+2τ − α, we have

s
k=1


λk −λ(s)

nk

2
= Op


sn−ν


. (24)

1 Although Eq. (24) is in Lemma 3, the proof of the equation does not require Lemma 2.
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Furthermore, for a fixed k, we have

λ(s)
nk = λk + Op

√
sn−2ν


, (25)

u(s)
nk =

1
√
n
ηk(Xn) + OL2

p

√
ϵn,s

+ OL2

p

√
sn−2ν


. (26)

Proof. From Lemma 1, when n−(ν−α) is small enough, we may assume that

A(s)
n
1/2

is nonsingular. Thus, let W (s)
n =

V (s)
n

A(s)
n
−1/2

and then W (s)
n is an n × s orthogonal matrix, i.e., W (s)T

n W (s)
n = Is. Note that M (s)

n = V (s)
n 3sV

(s)T
n , so the

kernel of M (s)
n contains (span{V (s)

n })⊥. Therefore, the first s eigenvalues of M (s)
n are the same as those of W (s)T

n M (s)
n W (s)

n =
A(s)
n
1/2

3s

A(s)
n
1/2

, where 3s = diag(λ1, λ2, . . . , λs). By Lemma 2.3 of Bai [3],

s
k=1


λk −λ(s)

nk

2
≤ tr


3s −


A(s)
n

1/2
3s

A(s)
n

1/22
.

Denote the entries of A(s)
n and


A(s)
n
1/2

by aij and bij, respectively, i.e.,

A(s)
n :=


aij
s
i,j=1, and


A(s)
n

1/2
:= B :=


bij
s
i,j=1.

Therefore, we have, by simple calculation,
s

k=1


λk −λ(s)

nk

2
≤ tr (3s − B3sB)2

=

s
i=1

λ2
i − 2

s
i,k=1

λiλkb2ik +

s
k,k′=1

λkλk′


s

i=1

bkibk′ i

2

  
a2
kk′

= 2
s

i=1

λ2
i − 2

s
i,k=1

λiλkb2ik +

s
k,k′=1

λkλk′a2kk′ −

s
i=1

λ2
i

≤

−2
s

i,k=1

λiλk(b2ki − δki)

+
 s
i,k=1

λiλk(a2ki − δki)


≤


2 sup

i,j
|b2ij − δij| + sup

i,j
|a2ij − δij|


·


∞
i=1

λi

2

= Op

sn−ν


.

Next, let us first consider the following expressions:

M (s)
n ·

1
√
n

ηk(Xn) = V (s)
n 3sV (s)T

n ·
1

√
n

ηk(Xn)

= V (s)
n


λ1 a1k
λ2 a2k

...
λs ask

 = V (s)
n


(0, . . . , λk, . . . , 0)T + ξ


,

where ξ = O(∞)
p


n−ν


by Lemma 1. Let w = V (s)

n ξ. Then, still by Lemma 1, we have

∥w∥
2
2 =


V (s)
n ξ,V (s)

n ξ

=

A(s)
n ξ, ξ


≤ ∥ξ∥2

2 +
ξT A(s)

n − Im

ξ


= Op

 s
n2ν


+ Op


sn−ν

n2ν


= Op

 s
n2ν


.

Therefore,

M (s)
n ·

1
√
n

ηk(Xn) = λk ·
1

√
n

ηk(Xn) + O(L2)
p


s

n2ν


. (27)
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Now let 1
√
nηk(Xn) =

n
i=1 αiu(s)

ni . Then,

M (s)
n ·

1
√
n

ηk(Xn) =

n
i=1

αiλ(s)
ni u(s)

ni . (28)

Due to Eq. (27), we have
n

i=1

αi(λk −λ(s)
ni )u(s)

ni =
1

√
n


λkηk(Xn) − M (s)

n ηk(Xn)


= O(L2)
p


s

n2ν


,

which implies, by estimating its L2 norm, that
n

i=1 α2
i (λk − λ(s)

ni )
2

= Op

sn−2ν


. Similar to the proof of Lemma 2, by

Eqs. (19) and (24), we have
n

i=1

α2
i (λk − λi)

2
≤ 3

n
i=1

α2
i (λk − λnk)

2
+ 3

n
i=1

α2
i (λnk −λ(s)

ni )
2
+ 3

n
i=1

(λ(s)
ni − λi)

2

= Op(ϵm,n) + Op(sn−ν).

Then, for a fixed k, because of the distinctness assumption of λi’s (see Eq. (4)), these αi’s must satisfy
i≠k

α2
i = Op(ϵn,s) + Op


sn−2ν ,

α2
k = 1 + Op(ϵn,s) + Op


sn−2ν . (29)

Without loss of generality, we can assume that αk > 0, by choosing an appropriate direction ofu(s)
nk , so αk = 1 + Op(ϵn,s) +

Op

sn−2ν


. Thus, we haveu(s)

nk −
1

√
n
ηk(Xn)

2
2

= (1 − αk)
2
+


i≠k

α2
i = Op(ϵn,s) + Op


sn−2ν .

Hence, we obtain Eq. (26). �

Proof of Theorem 1. This theorem can be obtained by combining Lemmas 2 and 3. �

Next, recall the partition (6) and its rank-m approximation (7):

Mn =


M11 M12
M21 M22


, M (m)

n =


M11 M12

M21 M21M−1
11 M12


.

Note that

M11 =
1
n

∞
k=1

λkηk(X
(m)
1 )ηk(X

(m)
1 )T ,

M12 =
1
n

∞
k=1

λkηk(X
(m)
1 )ηk(X

(n\m)

2 )T ,

M21 =
1
n

∞
k=1

λkηk(X
(n\m)

2 )ηk(X
(m)
1 )T ,

M22 =
1
n

∞
k=1

λkηk(X
(n\m)

2 X (n\m)

2 )ηk(X
(n\m)

2 X (n\m)

2 )T ,

where ηk(X
(m)
1 ) := [ηk(X1), . . . , ηk(Xm)]T , and ηk(X

(n\m)

2 ) := [ηk(Xm+1), . . . , ηk(Xn)]
T . Denote the m leading eigenvalues ofM (m)

n byλ(m)
n1 ≥ · · · ≥λ(m)

nm and the corresponding unit eigenvectors byu(m)
nk , k = 1, 2, . . . ,m.

Now, as expected, the term, M−1
11 , in M (m)

n is the key to make this approximation work, but it is also the most difficult
term to be controlled because of its large eigenvalues. To break through this puzzle, the only place we can possibly connect
with seems to be


λk,

1
nηk(Xn)


. In Theorem 1, we have established the connection between {λnk, unk} and


λk,

1
nηk(Xn)


.

We will then use this connection to handle the eigenvalue problem of M−1
11 . The key idea is to first truncate M12 and M21

so that we can have matrix decompositions (see (30)) and then to bring λi’s of M12 and M21 appearing in M21M−1
11 M12 to

balance with the large eigenvalues ofM−1
11 .
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Next, in order to use matrix operation, define the following two truncated matrices

M
(m,l)
n :=


M11 M (m,l)

12M (m,l)
21

M (m,l)
22


, and M (l)

n :=


M11 M (m,l)

12M (m,l)
21

M (m,l)
21 M−1

11
M (m,l)

12


,

where

M (m,l)
12 :=

1
n

l
k=1

λkηk(X
(m)
1 )ηk(X

(n\m)

2 )T , M (m,l)
21 :=

1
n

l
k=1

λkηk(X
(n\m)

2 )ηk(X
(m)
1 )T ,

M (m,l)
22 :=

1
n

l
k=1

λkηk(X
(n\m)

2 )ηk(X
(n\m)

2 )T .

Notice that

M
(m,l)
n = M (l)

n +

1
n

∞
k=l+1

λkηk(X
(m)
1 )ηk(X

(m)
1 )T 0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)

 ,

where 0i×j is an i × j zero matrix. Since M (l)
n is nonnegative definite and

1
n

∞
k=l+1

λkηk(X
(m)
1 )ηk(X

(m)
1 )T

is positive definite, the matrixM
(m,l)
n is nonnegative definite. Using the fact that if A is anm-square positive definite matrix,

then 
A BT

B BA−1BT


is nonnegative definite for any (n−m)×mmatrix B (see Eq. (6.9) in [25]), the matrix M (l)

n is also nonnegative definite. Also

note that M (l)

n has an interpretation as the difference of an unconditional covariance matrix minus a conditional covariance
matrix, and hence, is nonnegative definite.2

Let V (l)
n in (15) be partitioned into V (l)

n =


V (l)
1

V (l)
2


, where

V (l)
1 :=

1
√
n


η1(X

(m)
1 ), . . . , ηl(X

(m)
1 )


m×l

,

V (l)
2 :=

1
√
n


η1(X

(n\m)

2 ), . . . , ηl(X
(n\m)

2 )


(n−m)×l
.

Thus, M (m,l)
12 = V (l)

1 3lV
(l)T
2 , M (m,l)

21 = V (l)
2 3lV

(l)T
1 , M (m,l)

22 = V (l)
2 3lV

(l)T
2 . (30)

Now, expressM11 as follows:

M11 =
m
n

Um diag(λm1, λm2, . . . , λmm) U T
m,

where Um = (um1, um2, . . . , um,m) consists of m orthogonal eigenvectors of n
mM11 with corresponding eigenvalues λm1 ≥

λm2 ≥ · · · ≥ λmm. Thus, U T
mUm = Im. Define C (l) as follows: letM (m,l)

21 M−1
11
M (m,l)

12 = V (l)
2 3lV

(l)T
1 Um

n
m

diag(λ−1
m1, λ

−1
m2, . . . , λ

−1
mm)U T

mV
(l)
1 3lV

(l)T
2

= V (l)
2 C (l)V (l)T

2 ,

2 Suppose (X1, X2) has a multivariate normal distribution with covariance matrix Σ =


Σ11 Σ12
Σ21 Σ22


. The covariance of X2 conditional on X1 is given by

Σ22·1 := Σ22 − Σ21Σ
−1
11 Σ12 .

cov


X1
X2


− cov


X1
X2

 X1


=


Σ11 Σ12
Σ21 Σ22


−


0 0
0 Σ22·1


=


Σ11 Σ12

Σ21 Σ21Σ
−1
11 Σ12


≥ 0.

See, e.g., Anderson [2].
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where C (l) is an l × lmatrix given by

C (l)
=

n
m

3lV
(l)T
1 Um diag(λ−1

m1, λ
−1
m2, . . . , λ

−1
mm)U T

mV
(l)
1 3l. (31)

The (i, j)th entry of C (l) is given by

cij = λiλj

m
k=1

λ−1
mkqkiqkj,

where qkj is the (k, j)th entry of the matrix


n
mU T

mV
(l)
1 .

It is well known that M (m,l)
22 ≥ M (m,l)

21 M−1
11
M (m,l)

12 for any m, n, l with m < n (see Theorem 6.13 in [25]). Therefore,
V (l)
2 (3l − C (l))V (l)T

2 ≥ 0 for any m, n, l with m < n. Now, by Lemma 1, V (l)T
2 V (l)

2 is invertible infinitely often as n tends
to infinity and 3l − C (l) is independent of V (l)

2 , so we have 3l − C (l)
≥ 0. Thus,

λi = eTi 3lei ≥ eTi C
(l)ei = cii

for all i, where ei is an l-vector with jth element δi,j.

Lemma 4. We have the following bounds for entries in C (l), where C (l) is defined in (31).

cr1r2 =
1

λr1λr2


Op
√

ϵm,sm


+ Op


smm−ν


, (32)

crr = λr +
1
λr


Op
√

ϵm,sm


+ Op


smm−ν


, (33)

where r1 ≠ r2.

Proof. We have the following inequality for cij:

c2ij =


m

k=1

λ
−1/2
mk λiqkiλ

−1/2
mk λjqkj

2

≤

m
k=1

λ−1
mkλ

2
i q

2
ki ×

m
k=1

λ−1
mkλ

2
j q

2
kj = ciicjj ≤ λiλj. (34)

However, for any fixed integer r > 0,

λr ≥ crr = λ2
r λ

−1
mr q

2
rr +


k∈{1,2,...,m}\{r}

λ−1
mkλ

2
r q

2
kr

≥ λ2
r λ

−1
mr q

2
rr

= λr +
1
λr

Op
√

ϵm,sm


+

1
λr

Op


smm−ν


, (35)

where sm = mα with 0 < α < τ
2(4+2τ)

and α < ν < τ/(4 + 2τ) − α. (Note that from the second line to third line, we use
Theorem 1.) This implies that

crr = λr +
1
λr


Op
√

ϵm,sm


+ Op


smm−ν


and 

k∈{1,2,...,m}\{r}

λ−1
mkλ

2
r q

2
kr =

1
λr


Op
√

ϵm,sm


+ Op


smm−ν


.

Moreover, for fixed positive integers r1, r2,

cr1r2 = λr1λr2

m
k=1

λ−1
mkqkr1qkr2

= λr1λr2λ
−1
mr1qr1r1qr1r2 + λr1λr2λ

−1
mr2qr2r1qr2r2 + λr1λr2


k∈{1,2,...,m}\{r1,r2}

λ−1
mkqkr1qkr2 .

Next, by replacing r by r1 in Eq. (35), we can obtain

λr1λ
−1
mr1qr1r1 ≤ q−1

r1r1 ,
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so that the first term can be bounded as shown below:

λr1λr2λ
−1
mr1qr1r1qr1r2 ≤ λr2qr1r2q

−1
r1r1 = Op

√
ϵm,sm


+ Op


smm−ν


.

Similarly, the second term

λr2λr1λ
−1
mr2qr2r2qr2r1 = Op

√
ϵm,sm


+ Op


smm−ν


.

Now for the third term, we can again use Cauchy–Schwarz inequality as (35) and obtain

λr1λr2


k∈{1,2,...,m}\{r1,r2}

λ−1
mkqkr1qkr2 =

1
λr1λr2


Op

ϵm,sm


+ Op


smm−ν


.

Hence, we have the following bound for fixed positive integers r1 and r2:

cr1r2 =
1

λr1λr2


Op
√

ϵm,sm


+ Op


smm−ν


. �

Proof of Theorem 2.
n

k=1


λnk −λ(m)

nk

2
≤ tr


Mn − M (m)

n

2
= ∥M22 − M21M−1

11 M12∥
2
F

=
1
n2

n−m
i,j=1

∞
k1,k′1,k2,k

′
2=1

(λk1δk1,k2 − ck1k2)(λk′1
δk′1,k

′
2
− ck′1,k′2)

× ηk1(Xm+i)ηk′1
(Xm+i)ηk2(Xm+j)ηk′2

(Xm+j).

Let G = ηk1(Xm+i)ηk′1
(Xm+i)ηk2(Xm+j)ηk′2

(Xm+j). Since supk Eη4
k(X) is bounded by M , we can obtain |E(G)| ≤ M if i = j.

Furthermore,

E(G) =


1, if (k1, k2) = (k′

1, k
′

2), i ≤ j,
0, if (k1, k2) ≠ (k′

1, k
′

2), i ≠ j. (36)

Therefore,

E

∥M22 − M21M−1

11 M12∥
2
F

Xm
1


=

1
n2

n−m
i,j=1

∞
k1,k′1,k2,k

′
2=1

(λk1δk1,k2 − ck1k2)(λk′1
δk′1,k

′
2
− ck′1,k′2)E(G)

≤ I1 + I2,

where

I1 =


n − m

n

2 ∞
k1,k2=1

(λk1δk1,k2 − ck1k2)
2 (for i ≠ j)

and

I2 =
n − m
n2

M


∞

k1,k2=1

(λk1δk1,k2 − ck1k2)

2

(for i = j).

Now we write I1 = I11 + I12 + I13, where

I11 =


n − m

n

2 l
k1,k2=1

(λk1δk1,k2 − ck1k2)
2,

I12 =


n − m

n

2 ∞
k1,k2=l+1

(λk1δk1,k2 − ck1k2)
2,

I13 = 2

n − m

n

2 ∞
k1=l+1

l
k2=1

(λk1δk1,k2 − ck1k2)
2.
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By Eq. (32) in Lemma 4, the first term

I11 =


n − m

n

2


l
r=1

1
λr

2 
Op

ϵm,sm


+ Op


smm−ν


. (37)

For the second term, since

∞
k1,k2=l+1

(λk1δk1,k2 − ck1k2)
2

≤ 4


∞

k1,k2=l+1

λ2
k1δk1,k2 +

∞
k1,k2=l+1

c2k1k2



and c2ij ≤ λiλj,

I12 ≤


n − m

n

2
 ∞

k=l+1

λ2
k +


∞

k=l+1

λk

2
 . (38)

For the third term,

I13 = 2

n − m

n

2 ∞
k1=l+1

l
k2=1

c2k1k2 ≤ 2

n − m

n

2 ∞
k1=l+1

l
k2=1

λk1λk2

≤ 2

n − m

n

2


∞
k2=1

λk2


∞

k1=l+1

λk1


. (39)

Therefore, by Eqs. (37)–(39), we have

I1 =


n − m

n

2
 l

r=1

1
λr

2 
Op

ϵm,sm


+ Op


smm−ν


+ O


∞

k=l+1

λk

 . (40)

Now let us consider I2.

I2 =
n − m
n2

M


lim
l→∞

l
k1,k2=1

(λk1δk1,k2 − ck1k2)

2

.

For any integer l > 0, the finite sum

l
k1,k2=1

(λk1δk1,k2 − ck1k2) = (1, 1, . . . , 1)(3l − C (l))(1, 1, . . . , 1)T .

Since 3l ≥ C (l), we have

0 ≤

l
k1,k2=1

(λk1δk1,k2 − ck1k2) ≤ 2(1, 1, . . . , 1)3l(1, 1, . . . , 1)T ≤ 2
∞
i=1

λi.

Thus,

I2 ≤ 2M
n − m
n2

∞
i=1

λi = O

n − m
n2


. (41)

Together with Eqs. (40) and (41), we obtain

E(∥M22 − M21M−1
11 M12∥

2
F |X

m
1 ) =


n − m

n

2
 l

r=1

1
λr

2 
Op

ϵm,sm


+ Op


smm−ν



+O


∞

k=l+1

λk

+ O

n − m
n2


.
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Note that, we can choose l = lm as a function of mwhich tends to infinity slow enough asm → ∞ such that

lim
m→∞

 lm
r=1

1
λr

2 
ϵm,sm + smm−ν


+

∞
k=lm+1

λk

 = 0.

Hence, we obtain
n

i=1


λni −λ(m)

ni

2
≤ ∥Mn − M (m)

n ∥
2
F = Op(ϵ̃m,n).

This gives us Eqs. (12) and (13).
Next, let us first consider, for a fixed k,

∥M (m)
n unk − Mnunk∥

2
2 ≤ ∥M (m)

n − Mn∥
2
F = Op(ϵ̃m,n).

Thus, we haveM (m)
n unk = Mnunk + OL2

p


ϵ̃m,n


= λnkunk + OL2

p


ν̃m,n


.

Similar to the deviation of Eq. (10), we let unk =
n

i=1 αiuni. Then, M (m)
n unk =

n
i=1 αiλ(m)

ni uni. Therefore, we have
n

i=1

αi(λnk −λ(m)
ni )uni = λnkunk − M (m)

n unk = OL2
p


ϵ̃m,n


,

which implies, by estimating its L2 norm, that
n

i=1 α2
i (λk −λni)

2
= Op(ϵ̃m,n). Note that, by Theorem 1 and Eq. (13), we have

λnk −λ(m)
ni = λk − λi + Op

√
ϵn,s

+ Op

√
sn−ν


+ Op


ϵ̃m,n


.

Then, for a fixed k, these αi’s must satisfy
i≠k

α2
i = Op(ϵ̃m,n) and α2

k = 1 + Op(ϵ̃m,n).

Without loss the generality, we can again assume that αk > 0, by choosing an appropriate direction of unk, so that
αk = 1 + Op(ϵ̃m,n). Thus, we have

∥unk − unk∥
2
2 = (1 − αk)

2
+


i≠k

α2
i = Op(ϵ̃m,n),

and we obtain Eq. (14). �

4. Examples and numerical study

Example 1. Consider the covariance kernel of the Brownian motion K(t, s) := t ∧ s, for t, s ∈ [0, 1] under uniform

distributionU(0, 1). By the Fourier theory,
√

2 sin

k +

1
2


π t
∞

k=0
forms a complete and orthonormal basis for the family

of L2([0, 1]) functions. Thus, the indicator function

1(0,t)(u) =

∞
k=0

4
(2k + 1)π

cos


k +
1
2


πu


· sin


k +
1
2


π t


,

which converges in the sense of L2([0, 1]). Thus, we have the following spectral decomposition of the kernel K(s, t):

t ∧ s =

 1

0
1(0,t)(u)1(0,s)(u)du =

∞
k=0

8
(2k + 1)2π2

sin


k +
1
2


π t


· sin


k +
1
2


πs


.

This equation shows that the eigenvalues for the kernel function, K(t, s) = t ∧ s, are λk =
4

(2k+1)2π2 and the corresponding

eigenfunctions are ηk(t) =
√
2 sin


k +

1
2


π t

. In Theorem 2, we have obtained that the error of Nyström approximation

goes to zero as m, n tend to infinity through an upper bound with rate of O(ϵ̃m,n). However, ϵ̃m,n does not reflect the actual
rate of convergence as seen in the numerical experiment with Fig. 4. In this figure, we compute, for each (m, n), the absolute
error of the largest eigenvalue and the L2 error (Euclidean distance) of the corresponding unit eigenvector. Themiddle panel
of the figure shows the rapid convergence of the largest eigenvalue and it corresponding eigenvector for the case ofm =

√
n.

By log-linear regression estimate (linear regression estimate for logarithmic errors), the error rate is about of O(n−0.8), but
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Fig. 4. Kernel K(t, s) := t∧ s. The Nyström approximation errors of largest eigenvalues and their corresponding eigenvectors are plotted, respectively, by
black circle and blue star. The left panel shows the fast decay of the errors as m increases toward the fixed n = 500. The middle panel is the log–log plot
of error versus n and shows the errors tend to zeros as n,m tend to infinity with m =

√
n. The right panel is the log–log plot and shows the slow decay of

the analytic upper error bound.

Fig. 5. Wishart matrix. The Nyström approximation errors of largest eigenvalues and their corresponding eigenvectors are plotted by black circle and blue
star. The left panel shows the slow decay of the errors asm increases toward the fixed n = 500. Themiddle and right panel show the errors do not converge
to zero when m, n tend to infinity withm =

√
n and m = n/2.

by the formula of Remark 3, the upper bound rate ϵ̃m,n = O

m−

3
70 (1−2δ)


= O


n−

3
140 (1−2δ)


which is much slower than the

numerical experiment as we can see in the right panel of the figure. (Notice that in this example, β = 2 [i.e., λk = O(k−2)],
τ can be arbitrarily large and δ can be arbitrarily small.) The left panel shows that given n = 500 fixed, the errors evanesce
as m is greater than 20. Thus, takingm =

√
nmight be quite appropriate for this example.

Example 2. Not all symmetric, positive definite, randommatrices can have a set of fixed underlying spectrums as the basic
assumption of this paper. Let us consider the Wishart randommatrix


scaled by 1

n


as follows:

Mn =
1
n
XnX T

n ,

where Xn is an n × n matrix with i.i.d. standard normal random entries. When n tends to infinity, by Marchenko–Pastur
law, the empirical distribution of the eigenvalues ofMn becomes dense in an interval. We can see in Fig. 5 that the Nyström
method does not work, since these Wishart matrices are not derived, as in Eq. (5), from an underlying continuous kernel
which has a discrete spectral decomposition (Eq. (2)).

Notation

• A(s)
n =


aij
s
i,j=1 := V (s)T

n V (s)
n .

• C (l)
:= 3lV

(l)T
1 M−1

11 V (l)
1 3l ∈ ℜ

l×l, where V (l)
1 :=

1
√
n


η1(X

(m)
1 ), . . . , ηl(X

(m)
1 ), . . .


m×l

.

• ηk(X
(m)
1 ) := [ηk(X1), . . . , ηk(Xm)]T , and ηk(X

(n\m)

2 ) := [ηk(Xm+1), . . . , ηk(Xn)]
T .

• Is is the identity matrix with size s × s.
• K (s)(x, y) :=

s
k=1 λkηk(x)ηk(y), the truncated kernel at s components.K (s)

n :=
K (s)(Xi, Xj)

n
i,j=1.
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• λk, ηk(x): the kth eigenvalue and associated eigenfunction of K(x, y).
• λnk, unk: the kth eigenvalue and associated eigenvector ofMn.
• λ(m)

nk ,u(m)
nk : the kth eigenvalue and associated eigenvector of M (m)

n .
• λ(s)

nk ,u(s)
nk : the kth eigenvalue and associated eigenvector of M (s)

n .
• 3s := diag(λ1, . . . , λs) ∈ ℜ

s×s.
• Mn :=

1
nK(Xn,Xn) =

1
n


K(Xi, Xj)

n
i,j=1 =

1
nKn. Sometimes Mn is further partitioned into Mn =


M11 M12
M21 M22


, where

M11 ∈ ℜ
m×m,M12 ∈ ℜ

m×(n−m), andM22 ∈ ℜ
(n−m)×(n−m).

• M (m)
n :=


M11
M21


M−1

11 [M11 M12], which is a Nyström rank-m approximation toMn.

• M (s)
n :=

1
n

K (s)(Xi, Xj)
n
i,j=1 =

1
n
K (s)

n , an n × nmatrix with rank at most s.

• M
(m,s)
n :=


M11 M(m,s)

12M(m,s)
21

M(m,s)
22


• M (m,s)

12 :=
1
n

s
k=1 λkηk(X

(m)
1 )ηk(X

(n\m)

2 )T , M (m,s)
21 = M (m,s)T

12 ,M (m,s)
22 :=

1
n

s
k=1 λkηk(X

(n\m)

2 )ηk(X
(n\m)

2 )T .

•
M (s)

n :=


M11 M(m,s)

12M(m,s)
21

M(m,s)
21 M−1

11
M(m,s)

12


.

• V (s)
n :=

1
√
n


η1(Xn), η2(Xn), . . . , ηs(Xn)


, which is an n × s matrix consisting of leading s eigenfunctions evaluated at

data points Xn and scaled by 1/
√
n. Sometimes V (s)

n is further partitioned into 2 sub-matrices: V (s)
n =


V (s)
1

V (s)
2


, where

V (s)
1 ∈ ℜ

m×s and V (s)
2 ∈ ℜ

(n−m)×s.
• Xn := [X1, . . . , Xn]T , which is the data design matrix. Sometimes this data design matrix is partitioned into two sub-

matrices Xn =


X (m)
1

X (n\m)
2


n×p

, where X (m)
1 := [X1, . . . , Xm]

T
∈ ℜ

m×p and X (n\m)

2 := [Xm+1, . . . , Xn]
T

∈ ℜ
(n−m)×p.

• X (m)
n : a data subset matrix of sizem×p formed by a random subset of sizem from {X1, . . . , Xn}. Since X1, . . . , Xn are i.i.d.

copies from X , without loss of generality, we may assume thatX (m)
n = X (m)

1 .
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