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Abstract

In factor copula models for multivariate data, dependesocexplained via one or several common factors. These
models are flexible in handling tail dependence and asynymatin parsimonious dependence structures. We propose
two structured factor copula models for the case where bimsacan be split into non-overlapping groups such that
there is homogeneous dependence within each group. A typieanple of such variables occurs for stock returns
from different sectors. The structured models inherit most of dep®redproperties derived for common factor copula
models. With appropriate numerical method&icgeent estimation of dependence parameters is possibleatarsgts
with over 100 variables. We apply the structured factor t@podels to analyze a financial data set, and compare with
other copula models for tail inference. Using model-basgetval estimates, we find that some commonly used risk
measures may not be well discriminated by copula modelgaiiteighted dependence measures can discriminate
copula models with dierent dependence and tail properties.

Keywords. bi-factor model, conditional independence, dependen@sare, factor analysis, tail asymmetry, tail
dependence, truncated vine
2000 MSC: 62H25, 60H99

1. Introduction

Modeling high-dimensional data is a challenging task reggiflexible and tractable models. Models based on
multivariate normality or Gaussianity are widely used iffefient applications due to their simplicity and tractailit
In these models, special correlation structures are useediace the number of dependence parameters to a linear
function of the dimension. A typical example is a Gaussiatdiamodel where one or several common factors define
the dependence structure for all of the variables. Factpuleomodels proposed in Krupskii and Joe (2013) are
extensions of the Gaussian factor model allowing greatgibfley when modeling non-Gaussian dependence. In
particular, strong tail dependence and tail asymmetry eaadcommodated. In data sets with a large number of
variables, data can come fromfi@rent sources or be clustered irffelient groups, for example, stock returns from
different sectors or grouped item response data in psychos)etnies dependence within each group and among
different groups can be qualitativelyfidrent, and structured factor models can make use of the gnéarmation.

In psychometrics, sometimes a bi-factor correlation $tmgcis used when variables or items can be split into
non-overlapping groups; see for example Gibbons and Hed&k82) and Holzinger and Swineford (1937). In a
Gaussian bi-factor model, there is one common Gaussiaorfatiich defines dependence betwedifiedent groups,
and one or several independent group-specific Gaussiamrgashich define dependence within each group. An
alternative way to model dependence for grouped data istache®del where the dependence in groups is modeled
via dependent group-specific factors and the observedblasiare assumed to be conditionally independent given
these group-specific factors. The nested model is simil&aossian models with multilevel covariance structure;
see Muthen (1994). Despite the simplicity, these two moldai® the same drawbacks as a common Gaussian factor
model — they do not account for tail asymmetry and tail depecd.
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In this paper, we propose copula extensions for bi-factdrraasted Gaussian models. The extensions are called
structured factor copula models. The proposed models contain 1- and 2-factor copula modetsduced in Krupskii
and Joe (2013) as special cases, while allowing flexible mi#grece structure both for within group and between
group dependence. As a result, the models can be suitabladdeling high-dimensional data sets consisting of
several groups of variables with homogeneous dependermaEmgroup.

The proposed multivariate copula models are built from ausage of bivariate copulas in a similar way to
vine copulas. LeFy be the multivariate cumulative distribution function (pdf a randomd-dimensional vector
X = (Xg,...,Xq), and IetFXI be the cdf ofX; for j = 1,...,d. The copuleCx, corresponding t&x, is a multivariate
uniform cdf such thaFx (X1, ..., Xd) = Cx(Fx,(X1), ..., Fx,(Xa)). By Sklar (1959)Cx is unique ifFx is continuous.
Copula functions allow for diierent types of dependence structure and are popular forimgaen-Gaussian depen-
dence, including stock returns, insurance and hydrolotg; dae for example see Patton (2006), McNeil et al. (2005),
Salvadori et al. (2007) and others.

The proposed structured copula models are special casasnchted-vine copula models with latent variables.
In a vine model, bivariate linking copulas are applied toditianal cdfs to sequentially construct a multivariate
distribution. The resulting vine model or pair-copula doastion allows great flexibility in modeling fferent types
of dependence structure by choosing appropriate linkimpyles; see Kurowicka and Joe (2011) and Brechmann and
Czado (2013) for more details. We show that depending ontib&e of bivariate copulas in the structured copula
models, diferent types of strength of dependence in the tails can berancdated, similar to common factor copula
models.

For a large number of variables which divide naturally intm+overlapping groups, it could be convenient to
first separately model each group of variables followed byedhod to combine the smaller models into a bigger
model. Our structured copula models are one way to do this. gfbuped t-copula of Demarta and McNeil (2005)
can handle groups but can only accommodate reflection symnAetother approach is hierarchical Kendall copulas
in Brechmann (2014); it makes use of conditional independeayiven some group aggregation variables. Kendall
functions only have simple form for exchangeable Archinadeopulas, so that hierarchical Kendall copulas are only
convenient for exchangeable dependence within groups. dsted Archimedean copulas (Section 4.1 of Joe (1997))
are too parsimonious and have the property of exchangeaptndence within groups.

The details in this paper are given for continuous respoas@bles, but the structured copula models can also
be developed for discrete ordinal variables or mixed dis@entinuous variables. Factor copula models for item
response are studied in Nikoloulopoulos and Joe (2014)f #melitems can be classified into non-overlapping groups,
then the bi-factor or nested factor copula models are catedvhen there is tail asymmetry or tail dependence.

The rest of the paper is organized as follows. In Section 2 efimé bi-factor and nested copula models including
a special case of Gaussian copulas, and compare the pespefithese models with those of 1- and 2-factor copula
models in Section 3. Section 4 has details on numerical maxirikelihood with a modified Newton-Raphson
algorithm. Section 5 has a resampling method to obtain mbdséd interval estimates of the portfolio risk measures of
Value-at-Risk and conditional tail expectation. In Sectiy we apply diferent copula-GARCH models to a financial
data set and compare estimates of the Value-at-Risk, ¢ondittail expectations as well as some other tail-based
guantities. The results show that structured factor comaldels can parsimoniously estimate the dependence siuctu
of the data. Value-at-Risk and other risk measures, whielwédely used in financial applications, cannfii@ently
differentiate models with dierent tail properties, and tail-weighted dependence niessue a better match to the fit
of copula models based on the Akaike information criter®ection 7 concludes with a discussion of future research.

2. Structured factor copula models

Common factor models assume tldabbserved variables are conditionally independent givend <« d latent
variables that fiect each observed variables; for identifiability, the lateariables are assumed to be independent.
Structured factor models assume that there is structutestoliserved variables and each latent variable is linked to
a subset of the observed variables. For Gaussian strudactnt models, this corresponds to many structured zeros
in the matrix of loadings; in this case, with fewer parameterthe loading matrix compared with the common factor
model, and the latent variables could be dependent, as in the obliquerfactalel of Harris and Kaiser (1964) and
McDonald (1985). With a largd, structured Gaussian factor models are also parsimoniodsisito parameterize the
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Table 1: Some copula notation; assuming/, Vo, V1 ~ U(0, 1), Vo, V1 are independent

Notation Definition

Cuv(u,v) copula cdf for U, V)

Cuv (ulv) := dCyy(u,v)/ov conditional cdf ofU givenV

cuv (U, V) := 8°Cuy (U, v)/dudv copula pdf for U, V)

Cuvy:vo (Cupv, (UIVo), V1) copula linking the conditional cdfs
Cujv, (UIVo) andCy,jy,(V1[Vo) = V1

CU|V1;VO(CU|V0(U|V0)|V1) = 6CU,V1;V0(CU|VO (U|V0), V]_)/&Vl conditional copula cdf o) Vo givenVl

cuvsvo (Cupv, (UIV0), V1) = 8?Cuv; v, (Cupv, (UV0), V1)/0v10v,  copula pdf for U[Vo, Vi)

correlation matrix if0(d) parameters (instead dfd — 1)/2 parameters). The main goal of this section is to present the
copula version of two Gaussian structured factor modetdhi® extension, the parameters of the Gaussian structured
factor models are converted to a set of correlations anébapadrrelations that are algebraically independent aat th
have a truncated vine structure, and then the correlatiodgartial correlations are replaced by bivariate copulas.
Similar copula extensions exist for other structured faatodels.

A specific case of structured factor models occurs when biesacan be divided into non-overlapping groups.
Assume that we havé groups of variables and there adg variables in theg-th group,g = 1,...,G. LetU;; ~
U(0,1),i = 1,...,dy and suppose variabldsyg, ..., Uqq belong to theg-th group. Denote the joint cdf dff =
(Ui1,...,Ug1, -+ ,Usg, ..., Uge) by Cy. Letd = Zgzl dy be the total number of variables.

We consider two classes of structured factor copula modls first model is an extension of the bi-factor model
and we call it the bi-factor copula model. The second modahiextension of the oblique factor model with a blocked
loading matrix where the dependent latent variables yadidf-factor structure.

Factor copulas have appeared in a number of contexts withd&applications. There are factor copula models
in McNeil et al. (2005) and Hull and White (2004) but these @oé as general as those in Krupskii and Joe (2013).
The bi-factor copula model can be considered as a specrlotagp-factor copula in Krupskii and Joe (2013) where
appropriate linking copulas to latent variables are sebtwdd@ional independence based on the group structure. We
briefly introduce one and two-factor copula models and soopell@ notation in Section 2.1 and then define bi-factor
and nested copula models in Sections 2.2 and 2.3.

2.1. One and two-factor copula model

Assume we havd variablesU,, ...,Ug ~ U(0, 1) and letCy be the joint cdf of the vectod = (U, ...,Uq). In
the one-factor copula model the variablés ..., Uy are assumed to be conditionally independent given a laaetaf
Vi ~U(0,1) and

1 d 1 d
Cu(Ul, y 8 Ud) = L l_[ FUJ.|\/1(UJ'|V1) dV]_ = j(; l—[ CUJ|V1(U]'|V1) dV]_, (1)
j=1 j=1
WhereCUJ’Vl(Uj,Vl) is the copula cdf linkingJ; andV, andCUJ|V1(Uj|V1) = aCUJ,Vl(u,-,vl)/avl is a conditional cdf of

Cijvl.
In the two-factor copula model the variablds, ..., Uy are assumed to be conditionally independent given two
independent latent facto¥g, V. ~ U(0, 1) and

1 ~1d
Cu(uy,....ug) = f f l_[CU,\vz:vl(CUJ|v1(Ui|V1)|V2)dVldVZ, 2
o Jo i

whereCy; v,.v, (Cu;v, (Ujlv1), v2) is the copula cdf linking the conditional distributios v, (-|v1) andCy,v, (Iv1), and
Cu;vava (Cujva (UjIVa)Iv2) = 0Cu, vy, (Cujpv, (UjIVe), V2) /0v2.  In the next sections we will be using similar copula
notation for bivariate copula cdfs, conditional cdfs anfspthese notation is summarized in Table 1.
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It is seen from (1) and (2), that the joint cdf in the models barexpressed in terms of bivariate linking copula
cdf and conditional cdfs of copulas. Tail properties andeshefence properties of these linking copulas reflect the
properties of the joint distributioBy; see Krupskii and Joe (2013) for details.

2.2. Bi-factor copula model

Consider a model with one common (global) factor &droup-specific factors, such that t@e+ 1 factors or
latent variables are mutually independent. Assume thdtinvthe g-th group,U(0, 1) distributed random variables
Uig, ..., Uayg are conditionally independent givafy andVy, whereVo, Vi, ..., Vg are independent and identically
distributed (i.i.d.)U(0, 1) random variables. We also assume tHgtin groupg does not depend oy for g’ # g.
The bi-factor copula model is therefore an extension ofweefactor copula model whef® = 1.

Let Cy,,.v, be the copula cdf ofig, Vo) and letCy,,, the corresponding conditional distribution. L&, v,:v,
be the copula for the conditional univariate distributi@sg v, (-IVo) andCy,,(-[Vo), with Cy,y, being theU (0, 1) cdf
from the independence &b, V1, ..., V. By Sklar’s theorem, in general, the copQg, v,:v, depends omp. However,
similar to Krupskii and Joe (2013) and the vine copula litere (Kurowicka and Joe (2011)), we make the simplifying
(modeling) assumption th&ly,, v,.v, does not depend ov. This is not a strong assumption as we are dealing with
latent variables, and in a special case of the Gaussian mummilas for conditional distributions do not depend on
the values of the conditioning variables.

The bivariate copula€y,, (for common factor) andCy,,v,v, (for group-specific factor) are assumed to be
absolutely continuous with respective copula denstigs,, andcy,v,:v,-

With a vectoru = (U131, ..., Ug1, -+, Wia, - - ., Ugs ), then using the above conditional independence assungptio
we get:

Gdg

PrUig < Ugi=1,...,dg=1...G) = f . [ 1] [PrUig < uiglVo = Vo, Vg = Vg) dvy - - dvadvo
(0.2 =1 i=1
and
0
PrUig < UiglVo = Vo, Vg = vg) = v PrUig < Uig, Vg < Vg|Vo = Vo)
9
0
= a—vgCuig,vg;vo(Cuig|vo(uig|V0), Vg) =1 Cuigvyvo (Cuigive (UiglVo) IVg)-
Hence

Cu(u)

1 G &
f f l_[ l_[ CuigVgvo (Cuigivs (UigIVo) IVg) AV . . . dv dVo
o Joape

g=1 i=1
1_[ CuigVgivo (Cuigivo (UigVo) V)

1 G 1
XA
1 G dg 1[ 9
cu(u) = fo ]_[{Il_l Cu.g,vo(Uig,Vo)}jO‘ [l—[ Cuig,vg;vo(Cuig|v0(Uig|Vo),Vg)} dVg}dVo- (3)
g=1 |Li=1 i=1

It is seen that the joint density is represented as a onerdiimeal integral of a function which in turn is a product of
G one-dimensional integrals. As a resuls, € 1)-dimensional numerical integration can be avoided. Theehhas
d = d; + ... + dg bivariate linking copulas both for the first and second fesstor & linking copulas in total. The
marginal distribution of (3) for a single growpof variables is a 2-factor copula model.

For the parametric version of this model, there is a parandgdor Cy,, v, and a parametey; g for Cy,v,:v,; 6ig
andy; g could be vectors. The parameter vector for the density ils@)= (6 g, vig:i=1,...,dg3,0=1,...,G).

dy

dvg} dvo;



2.3. Nested copula model

Consider the case @ dependent factors without a common factor. Assume thatfieedg = 1,...,G, U(0, 1)
distributed random variablgdy, . .., Uqg are conditionally independent givery ~ U(0, 1), and the joint cdf of
V = (V1,...,Vg) is given by the copul&y. We also assume thakg in groupg does not depend oviy for g’ # g.
That is, we havé& groups of variables an@ latent factors where thg-th latent factor defines dependence structure
in theg-th group. The nested copula model is therefore an exteditre one-factor copula model whege= 1.

Let Cy,.v, be the copula cdf oflig, V) andCy, v, be the corresponding conditional distribution. With a wect

u=(ug,...,Ud1, - UG, ..., Uy c) We get:

Gdg

Cu(u) = L . {ﬂ [ CU,Q,Vg(uigwg)} ov(Ve, ..., V) dvy ... dVG, (4)

g=1 i=1

whereCy,, v, is the copula linkingJig andVy. This is a copula version of the oblique Gaussian factor rhatiere
each observed variable loads on exactly one latent variable

We additionally assume th&, .. ., Vg are conditionally independent given another latent véeish, that is the
joint distribution ofV has one-factor copula structure. Then we get:

1| G
Cv (V]_, ey VG) = f {l_[ CVg,Vo(Vgs Vo)} dVQ
0

g=1

whereCy, v, is the copula linking/g andVp. It implies that

1 G G
CU (U) = f f l_[ l_[ Cuig|\/g(uig|vg) 1_[ CVg,Vo(Vg, Vo) dV]_ - dVG dVo
0 JOI° | g1 i=1 g=1

1[G 1 dy
j(; {Q \fo [CVg,Vo(Vw Vo) 1:1[ Cuigvg(uiglvg)] dvg} dvo;
1(.G 1 dg
cu(u) = fo {g fo lc\/g,vo(vg,vo)]i:[cuig,vg(uig,vg)] dvg} dvo. (5)

The total number of bivariate linking copulas in the modgligd; + ... + dg + G = d + G (d copulasCy,, v, andG
copulaCy, v,). The marginal distribution of (5) for a single grogf variables is a 1-factor copula model.

In this setting, there exist a common faciy, say the current state of economy, which drives some otlotora
Vi,..., Ve, say some unobservable parameters reflecting the situatatifferent stock sectors. Each factor, in turn,
defines a dependence structure of a group of variables (swstbeks in a common sector).

For the parametric version of this model, there is a parantgtor Cy, v, and a parametey; 4 for Cy,,v,. The
parameter vector for (5) 8= (03, nig:i=1,...,d5,0=1,...,G).

2.4. Special case of Gaussian copulas

In this subsection, we consider the Gaussian bi-factor et show that if all the bivariate linking copulas are
Gaussian, then the nested factor model is a special case bi-thctor model.

Let @, ¢ be the standard normal cdf and density respectively, antllée the bivariate normal cdf. 1¥4, Z,) is
bivariate normal with zero means, unit variances and catitelp, then [Z,|Z; = z1] ~ N(pz1, 1 - p?) so that from the
bivariate Gaussian copuige(®1(u), ®~1(v); p), the conditional cdf in Table 1 i®([®~1(u) — p®~1(V)]/(1 - pA)Y?).
Supposey,,v, andCy,, v,.v, are bivariate Gaussian copulas with parameggrandyig = nig/(l—cpé)l/ 2 respectively,
g=1,...,G. Hereri is a correlation oZz = ®~1(Uig) andWy = ®1(V) so that the independence\df, Vq implies
thatyig is the partial correlation afiqg andWy givenWo = ®~1(Vo) (in generapzww, = [ozws — pzwiowews]/[(1 -
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Pow, )L = PGw,)17?). Hence,

CuigVgvo (Cuigivo (UIV0)IVg)

OHu) — gig0 7t
L [ =
D7) - ¢ig® (Vo) — Yig(L — ¢7) D 1(vg)

VA=) =)

With zg = ®}(uig),i = 1,...,dg, g = 1,...,G, the cdf for the bi-factor model becomes

F(lea RN Zdlls RN ATCTI ZdGG) = C((I)(le)s ey CD(Zdll)’ R} (D(Zle)’ ey q)(szG))
dg

o G e Zig — pigWo — ig(1 — ¢ig) /2w,
T g=1 |VT™ =1

VA=A -7

Hence this model is the same as a multivariate Gaussian mgithed bi-factor correlation structure because this
multivariate cdf comes from the representation:

Zig = ¢igWo + 11igWg + /1 - SOizg - Uizg €ig,

whereWo, Wy, 69, 9 = 1,...G, i = 1,...,dy are i.i.d. N(0,1) random variables. From the linear repnts@n, one
can write the joint cdF(2) = F(z14, ..., Zg,1, - - » Z1G.s - - - » Zdei) @S follows:

- o G
F(Z)=f (Ddlwo(zllw--,zdllwuaZlG,---’ngG|WO)¢(WO)dWO:f 1—[®dg|wo(21g,.-.,ngg|W0)¢(Wo)dW0,

0o —00 =1

wheredg, is the conditional cdf of4y, ..., Zqg) givenWo, g = 1,...,G. Here we use the fact the variables from
different groups are conditionally independent giVén In the g-th group variables are conditionally independent
givenWo andWg. With 77ig = yig(1 — ¢)"? and 1- % — %y = (1 - ¢f)(1 - 75), itimplies

00

1 ﬁ q)(zig — @ig\Wo — )’ig(l - QOizg)l/zwg

dg
Pr{Zig < ZglWo, Wg}¢(Wg)dwg = f

Doy (Zags - - - » ZayglWo) = I )¢(Vg)dwg.

00

It implies thatZ has a multivariate Gaussian distribution and

Cor(zilg’ Zizg) = @i,gPig T Mg Mirgs i1 * i2,
CorlZig: Ziyg) = Qg P G # Do

The number of parameters in the Gaussian bi-factor streicdd — N; — N2, whereN; is the number of groups of size

1 andN, is the number of groups of size 2. For a graupf size 1 with variablg, Wy is absorbed witléig becauseyig
would not be identifiable. For a grogof size 2 with variable indiceis, i», the parameteng,q andz;,g appear only in
the correlation for variablds, i> and this correlation igi,gi,g + 77i,g7i,g- Since only the produef, 477, appears, one
of 77i,g. mi,g Can be taken as 1 without loss of generality. For the bi-famdpula with non-Gaussian linking copulas,
near non-identifiability can occur when there are groupszef 2; in this case, one of the linking copulas to the group
latent variable can be fixed (say at comonotonicity) for augrof size 2.



A special case of the bi-factor copula model with Gaussigutas can be defined as follows. Assume that

fg = ‘PQWO + 4/1- 905 Wg, Zig = ‘PTg‘fg + \/1 - (‘Pi*g)z €ig,

whereWg, Wy, 69, 0 = 1,...G, i = 1,...,dg are i.i.d. N(0,1) random variables. Thiex (1 + G) loading matrix of
Z= (le,...,Zdll,-u ,Zle’---,ZdGG)T OnWo,W]_,...,WGZ

Phpr ¢l-¢t 0 0
Phap1 iaAl-¢ 0 0

A . .
T 0 0 ¢igJ1-¥3
P.c¥G 0 0 ¢icyl-vé

ThenZ has a multivariate Gaussian distribution and

COrZig. Zing) = PigPig = CiigPig P+ Prig Pig(L— €3). 11 # 2,
Cor(zilgl’ Zizgz) = ‘Pi*lgl 90ng2 Pg P> 91 # Q2.

Note that the nested Gaussian model is a special case ofatbi-imodel with one common factor for all groups. It
is seen, that ifig = PigPy andnig = Pig J1- @5, then we get the bi-factor model. Nevertheless, in genttrainested

copula model is not a special case of a bi-factor copula model

The number of parameters in the Gaussian nested-factetwsteuisd + G for G > 3 groups andl + 1 for two
groups, because in the case of two groups;, occur only as a product in the correlation of variables ifiedent
groups.

3. Tail and dependence propertiesof the structured factor copula model

In this section, we summarize some results on positive digrase and tail order of bivariate margins of the
structured factor copulas in Section 2. The lower and upaieotder from Hua and Joe (2011) can be used to
summarize the strength of dependence in the joint lower gpétail respectively, and theftérence of the two tail
orders can indicate the direction of tail asymmetry. Thedotail order of an-variate copul&yn is . if Cim(ulm) ~
f (Uu asu — 0 wheref (u) is a slowly varying function (such as a constant or a power loigu). Similarly the
upper tail ordeky is such thaCy.m(uly) ~ fu(U)uv asu — 0, whereCy ., is the copula of (+ Ug,...,1—Uy) when
(Ug,...,Uny) ~ Cim. The tail orders have the property that> 1 andxy > 1, with a smaller value corresponding to
more dependence in the tail. The strongest tail dependenaspondste, = 1 orky = 1 (the usual tail dependence).
Tail orthant independence correspondsto= mor xy = mwith the slowly varying function being a constant, and
this is called tail quadrant independence ifior= 2. Intermediate tail dependence corresponds to 4 < mor
1<ky <m

From now on we will assume that all bivariate linking copudas twice continuously éierentiable functions on
(0, 1)%. Note that, for the model (3), within each group, variablesiadependent given the group-specific factor and
the common facto¥y. In other words, the dependence structure is a two-factouleomodel. Two variables from
different groups are independent given the common fagtand so the dependence is the same as a one-factor copula
model. For the model (5), properties derived for bivariategins depend on the choice of cop@a. If we choose
two variables from the same group, we get the same margistlhdition as in 1-factor copula model. However,
the case when the variables are selected frafierdint groups requires special attention. Without loss akgglity,
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consider the pairl11, U1,) with U1 from group 1 andJ;2 from group 2. LetCyy, andCyy, be shorthand fo€y,,v,
andCy,,v, respectively. Denote the cdf ofi;, U1») by C;» and the cdf of ¥y, V) by Cy, v,. Letx be the lower tail
order ofCy,. It follows from (4), with two groups of size 1, that

1 a1
Cio(ug, Up) = f f Cuv, (uzlv1) Cop, (U2lV2) Cv, v, (V1, Vo) dvadVs. (6)
o Jo

The conclusions about the tail order depend on some posiégendence conditions for paing(V>), (U11, V1),
(U12, Vo). A bivariate distributiorf1, with univariate marging, F» is positive quadrant dependent (PQD) if F1o >
F1F2 pointwise. A bivariate distributiof 1 with conditional distributiorF2(:|x2) has the first variable stochastically
increasing (decreasing) in the second variable-ffy 2 (x1|%2) is increasing (decreasing, respectivelyksrfor all x;.

The first result is useful to show positive dependence fontsted copula model.

Proposition 1 Let bothCy, andCyy, be stochastically increasing or stochastically decrgasimditional cdfs, and
Cv, v, is a copula with positive quadrant dependence. T®gris a PQD copula.

Proof : Using the integration by parts formula (three times), we ge

1 1 9Cov, (Uz|V
Cio(up, o) = fo Cuyv, (ugfve) {C2|v2(U2|1) - fo %CVﬂW(VﬂVDdVZ} dvy
L 9Cay, (Ug|V: 1 oCyv, (Ug]v
= WCyy,(ull) - j; % {V2C1V1(Ul|1)_ ‘f(; %CVLVQ(VL Vz)dvl} dv,
= WCqhv, (U2l1) + UxCap (U1]1) — Copy, (U] 1)Copv,(U2I1) + 112
where

L L aCyv, (urlve)  Cqv,(Uzlvz)
l1p = S . z -C Vi, Vo)dvidvs.
12 jc; fo v, v Vi, (V1, Vo) dvydvsy

9ICov, (U2IV2)
Vo !

Using the PQD assumption f@k,y,, and the stochastic monotonicity assumption%?{;\ffﬂ and

L 4Cyv, (ug|v 1 9Co, (Uglv:
l12 > f Vl%dvl f Vzwdvz = [Cyv, (u1]1) = ug][Cap, (U2]1) — u2].
0 Vi 0 oV

Therefore,

C12(ug, Up) = u1Co, (U2|1) + u2Cyp, (U1|1) = Capy, (U1 1)Copv, (U2]1)
+ [C1|V1(U1|1) = U:L][CZ\VZ(Uzll) - U2] =uu. O

The stochastic monotonicity is not a very restrictive agstiom as many parametric bivariate copula families
used in applications have stochastically increasing oradeing conditional cdfs. Typical examples of copulas with
stochastically increasing conditional cdfs include thenmal copula with a positive correlation parametes 0 and
Frank copula with a positive dependence paramgter0, the Gumbel and BB1 copulas; see Joe (1997) for more
details on these copulas. The Gaussian copulamitt) and Frank copula with < 0 have stochastically decreasing
conditional cdfs.

We next indicate how the above result is used for the nestedlaanodel. Suppose in (5) that all of the bivariate
linking copulasCy,, andCy, v, satisfy the positive dependence condition of stochasfitatreasing. By Propo-
sition 1 of Krupskii and Joe (2013%y, v,, is PQD for anyg: # g because of the 1-factor copula structure for
Vo, V1, ..., V. From the above proposition afig,, Uiy, are random variables in twoftirent groups, then they are
PQD.

If C12is PQD andcy, v,(V1,V2) < K for v, v, € [0,1] for K > 0, thenCyx(us, Uz) < Kuglp andCip(u, u)/u? <
K which impliesk. = 2; similarly, the upper tail order equals two in this case.néte positive dependence of
8



U11, U12, V1, V2 and a bounded density fax, vy, means thatWi1, Uip) has tail quadrant independence. The next
results apply with stronger dependence in the tails.

Proposition 2 Let lim,,0 Cjy, (uhu) = tj(h) and assume th&;,y, (ulv) is a continuous function af andv on (Q, 1y,

j =1,2. Assume lim_otj(h) = tjo > 0, j = 1,2. In addition, assume that the density,(v1, v2) is a continuous
function ofv; andv,, and thatcy, v,(Wiu, wau) > k(wi, wo)/u® for small enoughu > 0, wherea € [0, 1] andk is a
positive continuous function af;, wo. Then the tail ordek, of C1; in (6) is at most 2- . A similar result holds for
the upper tail dependence.

Proof: It follows from (6) that:
1/u 1/u
Clz(u, U) = U2 f C1|V1(U|h1Ll) Cz|vz(u|h2U) Cvl,vz(hlu, h2u) dhldhz.
0 0

For anye > 0 we can finchj(e) > 0 such thalt;(h;) —tjol < e for hj < hj(e), j = 1, 2. Denoten*(e) = min{hy(e), ho(e)}.
By the assumption, there exigige) > 0 such thatCyy, (ulh*(e)u) — tj(h*(e))l < e for 0 < u < u(e). Itimplies that
[Cjiv; (ulh*(e)u) — tjo)| < 2¢ for u < u(e). Due to uniform continuity ofCjy, on [0, 1] x [0, 1] we can findug; > O,
hj‘, h* such thahj‘ < h*(e) < h}f and|Cjy, (ulh*(e)u) — Cj; (ulhju))| < € for 0 < u < up; andhj‘ <h;< hj+. Therefore
ICjiv; (ulhju) — tjol < 3e for u < T = min{uoy, Uo2, U*(€)} andh = maxhy, h;} < hj < h(e). Lete = min{tyo, t20}/6.

Due to the continuity ok(w;, w,), there are constants, > 0 andh* > h such thaty, v, (hiu, hou) > Ky /u® for
h<h; <h*, j=1,2 Then

he Ahr
C12(U, U) > Uzj; \fﬁ\ C]_\Vl(U|h1U) C2|V2(U|h2U) Cvl,vz(hlu, h2U) dhldhz
he Ahr F )2
tro toa K  Ky(P* = )2tioto
> W 20202V dhidh, > y2e . VAL T U 110720
—”fﬁfﬁ66ualz—“ 36

and hence the lower tail order Gf, is less or equal than2a. (I

Remark 1. The condition on the limit lim.o Cjv, (ulhu) implies thatCy, is a copula with the lower tail depen-
dence, such as the Student, reflected Gumbel or BB1 copula.

Remark 2. Suppose the lower tail order @y, v, is « with a slowly varying functiorn/(u), and there is a tail
order functionb, (w1, w») such thatCy, v,(Wiu, wou) ~ u“é(u)be(wi,wp) asu — 0. Hua and Joe (2011) showed,
under the condition of continuity and ultimate monotoridit the lower tail, that this impliesy, v, (w;u, wou) ~
u=2¢(u) - 9%b,(Wy, Wo) /0w 0w, asu — 0. Hence the assumption @, v, in the above proposition is essentially that
the tail order ofCy, v, is at most 2-«. In other wordsCy, v, is a copula with intermediate tail dependence# @ < 1.

The condition oroy, v, with @ = 1 impliesCy, v, is a lower tail dependent copula. It follows from the propiosi,
with tail dependent copulaSy, v,, Civ,, Cav, We get tail dependence f@:»; this result also follows from a main
theorem in Joe et al. (2010) because the palis, V1), (V1, V2), (V2, U2) are the edges of the first tree of a vine (the
vine representations of the bi-factor and nested factoulesgare given in the Appendix).

Also, if Cjy, (ujlvj) < ujvoj for somevy; > 0 if u; is small enough (that is, the tail order©fy,; equals two), then
we get

1M1
2 2
C12(u, U) < UVo1Vo2 f f Cvy.v, (V1. V2) dv1dvo = U Vp1Vgp.
o Jo

If in addition C1, is PQD (conditions of Proposition 1 are satisfied), tl&n is a copula with tail quadrant inde-
pendence. Hence, tail quadrant independence can be abtainehoosing linking copulas with tail order equal to
two.

Proposition 3 Assume tha€,y, is such thaCjy, is stochastically increasing fgr= 1, 2. Then the tail ordet, of Cy,

in (6) is not less than the lower tail order®jf,(uy, uz) = fol Cyv, (u1]v) Cov, (Uglv) dv. Denote the lower tail order of the
latter copula by; . In addition, if for small enougkr > 0 and somen > 0, K. > 0 the inequalitwcy, v,(v, va) > K. g™
holds for anyg € (0, 1), thenk, = «{.
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Proof: Write C12(u, u) = C7,(u, u) + C7,(u, u), where the double integral over, [0]? for Cy is split into an integral
overvy < v, andv; > v, respectively folC7, andCy,. Then, withCyy, stochastically increasing,

Couy) = f f Cay (UV2) o, (UIV2) Ovv, (Vi V) dvadiv,
V1<Vo

IA

1 Vo
f f Cyv, (Ulv) Cap,(UlV1) Cv, v, (V1, V2) dvidva
o Jo

IA

1 .1
f f Cyv, (Ulve) Cops, (UIVL) Cv, v, (V1, V2) dvidva
o Jo

1 1
f Cyv, (Ulv) Cay,(ulva) { f Cvyv, (V1 Vz)dvz} dvy
0 0

fo ' Cuv, (ulvy) Cop, (Ulv) dvy = Ci,(u, u).
Similarly, with Cypy, stochastically increasing,
Cir(u,u) = f j\: . Cav, (UIV1)Cops, (UIV2) Oy, v, (Va, V2)dvadvy < CTo(u, L)
>V,
and therefor€,(u, u) = C7,(u, u) + C,(u, u) < 2C;,(u, u). Itimplies thatk > «; .

Now we prove the opposite inequality < «; using the second assumption. Denote hu. For anye > 0 we
have:

Cout) = @ f f Cay (UIU) o, (UIU) Gy, v, (U, U) U 2disy s,
0 0

00 S t+€
> f f Cuv, (U[U™) o, (UIUR) Cy, v, (U, UR) USH2d s ds,
0 S
oo:l S1+€
> K f f Cav; (UIU™) Cop, (Ulu®) u2u™S=S)ds ds,
0 S
00 S1t+€
> KP f Cup, (U[U™) Cay, (Ulu®) US U™ ds; ds,
0 S
> K etPud™D f Cav, (UU)Cay, (UuH)uSds; = K etu™DC;(u, u). 7
0

Itimplies thatx < «{ + (m+ 1)e for anye > 0 and hence, < . As aresultx = «{. O

The condition on the density in Proposition 3 impl@g v, is a lower tail dependent copula. In the Appendix we
show, that the reflected Gumbel, BB1 and Studgrbpula satisfy this condition; that is, it is something tbah be
readily checked and is not the most generdlisient condition. Under this condition, the nested copulaetevith
a tail dependent copuldy, v, has the same tail order as the corresponding capjan a 1-factor copula model if
Cuyv, andC,y, are stochastically increasing copulas. In particulaC;i, is a Gumbel copula fof = 1, 2, then we get
intermediate lower tail dependence in the model.

In the next proposition we show that the increasing in coti@nce and stochastically increasing property can be
obtained in a nested copula model under assumptions sitoilfactor copula models. I€;,C, are two bivariate
copulas, theI€; is larger tharC; in the concordance ordering@; > C; pointwise.

Proposition 4 ConsiderCy, in (6). Assume thaC,y, is fixed, Cy,y, is stochastically increasing and thajy, is
stochastically increasing (respectively decreasing).A&@C.y, increases in the concordance ordering, tlepnis
increasing (respectively decreasing) in concordancef ®), is stochastically increasing. th€y; is stochastically
increasing (respectively decreasing).
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Proof: Suppose&, v, is parameterized by a paramefieandC, .y, is fixed. The increasing in concordance assump-
tion implies thatCy v, (-; 62) — C1v,(-; 61) > 0 for 61 < 6,. Using the integration by parts formula we get:

1
Cio(ug, Up; 0) = g f Con, (UalV2) Cv, v, (1, V2)dvo
0

Jcy,, v2 (Vl, Vo)

f f Cuv, (U1, va; 6) Coy, (Ug|v2) dvidv,

0Capv,(U2lV2) Cv, v, (V2|V1)
oVo ovy

1
=U f Con, (U2lV2) Cvy v, (1, V2)dvo + f f C1v, (U1, v1; 6) vidvo.  (8)
0 0 0
With the assumption of twice continuougt@rentiability,0Cay, (Uz2lV2)/dv2 anddCuy,y, (V2IV1)/dv1 are continuous
functions ofv; andv, for vi, v, € (0, 1) but can be unbounded at 0 or 1. Nevertheless, the integsardintegrable
function since

oC 0C oC oC
f f Cav, (U, v1: 0) - 2\v2(U2|V2) vz\vl(V2|V1) dvidv, < f f 2v, (U2|V2) vz|vl(V2|V1) vidv
6V2 ov V1
0Co, (U|V: 0Co, (Ua|V:
f [Cvaivy (V2I1) = Cyyy, (V210)] - % ‘ 'f ZN( 2 2) ’= |Cav, (U2]0) — Can, (U21)) -
0

Therefore the formula (8) is valid.
To complete the proof of (a), f@h > 6, we have:

Cu12(ug, Up; 62) — Cy2(ug, Up; 61) =

0Cyv,(Uz|V2) dCv,y, (V2|V1)
V2 6V;|_

f f [Cov, (U1, V; 62) — Cov, (U, V; 61)] - vidvs.
SinceCyy, (U1, V; 62) = Ciy, (U1, V; 61), dCy,v, (V2IV1)/dva < 0 anddCqy, (UzlV)/0v < (=) O by the assumption of
stochastically increasing (decreasing), we@gi(us, Uz; 62) > (<) C12(uy, Up; 61) respectively, thati€; ; is increasing
(decreasing) in concordance.

Similarly, for (b), withu; € (0, 1), both parts of (8) can bef@erentiated with respect tg twice to get

92C1o(us, Up;0)  0Coa(Uzluy; 6) f f ! 3Cv1\1(V|U1,9) ~0Cqv, (UalV2) 3Cv2\v1(V2|V1) v,

ou? - ouy oV, A

AssumingCy,1 andCy,y, are stochastically increasing we @€ly,1(v1|us; 6)/0u; < 0 anddCy,y, (V2lva; 8)/0us < 0.
In addition,dCyy, (Uz|V2; 0)/0V < (=) O by the assumption of stochastically increasing (deanggghen
0Cy1(U2ug; 8)/0us < (=, respectively) O, that iSZo1 is stochastically increasing (decreasirg).

Dependence and tail properties of the nested and bi-facfoula models are summarized in Table 2. One can
see that with a proper choice of bivariate linking copuldfiedent types of dependence and tail structures can be
obtained. This is important as some preliminary analysris & done before fitting the model to data in order to
summarize dependence properties of the data set. Thedimkipulas in the model can then be selected to get a
similar dependence structure; more details are given iti3e6.

4. Computational detailsfor factor copula models

In this section we provide more details on the log-likelil@md maximum likelihood estimation of parameters in
different factor copula models, including structured factgruta models.
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Table 2: Lower tail and dependence propertiesdps depending on the choice of li

nking copulas in nested anddtbf copula models

Nested copula model, variables from the same grdis the group-specific factor)
Bi-factor copula model, variables fromftérent groups\ is a common factor)
U1, U, are conditionally independent givéh
Cul‘v, CU2|\/ are Sli CU1,U2 is PQD
Cu, v increases in concordand@y,y is Sl Cu, u, increases in concordance
CV|U11 CU2|\/ are Sl CU2|U1 is SI
Cu,v, Cu, v are tail dependent Cu, u, Is tail dependent
Cu,.v, Cu,v are both Gumbel or Gaussfacopulas Cu, u, has intermediate tail dependenge
Cu,v or Cy,y is tail quadrant independent Cu, u, is tail quadrant independent
Nested copula model, variables fronffdrent groups\{(s, V2 are the group-specific factors)
U1, U, are conditionally independent givefi, Vy; Vi, Vs are conditionally independent givéfy
CU1\V1' CU2|V2 are S|,CV1,V2 is PQD CU1,U2 is PQD
Cu, v, increases in concordand@y,v,, Cv,, are Sl Cu, u, increases in concordance
CV1\U11 CU2|\/2, CV2|V1 are Si CU2|U1 is Sl
Cu,v,» Cu,.v,, Cv,.v, are tail dependent Cu, u, Is tail dependent
Cu, vy, Cu,.v, are tail dependent, and Cu,.u, has intermediate tail dependence
Cv,.v, has intermediate tail dependence
Cu,.v;» Cu,.v, are both Gumbel or Gaussfacopulas Cu, u, has intermediate tail dependenge
andCy, v, is tail dependent
Cu,v, 0rCuy,yv, orCy, v, is tail quadrant independent Cu, u, is tail quadrant independent
Bi-factor copula model, variables from the same group
Ui, U, are conditionally independent givéfy andV; (Vo is a common factoly; is the-group specific factor)
Cuyivo> Cuaiver Cusviivo Cuzvyiy, @re Sl Cu,.u, is PQD
Cu,v,v, increases in concordanc@y,v,:v, is Sl Cu, u, increases in concordance
Cu, Vo Cu,.v, O Cuyvyve, Cus, vy, are tail dependent Cu, u, Is tail dependent
Cu,.Ve» Cu,.Ve» Cu,vives Cus,vyiv, are all Gumbel or Gaussiaopulas| Cy, u, has intermediate tail dependenge
Cu, Ve Cu iy, OF Cu, vy, Cu,vyy, are tail quadrant independent Cu,.u, is tail quadrant independent

1 with positive correlation parameter
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4.1. Log-likelihood maximization in factor copula models

Suppose each bivariate linking copula in (3) or (5) has amater and is the vector of all dependence parameters
in the A or d + G bivariate linking copulas. For multivariate data(. .., U4), i = 1,...,n, that have been converted
to haveU (0, 1) margins, the log-likelihood is:

n
ta = logcy(ui, ..., Uig; ). 9)
i=1

When@ is fixed, each term of the form (3) or (5) in the log-likelihocah be evaluated via Gauss-Legendre quadrature.
With a relabeled vector of data= (u11, ..., Ug1, - - , U1a, - - - , Ugec), the copula density for the bi-factor copula model

is evaluated as:
ng G dy
cu(u; 6) ~ Z Wiy l_l {1—[ CUJg’Vo(uig’ i) | 1g(U. %) ¢ »

=1 g=1 (lj=1
Mg d
lg(u’ )(51) ~ Z Wi, [l_[ CUjgvVgQVo(CUjgNo(uig'Xil)’ Xiz)}
j=1

i=1

where

and{xc} are the quadrature nod¢s} are the quadrature weights, amds the number of quadrature points. Similarly,
the copula density for the nested copula model is evaluated a

cu(u; ) = Z

Ng
=1

G
w, [ 150u,%,),
g=1

i1
where

Ng dy
lg(u, xi,) ~ Z Wi, Cvg Vo (Xiss Xis ) 1_[ Cujg, Ve (Ujgs Xiy)-
ip=1 j=1
Itis seen, that multidimensional summation is not requicedhe approximation, so that computational complexity is
reduced. The number of quadrature poimtbetween 25 and 30 tends to give a good approximation of tnésgrals

and the resulting maximum likelihood estimates.

Maximizing the log-likelihood is the same as minimizing thegative log-likelihood and the latter is typically
the numerical approach so that the Hessian of the negativékielinood at the global minimum is the inverse of
the observed Fisher information matrix. For numerical migation, quasi-Newton or modified Newton-Raphson
algorithms can be used. For this purpose, one requires 8teafid second order partial derivatives of the density
cu (u; ) with respect to the dependence parameter vettor

The partial derivatives can be evaluated numerically bymatimg diference quotients of the log-likelihood func-
tion. The Hessian is obtained numerically through an updatiethod, such as the Broyden, Fletcher, Goldfarb and
Shanno (BFGS) method. The algorithm with numerical deisestis usually referred as a quasi-Newton method
(Nash (1990)). However, whethand the dimension adf become larger, multiple computations of the log-likelidoo
are needed and the algorithm becomes very slow to conveogaibe of the steps needed for evaluating a numerical
Hessian.

To overcome this diiculty for arbitrarily larged, we obtain analytical expressions for the gradient and idiess
Then the Newton-Raphson method can be used, and the nuhmeniganization of the log-likelihood can work for
larged and large dimension df, with a quadratic rate of convergence after iterations getecto a local or global
minimum. Using the dferentiation under the integral sign, one can see that theafics second order derivatives
of the bivariate linking copulas with respect to their degiemce parameters and arguments are required to find the
gradient and Hessian of the log-likelihood. See the Appefatithe required (analytical) partial derivatives of the
density and conditional distribution of the bivariate lingg copulas. The partial derivatives of (3) or (5) with resipe
to the parameters are evaluated at the same time with Gaagestre quadrature.
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It is important to make sure that the value of the likelihoocteases at each iteration. This is one of the modifica-
tion steps for the modified Newton-Raphson method. Howewlegn minimizing the nonlinear negative log-likelihood
function of many parameters, the function value can inaeasl the algorithm can fail to converge especially if start-
ing points are not close to the global minimum point. Thisges if the Hessian is not a positive definite matrix so
that there are some negative eigenvalues. To modify theitligg an eigenvalue decomposition of the Hessian matrix
can be obtained and negative eigenvalues in the decongosin be replaced by small positive numbers. With the
adjusted positive definite Hessian matrix, the iteratioilsmove to a local minimum of the negative log-likelihood
and not a local maximum. The step size of the modified algorishould be controlled so that parameters do not
exceed lower anfdr upper boundaries and it is not too large in any iteration.

Note that for each group of size 1 in a bi-factor model themngoigroup latent variable. Assume thgeh group
consists of a single variabld;4 only. To avoid overparametrization, dependence pararf@téine copulaCy,, v,:v,
can be set to independence. In addition, ifghi& group has two variablds, g, Uy in a bi-factor Gaussian model, the
correlation parameter of the copa,, v,:v, or Cu,,.v,:v, can be setto 1 as there is redundance in this case as well. In
a bi-factor model with other copulas the likelihood can beiflthere are some groups of size 2 so that dependence
parameter for the copuldy,, v,v, can be set to comonotonic dependence similar to a Gaussidelmo

For the algorithm, some good starting points may be requoebtain the global minimum of the negative log-
likelihood. These starting points can be obtained from awige optimization when dependence parameters are
estimated in steps. For a nested copula model, parametetefoopulaiy,, i = 1,...,d; can be estimated using
data from theg-th group. Within the group, data are modeled using a 1-factipula model so that estimation is fast
and stable. The parameters of the copasy, are estimated at the second step with the other parametergisd
to their estimates obtained at the first step. For a bi-fampula model, the estimation can be done for each group
separately. For each group we have a 2-factor copula mod@lithua smaller number of dependence parameters so
that the estimation is much faster.

Alternatively, good starting points can be obtained frorated or bi-factor Gaussian model estimates, after con-
version to parameter values to match Spearman’s rho or Kl&n@a. Then for both models, stepwise estimates can
be used as starting points when all dependence parametegstanated simultaneously with the modified Newton-
Raphson algorithm. The convergence of the algorithm isvisin good starting points are used and the sample size
is large enough so that the log-likelihood is not as flat witmglocal maximaninima.

In the bi-factor copula model, if bivariate Studeptbpulas are used to link to the common latent variable, then
the conditional distributions are univariatg;tand this is needed in the copWy,.v, for linking variablej in group
g given the common latent variablg. The speed of the log-likelihood evaluation is much fastaBemwmonotone
interpolation is used for the univariate { cdf based on its values on a fixed grid, say, at the quantilg®iset

{0.0001, 0.0002 0.0005 0.001, 0.002 0.005 0.01(001)099, 0.995 0.998, 0.999 0.9995 0.9998 0.9999;

references for monotone interpolation are Fritsch andsoar{1980) and Kahaner et al. (1989).

4.2. Asymptotic covariance matrix of 2-stage copula-GARCH parameter estimates

For copula models with financial asset returns, it is comnoamse the copula-GARCH model (see, for example
Jondeau and Rockinger (2006), Aas et al. (2009), Lee and (20@9) and others). For univariate marginals, the
AR(1)-GARCH(1,1) model with symmetric Student t innovatids quite general for individual log-returns. At any
timet, the j-th (for j = 1,...,d) GARCH innovations are assumed to be standardizesith mean 0 and variance 1
with v; > 2, and the vector al innovations has a joint distribution based on the parametipula familyC(-; 8). We
assume parameters of theinivariate GARCH models are such that the time series atierssay.

In this section, we outline a resampling method to get thengggtic covariance matrix of the parameters of
the copula-GARCH model based on two-stage parameter @giimalhe procedure can apply to any parametric
copula model on the GARCH innovationsaflependent financial time series. Parameter estimates ulacomdels
(including the factor copula models) are computed in twges$sso that standard errors obtained from maximizing the
copula likelihood (9) do not reflect the variability of GARG¥arameter estimates. The simplest way to get standard
errors for the two-stage estimation procedure is to useagpiatte bootstrap methods. Lete the original sample
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size andd is a number of log-returns. We use the following steps to dgeba@tstrap distribution for the maximum
likelihood estimates.

1. Compute GARCH parameter estimaigs. ., ij4 using the original data, separately for thesturns.

2. For thej-th return, convert GARCH-filtered residud®s = (Rj1, ..., Rjn)" to uniform data using the probability
integral transformU; = (Ujq, .. ., an)T, whereUj; = T, (R;i) andT,, is the cdf of the Student distribution with
v; degrees of freedonn= 1, ..., n. Alternatively, the vectolJ; can be obtained using uniform scores (as in Aas
et al. (2009)). The latter approach can provide less seitgitd the assumption of innovations having a Student
t distribution. Our experience is that the two methods gieg/\similar results.

3. Compute copula parameter estimatdsom thed-dimensional data séfn.g = (U, ..., Ug), using the proce-
dure in Section 4.1.

4. For theb-th bootstrap sample, resample the filtered residuatk\aextors at dferent time points (see Pascual
et al. (2006) for more details on bootstrap for GARCH paramestimates).

5. Use the resampled filtered data and estimated GARCH p&eesyg, .. ., 74, to get a bootstrap sample of log-

returnsr® = (1, .. r (), whererﬁb) = (rg?, o rﬁf’f).

6. From a bootstrap sampl®, compute GARCH parameter estimaté@,f. . ﬁg’) and copula paramete@éb).

7. Repeat steps 4 to 6 for=1,..., B, whereB is a number of bootstrap samples. For examBlean be chosen
to be between 1000 and 5000. Then one hBs<an, matrix wheren, is the total number of parameters in the
vectorsn,, ..., 1y, 6.

From a bootstrap distribution of the two-stage likelihostireates one can compute standard errors and confidence
intervals forsny, . .., 74, andé as well as for the model-based estimates fiedent quantities which are functions of
these parameter vectors. For example, to compute a conéidetecval for the model-based Value-at-Risk estimate,

. ~ ~ ~(b; . .
for each bootstrap estma;yé’), A ng’), 8¢ ), one can simulate a large data set of log-returns to computtpo VaR
and hence get a bootstrap distribution; see the next section

5. Interval estimation of VaR and CTE for copula-GARCH

In order to assess the comparison dfetient parametric copula models and how well they perforntefibbased
inference, we propose model-based interval estimatesmfisk-measures that are popular among financial analysts.
Our approach with these risk measures fgedent from Aas and Berg (2009) and others.

The first measure, the Value-at-Risk (VaR) is defined as atdeaf the distribution of a portfolio return. To
explain the ideas, we assume an equally weighted portfblioeod assets. Letr(,. .., ry) be the portfolio returns for
n consecutive time units (such as trading days) ané ggte the corresponding empirical cdf. The 206 VaR of the
portfolio can be estimated as follows: v

VaR, = {infr: Fg > a).
Commone values are 0.01, 0.05, 0.95 and 0.99. With a smalaR, represents the maximal possible loss for
investors, who buy the portfolio, that can occur with thekaoility not less than 1Q®%. Similarly, with a largex,
VaR, represents maximal possible loss for investors, who sledirttee portfolio, that can occur with the probability
not less than 100(%+ «)%. Thus, both lower and upper quantiles are important feessing risks related to the
portfolio.

The second measure is called the conditional tail expectd€TE) and it is defined as a conditional mean of a
portfolio return given that the return falls below or excesdme threshold. The lower (upper) CTE at levetdan be

estimated as follows: _
_ i Ro<r Re , 6'I'\E+(I’*) _ 2t Rur F\’. '
2i R <} 2i R =17}
The lower CTE is used for small quantiles near 0.01, and the upper'd3 Hsed for large quantiles near 0.99. Unlike

VaR, this risk measure estimates the expected loss of aofiorif this loss occurs. Usually, the threshaidis set
equal to the Value-at-Risk at a certain lewel

CTE ()
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For each value ok, we compute one value of VgRor the whole data set using the stationarity of the logretu
With a modelC(:; 6) for copula-GARCH, the steps to obtain 95% model-based denée intervals for VaR and CTE
are as follows. Using the procedure in Section 4.2, one has

A®,. 306" b=1...B (10)

For eachb, simulate ad-dimensional copula-GARCH time series of lenddi(N can be bigger than the original
sample sizen) with parameter vector in (10) and obtain the (equally-wiegg)) portfolio ¢, ..., ) and make this
into theb-th row of aB x N matrix.

1. Each rowb of the matrix can be considered as a realization of a statydimtae series, so that quantiles (that is,
VaRS,b) for severak) can be computed for the series as well as some values oPQTE

2. With B series, we hav different realizations of Va and CTEP)(r*) for a fixeda.

3. The middle interval containing 95% of the \/ﬁ)F(respectively, CTE)(r*)) values can be considered as a 95%
confidence interval for VaR(respectively, CTE(")) that is model-based.

Note that these interval estimates account for the unceyta the parameter estimates in using the parametric
model. The model-based estimates of VaR and CTE are fursctbn,, ..., ny, 0 that involve high-dimensional
integrals, and hence they are estimated via Monte Carlolation (see the Appendix for simulation from nested
factor and bi-factor copula models). The reason for obtgimiodel-based estimates of the portfolio VaR and CTE is
so that in an empirical application, we can compare fiieces of diferent model<(:; 6) that are structured copula
models with bivariate linking copula families that havetqudifferent tail characteristics.

6. Empirical study

In this section, we use some copula-GARCH models to analyzmacial data set. We consider S&P 500 stock
returns from Health Care sector, 51 stocks in total, timéoperonsists of the years 2010 and 2011. The sample size
n = 503 days. The returns in this sector can be subdivided intm&ps: health care distributors and services (27
stocks), health care equipment and services (6 stocksgdhinology (6 stocks), managed health care (8 stocks) and
pharmaceuticals (4 stocks).

For the copula-GARCH model, we apply AR(1)-GARCH(1,1) magigh symmetric Student t innovations to fit
univariate marginals for log-returns. GARCH-filtered data then transformed to uniform scores antedéent copula
models are applied to model the joint dependence. Parasnaténe model are estimated in two steps as given in
Section 4. Copula choice is very important in the model aedefore we do a preliminary analysis to get summary of
dependence structure of the data. More details on selespipgppriate linking copulas for the data set are provided in
the next section.

6.1. Assessing strength of dependencein thetails

To choose appropriate copulas in the model, we employ sorasunes of dependence to assess strength of depen-
dence in the lower and upper tails for each pair of returnsfoor data set and to summarize the dependence structure
of the data. We use results from Section 3 to find linking capwiith tail properties that are in good agreement with
the estimated strength of dependence in the tails.

To estimate dependence in the tails, one can use tail depeadedicients but these quantities are defined as
limits and cannot be estimated well unless the sample sizerislarge. Instead, we use tail-weighted measures of
dependence, as described in Krupskii and Joe (2013). Theasures are defined as correlations of transformed data
where more weight is put in the joint tail. With variablesrnséormed toU,, U, that areU(0, 1) random variables,
good choices of lower and upper tail-weighted dependenessunes are:

oL = Cor((1-2U1)%, (1 - 2U,)%U; < 0.5,U, < 0.5),
ou = Cor((U;1 — 1), (2U, — 1)8|U; > 0.5, U, > 0.5).
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Table 3: Overall and group averagesopf du, ps anddy, du, 3,, (for the bi-factor Gaussian model); GARCH-filtered logureis from S&P500
index, health care sector, years 2010-2011

all groupl group2 group3 group4 group5
oL | 0.43 0.46 0.41 0.60 0.47 0.36
ou | 0.25 0.29 0.20 0.47 0.25 0.27
ps | 0.50 0.53 0.50 0.72 0.52 0.53

o. | -0.17  -0.17 -0.16 -0.11 -0.19 -0.06
oy | 0.00 -0.01 0.05 0.02 0.03 0.02
o, | -0.02 -0.01 -0.02 -0.01 0.00 -0.01

The weighting functiora(u) = (1 - 2u)* downweights data points that are far from the joint tail acthbre sensitive
to different types of tail behavior Kis large. However, with a largds variability of the empirical estimates increases
as well, and the choide= 6 keeps balance between quite high sensitivity and relgtioes variability.

The empirical versions involve sample correlations af@n¢formation and truncation, and the model-based ver-
sions involves numerical integration. To compare the aamuof diferent models in terms of assessing dependence
in the tails, we compute empirical estimatgs oy for each pair of GARCH-filtered log-returns converted tofarm
scores. In addition, as a measure of overall monotone depeedwe compute empirical estimates of the Spearman
rank correlation coéicientgs.

For a given copula model, the model-based estimgftes(], pd are computed as a function of the MLE. We also
compute the dierences between the model-based and empirical estindateso™ - 41, 6y = of} —du, 6, = pT — fs
for each pair of bivariate marginal distributions.

Ford = 51, the number of pairs is 5425 = 1275. Therefore to summarize dependence structure of taesdg
we compute the averageaf, ou, ps for all pairs of uniform scores, as well as for all pairs witliach of the 5 groups.
We denote the overall averagesdhydll), oy (all), and group averages by (g), ou (g) for theg-th group respectively.

To evaluate the accuracy of assessing dependence in thbyailgiven model, we compute the following quantities:

du(all).du(all) (5.(0).du(@)) : the overall (within theg-th group) averages @t , 6y respectively;
op(all) 0,(9) . the overall (within theg-th group) average af,;

The averaged elierences allow the summarization of information in a few narstand reduced variability when
constructing confidence intervals. We compaitéall), oy (all), 0.(9),0u(g), g = 1,...,5 for our data and use the bi-
factor Gaussian model as a benchmark to comdul), 5 (all), 5.(g), du(g), g = 1, ..., 5 for this model. The results
are presented in Table 3.

Itis seen dependence in the lower tail is stronger for alligsoof log-returns which means models with reflection
symmetric dependence structure, including the Gaussi@asardent t models, may not be suitable for modeling these
data. Large negative valués(all),5.(g), g = 1,...,5 indicate that for all 5 groups dependence in the lower $ail i
much stronger compared to that of the model with Gaussi&miycopulas. It implies that copulas with the lower tall
dependence can be more suitable for the data. According tetults of Section 3 (see Table 2), one can use bivariate
tail asymmetric linking copulas (copulas linking a lateatigble and a group variable) with the lower tail dependence
to get bivariate marginals with lower tail dependence faheaf the 5 groups.

At the same time, the valués (all), 5u(g), g = 1,...., 5 are quite close to zero and therefore dependence the upper
tail is comparable to that of the Gaussian copula. It imples$ one can use linking copulas with at least intermediate
upper tail dependence to get bivariate marginals with &gt lesermediate upper tail dependence for each of the 5
groups (see Table 2). To summarize, one can see that fordizzaopulas linking a latent variable and group variables
one can select an asymmetric copula with the lower tail dépece and at least intermediate upper tail dependence
for all of the 5 groups in the data set.
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6.2. Assessing adequacy of different models

For the dependence of tlieinnovations, we fit dierent nested and bi-factor models. For comparisons and sen-
sitivity analyses, we include models that may not be apgat@based on the preliminary analyses in the preceding
section. For each of these models we choose the same lingmgacfamily to model dependence within each of the
five groups. This is done for illustration purposes to show lite model choiceféects the estimates of VaR, CTE
and some dependence measures. Notice that according ®sthitsifrom the previous section, dependence structure
is quite similar in all 5 groups (lower tail dependence artdrimediate upper tail dependence). In general, when the
dependence structure and tail behavior is quiteecint in diferent groups, one can usdfdrent copula families in
these groups.

For comparisons, we use bi-factor and nested Gaussian sasl@lell as the multivariate Student t distribution
with nested and bi-factor correlation structure (the fdihave similar to (5) and (3) with bivariate Student t cagul
and are computationally faster for likelihood calculaghrMore specifically, we fit the following models.

1. Nested and bi-factor models with Frank copulas at botblsevT his is tail quadrant independent copula and so
it is unsuitable for modeling data with tail dependence. \8fe this for comparison purpose to show th@tet
on tail inference with tail quadrant independent versugiggendent bivariate linking copulas.

2. 1-factor model with reflected BB1 copulas with asymmetitdependence. This model can be used to model
asymmetric dependence. We also fitted with BB1 copulas,dihfs data set, reflected BB1 provided a better
fit.

3. 2-factor model with BB1 copulas linking to the first factrd Frank copula linking to the second factor. This
is more flexible model than the BB1 1-factor model becausd-thek copula allows for negative conditional
dependence.

4. Nested model with reflected Gumbel copulas to model deperabetween groups and reflected BB1 copulas
to model dependence within groups. This is an extensionefltfactor BB1 model that accounts for group
structure.

5. Bi-factor model with BB1 copulas for linking the commorctar and Frank copulas for the second group-
specific factor. This is an extension of the 2-factor BBAnk model that accounts for group structure.

For the algebraic forms of the Frank, BB1 and Gumbel copsies,Joe (1997). The reflected form of a bivariate
copula familyC(u,v; 0) isC(u,v;0) =u+v—-1+C(1-u,1-v;0); thatis, if U,V) ~ C, then (1- U,1-V) ~ C.

We computes, (all), sy (all), 5.(g), du(g), g = 1, ..., 5 for the above models; the results are presented in Table4. W
do not include nested Gaussian, Student t and Frank mod#is assults for these models and for the corresponding
bi-factor models are quite close. The averaged values @fre negative for all groups for bi-factor Gaussian and
Student t models. It implies dependence in the lower taihdewestimated by these models. The Frank copula model
is even worse, as it heavily underestimates dependencstirtdits. At the same time, models with tail asymmetric
dependence structure perform better. Nevertheless, heth-factor reflected BB1 copula model and the 2-factor
BB1/Frank copula model underestimate dependence in both tailsei third group. In addition, Spearman’s rho
is also underestimated by the 1-factor model (so that thiek@ence structure is too parsimonious), unlike other
models with a group structure that give quite accurate esémof the Spearman’s rho in all groups. The reason is
that dependence in the third group is significantly strorigan in the other groups and factor copula models assume
homogeneous dependence across all groups. As a resulstimated strength of dependence in the tails as well
as overall dependence is mostly defined by the first very lgrgep. With only 5 additional parameters, the nested
reflected Gumbgieflected BB1 copula model does better than 1-factor refleB®1 copula model, with slightly
overestimated dependence in the lower tail in the last grobp bi-factor BB1Frank copula model is the best one as
it assesses the strength of dependence in both tails rddgovell in all groups.

Now we compare the proposed models with vine copulas in tefrAdC using the algorithm of Diimann et al.
(2013) and in the VineCopula R package. The regular vine iralttavs great flexibility to approximate the joint
dependence of a multivariate data set by selecting biwaliigiting copulas similar to the structured copula models.
The following values of Algn with n = 503 were obtained for the regular vine model truncated #ftefirst, second
and third levels: -28.8, -33.9, -36.0. Models 4 and 5 yield&§/A = -36.7 and AI¢n = -37.4 respectively. It is seen,
that the proposed structured copula models do better irstefrAlC comparing to truncated regular vine models and
a higher level of truncation is required for the regular viaget AIC which is comparable to that of the nested and
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Table 4: Overall and group averagesiof oy, I5.1, [oul, and the maximum log-likelihood value forftirent models; GARCH-filtered log-returns

from S&P500 index, health care sector, years 2010-20£1503

bi-factor Gaussian model

overall groupl group2 group3 group4 group5 AC
oL | -0.17 -0.17 -0.16 -0.11 -0.19 -0.06
sy | 0.00 -0.01 0.05 0.02 0.03 0.02 -35.2
Sp -0.02 -0.01 -0.02 -0.01 0.00 -0.01

bi-factor Student t model

overall groupl group2 group3 group4 group5 AC
6. | -0.11 -0.11 -0.10 -0.06 -0.15 -0.01
Sy | 0.06 0.05 0.11 0.07 0.07 0.07 -37.5
SK, 0.01 0.01 0.00 0.01 0.00 0.01

bi-factor Frank copula model

overall groupl group2 group3 group4 group5 AIC
6. | -0.30 -0.27 -0.25 -0.23 -0.30 -0.16
6y | -0.13 -0.10 -0.04 -0.10 -0.09 -0.08 -36.7
5, | 000  0.04 0.03 0.01 0.03 0.02

1-factor reflected BB1 copula model

overall groupl group2 group3 group4 group5 AC
6. | -0.01 -0.02 -0.01 -0.24 -0.03 -0.07
Sy | 0.05 0.04 0.00 -0.10 -0.01 0.08 -34.0
Sp -0.01 -0.01 -0.08 -0.22 -0.05 -0.09

nested reflected Gumbedflected BB1 copula model

overall groupl group2 group3 group4 group5 AC
oL 0.05 0.05 0.05 0.05 0.04 0.13
6y | -0.04 0.00 0.03 0.03 -0.01 0.02 -36.7
Sp -0.02 0.00 -0.02 -0.01 0.00 -0.01

2-factor BBYFrank copula model

overall groupl group2 group3 group4 group5 AIC
oL | -0.04 -0.04 -0.06 -0.23 -0.06 -0.03
6y | 0.00 0.02 -0.02 -0.20 -0.05 -0.03 -37.0
SP 0.04 0.04 -0.04 0.02 0.00 -0.05

bi-factor BBY/Frank copula model

overall groupl group2 group3 group4 group5 AC
oL 0.01 0.02 0.02 -0.01 0.00 0.07
Sy | 0.03 0.03 0.09 -0.03 0.08 0.07 -37.4
3,, -0.04 0.00 -0.01 0.00 -0.01 -0.02
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bi-factor copula models. The linking copulas and depenéetiwicture in vine models are sequentially selected to
maximize components of the likelihood. The vine models ass interpretable and do not use the information of the
sectors; for our data set, stocks in the same sector arewaysheighbors in the first tree of the vine. Also the choice
of linking copulas in the structured copula models is basethe assessed strength of dependence in the tail.

The improved fits from structured copula models comes wittitemhal computational time. With a personal
computer with an Intel Core i5-2410M CPU at 2.3 GHz, somergsiare: Multivariate Student t or Gaussian with
bi-factor or nested factor structure: less than one mimetitected Gumbel reflected BB1 nested copula model: 29
min (12 iterations, 107 parameters); BBiank bi-factor model: 48 min (23 iterations, 153 paransteither nested
factor and bi-factor models converge faster; 1-trunca2euncated and 3-truncated regular vines: 1.5, 2.0 and 2.3
minutes respectively.

In the next subsection we do a more detailed analysis of thadial data set. In particular, we compute Value-at-
Risk (VaR) and conditional tail expectations (CTE) foffdient models and compare the model-based estimates with
the corresponding empirical estimates of these risk measBecause the VE&TE are numerically more intensive
with bootstrapping and Monte Carlo simulations, for furttemparisons, we exclude the first and the last group,
leaving 3 groups and 20 stocks.

6.3. VaR and CTE for different models

We consider an equally weighted portfolio of 20 stocks frdma second, third and fourth groups of the data
set considered in the previous section: health care equipama services (6 stocks), biotechnology (6 stocks) and
pharmaceuticals (8 stocks).

We use bi-factor Gaussian, Student t and Frank copula m@tielsorresponding nested models have very similar
performance so that they are not included). In addition, sethe 1-factor reflected BB1 copula model, the nested
model with reflected Gumbéflected BB1 and the bi-factor model with BBtank.

For each model, using the procedure outlined in Section S;orgute the model-based 95% confidence intervals
for overall and group averages far, oy, ps. Again, the averaged values allow reduced variability ef¢ktimates and
narrower confidence intervals despite the sample size g bery large. With smaller confidence intervals, models
with different types of dependence structure can Bemintiated moref&ciently. We uséB = 2000 bootstrap samples
to obtain the intervals; in fact, the results stabilize wBsn 1000.

GARCH-filtered log-returns are used to compute the cormedjpg empirical values. The results are presented
in Table 5, and these should be mainly considered as a diagmssessment of fits of fiierent copula models. It
is seen, that all tail symmetric models underestimate d#grece in the lower tail. In addition, the Student t model
overestimates dependence in the upper tail and the birfecamk copula model underestimate dependence in both
tails. At the same time, the 1-factor model with a reflected.BBpula better estimates dependence in the tails and
the two other tail asymmetric models are more conservasvthey slightly overestimate dependence in the tails.
Nevertheless, Spearman’s rho is significantly underestidia all groups by the 1-factor model unlike other models
with a group structure.

Next, we compute empirical estimates as well as the 95% caméelintervals for VaRwith a = 0.01, 0.05, 0.95,

0.99 and for CTE(-0.03), CTE (-0.02), CTE (0.02), CTE"(0.03). We useB = 2000 bootstrap samples and simulate
copula-GARCH time series of lengtth = 20000 to compute VaR and CTE for each sample and thereforet&ino
the confidence intervals. The value8.02,+0.03 for CTE approximately correspond to the lower and uppeibth

1% empirical quantiles of the portfolio returns. The resw@te presented in Tables 6 and 7, as another diagnostic
assessment of fits of filerent copula models. It is seen that VaR is not very sengitithe model choice. Only 1%
VaR can detect weaker dependence for Frank copula as eggrigstarger lower tail quantiles. Nevertheless, the
reflection symmetric Student t and Gaussian models do raagowell in terms of VaR risk measure despite the fact
the dependence structure is misspecified by these modelesgilgte reason is that smaller quantiles are required to
detect weaker dependence of these models in the lower tiler@ise the inferences on VaR and CTE are mainly
dominated by the fit in the middle. However, VaRan not be empirically estimated well with very small or krg
values ofe unless the sample size is very large.

Conditional tail expectation is underestimated in the lotad by the reflection symmetric copula models, but all
models do reasonably well in the upper tail. However, thal&ttit model significantly overestimates the strength
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Table 5: Overall and group estimated averages 0fou, ps and the model-based 95% confidence intervaise(vals that don’t contain the
empirical value are shown in bold font); GARCH-filtered log-returns of stocks in the health caretseof the S&P500 index, years 2010-2011

model o@ll) o (group2) oo (group3) o (group 4)
empirical estimate 0.42 0.41 0.60 0.47
bi-factor Gaussian (0.19,0.29) (0.21,0.28) (0.45,0.53) (0.23,0.30)
bi-factor Student t (0.30,0.35) (0.28,0.35) (0.50,0.58)  (0.30,0.37)
bi-factor Frank (0.12,0.15) (0.14,0.18) (0.33,0.40) (0.14,0.19)
1-factor reflected BBl (0.41,0.50) (0.34,0.46) (0.48,0.63) (0.38,0.49)
nested r~GumbgBB1 | (0.44,0.51) (0.41,0.51) (0.59,0.69) (0.44,0.55)
bi-factor BBYFrank | (0.37,0.49) (0.35,0.49) (0.51,0.65) (0.40,0.54)
model ou(@ll)  ou(group2) ou (group3) gy (group 4)
empirical estimate 0.24 0.20 0.47 0.25
bi-factor Gaussian (0.19,0.29) (0.21,0.28) (0.45,0.53) (0.23,0.30)
bi-factor Student t (0.30,0.35) (0.28,0.35) (0.50,0.58)  (0.30,0.37)
bi-factor Frank (0.12,0.15) (0.14,0.18) (0.33,0.40) (0.14,0.19)
1-factor reflected BB1 (0.20,0.30) (0.11,0.23) (0.30,0.53) (0.13,0.28)
nested rGumbgBB1 | (0.18,0.24) (0.18,0.29) (0.43,0.57) (0.20,0.31)
bi-factor BBYFrank | (0.22,0.34) (0.20,0.34) (0.38,0.54) (0.24,0.37)
model ps(@ll)  ps(group2) ps (group3) ps (group 4)
empirical estimate 0.50 0.50 0.72 0.52
bi-factor Gaussian (0.38,0.52) (0.43,0.52) (0.68,0.74) (0.45,0.54)
bi-factor Student t (0.47,0.54) (0.45,0.53) (0.69,0.76) (0.48,0.56)
bi-factor Frank (0.46,0.54) (0.48,0.56) (0.69,0.75) (0.51,0.59)
1-factor reflected BB1 (0.44,0.51) (0.34,0.44) (0.57,0.67) (0.39,0.49)
nested rGumbgBB1 | (0.44,0.52) (0.43,0.52) (0.67,0.73) (0.47,0.55)
bi-factor BBYFrank | (0.43,0.50) (0.44,0.53) (0.68,0.74) (0.47,0.55)

of dependence in the upper tail according to the tail-weidlitependence measures, whereas Frank copula model
underestimates dependence in the upper tail. CTE can tHussbe very sensitive to the model misspecification.

Note that the 1-factor copula with reflected BB1 providesdyestimates for VaR and CTE as the strength of
dependence in the tails is estimated quite well by the md&fedr removing the first large group of returns, the model
improves its performance, however the overall dependenatili underestimated as indicated by poor estimates
of Spearman’s rho. In conclusion, one can see that struttopula models specify both overall dependence and
dependence in the tails quite well and provide good estisrfatethe considered risk measures. The improved fit of
the bi-factor copulas as seen in the AIC values matches eprmodel-based estimates of tail-weighted dependence
measures; that is, tail-weighted dependence measuresareesensitive than portfolio VARTE in differentiating
models that fit less well based on AIC. That is, some models initorrectly specified dependence structure (in the
middle or tails) still do reasonably well in terms of VaR an@lEC This indicates that very small (or large) values of
a for VaR and, respectively, thresholds for CTE may be regliioedficiently discriminate models with fierent tail
properties and thus one needs a very large sample size tggetiastimates for VaR and CTE for a model validation.
On the other hand, tail-weighted dependent measures cenindisate the copula models without such a large sample
size.

7. Concluding remarks

The structured factor copula models allow the modeling gfeielence for multivariate data sets when there are
several non-overlapping groups of variables with homogaselependence in each group. These models contain
bi-factor and nested Gaussian models as special casesdepehdence and tail asymmetry can be accommodated
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Table 6: Empirical estimates of VaRor @ = 0.01, 0.05,0.95,0.99 and the model-based 95% confidence intervals; GARCHiiltg-returns for
stocks from health care sector of the S&P500 index, year8-21111.

model VaRo 01 VaRy 05 VaRy g5 VaRy g9
empirical estimate -0.035 -0.020 0.019 0.029
bi-factor Gaussian (-0.039, -0.024) (-0.024,-0.016) (0.017,0.025) (0.02630)
bi-factor Student t (-0.040,-0.026) (-0.024,-0.016) (0.018,0.025) (0.02640Q)
bi-factor Frank (-0.030,-0.020) (-0.022,-0.015) (0.017,0.023) (0.022,0.032)
1-factor reflected BB1 (-0.045,-0.030) (-0.025,-0.017) (0.017,0.024) (0.02638)
nested rGumb@BB1 | (-0.046,-0.031) (-0.025,-0.017) (0.017,0.023) (0.02630)
bi-factor BBYFrank | (-0.045,-0.029) (-0.025,-0.017) (0.017,0.023) (0.02@39)

Table 7: Empirical estimates of CTE*), for r* = —0.03, -0.02, and CTE(r*), for r* = 0.02 0.03, and the model-based 95% confidence intervals;
GARCH-filtered log-returns for stocks from the health caretsr in the S&P500 index, years 2010-2011.

model CTE (-0.03) CTE (-0.02) CTE (0.02) CTE"(0.03)
empirical estimate -0.043 -0.030 0.028 0.039
bi-factor Gaussian (-0.041,-0.036) (-0.029,-0.026) (0.026,0.029) (0.036,0.041)
bi-factor Student t (-0.041,-0.037) (-0.030,-0.026) (0.026,0.030) (0.037,0.041)
bi-factor Frank (-0.041,-0.032) (-0.026,-0.022) (0.023,0.026) (0.032,0.039)
1-factor reflected BB1 (-0.045, -0.040) (-0.033,-0.029) (0.026,0.030) (0.0364Q)
nested rGumbgBB1 | (-0.046,-0.040) (-0.033,-0.029) (0.025,0.029) (0.0364@)
bi-factor BBYFrank | (-0.045,-0.039) (-0.033,-0.029) (0.027,0.031) (0.0384@)

by choosing appropriate bivariate linking copulas. The hanof dependence parameters in the models is a linear
function of dimensiord and, with appropriate numerical methods, two-stage maxirtikelihood estimation is féi-
cient ford up to over 100. Resampling to get model-based confidencevatiéeis however much more numerically
intensive.

For simplicity of presentation in Section 6, we used a comipanrametric bivariate linking copula family for the
group latent variables. To increase the log-likelihood ecréase AIC, more choices could be considered for each
edge of the truncated vine associated with the structuredlaamodel. In practice, one has to decide whether or
not to continue trying to find parametric models that candyshaller AIC values. Diagnostic procedures based on
Spearman’s rho and tail-weighted dependence measuresoaseld to assess adequacy of fit; bad fits can suggest
dependence structures that are less parsimonious or stajitieking copulas to better match tail behavior seen in the
multivariate data. The example in Section 6 and other sirskamples show that the best model(s) based on simple
assessments of adequacy of fit does (do) not always matchheitiest model(s) based on AIC.

The models can be further extended to a dynamic setting weperdience structure of the multivariate data set
can change in time. To account for dynamic dependence, aspuith dependence parameters evolving in time can
be used as in Patton (2006) or alternatively regime switchopula can be applied; see, for example, Chollette et al.
(2009). As a possible application, the dynamic structuigulia model would allow to forecast financial portfolio
returns and quantify possible risks of the portfolio, whalecounting for (i) strong dependence in the tails and (ii)
possible tail asymmetry of a multivariate distribution bétportfolio components. Future research includes stgdyin
the dependence properties of such an extended dynamitusedacopula model. Based on the model prediction,
possible strategies for investors could be investigatedder to minimize the risks of a portfolio.
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Appendix

A.1l. Bivariate copulas satisfying assumptions of Proposition 3

We check that the conditiovc(v, qv) > Kc.q™, g € (0, 1), Kc > 0, m > 0 for small enouglv from Proposition 3 is
satisfied for many bivariate copulas that are used in agfoits

1. Reflected Gumbel copula with a dependence parametell. Definet; = —In(1 — uy), to = —In(1 — W),
s=t{ +t),r = sY/%. It can be shown the the density of the reflected Gumbel capuals follows:

C(Ul, U2) = (I’ +60-— 1)['1_20 eXH—I’}(tltz)g_l/[(l - U]_)(l — Uz)].

Letu; = vandu, = qv. It follows thatt; > vandt, > qvand asy — 0ty < 2v, t, < 2vq. Itimpliesr < 2v(1+ f)Y? <
v2Y/%+1 For the reflected Gumbel copula we have:

Vo(v, va) > V(0 - 1)[v2H 152 expl-v2 O tato)' > Kew 20Z) = Ko

whereK, = (9 — 1)21-2)1/6+1) expy —21/0+1}  Hence the assumption of Proposition 3 is satisfied wighy — 1.
2. BB1 copula with dependence parameters0 ands > 1. Definet; = u,?, t; = u,?, s= (t; — 1)° + (t. — 1)° and
r = s¥9. The density of the BB1 copula is given by the formula:
o(uy, Up) = (1+ 1) W 221665 — 1)+ (66 + 1ri(t — 1)tz — DI/ ().

Letu; = vandu, = vg. Asv — 0 we havet; — o, j = 1,2,r — oo and therefore for small enoughwe have
r+1<2randtj—1> tj/2. It follows thats < t +t = (qv) (1 + g®) < 2(qv)™’ andr < 2Y9(qv)~’. As aresult, for
the BB1 copula we have:

ve(v, va) > v(2r) "W 2r =265 + 1)r](tata/4Y " H(ugup) 0t = Kivr VOB (y2q)0e-D-0-1

> Kg2—(1/(69)+2)V(qv)1+20§(V2q)—06—1 — ch95

whereK? = (65 + 1)27Y-% andK, = K;2-1/#)+2) = (g5 + 1)2-2+1/E)E+1) Hence the assumption of Proposition 3
is satisfied withm = 65.

3. Studenttcopula with dependence paramejers(—1; 1) and shape parameter 0. Definet; = T;(uy), to =
T, Y(up) andd® = 1+ (t2 - 2ptat, + t2)/[v(1 - p?)]. The density of the Student copula is given by the formula:

14 ﬁ Y. ts 097105 \WL(0.5v) \° [d¥]-05-1

v I'(0.5v + 0.5) 21— p2 :
Letu; =V, U, = vq. Using the asymptotic behavior of Student quantiles; as 0, we get_ki\rl/v <t < —k{\rl/V,
~k; (V)Y < tp < —kj(vg)~Y/” for some positive constanks, ki, k;, k;. Itimpliesd* < 1+ (ty + t2)?/[v(1 - p?)] <

2
1+ (2)2/[v(1 - p?)] < 5t2/[v(1 - p?)] < ke(v) %", whereks = 5(;)?/[v(L - p?)]. Denoteky = (%) =

v

c(ug, up) =

For the Student copula we have:
VC(V, Vq) > k4V[(t1t2)2/V2] OA5v+0.5[d*]—0.5v—l > k4V[(kI k;)Z(VZq)—Z/V/VZ]0A5v+0.5[k3(vq)—2/v] -0.5v-1
— KCW—Z—Z/Vq—l—l/V(Vq)l+2/v — chl/v
whereK. = ky[ki Kk} /v]"*1k;%* 1. Hence the assumption of Proposition 3 is satisfied with 1/v.

A.2. Derivatives of bivariate linking copulas
In order to get the gradient and Hessian of the negativeikaditiood for numerical minimization via a modified
Newton-Raphson method, the following derivatives are ditallly needed. These derivatives are required when
differentiating under the integral sign using the chain rulenfda.
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In a nested copula model (5) the following derivatives agpineed:

0Cv,v,(Vg, Vo; )  0Cu,, v, (Uig, Vg: Tig) 520Vg,vo(Vg= Vo; ) 520Uig,vg(uig’ Vg; Tlig)
00y ’ Mg 06906y ’ (977@617&J

s

wheredy, nig are dependence parameters of the copGigs, andCy, v, respectively. In a bi-factor model (3) the
required derivatives are as follows:

0CUVo(Uij, Vo3 Big)  OCU, VgV (Wigs Vg Yig)  OCU vy (Wigs Vg; Yig) — ICu,ve(UigIVo; Blig)
06ig ’ 0Yig ’ OWig ’ 90ig ’

aZCU.g,Vo(Uig’ Vo; blig) azcu.g,vg:vo (Wig Vg; ¥ig) 52CUig,Vg;Vo (Wig, Vg; ¥ig)
89@89{% ’ ayigayi-g avvizg

0Cu,gv, (UiglVo; big) 520U.g,vg:vo (Wig, Vg; ¥ig)
591969;; ’ OWig dyig

D

wheredig, yig are dependence parameters of the cofulay, andCy, v,:v, respectively.

For the common bivariate copula families, the density aleit the partial derivatives are available in a closed
form. As such, the required derivatives of tigu) can be represented as integrals of some explicit functiadsan
be computed using numerical integration.

A.3. Structured factor models as truncated vines

Simulation from the structured factor copula models isighifiorward after recognizing that they are special cases
of truncated vines rooted at latent variables.

For the bi-factor copula model wit® groups of variables, 1e¥y, V1, ..., Vs be the independent latekk(0, 1)
variables and let)ig be the observed variables fioe 1,...,dg, j = 1,...,G. This can be represented as a 2-truncated
regular-vine. The edges of tree 1 a%,[V1], .. .,[Vo, Vg] and [Vo, Uig] fori = 1,...,dg, j = 1,...,G; there is a total
of G + d edges in this tree. For tree 2, the edges &e\y|Vo] for g = 2,...,G and Vg, Uijg|Vo] for i = 1,...,dq,
j=1,...,G;thereis atotal oG — 1 + d edges in this tree; see Figure 1.

- .____l_JdGG«VG‘V(_)___--'

Figure 1: bi-factor model witl groups d; variables in thejth group

For the nested factor copula model wighgroups of variables, l1e¢y, V1, ..., Vi, be the dependent latebt(0, 1)
variables with a 1-factor structure, and lgf, be the observed variables. This can be represented as achied
regular vine with the edges of tree denoted\as V1], ..., [Vo, Ve] and [Vg, Uig] fori = 1,...,dg, j = 1,...,G; there
is a total ofG + d edges; see Figure 2.
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Vo,V1 Vo,Ve

Ve,Uic VGsUdGG

Uis

Figure 2: nested model witB groups d;j variables in thgth group

From these truncated vines, the joint density of the obskavel latent variable can be obtained from the vine
density result in Bedford and Cooke (2001), and then integraver the latent variables leads to (3) and (5).

A.4. Smulating data from a nested copula model

Assume we need to simulate a random vetitet (U11,...,Uqg1, -+, U1g, ..., Uds) from the model (5) wittG
groups of sizeldy, g = 1,...,G. Below is a simple algorithm for simulating data from the rabd

1. SimulateG + 1 independent random variabMg W, ..., Wg ~ U(0, 1);

. Use the inverse conditional Cﬁﬁivo to simulate group latent variablegy = C\7$VO(W9|V0)’ g=1,...,G;

2

3. Simulated; + - - - + dg independent random variabl§q, ..., Wy,1, - - - , Wig, . .., Wgee ~ U(0, 1);

4, ;Jse t:le inverse conditional C%iﬂvg to simulate variables within thg-th group: Uiy = Cgt‘vg(wigwg), i =
5 -+ 05 Q-

For some bivariate copulas the inverse conditional cdfseadable in a closed form. For other copulas, such as
the Gumbel or BB1 copula, the inverse conditional cdfs caocdmeputed quickly using numerical methods.

A.5. Smulating data from a bi-factor copula model

Assume we need to simulate a random vettef (U11,...,Ug1,- -+, U1g, ..., Udcs) from the model (3) withG
groups of sizedg, g = 1,...,G. We use the following algorithm:

1. Simulate 3 G+d; +---+dg independent random variablg, Vi, ..., Vg, W1, ..., Wg1,- -+, Wig, ..., Wyee ~
U(0.1);

2. Use the inverse conditional cd®, ., andCy , to simulateVig = C, . (WiglVg), Uig = Cj, (ViglVo)
fori=1,...,d3,0=1,....G.
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