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Structured factor copula models: theory, inference and computation

Pavel Krupskiia,∗, Harry Joe1

aDepartment of Statistics, University of British Columbia, Vancouver BC, Canada V6T 1Z4

Abstract

In factor copula models for multivariate data, dependence is explained via one or several common factors. These
models are flexible in handling tail dependence and asymmetry with parsimonious dependence structures. We propose
two structured factor copula models for the case where variables can be split into non-overlapping groups such that
there is homogeneous dependence within each group. A typical example of such variables occurs for stock returns
from different sectors. The structured models inherit most of dependence properties derived for common factor copula
models. With appropriate numerical methods, efficient estimation of dependence parameters is possible for data sets
with over 100 variables. We apply the structured factor copula models to analyze a financial data set, and compare with
other copula models for tail inference. Using model-based interval estimates, we find that some commonly used risk
measures may not be well discriminated by copula models, buttail-weighted dependence measures can discriminate
copula models with different dependence and tail properties.

Keywords: bi-factor model, conditional independence, dependence measure, factor analysis, tail asymmetry, tail
dependence, truncated vine
2000 MSC: 62H25, 60H99

1. Introduction

Modeling high-dimensional data is a challenging task requiring flexible and tractable models. Models based on
multivariate normality or Gaussianity are widely used in different applications due to their simplicity and tractability.
In these models, special correlation structures are used toreduce the number of dependence parameters to a linear
function of the dimension. A typical example is a Gaussian factor model where one or several common factors define
the dependence structure for all of the variables. Factor copula models proposed in Krupskii and Joe (2013) are
extensions of the Gaussian factor model allowing greater flexibility when modeling non-Gaussian dependence. In
particular, strong tail dependence and tail asymmetry can be accommodated. In data sets with a large number of
variables, data can come from different sources or be clustered in different groups, for example, stock returns from
different sectors or grouped item response data in psychometrics; thus dependence within each group and among
different groups can be qualitatively different, and structured factor models can make use of the groupinformation.

In psychometrics, sometimes a bi-factor correlation structure is used when variables or items can be split into
non-overlapping groups; see for example Gibbons and Hedeker (1992) and Holzinger and Swineford (1937). In a
Gaussian bi-factor model, there is one common Gaussian factor which defines dependence between different groups,
and one or several independent group-specific Gaussian factors which define dependence within each group. An
alternative way to model dependence for grouped data is a nested model where the dependence in groups is modeled
via dependent group-specific factors and the observed variables are assumed to be conditionally independent given
these group-specific factors. The nested model is similar toGaussian models with multilevel covariance structure;
see Muthen (1994). Despite the simplicity, these two modelshave the same drawbacks as a common Gaussian factor
model — they do not account for tail asymmetry and tail dependence.
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In this paper, we propose copula extensions for bi-factor and nested Gaussian models. The extensions are called
structured factor copula models. The proposed models contain 1- and 2-factor copula models introduced in Krupskii
and Joe (2013) as special cases, while allowing flexible dependence structure both for within group and between
group dependence. As a result, the models can be suitable formodeling high-dimensional data sets consisting of
several groups of variables with homogeneous dependence ineach group.

The proposed multivariate copula models are built from a sequence of bivariate copulas in a similar way to
vine copulas. LetFX be the multivariate cumulative distribution function (cdf) of a randomd-dimensional vector
X = (X1, . . . , Xd), and letFX j be the cdf ofX j for j = 1, . . . , d. The copulaCX, corresponding toFX, is a multivariate
uniform cdf such thatFX(x1, . . . , xd) = CX(FX1(x1), . . . , FXd (xd)). By Sklar (1959),CX is unique ifFX is continuous.
Copula functions allow for different types of dependence structure and are popular for modeling non-Gaussian depen-
dence, including stock returns, insurance and hydrology data; see for example see Patton (2006), McNeil et al. (2005),
Salvadori et al. (2007) and others.

The proposed structured copula models are special cases of truncated-vine copula models with latent variables.
In a vine model, bivariate linking copulas are applied to conditional cdfs to sequentially construct a multivariate
distribution. The resulting vine model or pair-copula construction allows great flexibility in modeling different types
of dependence structure by choosing appropriate linking copulas; see Kurowicka and Joe (2011) and Brechmann and
Czado (2013) for more details. We show that depending on the choice of bivariate copulas in the structured copula
models, different types of strength of dependence in the tails can be accommodated, similar to common factor copula
models.

For a large number of variables which divide naturally into non-overlapping groups, it could be convenient to
first separately model each group of variables followed by a method to combine the smaller models into a bigger
model. Our structured copula models are one way to do this. The grouped t-copula of Demarta and McNeil (2005)
can handle groups but can only accommodate reflection symmetry. Another approach is hierarchical Kendall copulas
in Brechmann (2014); it makes use of conditional independence given some group aggregation variables. Kendall
functions only have simple form for exchangeable Archimedean copulas, so that hierarchical Kendall copulas are only
convenient for exchangeable dependence within groups. Also nested Archimedean copulas (Section 4.1 of Joe (1997))
are too parsimonious and have the property of exchangeable dependence within groups.

The details in this paper are given for continuous response variables, but the structured copula models can also
be developed for discrete ordinal variables or mixed discrete/continuous variables. Factor copula models for item
response are studied in Nikoloulopoulos and Joe (2014), andif the items can be classified into non-overlappinggroups,
then the bi-factor or nested factor copula models are candidates when there is tail asymmetry or tail dependence.

The rest of the paper is organized as follows. In Section 2 we define bi-factor and nested copula models including
a special case of Gaussian copulas, and compare the properties of these models with those of 1- and 2-factor copula
models in Section 3. Section 4 has details on numerical maximum likelihood with a modified Newton-Raphson
algorithm. Section 5 has a resampling method to obtain model-based interval estimates of the portfolio risk measures of
Value-at-Risk and conditional tail expectation. In Section 6, we apply different copula-GARCH models to a financial
data set and compare estimates of the Value-at-Risk, conditional tail expectations as well as some other tail-based
quantities. The results show that structured factor copulamodels can parsimoniously estimate the dependence structure
of the data. Value-at-Risk and other risk measures, which are widely used in financial applications, cannot efficiently
differentiate models with different tail properties, and tail-weighted dependence measures are a better match to the fit
of copula models based on the Akaike information criterion.Section 7 concludes with a discussion of future research.

2. Structured factor copula models

Common factor models assume thatd observed variables are conditionally independent given 1≤ p ≪ d latent
variables that affect each observed variables; for identifiability, the latent variables are assumed to be independent.
Structured factor models assume that there is structure to the observed variables and each latent variable is linked to
a subset of the observed variables. For Gaussian structuredfactor models, this corresponds to many structured zeros
in the matrix of loadings; in this case, with fewer parameters in the loading matrix compared with the common factor
model, and thep latent variables could be dependent, as in the oblique factor model of Harris and Kaiser (1964) and
McDonald (1985). With a larged, structured Gaussian factor models are also parsimonious models to parameterize the

2



Table 1: Some copula notation; assumingU,V,V0,V1 ∼ U(0,1), V0,V1 are independent

Notation Definition
CU,V (u, v) copula cdf for (U,V)
CU|V (u|v) := ∂CU,V (u, v)/∂v conditional cdf ofU givenV
cU,V (u, v) := ∂2CU,V (u, v)/∂u∂v copula pdf for (U,V)
CU,V1;V0(CU|V0(u|v0), v1) copula linking the conditional cdfs

CU|V0(u|v0) andCV1|V0(v1|v0) = v1

CU|V1;V0(CU|V0(u|v0)|v1) := ∂CU,V1;V0(CU|V0(u|v0), v1)/∂v1 conditional copula cdf ofU |V0 givenV1

cU|V1;V0(CU|V0(u|v0), v1) := ∂2CU,V1;V0(CU|V0(u|v0), v1)/∂v1∂v2 copula pdf for (U |V0,V1)

correlation matrix inO(d) parameters (instead ofd(d−1)/2 parameters). The main goal of this section is to present the
copula version of two Gaussian structured factor models; for the extension, the parameters of the Gaussian structured
factor models are converted to a set of correlations and partial correlations that are algebraically independent and that
have a truncated vine structure, and then the correlations and partial correlations are replaced by bivariate copulas.
Similar copula extensions exist for other structured factor models.

A specific case of structured factor models occurs when variables can be divided into non-overlapping groups.
Assume that we haveG groups of variables and there aredg variables in theg-th group,g = 1, . . . ,G. Let Ui j ∼
U(0, 1), i = 1, . . . , dg and suppose variablesU1g, . . . ,Udgg belong to theg-th group. Denote the joint cdf ofU =
(U11, . . . ,Ud11, · · · ,U1G, . . . ,UdGG) by CU. Let d =

∑G
g=1 dg be the total number of variables.

We consider two classes of structured factor copula models.The first model is an extension of the bi-factor model
and we call it the bi-factor copula model. The second model isan extension of the oblique factor model with a blocked
loading matrix where the dependent latent variables satisfy a 1-factor structure.

Factor copulas have appeared in a number of contexts with finance applications. There are factor copula models
in McNeil et al. (2005) and Hull and White (2004) but these arenot as general as those in Krupskii and Joe (2013).
The bi-factor copula model can be considered as a special case of ap-factor copula in Krupskii and Joe (2013) where
appropriate linking copulas to latent variables are set to conditional independence based on the group structure. We
briefly introduce one and two-factor copula models and some copula notation in Section 2.1 and then define bi-factor
and nested copula models in Sections 2.2 and 2.3.

2.1. One and two-factor copula model

Assume we haved variablesU1, ...,Ud ∼ U(0, 1) and letCU be the joint cdf of the vectorU = (U1, ...,Ud). In
the one-factor copula model the variablesU1, ...,Ud are assumed to be conditionally independent given a latent factor
V1 ∼ U(0, 1) and

CU(u1, . . . , ud) =
∫ 1

0

d∏

j=1

FU j |V1(u j|v1) dv1 =

∫ 1

0

d∏

j=1

CU j |V1(u j|v1) dv1, (1)

whereCU j ,V1(u j, v1) is the copula cdf linkingU j andV1, andCU j |V1(u j|v1) := ∂CU j ,V1(u j, v1)/∂v1 is a conditional cdf of
CU j ,V1.

In the two-factor copula model the variablesU1, ...,Ud are assumed to be conditionally independent given two
independent latent factorsV1,V2 ∼ U(0, 1) and

CU(u1, . . . , ud) =

∫ 1

0

∫ 1

0

d∏

j=1

CU j |V2;V1(CU j |V1(u j|v1)|v2) dv1dv2, (2)

whereCU j ,V2;V1(CU j |V1(u j|v1), v2) is the copula cdf linking the conditional distributionsCU j |V1(·|v1) andCV2|V1(·|v1), and
CU j |V2;V1(CU j |V1(u j|v1)|v2) := ∂CU j ,V2;V1(CU j |V1(u j|v1), v2)/∂v2. In the next sections we will be using similar copula
notation for bivariate copula cdfs, conditional cdfs and pdfs; these notation is summarized in Table 1.
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It is seen from (1) and (2), that the joint cdf in the models canbe expressed in terms of bivariate linking copula
cdf and conditional cdfs of copulas. Tail properties and dependence properties of these linking copulas reflect the
properties of the joint distributionCU; see Krupskii and Joe (2013) for details.

2.2. Bi-factor copula model

Consider a model with one common (global) factor andG group-specific factors, such that theG + 1 factors or
latent variables are mutually independent. Assume that within theg-th group,U(0, 1) distributed random variables
U1g, . . . ,Udgg are conditionally independent givenV0 andVg, whereV0,V1, . . . ,VG are independent and identically
distributed (i.i.d.)U(0, 1) random variables. We also assume thatUig in groupg does not depend onVg′ for g′ , g.
The bi-factor copula model is therefore an extension of the two-factor copula model whereG = 1.

Let CUig ,V0 be the copula cdf of (Uig,V0) and letCUig |V0 the corresponding conditional distribution. LetCUig ,Vg;V0

be the copula for the conditional univariate distributionsCUig |V0(·|v0) andCVg|V0(·|v0), with CVg |V0 being theU(0, 1) cdf
from the independence ofV0,V1, . . . ,Vg. By Sklar’s theorem, in general, the copulaCUig ,Vg;V0 depends onv0. However,
similar to Krupskii and Joe (2013) and the vine copula literature (Kurowicka and Joe (2011)), we make the simplifying
(modeling) assumption thatCUig ,Vg;V0 does not depend onv0. This is not a strong assumption as we are dealing with
latent variables, and in a special case of the Gaussian model, copulas for conditional distributions do not depend on
the values of the conditioning variables.

The bivariate copulasCUig ,V0 (for common factor) andCUig ,Vg;V0 (for group-specific factor) are assumed to be
absolutely continuous with respective copula densitiescUig ,V0 andcUig ,Vg;V0.

With a vectoru = (u11, . . . , ud11, · · · , u1G, . . . , udG G), then using the above conditional independence assumptions,
we get:

Pr(Uig ≤ uig, i = 1, . . . , dg, g = 1, . . .G) =
∫

[0,1]G+1

G∏

g=1

dg∏

i=1

Pr(Uig ≤ uig|V0 = v0,Vg = vg) dv1 · · ·dvGdv0

and

Pr(Uig ≤ uig|V0 = v0,Vg = vg) =
∂

∂vg
Pr(Uig ≤ uig,Vg ≤ vg|V0 = v0)

=
∂

∂vg
CUig ,Vg;V0(CUig |V0(uig|v0), vg) =: CUig |Vg;V0(CUig |V0(uig|v0)|vg).

Hence

CU(u) =

∫ 1

0

∫

[0,1]G

G∏

g=1

dg∏

i=1

CUig |Vg;V0(CUig |V0(uig|v0)|vg) dv1 . . . dvG dv0

=

∫ 1

0

G∏

g=1



∫ 1

0


dg∏

i=1

CUig |Vg;V0(CUig |V0(uig|v0)|vg)

 dvg


dv0;

cU(u) =

∫ 1

0

G∏

g=1




dg∏

i=1

cUig ,V0(uig, v0)


∫ 1

0


dg∏

i=1

cUig ,Vg;V0(CUig |V0(uig|v0), vg)

 dvg


dv0. (3)

It is seen that the joint density is represented as a one-dimensional integral of a function which in turn is a product of
G one-dimensional integrals. As a result, (G + 1)-dimensional numerical integration can be avoided. The model has
d = d1 + . . . + dG bivariate linking copulas both for the first and second factors, or 2d linking copulas in total. The
marginal distribution of (3) for a single groupg of variables is a 2-factor copula model.

For the parametric version of this model, there is a parameter θi,g for CUig ,V0 and a parameterγi,g for CUig |Vg;V0; θi,g

andγi,g could be vectors. The parameter vector for the density in (3)is θ = (θi,g, γi,g : i = 1, . . . , dg, g = 1, . . . ,G).
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2.3. Nested copula model

Consider the case ofG dependent factors without a common factor. Assume that for afixed g = 1, . . . ,G, U(0, 1)
distributed random variablesU1g, . . . ,Udgg are conditionally independent givenVg ∼ U(0, 1), and the joint cdf of
V = (V1, . . . ,VG) is given by the copulaCV . We also assume thatUig in groupg does not depend onVg′ for g′ , g.
That is, we haveG groups of variables andG latent factors where theg-th latent factor defines dependence structure
in theg-th group. The nested copula model is therefore an extensionof the one-factor copula model whereG = 1.

Let CUig ,Vg be the copula cdf of (Uig,Vg) andCUig |Vg be the corresponding conditional distribution. With a vector
u = (u11, . . . , ud11, · · · , u1G, . . . , udG G) we get:

CU(u) =
∫

[0,1]G



G∏

g=1

dg∏

i=1

CUig |Vg(uig|vg)


cV(v1, . . . , vG) dv1 . . . dvG, (4)

whereCUig ,Vg is the copula linkingUig andVg. This is a copula version of the oblique Gaussian factor model where
each observed variable loads on exactly one latent variable.

We additionally assume thatV1, . . . ,VG are conditionally independent given another latent variable V0, that is the
joint distribution ofV has one-factor copula structure. Then we get:

cV(v1, . . . , vG) =
∫ 1

0



G∏

g=1

cVg,V0(vg, v0)


dv0

whereCVg,V0 is the copula linkingVg andV0. It implies that

CU(u) =

∫ 1

0

∫

[0,1]G



G∏

g=1

dg∏

i=1

CUig |Vg(uig|vg)





G∏

g=1

cVg,V0(vg, v0)


dv1 . . . dvG dv0

=

∫ 1

0



G∏

g=1

∫ 1

0

cVg,V0(vg, v0)
dg∏

i=1

CUig |Vg(uig|vg)

 dvg


dv0;

cU(u) =

∫ 1

0



G∏

g=1

∫ 1

0

cVg,V0(vg, v0)
dg∏

i=1

cUig ,Vg(uig, vg)

 dvg


dv0. (5)

The total number of bivariate linking copulas in the model (5) is d1 + . . . + dG + G = d + G (d copulasCUig ,Vg andG
copulasCVg,V0). The marginal distribution of (5) for a single groupg of variables is a 1-factor copula model.

In this setting, there exist a common factorV0, say the current state of economy, which drives some other factors
V1, . . . ,VG, say some unobservable parameters reflecting the situationin different stock sectors. Each factor, in turn,
defines a dependence structure of a group of variables (such as stocks in a common sector).

For the parametric version of this model, there is a parameter θg for CVg,V0 and a parameterγi,g for CUig ,Vg . The
parameter vector for (5) isθ = (θg, ηi,g : i = 1, . . . , dg, g = 1, . . . ,G).

2.4. Special case of Gaussian copulas

In this subsection, we consider the Gaussian bi-factor model and show that if all the bivariate linking copulas are
Gaussian, then the nested factor model is a special case of the bi-factor model.

LetΦ, φ be the standard normal cdf and density respectively, and letΦ2 be the bivariate normal cdf. If (Z1, Z2) is
bivariate normal with zero means, unit variances and correlationρ, then [Z2|Z1 = z1] ∼ N(ρz1, 1− ρ2) so that from the
bivariate Gaussian copulaΦ2(Φ−1(u),Φ−1(v); ρ), the conditional cdf in Table 1 isΦ([Φ−1(u) − ρΦ−1(v)]/(1− ρ2)1/2).
SupposeCUig ,V0 andCUig ,Vg;V0 are bivariate Gaussian copulas with parametersϕig andγig = ηig/(1−ϕ2

ig)
1/2 respectively,

g = 1, . . . ,G. Hereηig is a correlation ofZig = Φ
−1(Uig) andWg = Φ

−1(Vg) so that the independence ofV0,Vg implies
thatγig is the partial correlation ofZig andWg givenW0 = Φ

−1(V0) (in generalρZW2;W1 = [ρZW2 − ρZW1ρW2W1]/[(1 −
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ρ2
ZW1

)(1− ρ2
W2W1

)]1/2). Hence,

CUig |Vg;V0(CUig |V0(u|v0)|vg) = Φ



Φ−1(u) − ϕigΦ

−1(v0)

(1− ϕ2
ig)1/2

− γigΦ
−1(vg)


/ √

1− γ2
ig



= Φ


Φ−1(u) − ϕigΦ

−1(v0) − γig(1− ϕ2
i j)

1/2Φ−1(vg)
√

(1− ϕ2
ig)(1− γ2

ig)


.

With zig = Φ
−1(uig), i = 1, . . . , dg, g = 1, . . . ,G, the cdf for the bi-factor model becomes

F(z11, . . . , zd11, . . . , z1G, . . . , zdGG) := C(Φ(z11), . . . ,Φ(zd11), · · · ,Φ(z1G), . . . ,Φ(zdGG))

=

∫ ∞

−∞

G∏

g=1



∫ ∞

−∞

dg∏

i=1

Φ

( zig − ϕigw0 − γig(1− ϕ2
ig)1/2wg

√
(1− ϕ2

ig)(1− γ2
ig)

)
· φ(wg) dwg


· φ(w0) dw0.

Hence this model is the same as a multivariate Gaussian modelwith a bi-factor correlation structure because this
multivariate cdf comes from the representation:

Zig = ϕigW0 + ηigWg +

√
1− ϕ2

ig − η2
ig ǫig,

whereW0,Wg, ǫig, g = 1, . . .G, i = 1, . . . , dg are i.i.d. N(0,1) random variables. From the linear representation, one
can write the joint cdfF(z) = F(z11, . . . , zd11, · · · , z1G, . . . , zdGG) as follows:

F(z) =
∫ ∞

−∞
Φd|W0(z11, . . . , zd11, . . . , z1G, . . . , zdGG |w0)φ(w0)dw0 =

∫ ∞

−∞

G∏

g=1

Φdg |W0(z1g, . . . , zdgg|w0)φ(w0)dw0,

whereΦdg |W0 is the conditional cdf of (Z1g, . . . , Zdgg) givenW0, g = 1, ...,G. Here we use the fact the variables from
different groups are conditionally independent givenW0. In theg-th group variables are conditionally independent
givenW0 andWg. With ηig = γig(1− ϕ2

ig)1/2 and 1− ϕ2
ig − η2

ig = (1− ϕ2
ig)(1− γ2

ig), it implies

Φdg |W0(z1g, . . . , zdgg|w0) =
∫ ∞

−∞

dg∏

i=1

Pr{Zig ≤ zig|w0,wg}φ(wg)dwg =

∫ 1

0

dg∏

i=1

Φ

(zig − ϕigw0 − γig(1− ϕ2
ig)1/2wg

√
(1− ϕ2

ig)(1− γ2
ig)

)
φ(vg)dwg.

It implies thatZ has a multivariate Gaussian distribution and

Cor(Zi1g, Zi2g) = ϕi1g ϕi2g + ηi1g ηi2g, i1 , i2,

Cor(Zi1g1, Zi2g2) = ϕi1g1 ϕi2g2, g1 , g2.

The number of parameters in the Gaussian bi-factor structure is 2d−N1−N2, whereN1 is the number of groups of size
1 andN2 is the number of groups of size 2. For a groupg of size 1 with variablej, Wg is absorbed withǫig becauseηig

would not be identifiable. For a groupg of size 2 with variable indicesi1, i2, the parametersηi1g andηi2g appear only in
the correlation for variablesi1, i2 and this correlation isϕi1gϕi2g + ηi1gηi2g. Since only the productηi1gηi2g appears, one
of ηi1g, ηi2g can be taken as 1 without loss of generality. For the bi-factor copula with non-Gaussian linking copulas,
near non-identifiability can occur when there are groups of size 2; in this case, one of the linking copulas to the group
latent variable can be fixed (say at comonotonicity) for a group of size 2.
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A special case of the bi-factor copula model with Gaussian copulas can be defined as follows. Assume that

ξg = ϕgW0 +

√
1− ϕ2

g Wg, Zig = ϕ∗igξg +
√

1− (ϕ∗ig)2 ǫig,

whereW0,Wg, ǫig, g = 1, . . .G, i = 1, . . . , dg are i.i.d. N(0,1) random variables. Thed × (1 + G) loading matrix of
Z = (Z11, . . . , Zd11, · · · , Z1G, . . . , ZdGG)T on W0,W1, . . . ,WG:

A =



ϕ∗11ϕ1 ϕ∗11

√
1− ϕ2

1 0 0
...

...
...

...

ϕ∗d11ϕ1 ϕ∗d11

√
1− ϕ2

1 0 0
...

...
. . .

...

ϕ∗1GϕG 0 0 ϕ∗1G

√
1− ϕ2

G

...
...

...
...

ϕ∗dGGϕG 0 0 ϕ∗dGG

√
1− ϕ2

G



ThenZ has a multivariate Gaussian distribution and

Cor(Zi1g, Zi2g) = ϕ∗i1g ϕ
∗
i2g = ϕ∗i1g ϕ

∗
i2g ϕ

2
g + ϕ

∗
i1g ϕ

∗
i2g(1− ϕ2

g), i1 , i2,

Cor(Zi1g1 , Zi2g2) = ϕ∗i1g1
ϕ∗i2g2

ϕg1 ϕg2, g1 , g2.

Note that the nested Gaussian model is a special case of a bi-factor model with one common factor for all groups. It

is seen, that ifϕig = ϕ∗igϕg andηig = ϕ∗ig
√

1− ϕ2
g , then we get the bi-factor model. Nevertheless, in general,the nested

copula model is not a special case of a bi-factor copula model.
The number of parameters in the Gaussian nested-factor structure isd + G for G ≥ 3 groups andd + 1 for two

groups, because in the case of two groups,ϕ1ϕ2 occur only as a product in the correlation of variables in different
groups.

3. Tail and dependence properties of the structured factor copula model

In this section, we summarize some results on positive dependence and tail order of bivariate margins of the
structured factor copulas in Section 2. The lower and upper tail order from Hua and Joe (2011) can be used to
summarize the strength of dependence in the joint lower and upper tail respectively, and the difference of the two tail
orders can indicate the direction of tail asymmetry. The lower tail order of am-variate copulaC1:m is κL if C1:m(u1m) ∼
ℓL(u)uκL asu → 0 whereℓL(u) is a slowly varying function (such as a constant or a power of− logu). Similarly the
upper tail orderκU is such that̂C1:m(u1m) ∼ ℓU(u)uκU asu→ 0, whereĈ1:m is the copula of (1−U1, . . . , 1−Um) when
(U1, . . . ,Um) ∼ C1:m. The tail orders have the property thatκL ≥ 1 andκU ≥ 1, with a smaller value corresponding to
more dependence in the tail. The strongest tail dependence corresponds toκL = 1 orκU = 1 (the usual tail dependence).
Tail orthant independence corresponds toκL = m or κU = m with the slowly varying function being a constant, and
this is called tail quadrant independence form = 2. Intermediate tail dependence corresponds to 1< κL < m or
1 < κU < m.

From now on we will assume that all bivariate linking copulasare twice continuously differentiable functions on
(0, 1)2. Note that, for the model (3), within each group, variables are independent given the group-specific factor and
the common factorV0. In other words, the dependence structure is a two-factor copula model. Two variables from
different groups are independent given the common factorV0 and so the dependence is the same as a one-factor copula
model. For the model (5), properties derived for bivariate margins depend on the choice of copulaCV . If we choose
two variables from the same group, we get the same marginal distribution as in 1-factor copula model. However,
the case when the variables are selected from different groups requires special attention. Without loss of generality,
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consider the pair (U11,U12) with U11 from group 1 andU12 from group 2. LetC1V1 andC2V2 be shorthand forCU11V1

andCU12V2 respectively. Denote the cdf of (U11,U12) by C12 and the cdf of (V1,V2) by CV1,V2. Let κL be the lower tail
order ofC12. It follows from (4), with two groups of size 1, that

C12(u1, u2) =
∫ 1

0

∫ 1

0
C1|V1(u1|v1) C2|V2(u2|v2) cV1,V2(v1, v2) dv1dv2. (6)

The conclusions about the tail order depend on some positivedependence conditions for pairs (V1,V2), (U11,V1),
(U12,V2). A bivariate distributionF12 with univariate marginsF1, F2 is positive quadrant dependent (PQD) if F12 ≥
F1F2 pointwise. A bivariate distributionF12 with conditional distributionF1|2(·|x2) has the first variable stochastically
increasing (decreasing) in the second variable if 1− F1|2(x1|x2) is increasing (decreasing, respectively) inx2 for all x1.

The first result is useful to show positive dependence for thenested copula model.

Proposition 1 Let bothC1|V1 andC2|V2 be stochastically increasing or stochastically decreasing conditional cdfs, and
CV1,V2 is a copula with positive quadrant dependence. ThenC12 is a PQD copula.

Proof : Using the integration by parts formula (three times), we get:

C12(u1, u2) =

∫ 1

0
C1|V1(u1|v1)

{
C2|V2(u2|1)−

∫ 1

0

∂C2|V2(u2|v2)

∂v2
CV2|V1(v2|v1)dv2

}
dv1

= u1C2|V2(u2|1)−
∫ 1

0

∂C2|V2(u2|v2)

∂v2

{
v2C1|V1(u1|1)−

∫ 1

0

∂C1|V1(u1|v1)

∂v1
CV1,V2(v1, v2)dv1

}
dv2

= u1C2|V2(u2|1)+ u2C1|V1(u1|1)− C1|V1(u1|1)C2|V2(u2|1)+ I12

where

I12 :=
∫ 1

0

∫ 1

0

∂C1|V1(u1|v1)

∂v1
· ∂C2|V2(u2|v2)

∂v2
·CV1,V2(v1, v2)dv1dv2.

Using the PQD assumption forCV1V2, and the stochastic monotonicity assumption for
∂C1|V1 (u1|v1)

∂v1
and

∂C2|V2 (u2|v2)
∂v2

,

I12 ≥
∫ 1

0
v1
∂C1|V1(u1|v1)

∂v1
dv1

∫ 1

0
v2
∂C2|V2(u2|v2)

∂v2
dv2 = [C1|V1(u1|1)− u1][C2|V2(u2|1)− u2].

Therefore,

C12(u1, u2) ≥ u1C2|V2(u2|1)+ u2C1|V1(u1|1)−C1|V1(u1|1)C2|V2(u2|1)

+ [C1|V1(u1|1)− u1][C2|V2(u2|1)− u2] = u1u2. �

The stochastic monotonicity is not a very restrictive assumption as many parametric bivariate copula families
used in applications have stochastically increasing or decreasing conditional cdfs. Typical examples of copulas with
stochastically increasing conditional cdfs include the normal copula with a positive correlation parameterρ > 0 and
Frank copula with a positive dependence parameterθ > 0, the Gumbel and BB1 copulas; see Joe (1997) for more
details on these copulas. The Gaussian copula withρ < 0 and Frank copula withθ < 0 have stochastically decreasing
conditional cdfs.

We next indicate how the above result is used for the nested copula model. Suppose in (5) that all of the bivariate
linking copulasCVg |V0 andCUig |Vg satisfy the positive dependence condition of stochastically increasing. By Propo-
sition 1 of Krupskii and Joe (2013),CVg1 ,Vg2

is PQD for anyg1 , g2 because of the 1-factor copula structure for
V0,V1, . . . ,VG. From the above proposition ofUig1,Ui′g2 are random variables in two different groups, then they are
PQD.

If C12 is PQD andcV1,V2(v1, v2) ≤ K for v1, v2 ∈ [0, 1] for K > 0, thenC12(u1, u2) ≤ Ku1u2 andC12(u, u)/u2 ≤
K which impliesκL = 2; similarly, the upper tail order equals two in this case. Hence, positive dependence of
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U11,U12,V1,V2 and a bounded density forcV1,V2 means that (U11,U12) has tail quadrant independence. The next
results apply with stronger dependence in the tails.

Proposition 2 Let limu→0 C j|V j (u|hu) = t j(h) and assume thatC j|V j(u|v) is a continuous function ofu andv on (0, 1)2,
j = 1, 2. Assume limh→0 t j(h) = t j0 > 0, j = 1, 2. In addition, assume that the densitycV1,V2(v1, v2) is a continuous
function of v1 andv2, and thatcV1,V2(w1u,w2u) ≥ k(w1,w2)/uα for small enoughu > 0, whereα ∈ [0, 1] andk is a
positive continuous function ofw1,w2. Then the tail orderκL of C12 in (6) is at most 2− α. A similar result holds for
the upper tail dependence.

Proof : It follows from (6) that:

C12(u, u) = u2
∫ 1/u

0

∫ 1/u

0
C1|V1(u|h1u) C2|V2(u|h2u) cV1,V2(h1u, h2u) dh1dh2.

For anyǫ > 0 we can findh j(ǫ) > 0 such that|t j(h j)− t j0| < ǫ for h j ≤ h j(ǫ), j = 1, 2. Denoteh∗(ǫ) = min{h1(ǫ), h2(ǫ)}.
By the assumption, there existsu(ǫ) > 0 such that|C j|V j(u|h∗(ǫ)u) − t j(h∗(ǫ))| < ǫ for 0 < u ≤ u(ǫ). It implies that
|C j|V j(u|h∗(ǫ)u) − t j0)| < 2ǫ for u ≤ u(ǫ). Due to uniform continuity ofC j|V j on [0, 1] × [0, 1] we can findu0 j > 0,
h−j , h

+
j such thath−j < h∗(ǫ) < h+j and|C j|V j(u|h∗(ǫ)u) − C j|V j(u|h ju))| < ǫ for 0 < u ≤ u0 j andh−j ≤ h j ≤ h+j . Therefore

|C j|V j(u|h ju) − t j0| < 3ǫ for u < ũ = min{u01, u02, u∗(ǫ)} andh̃ = max{h−1 , h−2} < h j < h∗(ǫ). Let ǫ = min{t10, t20}/6.
Due to the continuity ofk(w1,w2), there are constantsKV > 0 andh̃∗ > h̃ such thatcV1,V2(h1u, h2u) ≥ KV/uα for

h̃ < h j < h̃∗, j = 1, 2. Then

C12(u, u) ≥ u2
∫ h̃∗

h̃

∫ h̃∗

h̃
C1|V1(u|h1u) C2|V2(u|h2u) cV1,V2(h1u, h2u) dh1dh2

≥ u2
∫ h̃∗

h̃

∫ h̃∗

h̃

t10

6
t02

6
KV

uα
dh1dh2 ≥ u2−α · KV (h̃∗ − h̃)2t10t20

36

and hence the lower tail order ofC12 is less or equal than 2− α. �
Remark 1. The condition on the limit limu→0 C j|V j (u|hu) implies thatC j,V j is a copula with the lower tail depen-

dence, such as the Student, reflected Gumbel or BB1 copula.
Remark 2. Suppose the lower tail order ofCV1,V2 is κ with a slowly varying functionℓ(u), and there is a tail

order functionbκ(w1,w2) such thatCV1,V2(w1u,w2u) ∼ uκℓ(u)bκ(w1,w2) as u → 0. Hua and Joe (2011) showed,
under the condition of continuity and ultimate monotonicity in the lower tail, that this impliescV1,V2(w1u,w2u) ∼
uκ−2ℓ(u) · ∂2bκ(w1,w2)/∂w1∂w2 asu → 0. Hence the assumption oncV1,V2 in the above proposition is essentially that
the tail order ofCV1,V2 is at most 2−α. In other words,CV1,V2 is a copula with intermediate tail dependence if 0< α < 1.

The condition oncV1,V2 with α = 1 impliesCV1,V2 is a lower tail dependent copula. It follows from the proposition,
with tail dependent copulasCV1,V2, C1,V1, C2,V2 we get tail dependence forC12; this result also follows from a main
theorem in Joe et al. (2010) because the pairs (U11,V1), (V1,V2), (V2,U22) are the edges of the first tree of a vine (the
vine representations of the bi-factor and nested factor copulas are given in the Appendix).

Also, if C j|V j (u j|v j) ≤ u jv0 j for somev0 j > 0 if u j is small enough (that is, the tail order ofC j|V j equals two), then
we get

C12(u, u) ≤ u2v01v02

∫ 1

0

∫ 1

0
cV1,V2(v1, v2) dv1dv2 = u2v01v02.

If in addition C12 is PQD (conditions of Proposition 1 are satisfied), thenC12 is a copula with tail quadrant inde-
pendence. Hence, tail quadrant independence can be obtained by choosing linking copulas with tail order equal to
two.

Proposition 3 Assume thatC j,V j is such thatC j|V j is stochastically increasing forj = 1, 2. Then the tail orderκL of C12

in (6) is not less than the lower tail order ofC∗12(u1, u2) =
∫ 1

0
C1|V1(u1|v) C2|V2(u2|v) dv. Denote the lower tail order of the

latter copula byκ∗L. In addition, if for small enoughv > 0 and somem ≥ 0, Kc > 0 the inequalityvcV1,V2(v, vq) ≥ Kc qm

holds for anyq ∈ (0, 1), thenκL = κ∗L.
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Proof : Write C12(u, u) = C−12(u, u)+C+12(u, u), where the double integral over [0, 1]2 for C12 is split into an integral
overv1 ≤ v2 andv1 > v2 respectively forC−12 andC+12. Then, withC2|V2 stochastically increasing,

C−12(u, u) =
∫ ∫

v1≤v2

C1|V1(u|v1) C2|V2(u|v2) cV1,V2(v1, v2) dv1dv2

≤
∫ 1

0

∫ v2

0
C1|V1(u|v1) C2|V2(u|v1) cV1,V2(v1, v2) dv1dv2

≤
∫ 1

0

∫ 1

0
C1|V1(u|v1) C2|V2(u|v1) cV1,V2(v1, v2) dv1dv2

=

∫ 1

0
C1|V1(u|v1) C2|V2(u|v1)

{∫ 1

0
cV1,V2(v1, v2)dv2

}
dv1

=

∫ 1

0
C1|V1(u|v1) C2|V2(u|v1) dv1 = C∗12(u, u).

Similarly, with C1|V1 stochastically increasing,

C+12(u, u) =
∫ ∫

v1>v2

C1|V1(u|v1)C2|V2(u|v2)cV1,V2(v1, v2)dv1dv2 ≤ C∗12(u, u)

and thereforeC12(u, u) = C−12(u, u) + C+12(u, u) ≤ 2C∗12(u, u). It implies thatκL ≥ κ∗L.
Now we prove the opposite inequalityκL ≤ κ∗L using the second assumption. Denote ˜u = ln u. For anyǫ > 0 we

have:

C12(u, u) = ũ2
∫ ∞

0

∫ ∞

0
C1|V1(u|us1) C2|V2(u|us2) cV1,V2(u

s1, us2) us1+s2ds1ds2

≥ ũ2
∫ ∞

0

∫ s1+ǫ

s1

C1|V1(u|us1) C2|V2(u|us2) cV1,V2(u
s1, us2) us1+s2ds1ds2

≥ Kcũ2
∫ ∞

0

∫ s1+ǫ

s1

C1|V1(u|us1) C2|V2(u|us2) us2um(s2−s1)ds1ds2

≥ Kcũ2
∫ ∞

0

∫ s1+ǫ

s1

C1|V1(u|us1) C2|V2(u|us2) us1+ǫumǫds1ds2

≥ Kc ǫũ2uǫ(m+1)
∫ ∞

0
C1|V1(u|us1)C2|V2(u|us1)us1ds1 = Kc ǫũuǫ(m+1)C∗12(u, u). (7)

It implies thatκL ≤ κ∗L + (m + 1)ǫ for anyǫ > 0 and henceκL ≤ κ∗L. As a result,κL = κ∗L. �
The condition on the density in Proposition 3 impliesCV1,V2 is a lower tail dependent copula. In the Appendix we

show, that the reflected Gumbel, BB1 and Student tν copula satisfy this condition; that is, it is something thatcan be
readily checked and is not the most general sufficient condition. Under this condition, the nested copula model with
a tail dependent copulaCV1,V2 has the same tail order as the corresponding copulaC∗1,2 in a 1-factor copula model if
C1,V1 andC2,V2 are stochastically increasing copulas. In particular, ifC j,V j is a Gumbel copula forj = 1, 2, then we get
intermediate lower tail dependence in the model.

In the next proposition we show that the increasing in concordance and stochastically increasing property can be
obtained in a nested copula model under assumptions similarto factor copula models. IfC1,C2 are two bivariate
copulas, thenC2 is larger thanC1 in the concordance ordering ifC2 ≥ C1 pointwise.

Proposition 4 ConsiderC12 in (6). Assume thatC2,V2 is fixed, CV2|V1 is stochastically increasing and thatC2|V2 is
stochastically increasing (respectively decreasing). (a) As C1,V1 increases in the concordance ordering, thenC12 is
increasing (respectively decreasing) in concordance. (b)If CV1|1 is stochastically increasing. thenC2|1 is stochastically
increasing (respectively decreasing).
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Proof : SupposeC1,V1 is parameterized by a parameterθ andC2,V1 is fixed. The increasing in concordance assump-
tion implies thatC1,V1(·; θ2) −C1,V1(·; θ1) ≥ 0 for θ1 < θ2. Using the integration by parts formula we get:

C12(u1, u2; θ) = u1

∫ 1

0
C2|V2(u2|v2) cV1,V2(1, v2)dv2

−
∫ 1

0

∫ 1

0
C1,V1(u1, v1; θ) C2|V2(u2|v2)

∂cV1,V2(v1, v2)

∂v1
dv1dv2

= u1

∫ 1

0
C2|V2(u2|v2) cV1,V2(1, v2)dv2 +

∫ 1

0

∫ 1

0
C1,V1(u1, v1; θ)

∂C2|V2(u2|v2)

∂v2

∂CV2|V1(v2|v1)

∂v1
dv1dv2. (8)

With the assumption of twice continuous differentiability,∂C2|V2(u2|v2)/∂v2 and∂CV2|V1(v2|v1)/∂v1 are continuous
functions ofv1 andv2 for v1, v2 ∈ (0, 1) but can be unbounded at 0 or 1. Nevertheless, the integrandis an integrable
function since

∫ 1

0

∫ 1

0

∣∣∣∣∣C1,V1(u1, v1; θ) · ∂C2|V2(u2|v2)

∂v2

∂CV2|V1(v2|v1)

∂v1

∣∣∣∣∣ dv1dv2 ≤
∣∣∣∣∣∣

∫ 1

0

∫ 1

0

∂C2|V2(u2|v2)

∂v2

∂CV2|V1(v2|v1)

∂v1
dv1dv2

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫ 1

0
[CV2|V1(v2|1)−CV2|V1(v2|0)] · ∂C2|V2(u2|v2)

∂v2
dv2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∫ 1

0

∂C2|V2(u2|v2)

∂v2
dv2

∣∣∣∣∣∣ =
∣∣∣C2|V1(u2|0)− C2|V1(u2|1)

∣∣∣ .

Therefore the formula (8) is valid.
To complete the proof of (a), forθ2 > θ1 we have:

C1,2(u1, u2; θ2) −C1,2(u1, u2; θ1) =

=

∫ 1

0

∫ 1

0
[C1,V1(u1, v; θ2) − C1,V1(u1, v; θ1)] · ∂C2|V2(u2|v2)

∂v2

∂CV2|V1(v2|v1)

∂v1
dv1dv2.

SinceC1,V1(u1, v; θ2) ≥ C1,V1(u1, v; θ1), ∂CV2|V1(v2|v1)/∂v1 ≤ 0 and∂C2|V1(u2|v)/∂v ≤ (≥) 0 by the assumption of
stochastically increasing (decreasing), we getC1,2(u1, u2; θ2) ≥ (≤) C1,2(u1, u2; θ1) respectively, that isC1,2 is increasing
(decreasing) in concordance.

Similarly, for (b), withu1 ∈ (0, 1), both parts of (8) can be differentiated with respect tou1 twice to get

∂2C1,2(u1, u2; θ)

∂u2
1

=
∂C2|1(u2|u1; θ)

∂u1
=

∫ 1

0

∫ 1

0

∂CV1|1(v|u1; θ)

∂u1
· ∂C2|V1(u2|v2)

∂v2
· ∂CV2|V1(v2|v1)

∂v1
dv1dv2.

AssumingCV1|1 andCV2|V1 are stochastically increasing we get∂CV1|1(v1|u1; θ)/∂u1 ≤ 0 and∂CV2|V1(v2|v1; θ)/∂u1 ≤ 0.
In addition,∂C2|V1(u2|v2; θ)/∂v ≤ (≥) 0 by the assumption of stochastically increasing (decreasing), then
∂C2|1(u2|u1; θ)/∂u1 ≤ (≥, respectively) 0, that is,C2|1 is stochastically increasing (decreasing).�

Dependence and tail properties of the nested and bi-factor copula models are summarized in Table 2. One can
see that with a proper choice of bivariate linking copulas, different types of dependence and tail structures can be
obtained. This is important as some preliminary analysis can be done before fitting the model to data in order to
summarize dependence properties of the data set. The linking copulas in the model can then be selected to get a
similar dependence structure; more details are given in Section 6.

4. Computational details for factor copula models

In this section we provide more details on the log-likelihood and maximum likelihood estimation of parameters in
different factor copula models, including structured factor copula models.
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Table 2: Lower tail and dependence properties forC1,2 depending on the choice of linking copulas in nested and bi-factor copula models

Nested copula model, variables from the same group (V is the group-specific factor)
Bi-factor copula model, variables from different groups (V is a common factor)

U1,U2 are conditionally independent givenV
CU1|V , CU2|V are SI CU1,U2 is PQD
CU1,V increases in concordance,CU2 |V is SI CU1,U2 increases in concordance
CV |U1, CU2|V are SI CU2 |U1 is SI
CU1,V , CU2,V are tail dependent CU1,U2 is tail dependent
CU1,V , CU2,V are both Gumbel or Gaussian1 copulas CU1,U2 has intermediate tail dependence
CU1,V or CU2,V is tail quadrant independent CU1,U2 is tail quadrant independent

Nested copula model, variables from different groups (V1, V2 are the group-specific factors)
U1,U2 are conditionally independent givenV1,V2; V1,V2 are conditionally independent givenV0

CU1|V1, CU2 |V2 are SI,CV1,V2 is PQD CU1,U2 is PQD
CU1,V1 increases in concordance,CU2|V2,CV2|V1 are SI CU1,U2 increases in concordance
CV1|U1 , CU2 |V2,CV2|V1 are SI CU2 |U1 is SI
CU1,V1, CU2,V2, CV1,V2 are tail dependent CU1,U2 is tail dependent
CU1,V1, CU2,V2 are tail dependent, and CU1,U2 has intermediate tail dependence

CV1,V2 has intermediate tail dependence
CU1,V1, CU2,V2 are both Gumbel or Gaussian1 copulas CU1,U2 has intermediate tail dependence

andCV1,V2 is tail dependent
CU1,V1 or CU2,V1 or CV1,V2 is tail quadrant independent CU1,U2 is tail quadrant independent

Bi-factor copula model, variables from the same group
U1,U2 are conditionally independent givenV0 andV1 (V0 is a common factor,V1 is the-group specific factor)

CU1|V0,CU2|V0, CU1|V1;V0,CU2|V1;V0 are SI CU1,U2 is PQD
CU1,V1;V0 increases in concordance,CU2 |V1;V0 is SI CU1,U2 increases in concordance
CU1,V0, CU2,V0 or CU1,V1;V0, CU2,V1;V0 are tail dependent CU1,U2 is tail dependent
CU1,V0, CU2,V0, CU1,V1;V0, CU2,V1;V0 are all Gumbel or Gaussian1 copulas CU1,U2 has intermediate tail dependence
CU1,V0, CU1,V1;V0 or CU2,V0, CU2,V1;V0 are tail quadrant independent CU1,U2 is tail quadrant independent

1 with positive correlation parameter
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4.1. Log-likelihood maximization in factor copula models

Suppose each bivariate linking copula in (3) or (5) has a parameter andθ is the vector of all dependence parameters
in the 2d or d +G bivariate linking copulas. For multivariate data (ui1, . . . , uid), i = 1, . . . , n, that have been converted
to haveU(0, 1) margins, the log-likelihood is:

ℓn =

n∑

i=1

logcU(ui1, . . . , uid; θ). (9)

Whenθ is fixed, each term of the form (3) or (5) in the log-likelihoodcan be evaluated via Gauss-Legendre quadrature.
With a relabeled vector of datau = (u11, . . . , ud11, · · · , u1G, . . . , udGG), the copula density for the bi-factor copula model
is evaluated as:

cU(u; θ) ≈
nq∑

i1=1

wi1

G∏

g=1




dg∏

j=1

cU jg ,V0(u jg, xi1)

 Ig(u, xi1)


,

where

Ig(u, xi1) ≈
nq∑

i2=1

wi2


dg∏

j=1

cU jg ,Vg;V0

(
CU jg |V0(u jg|xi1), xi2

)


and{xk} are the quadrature nodes,{wk} are the quadrature weights, andnq is the number of quadrature points. Similarly,
the copula density for the nested copula model is evaluated as:

cU(u; θ) ≈
nq∑

i1=1

wi1

G∏

g=1

I∗g(u, xi1),

where

I∗g(u, xi1) ≈
nq∑

i2=1

wi2cVg,V0(xi2, xi1)
dg∏

j=1

cU jg ,Vg(u jg, xi2).

It is seen, that multidimensional summation is not requiredfor the approximation, so that computational complexity is
reduced. The number of quadrature pointsnq between 25 and 30 tends to give a good approximation of these integrals
and the resulting maximum likelihood estimates.

Maximizing the log-likelihood is the same as minimizing thenegative log-likelihood and the latter is typically
the numerical approach so that the Hessian of the negative log-likelihood at the global minimum is the inverse of
the observed Fisher information matrix. For numerical minimization, quasi-Newton or modified Newton-Raphson
algorithms can be used. For this purpose, one requires the first and second order partial derivatives of the density
cU(u; θ) with respect to the dependence parameter vectorθ.

The partial derivatives can be evaluated numerically by computing difference quotients of the log-likelihood func-
tion. The Hessian is obtained numerically through an updating method, such as the Broyden, Fletcher, Goldfarb and
Shanno (BFGS) method. The algorithm with numerical derivatives is usually referred as a quasi-Newton method
(Nash (1990)). However, whend and the dimension ofθ become larger, multiple computations of the log-likelihood
are needed and the algorithm becomes very slow to converge because of the steps needed for evaluating a numerical
Hessian.

To overcome this difficulty for arbitrarily larged, we obtain analytical expressions for the gradient and Hessian.
Then the Newton-Raphson method can be used, and the numerical minimization of the log-likelihood can work for
larged and large dimension ofθ, with a quadratic rate of convergence after iterations get close to a local or global
minimum. Using the differentiation under the integral sign, one can see that the first and second order derivatives
of the bivariate linking copulas with respect to their dependence parameters and arguments are required to find the
gradient and Hessian of the log-likelihood. See the Appendix for the required (analytical) partial derivatives of the
density and conditional distribution of the bivariate linking copulas. The partial derivatives of (3) or (5) with respect
to the parameters are evaluated at the same time with Gauss-Legendre quadrature.
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It is important to make sure that the value of the likelihood increases at each iteration. This is one of the modifica-
tion steps for the modified Newton-Raphson method. However,when minimizing the nonlinear negative log-likelihood
function of many parameters, the function value can increase and the algorithm can fail to converge especially if start-
ing points are not close to the global minimum point. This happens if the Hessian is not a positive definite matrix so
that there are some negative eigenvalues. To modify the algorithm, an eigenvalue decomposition of the Hessian matrix
can be obtained and negative eigenvalues in the decomposition can be replaced by small positive numbers. With the
adjusted positive definite Hessian matrix, the iterations will move to a local minimum of the negative log-likelihood
and not a local maximum. The step size of the modified algorithm should be controlled so that parameters do not
exceed lower and/or upper boundaries and it is not too large in any iteration.

Note that for each group of size 1 in a bi-factor model there isno group latent variable. Assume theg-th group
consists of a single variableU1g only. To avoid overparametrization, dependence parameterfor the copulaCU1g ,Vg;V0

can be set to independence. In addition, if theg-th group has two variablesU1g,U2g in a bi-factor Gaussian model, the
correlation parameter of the copulaCU1g ,Vg;V0 or CU2g ,Vg;V0 can be set to 1 as there is redundance in this case as well. In
a bi-factor model with other copulas the likelihood can be flat if there are some groups of size 2 so that dependence
parameter for the copulaCU1g ,Vg;V0 can be set to comonotonic dependence similar to a Gaussian model.

For the algorithm, some good starting points may be requiredto obtain the global minimum of the negative log-
likelihood. These starting points can be obtained from a stepwise optimization when dependence parameters are
estimated in steps. For a nested copula model, parameters for the copulasCi,Vg , i = 1, . . . , d j can be estimated using
data from theg-th group. Within the group, data are modeled using a 1-factor copula model so that estimation is fast
and stable. The parameters of the copulasCVg,V0 are estimated at the second step with the other parameters set equal
to their estimates obtained at the first step. For a bi-factorcopula model, the estimation can be done for each group
separately. For each group we have a 2-factor copula model but with a smaller number of dependence parameters so
that the estimation is much faster.

Alternatively, good starting points can be obtained from nested or bi-factor Gaussian model estimates, after con-
version to parameter values to match Spearman’s rho or Kendall’s tau. Then for both models, stepwise estimates can
be used as starting points when all dependence parameters are estimated simultaneously with the modified Newton-
Raphson algorithm. The convergence of the algorithm is fastwhen good starting points are used and the sample size
is large enough so that the log-likelihood is not as flat with many local maxima/minima.

In the bi-factor copula model, if bivariate Student tν copulas are used to link to the common latent variable, then
the conditional distributions are univariate tν+1 and this is needed in the copulaC jVg;V0 for linking variable j in group
g given the common latent variableV0. The speed of the log-likelihood evaluation is much faster when monotone
interpolation is used for the univariate tν+1 cdf based on its values on a fixed grid, say, at the quantiles inthe set

{0.0001, 0.0002, 0.0005, 0.001,0.002,0.005, 0.01(0.01)0.99, 0.995, 0.998,0.999, 0.9995, 0.9998, 0.9999};

references for monotone interpolation are Fritsch and Carlson (1980) and Kahaner et al. (1989).

4.2. Asymptotic covariance matrix of 2-stage copula-GARCH parameter estimates

For copula models with financial asset returns, it is common to use the copula-GARCH model (see, for example
Jondeau and Rockinger (2006), Aas et al. (2009), Lee and Long(2009) and others). For univariate marginals, the
AR(1)–GARCH(1,1) model with symmetric Student t innovations is quite general for individual log-returns. At any
time t, the j-th (for j = 1, . . . , d) GARCH innovations are assumed to be standardized tν j with mean 0 and variance 1
with ν j > 2, and the vector ofd innovations has a joint distribution based on the parametric copula familyC(·; θ). We
assume parameters of thed univariate GARCH models are such that the time series are stationary.

In this section, we outline a resampling method to get the asymptotic covariance matrix of the parameters of
the copula-GARCH model based on two-stage parameter estimation. The procedure can apply to any parametric
copula model on the GARCH innovations ofd dependent financial time series. Parameter estimates in copula models
(including the factor copula models) are computed in two stages so that standard errors obtained from maximizing the
copula likelihood (9) do not reflect the variability of GARCHparameter estimates. The simplest way to get standard
errors for the two-stage estimation procedure is to use appropriate bootstrap methods. Letn be the original sample
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size andd is a number of log-returns. We use the following steps to get abootstrap distribution for the maximum
likelihood estimates.

1. Compute GARCH parameter estimates ˆη1, . . . , η̂d using the original data, separately for thed returns.
2. For thej-th return, convert GARCH-filtered residualsR j = (R j1, . . . ,R jn)T to uniform data using the probability

integral transform:U j = (U j1, . . . ,U jn)T , whereU ji = Tν j(R ji) andTν j is the cdf of the Student distribution with
ν j degrees of freedom,i = 1, ..., n. Alternatively, the vectorU j can be obtained using uniform scores (as in Aas
et al. (2009)). The latter approach can provide less sensitivity to the assumption of innovations having a Student
t distribution. Our experience is that the two methods give very similar results.

3. Compute copula parameter estimatesθ̂ from thed-dimensional data setUn×d = (U1, . . . ,Ud), using the proce-
dure in Section 4.1.

4. For theb-th bootstrap sample, resample the filtered residuals asd-vectors at different time points (see Pascual
et al. (2006) for more details on bootstrap for GARCH parameter estimates).

5. Use the resampled filtered data and estimated GARCH parametersη̂1, . . . , η̂d, to get a bootstrap sample of log-
returnsr(b) = (r(b)

1 , . . . , r(b)
d ), wherer(b)

j = (r(b)
j1 , . . . , r

(b)
jn ).

6. From a bootstrap sampler(b), compute GARCH parameter estimates ˆη(b)
1 , . . . , η̂(b)

d and copula parametersθ̂
(b)

.
7. Repeat steps 4 to 6 forb = 1, . . . , B, whereB is a number of bootstrap samples. For example,B can be chosen

to be between 1000 and 5000. Then one has aB × np matrix wherenp is the total number of parameters in the
vectorsη1, . . . , ηd, θ.

From a bootstrap distribution of the two-stage likelihood estimates one can compute standard errors and confidence
intervals forη̂1, . . . , η̂d, andθ̂ as well as for the model-based estimates of different quantities which are functions of
these parameter vectors. For example, to compute a confidence interval for the model-based Value-at-Risk estimate,

for each bootstrap estimate ˆη(b)
1 , . . . , η̂(b)

d , θ̂
(b)

, one can simulate a large data set of log-returns to compute portfolio VaR
and hence get a bootstrap distribution; see the next section.

5. Interval estimation of VaR and CTE for copula-GARCH

In order to assess the comparison of different parametric copula models and how well they perform fortail-based
inference, we propose model-based interval estimates of two risk-measures that are popular among financial analysts.
Our approach with these risk measures is different from Aas and Berg (2009) and others.

The first measure, the Value-at-Risk (VaR) is defined as a quantile of the distribution of a portfolio return. To
explain the ideas, we assume an equally weighted portfolio of the d assets. Let (¯r1, . . . , r̄n) be the portfolio returns for
n consecutive time units (such as trading days) and letF̂R̄ be the corresponding empirical cdf. The 100α% VaR of the
portfolio can be estimated as follows:

V̂aRα = {inf r̄ : F̂R̄ ≥ α}.
Commonα values are 0.01, 0.05, 0.95 and 0.99. With a smallα, VaRα represents the maximal possible loss for
investors, who buy the portfolio, that can occur with the probability not less than 100α%. Similarly, with a largeα,
VaRα represents maximal possible loss for investors, who short sell the portfolio, that can occur with the probability
not less than 100(1− α)%. Thus, both lower and upper quantiles are important for assessing risks related to the
portfolio.

The second measure is called the conditional tail expectation (CTE) and it is defined as a conditional mean of a
portfolio return given that the return falls below or exceeds some threshold. The lower (upper) CTE at levelr∗ can be
estimated as follows:

ĈTE
−
(r∗) =

∑
i∗: R̄i∗≤r∗ R̄i∗∑
i I{R̄i ≤ r∗} , ĈTE

+
(r∗) =

∑
i∗: R̄i∗≥r∗ R̄i∗∑
i I{R̄i ≥ r∗} .

The lower CTE− is used for small quantiles near 0.01, and the upper CTE+ is used for large quantiles near 0.99. Unlike
VaR, this risk measure estimates the expected loss of a portfolio if this loss occurs. Usually, the thresholdr∗ is set
equal to the Value-at-Risk at a certain levelα.
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For each value ofα, we compute one value of VaRα for the whole data set using the stationarity of the log-returns.
With a modelC(·; θ) for copula-GARCH, the steps to obtain 95% model-based confidence intervals for VaR and CTE
are as follows. Using the procedure in Section 4.2, one has

η̂(b)
1 , . . . , η̂(b)

d , θ̂
(b)
, b = 1, . . . , B. (10)

For eachb, simulate ad-dimensional copula-GARCH time series of lengthN (N can be bigger than the original
sample sizen) with parameter vector in (10) and obtain the (equally-weighted) portfolio (¯r(b)

1 , . . . , r̄(b)
N ) and make this

into theb-th row of aB × N matrix.

1. Each rowb of the matrix can be considered as a realization of a stationary time series, so that quantiles (that is,
VaR(b)

α for severalα) can be computed for the series as well as some values of CTE(b)(r∗).
2. With B series, we haveB different realizations of VaR(b)

α and CTE(b)(r∗) for a fixedα.
3. The middle interval containing 95% of the VaR(b)

α (respectively, CTE(b)(r∗)) values can be considered as a 95%
confidence interval for VaRα (respectively, CTE(r∗)) that is model-based.

Note that these interval estimates account for the uncertainty in the parameter estimates in using the parametric
model. The model-based estimates of VaR and CTE are functions of η1, . . . , ηd, θ that involve high-dimensional
integrals, and hence they are estimated via Monte Carlo simulation (see the Appendix for simulation from nested
factor and bi-factor copula models). The reason for obtaining model-based estimates of the portfolio VaR and CTE is
so that in an empirical application, we can compare the effects of different modelsC(·; θ) that are structured copula
models with bivariate linking copula families that have quite different tail characteristics.

6. Empirical study

In this section, we use some copula-GARCH models to analyze afinancial data set. We consider S&P 500 stock
returns from Health Care sector, 51 stocks in total, time period consists of the years 2010 and 2011. The sample size
n = 503 days. The returns in this sector can be subdivided into 5 groups: health care distributors and services (27
stocks), health care equipment and services (6 stocks), biotechnology (6 stocks), managed health care (8 stocks) and
pharmaceuticals (4 stocks).

For the copula-GARCH model, we apply AR(1)–GARCH(1,1) model with symmetric Student t innovations to fit
univariate marginals for log-returns. GARCH-filtered dataare then transformed to uniform scores and different copula
models are applied to model the joint dependence. Parameters in the model are estimated in two steps as given in
Section 4. Copula choice is very important in the model and therefore we do a preliminary analysis to get summary of
dependence structure of the data. More details on selectingappropriate linking copulas for the data set are provided in
the next section.

6.1. Assessing strength of dependence in the tails

To choose appropriate copulas in the model, we employ some measures of dependence to assess strength of depen-
dence in the lower and upper tails for each pair of returns from our data set and to summarize the dependence structure
of the data. We use results from Section 3 to find linking copulas with tail properties that are in good agreement with
the estimated strength of dependence in the tails.

To estimate dependence in the tails, one can use tail dependence coefficients but these quantities are defined as
limits and cannot be estimated well unless the sample size isvery large. Instead, we use tail-weighted measures of
dependence, as described in Krupskii and Joe (2013). These measures are defined as correlations of transformed data
where more weight is put in the joint tail. With variables transformed toU1,U2 that areU(0, 1) random variables,
good choices of lower and upper tail-weighted dependence measures are:

̺L = Cor((1− 2U1)6, (1− 2U2)6|U1 < 0.5,U2 < 0.5),

̺U = Cor((2U1 − 1)6, (2U2 − 1)6|U1 > 0.5,U2 > 0.5).
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Table 3: Overall and group averages of ˆ̺L , ˆ̺U , ρ̂S andδ̂L, δ̂U , δ̂ρ (for the bi-factor Gaussian model); GARCH-filtered log-returns from S&P500
index, health care sector, years 2010–2011

all group 1 group 2 group 3 group 4 group 5
ˆ̺L 0.43 0.46 0.41 0.60 0.47 0.36
ˆ̺U 0.25 0.29 0.20 0.47 0.25 0.27
ρ̂S 0.50 0.53 0.50 0.72 0.52 0.53

δ̂L -0.17 -0.17 -0.16 -0.11 -0.19 -0.06
δ̂U 0.00 -0.01 0.05 0.02 0.03 0.02
δ̂ρ -0.02 -0.01 -0.02 -0.01 0.00 -0.01

The weighting functiona(u) = (1− 2u)k downweights data points that are far from the joint tail and is more sensitive
to different types of tail behavior ifk is large. However, with a largerk, variability of the empirical estimates increases
as well, and the choicek = 6 keeps balance between quite high sensitivity and relatively low variability.

The empirical versions involve sample correlations after transformation and truncation, and the model-based ver-
sions involves numerical integration. To compare the accuracy of different models in terms of assessing dependence
in the tails, we compute empirical estimates ˆ̺L, ˆ̺U for each pair of GARCH-filtered log-returns converted to uniform
scores. In addition, as a measure of overall monotone dependence, we compute empirical estimates of the Spearman
rank correlation coefficientρ̂S .

For a given copula model, the model-based estimates̺m
L , ̺

m
U , ρ

m
S are computed as a function of the MLE. We also

compute the differences between the model-based and empirical estimates:δ̂L = ̺m
L − ˆ̺L, δ̂U = ̺m

U − ˆ̺U , δ̂ρ = ρm
S − ρ̂S

for each pair of bivariate marginal distributions.
For d = 51, the number of pairs is 51× 25 = 1275. Therefore to summarize dependence structure of the data set,

we compute the average of ˆ̺L, ˆ̺U , ρ̂S for all pairs of uniform scores, as well as for all pairs within each of the 5 groups.
We denote the overall averages by ˆ̺L(all), ˆ̺U(all), and group averages by ˆ̺L(g), ˆ̺U(g) for theg-th group respectively.
To evaluate the accuracy of assessing dependence in the tails by a given model, we compute the following quantities:

δ̂L(all), δ̂U(all) (δ̂L(g), δ̂U(g)) : the overall (within theg-th group) averages of̂δL, δ̂U respectively;
δ̂ρ(all) δ̂ρ(g) : the overall (within theg-th group) average of̂δρ;

The averaged differences allow the summarization of information in a few numbers and reduced variability when
constructing confidence intervals. We compute ˆ̺L(all), ˆ̺U(all), ˆ̺L(g), ˆ̺U(g), g = 1, ..., 5 for our data and use the bi-
factor Gaussian model as a benchmark to computeδ̂L(all), δ̂U(all), δ̂L(g), δ̂U(g), g = 1, ..., 5 for this model. The results
are presented in Table 3.

It is seen dependence in the lower tail is stronger for all groups of log-returns which means models with reflection
symmetric dependence structure, including the Gaussian and Student t models, may not be suitable for modeling these
data. Large negative valuesδ̂L(all), δ̂L(g), g = 1, . . . , 5 indicate that for all 5 groups dependence in the lower tail is
much stronger compared to that of the model with Gaussian linking copulas. It implies that copulas with the lower tail
dependence can be more suitable for the data. According to the results of Section 3 (see Table 2), one can use bivariate
tail asymmetric linking copulas (copulas linking a latent variable and a group variable) with the lower tail dependence
to get bivariate marginals with lower tail dependence for each of the 5 groups.

At the same time, the valuesδ̂U(all), δ̂U(g), g = 1, ..., 5 are quite close to zero and therefore dependence the upper
tail is comparable to that of the Gaussian copula. It impliesthat one can use linking copulas with at least intermediate
upper tail dependence to get bivariate marginals with at least intermediate upper tail dependence for each of the 5
groups (see Table 2). To summarize, one can see that for bivariate copulas linking a latent variable and group variables
one can select an asymmetric copula with the lower tail dependence and at least intermediate upper tail dependence
for all of the 5 groups in the data set.
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6.2. Assessing adequacy of different models

For the dependence of thed innovations, we fit different nested and bi-factor models. For comparisons and sen-
sitivity analyses, we include models that may not be appropriate based on the preliminary analyses in the preceding
section. For each of these models we choose the same linking copula family to model dependence within each of the
five groups. This is done for illustration purposes to show how the model choice affects the estimates of VaR, CTE
and some dependence measures. Notice that according to the results from the previous section, dependence structure
is quite similar in all 5 groups (lower tail dependence and intermediate upper tail dependence). In general, when the
dependence structure and tail behavior is quite different in different groups, one can use different copula families in
these groups.

For comparisons, we use bi-factor and nested Gaussian models as well as the multivariate Student t distribution
with nested and bi-factor correlation structure (the latter behave similar to (5) and (3) with bivariate Student t copulas
and are computationally faster for likelihood calculations). More specifically, we fit the following models.

1. Nested and bi-factor models with Frank copulas at both levels. This is tail quadrant independent copula and so
it is unsuitable for modeling data with tail dependence. We use this for comparison purpose to show that effect
on tail inference with tail quadrant independent versus tail dependent bivariate linking copulas.

2. 1-factor model with reflected BB1 copulas with asymmetrictail dependence. This model can be used to model
asymmetric dependence. We also fitted with BB1 copulas, but for this data set, reflected BB1 provided a better
fit.

3. 2-factor model with BB1 copulas linking to the first factorand Frank copula linking to the second factor. This
is more flexible model than the BB1 1-factor model because theFrank copula allows for negative conditional
dependence.

4. Nested model with reflected Gumbel copulas to model dependence between groups and reflected BB1 copulas
to model dependence within groups. This is an extension of the 1-factor BB1 model that accounts for group
structure.

5. Bi-factor model with BB1 copulas for linking the common factor and Frank copulas for the second group-
specific factor. This is an extension of the 2-factor BB1/Frank model that accounts for group structure.

For the algebraic forms of the Frank, BB1 and Gumbel copulas,see Joe (1997). The reflected form of a bivariate
copula familyC(u, v; θ) is Ĉ(u, v; θ) = u + v − 1+ C(1− u, 1− v; θ); that is, if (U,V) ∼ C, then (1− U, 1− V) ∼ Ĉ.

We computêδL(all), δ̂U(all), δ̂L(g), δ̂U(g), g = 1, ..., 5 for the above models; the results are presented in Table 4. We
do not include nested Gaussian, Student t and Frank models asthe results for these models and for the corresponding
bi-factor models are quite close. The averaged values ofδ̂L are negative for all groups for bi-factor Gaussian and
Student t models. It implies dependence in the lower tail is underestimated by these models. The Frank copula model
is even worse, as it heavily underestimates dependence in both tails. At the same time, models with tail asymmetric
dependence structure perform better. Nevertheless, both the 1-factor reflected BB1 copula model and the 2-factor
BB1/Frank copula model underestimate dependence in both tails in the third group. In addition, Spearman’s rho
is also underestimated by the 1-factor model (so that this dependence structure is too parsimonious), unlike other
models with a group structure that give quite accurate estimates of the Spearman’s rho in all groups. The reason is
that dependence in the third group is significantly strongerthan in the other groups and factor copula models assume
homogeneous dependence across all groups. As a result, the estimated strength of dependence in the tails as well
as overall dependence is mostly defined by the first very largegroup. With only 5 additional parameters, the nested
reflected Gumbel/reflected BB1 copula model does better than 1-factor reflected BB1 copula model, with slightly
overestimated dependence in the lower tail in the last group. The bi-factor BB1/Frank copula model is the best one as
it assesses the strength of dependence in both tails reasonably well in all groups.

Now we compare the proposed models with vine copulas in termsof AIC using the algorithm of Dißmann et al.
(2013) and in the VineCopula R package. The regular vine model allows great flexibility to approximate the joint
dependence of a multivariate data set by selecting bivariate linking copulas similar to the structured copula models.
The following values of AIC/n with n = 503 were obtained for the regular vine model truncated afterthe first, second
and third levels: -28.8, -33.9, -36.0. Models 4 and 5 yields AIC/n = -36.7 and AIC/n = -37.4 respectively. It is seen,
that the proposed structured copula models do better in terms of AIC comparing to truncated regular vine models and
a higher level of truncation is required for the regular vineto get AIC which is comparable to that of the nested and
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Table 4: Overall and group averages ofδ̂L, δ̂U , |δ̂L |, |δ̂U |, and the maximum log-likelihood value for different models; GARCH-filtered log-returns
from S&P500 index, health care sector, years 2010–2011,n = 503

bi-factor Gaussian model
overall group 1 group 2 group 3 group 4 group 5 AIC/n

δ̂L -0.17 -0.17 -0.16 -0.11 -0.19 -0.06
-35.2δ̂U 0.00 -0.01 0.05 0.02 0.03 0.02

δ̂ρ -0.02 -0.01 -0.02 -0.01 0.00 -0.01

bi-factor Student t model
overall group 1 group 2 group 3 group 4 group 5 AIC/n

δ̂L -0.11 -0.11 -0.10 -0.06 -0.15 -0.01
-37.5δ̂U 0.06 0.05 0.11 0.07 0.07 0.07

δ̂ρ 0.01 0.01 0.00 0.01 0.00 0.01

bi-factor Frank copula model
overall group 1 group 2 group 3 group 4 group 5 AIC/n

δ̂L -0.30 -0.27 -0.25 -0.23 -0.30 -0.16
-36.7δ̂U -0.13 -0.10 -0.04 -0.10 -0.09 -0.08

δ̂ρ 0.00 0.04 0.03 0.01 0.03 0.02

1-factor reflected BB1 copula model
overall group 1 group 2 group 3 group 4 group 5 AIC/n

δ̂L -0.01 -0.02 -0.01 -0.24 -0.03 -0.07
-34.0δ̂U 0.05 0.04 0.00 -0.10 -0.01 0.08

δ̂ρ -0.01 -0.01 -0.08 -0.22 -0.05 -0.09

nested reflected Gumbel/reflected BB1 copula model
overall group 1 group 2 group 3 group 4 group 5 AIC/n

δ̂L 0.05 0.05 0.05 0.05 0.04 0.13
-36.7δ̂U -0.04 0.00 0.03 0.03 -0.01 0.02

δ̂ρ -0.02 0.00 -0.02 -0.01 0.00 -0.01

2-factor BB1/Frank copula model
overall group 1 group 2 group 3 group 4 group 5 AIC/n

δ̂L -0.04 -0.04 -0.06 -0.23 -0.06 -0.03
-37.0δ̂U 0.00 0.02 -0.02 -0.20 -0.05 -0.03

δ̂ρ 0.04 0.04 -0.04 0.02 0.00 -0.05

bi-factor BB1/Frank copula model
overall group 1 group 2 group 3 group 4 group 5 AIC/n

δ̂L 0.01 0.02 0.02 -0.01 0.00 0.07
-37.4δ̂U 0.03 0.03 0.09 -0.03 0.08 0.07

δ̂ρ -0.04 0.00 -0.01 0.00 -0.01 -0.02
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bi-factor copula models. The linking copulas and dependence structure in vine models are sequentially selected to
maximize components of the likelihood. The vine models are less interpretable and do not use the information of the
sectors; for our data set, stocks in the same sector are not always neighbors in the first tree of the vine. Also the choice
of linking copulas in the structured copula models is based on the assessed strength of dependence in the tail.

The improved fits from structured copula models comes with additional computational time. With a personal
computer with an Intel Core i5-2410M CPU at 2.3 GHz, some timings are: Multivariate Student t or Gaussian with
bi-factor or nested factor structure: less than one minute;reflected Gumbel/ reflected BB1 nested copula model: 29
min (12 iterations, 107 parameters); BB1/Frank bi-factor model: 48 min (23 iterations, 153 parameters); other nested
factor and bi-factor models converge faster; 1-truncated,2-truncated and 3-truncated regular vines: 1.5, 2.0 and 2.3
minutes respectively.

In the next subsection we do a more detailed analysis of the financial data set. In particular, we compute Value-at-
Risk (VaR) and conditional tail expectations (CTE) for different models and compare the model-based estimates with
the corresponding empirical estimates of these risk measures. Because the VaR/CTE are numerically more intensive
with bootstrapping and Monte Carlo simulations, for further comparisons, we exclude the first and the last group,
leaving 3 groups and 20 stocks.

6.3. VaR and CTE for different models

We consider an equally weighted portfolio of 20 stocks from the second, third and fourth groups of the data
set considered in the previous section: health care equipment and services (6 stocks), biotechnology (6 stocks) and
pharmaceuticals (8 stocks).

We use bi-factor Gaussian, Student t and Frank copula models(the corresponding nested models have very similar
performance so that they are not included). In addition, we use the 1-factor reflected BB1 copula model, the nested
model with reflected Gumbel/reflected BB1 and the bi-factor model with BB1/Frank.

For each model, using the procedure outlined in Section 5, wecompute the model-based 95% confidence intervals
for overall and group averages for̺L, ̺U , ρS . Again, the averaged values allow reduced variability of the estimates and
narrower confidence intervals despite the sample size not being very large. With smaller confidence intervals, models
with different types of dependence structure can be differentiated more efficiently. We useB = 2000 bootstrap samples
to obtain the intervals; in fact, the results stabilize whenB ≥ 1000.

GARCH-filtered log-returns are used to compute the corresponding empirical values. The results are presented
in Table 5, and these should be mainly considered as a diagnostic assessment of fits of different copula models. It
is seen, that all tail symmetric models underestimate dependence in the lower tail. In addition, the Student t model
overestimates dependence in the upper tail and the bi-factor Frank copula model underestimate dependence in both
tails. At the same time, the 1-factor model with a reflected BB1 copula better estimates dependence in the tails and
the two other tail asymmetric models are more conservative as they slightly overestimate dependence in the tails.
Nevertheless, Spearman’s rho is significantly underestimated in all groups by the 1-factor model unlike other models
with a group structure.

Next, we compute empirical estimates as well as the 95% confidence intervals for VaRα with α = 0.01, 0.05, 0.95,
0.99 and for CTE−(−0.03), CTE−(−0.02), CTE+(0.02), CTE+(0.03). We useB = 2000 bootstrap samples and simulate
copula-GARCH time series of lengthN = 20000 to compute VaR and CTE for each sample and therefore to obtain
the confidence intervals. The values±0.02,±0.03 for CTE approximately correspond to the lower and upper 5%and
1% empirical quantiles of the portfolio returns. The results are presented in Tables 6 and 7, as another diagnostic
assessment of fits of different copula models. It is seen that VaR is not very sensitiveto the model choice. Only 1%
VaR can detect weaker dependence for Frank copula as expressed in larger lower tail quantiles. Nevertheless, the
reflection symmetric Student t and Gaussian models do reasonably well in terms of VaR risk measure despite the fact
the dependence structure is misspecified by these models. A possible reason is that smaller quantiles are required to
detect weaker dependence of these models in the lower tail. Otherwise the inferences on VaR and CTE are mainly
dominated by the fit in the middle. However, VaRα can not be empirically estimated well with very small or large
values ofα unless the sample size is very large.

Conditional tail expectation is underestimated in the lower tail by the reflection symmetric copula models, but all
models do reasonably well in the upper tail. However, the Student t model significantly overestimates the strength
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Table 5: Overall and group estimated averages of̺L, ̺U , ρS and the model-based 95% confidence intervals (intervals that don’t contain the
empirical value are shown in bold font); GARCH-filtered log-returns of stocks in the health care sector of the S&P500 index, years 2010-2011

model ̺L(all) ̺L (group 2) ̺L (group 3) ̺L (group 4)
empirical estimate 0.42 0.41 0.60 0.47
bi-factor Gaussian (0.19, 0.29) (0.21, 0.28) (0.45, 0.53) (0.23, 0.30)
bi-factor Student t (0.30, 0.35) (0.28, 0.35) (0.50, 0.58) (0.30, 0.37)
bi-factor Frank (0.12, 0.15) (0.14, 0.18) (0.33, 0.40) (0.14, 0.19)
1-factor reflected BB1 (0.41, 0.50) (0.34, 0.46) (0.48, 0.63) (0.38, 0.49)
nested rGumbel/rBB1 (0.44, 0.51) (0.41, 0.51) (0.59, 0.69) (0.44, 0.55)
bi-factor BB1/Frank (0.37, 0.49) (0.35, 0.49) (0.51, 0.65) (0.40, 0.54)

model ̺U(all) ̺U (group 2) ̺U (group 3) ̺U (group 4)
empirical estimate 0.24 0.20 0.47 0.25
bi-factor Gaussian (0.19, 0.29) (0.21, 0.28) (0.45, 0.53) (0.23, 0.30)
bi-factor Student t (0.30, 0.35) (0.28, 0.35) (0.50, 0.58) (0.30, 0.37)
bi-factor Frank (0.12, 0.15) (0.14, 0.18) (0.33, 0.40) (0.14, 0.19)
1-factor reflected BB1 (0.20, 0.30) (0.11, 0.23) (0.30, 0.53) (0.13, 0.28)
nested rGumbel/rBB1 (0.18, 0.24) (0.18, 0.29) (0.43, 0.57) (0.20, 0.31)
bi-factor BB1/Frank (0.22, 0.34) (0.20, 0.34) (0.38, 0.54) (0.24, 0.37)

model ρS (all) ρS (group 2) ρS (group 3) ρS (group 4)
empirical estimate 0.50 0.50 0.72 0.52
bi-factor Gaussian (0.38, 0.52) (0.43, 0.52) (0.68, 0.74) (0.45, 0.54)
bi-factor Student t (0.47, 0.54) (0.45, 0.53) (0.69, 0.76) (0.48, 0.56)
bi-factor Frank (0.46, 0.54) (0.48, 0.56) (0.69, 0.75) (0.51, 0.59)
1-factor reflected BB1 (0.44, 0.51) (0.34, 0.44) (0.57, 0.67) (0.39, 0.49)
nested rGumbel/rBB1 (0.44, 0.52) (0.43, 0.52) (0.67, 0.73) (0.47, 0.55)
bi-factor BB1/Frank (0.43, 0.50) (0.44, 0.53) (0.68, 0.74) (0.47, 0.55)

of dependence in the upper tail according to the tail-weighted dependence measures, whereas Frank copula model
underestimates dependence in the upper tail. CTE can thus still not be very sensitive to the model misspecification.

Note that the 1-factor copula with reflected BB1 provides good estimates for VaR and CTE as the strength of
dependence in the tails is estimated quite well by the model.After removing the first large group of returns, the model
improves its performance, however the overall dependence is still underestimated as indicated by poor estimates
of Spearman’s rho. In conclusion, one can see that structured copula models specify both overall dependence and
dependence in the tails quite well and provide good estimates for the considered risk measures. The improved fit of
the bi-factor copulas as seen in the AIC values matches improved model-based estimates of tail-weighted dependence
measures; that is, tail-weighted dependence measures are more sensitive than portfolio VaR/CTE in differentiating
models that fit less well based on AIC. That is, some models with incorrectly specified dependence structure (in the
middle or tails) still do reasonably well in terms of VaR and CTE. This indicates that very small (or large) values of
α for VaR and, respectively, thresholds for CTE may be required to efficiently discriminate models with different tail
properties and thus one needs a very large sample size to get agood estimates for VaR and CTE for a model validation.
On the other hand, tail-weighted dependent measures can discriminate the copula models without such a large sample
size.

7. Concluding remarks

The structured factor copula models allow the modeling of dependence for multivariate data sets when there are
several non-overlapping groups of variables with homogeneous dependence in each group. These models contain
bi-factor and nested Gaussian models as special cases. Taildependence and tail asymmetry can be accommodated
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Table 6: Empirical estimates of VaRα for α = 0.01, 0.05, 0.95, 0.99 and the model-based 95% confidence intervals; GARCH-filtered log-returns for
stocks from health care sector of the S&P500 index, years 2010–2011.

model VaR0.01 VaR0.05 VaR0.95 VaR0.99

empirical estimate -0.035 -0.020 0.019 0.029
bi-factor Gaussian (-0.039, -0.024) (-0.024, -0.016) (0.017, 0.025) (0.026, 0.039)
bi-factor Student t (-0.040, -0.026) (-0.024, -0.016) (0.018, 0.025) (0.028, 0.041)
bi-factor Frank (-0.030, -0.020) (-0.022, -0.015) (0.017, 0.023) (0.022, 0.032)
1-factor reflected BB1 (-0.045, -0.030) (-0.025, -0.017) (0.017, 0.024) (0.026, 0.038)
nested rGumbel/rBB1 (-0.046, -0.031) (-0.025, -0.017) (0.017, 0.023) (0.025, 0.037)
bi-factor BB1/Frank (-0.045, -0.029) (-0.025, -0.017) (0.017, 0.023) (0.027, 0.039)

Table 7: Empirical estimates of CTE−(r∗), for r∗ = −0.03,−0.02, and CTE+(r∗), for r∗ = 0.02, 0.03, and the model-based 95% confidence intervals;
GARCH-filtered log-returns for stocks from the health care sector in the S&P500 index, years 2010–2011.

model CTE−(−0.03) CTE−(−0.02) CTE+(0.02) CTE+(0.03)
empirical estimate -0.043 -0.030 0.028 0.039
bi-factor Gaussian (-0.041, -0.036) (-0.029, -0.026) (0.026, 0.029) (0.036, 0.041)
bi-factor Student t (-0.041, -0.037) (-0.030, -0.026) (0.026, 0.030) (0.037, 0.041)
bi-factor Frank (-0.041, -0.032) (-0.026, -0.022) (0.023, 0.026) (0.032, 0.039)
1-factor reflected BB1 (-0.045, -0.040) (-0.033, -0.029) (0.026, 0.030) (0.036, 0.042)
nested rGumbel/rBB1 (-0.046, -0.040) (-0.033, -0.029) (0.025, 0.029) (0.035, 0.041)
bi-factor BB1/Frank (-0.045, -0.039) (-0.033, -0.029) (0.027, 0.031) (0.038, 0.044)

by choosing appropriate bivariate linking copulas. The number of dependence parameters in the models is a linear
function of dimensiond and, with appropriate numerical methods, two-stage maximum likelihood estimation is effi-
cient ford up to over 100. Resampling to get model-based confidence intervals is however much more numerically
intensive.

For simplicity of presentation in Section 6, we used a commonparametric bivariate linking copula family for the
group latent variables. To increase the log-likelihood or decrease AIC, more choices could be considered for each
edge of the truncated vine associated with the structured copula model. In practice, one has to decide whether or
not to continue trying to find parametric models that can yield smaller AIC values. Diagnostic procedures based on
Spearman’s rho and tail-weighted dependence measures can be used to assess adequacy of fit; bad fits can suggest
dependence structures that are less parsimonious or choices of linking copulas to better match tail behavior seen in the
multivariate data. The example in Section 6 and other similar examples show that the best model(s) based on simple
assessments of adequacy of fit does (do) not always match withthe best model(s) based on AIC.

The models can be further extended to a dynamic setting when dependence structure of the multivariate data set
can change in time. To account for dynamic dependence, copulas with dependence parameters evolving in time can
be used as in Patton (2006) or alternatively regime switching copula can be applied; see, for example, Chollette et al.
(2009). As a possible application, the dynamic structured copula model would allow to forecast financial portfolio
returns and quantify possible risks of the portfolio, whileaccounting for (i) strong dependence in the tails and (ii)
possible tail asymmetry of a multivariate distribution of the portfolio components. Future research includes studying
the dependence properties of such an extended dynamic structured copula model. Based on the model prediction,
possible strategies for investors could be investigated inorder to minimize the risks of a portfolio.
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Appendix

A.1. Bivariate copulas satisfying assumptions of Proposition 3
We check that the conditionvc(v, qv) ≥ Kcqm, q ∈ (0, 1), Kc > 0, m ≥ 0 for small enoughv from Proposition 3 is

satisfied for many bivariate copulas that are used in applications.
1. Reflected Gumbel copula with a dependence parameterθ > 1. Definet1 = − ln(1 − u1), t2 = − ln(1 − u2),

s = tθ1 + tθ2, r = s1/θ. It can be shown the the density of the reflected Gumbel copulais as follows:

c(u1, u2) = (r + θ − 1)r1−2θ exp{−r}(t1t2)θ−1/[(1 − u1)(1− u2)].

Let u1 = v andu2 = qv. It follows thatt1 ≥ v andt2 ≥ qv and asv→ 0 t1 ≤ 2v, t2 ≤ 2vq. It impliesr ≤ 2v(1+ qθ)1/θ ≤
v21/θ+1. For the reflected Gumbel copula we have:

vc(v, vq) ≥ v(θ − 1)[v21/θ+1]1−2θ exp{−v21/θ+1}(t1t2)θ−1 ≥ Kcvv1−2θ(v2q)θ−1 = Kcqθ−1

whereKc = (θ − 1)2(1−2θ)(1/θ+1) exp{−21/θ+1}. Hence the assumption of Proposition 3 is satisfied withr = θ − 1.

2. BB1 copula with dependence parametersθ > 0 andδ > 1. Definet1 = u−θ1 , t2 = u−θ2 , s = (t1− 1)δ + (t2− 1)δ and
r = s1/δ. The density of the BB1 copula is given by the formula:

c(u1, u2) = (1+ r)−(1/θ+2)r1−2δ[θ(δ − 1)+ (θδ + 1)r][( t1 − 1)(t2 − 1)]δ−1/(u1u2)
θ+1.

Let u1 = v andu2 = vq. As v → 0 we havet j → ∞, j = 1, 2, r → ∞ and therefore for small enoughv we have
r + 1 < 2r andt j − 1 > t j/2. It follows thats ≤ tδ1 + tδ2 = (qv)−δθ(1+ qθδ) ≤ 2(qv)−δθ andr ≤ 21/δ(qv)−θ. As a result, for
the BB1 copula we have:

vc(v, vq) ≥ v(2r)−(1/θ+2)r1−2δ[(θδ + 1)r](t1t2/4)δ−1(u1u2)−θ−1 = K∗c vr−1/θ−2δ(v2q)−θ(δ−1)−θ−1

≥ K∗c 2−(1/(δθ)+2)v(qv)1+2θδ(v2q)−θδ−1 = Kcqθδ

whereK∗c = (θδ + 1)2−1/θ−2δ andKc = K∗c 2−(1/(θδ)+2) = (θδ + 1)2−(2+1/(θδ))(δ+1). Hence the assumption of Proposition 3
is satisfied withm = θδ.

3. Student tν copula with dependence parametersρ ∈ (−1; 1) and shape parameterν > 0. Definet1 = T−1
ν (u1), t2 =

T−1
ν (u2) andd∗ = 1+ (t21 − 2ρt1t2 + t22)/[ν(1− ρ2)]. The density of the Student copula is given by the formula:

c(u1, u2) =


1+

t21
ν


1+

t22
ν



0.5ν+0.5 ( √

νΓ(0.5ν)
Γ(0.5ν + 0.5)

)2
[d∗]−0.5ν−1

2
√

1− ρ2
.

Let u1 = v, u2 = vq. Using the asymptotic behavior of Student quantiles, asv → 0, we get−k−1 v−1/ν ≤ t1 ≤ −k+1 v−1/ν,
−k−2 (vq)−1/ν ≤ t2 ≤ −k+2 (vq)−1/ν for some positive constantsk−1 , k

+
1 , k
−
2 , k
+
2 . It impliesd∗ ≤ 1+ (t1 + t2)2/[ν(1− ρ2)] ≤

1+ (2t2)2/[ν(1− ρ2)] ≤ 5t22/[ν(1− ρ2)] ≤ k3(vq)−2/ν, wherek3 = 5(k−2 )2/[ν(1− ρ2)]. Denotek4 =

( √
νΓ(0.5ν)

Γ(0.5ν+0.5)

)2
1

2
√

1−ρ2
.

For the Student copula we have:

vc(v, vq) ≥ k4v[(t1t2)2/ν2]0.5ν+0.5[d∗]−0.5ν−1 ≥ k4v[(k+1 k+2 )2(v2q)−2/ν/ν2]0.5ν+0.5[k3(vq)−2/ν]−0.5ν−1

= Kcvv−2−2/νq−1−1/ν(vq)1+2/ν = Kcq1/ν

whereKc = k4[k+1 k+2/ν]
ν+1k−0.5ν−1

3 . Hence the assumption of Proposition 3 is satisfied withm = 1/ν.

A.2. Derivatives of bivariate linking copulas
In order to get the gradient and Hessian of the negative log-likelihood for numerical minimization via a modified

Newton-Raphson method, the following derivatives are analytically needed. These derivatives are required when
differentiating under the integral sign using the chain rule formula.
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In a nested copula model (5) the following derivatives are required:

∂cVg,V0(vg, v0; θg)

∂θg
,

∂cUig ,Vg(uig, vg; ηig)

∂ηig

∂2cVg,V0(vg, v0; θg)

∂θg∂θT
g

,
∂2cUig ,Vg(uig, vg; ηig)

∂ηig∂η
T
ig

,

whereθg, ηig are dependence parameters of the copulasCVg,V0 andCUig ,Vg respectively. In a bi-factor model (3) the
required derivatives are as follows:

∂cUig,V0(ui j, v0; θig)

∂θig
,

∂cUig,Vg;V0(wig, vg; γig)

∂γig
,

∂cUig ,Vg;V0(wig, vg; γig)

∂wig
,

∂CUig |V0(uig|v0; θig)

∂θig
,

∂2cUig ,V0(uig, v0; θig)

∂θig∂θ
T
ig

,
∂2cUig ,Vg;V0(wig, vg; γig)

∂γig∂γ
T
ig

,
∂2cUig ,Vg;V0(wig, vg; γig)

∂w2
ig

,

∂2CUig |V0(uig|v0; θig)

∂θig∂θ
T
ig

,
∂2cUig ,Vg;V0(wig, vg; γig)

∂wig ∂γig
,

whereθig, γig are dependence parameters of the copulaCUig ,V0 andCUig ,Vg;V0 respectively.
For the common bivariate copula families, the density alongwith the partial derivatives are available in a closed

form. As such, the required derivatives of thecU(u) can be represented as integrals of some explicit functionsand can
be computed using numerical integration.

A.3. Structured factor models as truncated vines

Simulation from the structured factor copula models is straightforward after recognizing that they are special cases
of truncated vines rooted at latent variables.

For the bi-factor copula model withG groups of variables, letV0,V1, . . . ,VG be the independent latentU(0, 1)
variables and letUig be the observed variables fori = 1, . . . , dg, j = 1, . . . ,G. This can be represented as a 2-truncated
regular-vine. The edges of tree 1 are [V0,V1], . . . , [V0,VG] and [V0,Uig] for i = 1, . . . , dg, j = 1, . . . ,G; there is a total
of G + d edges in this tree. For tree 2, the edges are [V1,Vg|V0] for g = 2, . . . ,G and [Vg,Uig|V0] for i = 1, . . . , dg,
j = 1, . . . ,G; there is a total ofG − 1+ d edges in this tree; see Figure 1.
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Figure 1: bi-factor model withG groups,d j variables in thejth group

For the nested factor copula model withG groups of variables, letV0,V1, . . . ,Vm be the dependent latentU(0, 1)
variables with a 1-factor structure, and letUig be the observed variables. This can be represented as a 1-truncated
regular vine with the edges of tree denoted as [V0,V1], . . . , [V0,VG] and [Vg,Uig] for i = 1, . . . , dg, j = 1, . . . ,G; there
is a total ofG + d edges; see Figure 2.
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Figure 2: nested model withG groups,d j variables in thejth group

From these truncated vines, the joint density of the observed and latent variable can be obtained from the vine
density result in Bedford and Cooke (2001), and then integration over the latent variables leads to (3) and (5).

A.4. Simulating data from a nested copula model

Assume we need to simulate a random vectorU = (U11, . . . ,Ud11, · · · ,U1G, . . . ,UdGG) from the model (5) withG
groups of sizedg, g = 1, . . . ,G. Below is a simple algorithm for simulating data from the model:

1. SimulateG + 1 independent random variablesV0,W1, . . . ,WG ∼ U(0, 1);
2. Use the inverse conditional cdfC−1

Vg|V0
to simulate group latent variables:Vg = C−1

Vg |V0
(Wg|V0), g = 1, . . . ,G;

3. Simulated1 + · · · + dg independent random variablesW11, . . . ,Wd11, · · · ,W1G, . . . ,WdGG ∼ U(0, 1);
4. Use the inverse conditional cdfC−1

Uig |Vg
to simulate variables within theg-th group:Uig = C−1

Uig |Vg
(Wig|Vg), i =

1, . . . , dg.

For some bivariate copulas the inverse conditional cdfs areavailable in a closed form. For other copulas, such as
the Gumbel or BB1 copula, the inverse conditional cdfs can becomputed quickly using numerical methods.

A.5. Simulating data from a bi-factor copula model

Assume we need to simulate a random vectorU = (U11, . . . ,Ud11, · · · ,U1G, . . . ,UdGG) from the model (3) withG
groups of sizedg, g = 1, . . . ,G. We use the following algorithm:

1. Simulate 1+G+d1+ · · ·+dg independent random variablesV0,V1, . . . ,Vg,W11, . . . ,Wd11, · · · ,W1G, . . . ,WdGG ∼
U(0, 1);

2. Use the inverse conditional cdfsC−1
Uig |Vg;V0

andC−1
Uig |V0

to simulateVig = C−1
Uig |Vg;V0

(Wig|Vg), Uig = C−1
Uig |V0

(Vig|V0)
for i = 1, . . . , dg, g = 1, . . . ,G.
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Sklar, A., 1959. Fonctions de répartition àn dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231.

26


