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a b s t r a c t

Given k independent samples of functional data, this paper deals with the problem of
testing for the equality of their mean functions. In contrast to the classical setting, where
k is kept fixed and the sample size from each population increases without bound, here
k is assumed to be large and the size of each sample is either bounded or small in
comparison to k. A new test is proposed. The asymptotic distribution of the test statistic
is stated under the null hypothesis of equality of the k mean functions as well as under
alternatives, which allows us to study the consistency of the test. Specifically, it is shown
that the test statistic is asymptotically free distributed under the null hypothesis. The
finite sample performance of the test based on the asymptotic null distribution is studied
via simulation. Although we start by assuming that the data are functions, the proposed
test can also be applied to finite dimensional data. The practical behavior of the test for
one dimensional data is numerically studied and compared with other tests.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let X1, . . . , Xk be k random vectors taking values in Rd, for some d ∈ N, with finite means and variances. Let
Xi,1, . . . , Xi,ni be i.i.d. (independent and identically distributed) from Xi, 1 ≤ i ≤ k. The k samples are assumed to be
independent. A classical problem in Statistics is that of testing for the equality of the means of the k populations, that is,
testing for

H0 : µ1 = · · · = µk,

with µj = E(Xj), 1 ≤ j ≤ k. When d = 1, if the populations are homoscedastic, following normal distributions and k is a
fixed quantity, then the ANOVA F-test provides an exact solution to the above problem. If the normality assumption is
dropped but the sample sizes are large, then the F-test is asymptotically valid. For heteroscedastic populations, Cochran’s
test gives an asymptotically free distributed test. A similar scenario could be described for d-variate data.

In the context of functional data, it is also of interest testing for the equality of mean functions. Some papers have dealt
with this problem: Benko et al. [4] (for k = 2), Horváth and Kokoszka [19] (for k = 2) and Horváth and Rice [20] (for
k ≥ 2) have proposed tests based on projections onto the space determined by the leading eigenfunctions of an estimator
of the covariance operator of the joint population; Ghiglietti et al. [11] (for k = 2) have proposed a test based on a
generalized Mahalanobis distance for infinite dimensional spaces whose computation involves calculating the eigenvalues
and eigenfunctions of an estimator of the covariance operator of the joint population; Yuan et al. [28] and Zhang et al. [33]
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(for k = 2), and Cuevas et al. [9], Zhang et al. [31,32] and the approaches reviewed in Zhang [30] (for k ≥ 2) consider
tests based on calculating the norms of the difference between sample means; Cuesta-Albertos and Febrero-Bande [8] (for
k ≥ 2) have proposed a test based on random projections; among many others. A common way of approximating the null
distribution of a test statistics is by means of its asymptotic null distribution, whenever it does not depend on unknown
quantities. The test statistics in [4,19,20] are (under the null) asymptotically free distributed, although the associated
tests are not universally consistent. Other test statistics have asymptotic null distributions depending on unknowns and,
hence, their null distribution must be approximated by using alternative estimators. The consistency of the bootstrap
approximation has been stated in Paparoditis and Sapatinas [24].

So far we have assumed that k is arbitrary but fixed and used the term asymptotically to mean ni → ∞, 1 ≤ i ≤ k.
he case in which k is allowed to increase has also received attention in the statistical literature. In particular, when
= 1, if the sample sizes n1 = · · · = nk are fixed and assuming that the data are i.i.d., Boos and Brownie [5], and Akritas
nd Arnold [1] have proven that, conveniently normalized, the F-test has asymptotically a standard normal distribution.
his result is also true for unbalanced designs, but in such a case the asymptotic variance depends on the kurtosis of the
opulation (the fourth moment is assumed to exist). Harrar and Gupta [17] devised a transformation that speeds up the
onvergence to the limiting distribution. Assuming independent data from a d-variate population (d ≥ 2) with the same
istribution across the groups except for their means, which are allowed to vary between groups, Gupta et al. [15] have
roven that, conveniently normalized, commonly used statistics in MANOVA are also asymptotically normal distributed.
esides, they proved that the variance of the asymptotic distribution depends on fourth order moments of the population,
hich are assumed to exist. Although it is not required the sample sizes to be equal, they are assumed to be close
in certain sense). Notice that those papers assume, among other things, that the populations have equal variances. For
nivariate normal populations, that may have different variances, when the samples have ‘‘similar’’ sample sizes (in the
ense that maxi ni < amini ni, for some positive constant a), Park and Park [25] proposed two tests whose associated
tatistics, conveniently normalized, are asymptotically normal. The assumption that the populations have all of them a
ormal distribution is crucial in order to derive the asymptotic distribution. In fact, we have carried out some simulations,
ith data coming from a negative exponential distribution (and other non-normal populations) for several values of the
ommon mean and several values of k, and observed that the empirical type I errors were far apart from the nominal
alue (results are reported in Section 7). Akritas and Papadatos [2] and Harrar and Bathke [16] proposed tests for the
quality of a large number of univariate and d-variate means, not requiring homoscedasticity, respectively. Assumption
in [16], needed to derive the asymptotic null distribution of the tests statistics in that paper, and some of these test

tatistics cannot be carried to the infinite dimensional case.
This paper proposes and studies a test of H0 with k large, requiring neither normality nor homoscedasticity nor

quality of distributions. We start by assuming that the data are functions. Our procedure is fully functional, not based
n projections. The test statistic is asymptotically free distributed, not relying on resampling or Monte-Carlo methods to
btain critical values. Then, we show the way the new test can be applied to data with finite (but arbitrary) dimension.
he sample sizes can be bounded or they can increase with k at a certain rate that will be specified later in the text. The
esign can be balanced or unbalanced but, for unbalanced designs, the ratio between the maximum and the minimum
ample size cannot be greater than a certain power of k. One of the advantages of our proposal is that, in comparison
ith existing tests for finite dimensional data, it requires weaker assumptions.
The paper unfolds as follows. Based on a characterization of H0, Section 2 proposes a test statistic. In Section 3 it is

hown that, adequately normalized, it asymptotically has a standard normal distribution. The practical use of such statistic
equires an estimator of its null variance. This issue is dealt with in Section 4. The power of the test rejecting the null for
arge values of the test statistic is studied in Section 5, in which alternatives that this test is able to detect are identified.
he results in Sections 2–5 are valid for k → ∞. Section 6 summarizes the results of a simulation study designed to
tudy the goodness of the asymptotic null distribution as an approximation of the null distribution of the test statistic,
nd to study the power of the proposed test, for a finite k. This section also contains two real data set applications. In the
revious paragraph we cited some tests for the comparison of the means of k(≥2) independent populations, that were
esigned for k fixed and increasing sample sizes. One may wonder if such tests are still valid in the setting considered in
his paper. Section 7 deals with this issue for the tests proposed in [8,9,20,31,32] and the approaches reviewed in [30].
his section also investigates the validity of the new test in the case of a fixed k and large sample sizes. Although in those
ections we have assumed functional data, Section 8 shows how the test can be applied to finite dimensional data. This
ection also displays the results of some simulation experiments, where the proposed test is compared with those in [25]
or one-dimensional data. A real data set application is included as well. Section 9 concludes the paper. All proofs are
eferred to Section 10. All computations have been carried out using programs written in the R language [26]. The R code
or the calculation of the proposed test statistic is available in the Supplementary Material.

The following notation will be used along the paper: all limits in this paper are taken when k → ∞;
L
→ denotes

onvergence in distribution;
P

→ denotes convergence in probability;
a.s.
→ denotes the almost sure convergence; M denotes

positive constant whose exact value is unimportant and may vary across the text; and an unspecified integral denotes
ntegration over the compact interval [0,1].
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2. The test statistic

Assume that X1, . . . , Xk are random functions defined on a common probability space (Ω,A, P) with values in the
separable Hilbert space L2 = L2([0, 1],R), the space of square-integrable real-valued functions defined on the compact
interval [0,1], with the usual inner product ⟨f , g⟩ =

∫
f (t)g(t)dt and norm ∥f ∥ = ⟨f , f ⟩1/2, f , g ∈ L2. Assume that

Xi is integrable, that is, that E∥Xi∥ < ∞, which implies that there is a unique function µi ∈ L2, the mean function of
i, satisfying E(⟨Xi, x⟩) = ⟨µi, x⟩, ∀x ∈ L2, 1 ≤ i ≤ k. It follows that µi(t) = E{Xi(t)} for almost all t ∈ [0, 1]. Let
i(t, s) = E[{Xi(t) − µi(t)}{Xi(s) − µi(s)}], s, t ∈ [0, 1], stand for the covariance function of Xi, and let Ci : L2 → L2 denote
he covariance operator of Xi, defined as Cif (t) =

∫
ci(t, s)f (s)ds, ∀f ∈ L2, which is assumed to satisfy

0 < θi =

∫∫
c2i (t, s)dtds < ∞, 1 ≤ i ≤ k. (1)

long this paper it is assumed that the available data consist of independent random samples from each population, that
s, we assume that Xi = {Xi1, . . . , Xini} are ni independent random functions from Xi, 1 ≤ i ≤ k, and that X1, . . . ,Xk
re independent. On the basis of the available data, we are interested in testing H0, where the equalities under H0 are
nderstood in the L2 sense, that is, ∥µi − µj∥ = 0, ∀i ̸= j. Notice that H0 is equivalent to Dk = 0, where

Dk =
1
k

k∑
i=1

∥µi − µ̄.∥
2

=
1
k

k∑
i=1

⟨µi, µi⟩ − ⟨µ̄., µ̄.⟩, µ̄. =
1
k

k∑
i=1

µi.

ince the sample mean is unbiased for the population mean, the above equivalence leads us to consider the following
est statistic for testing H0,

T̃k =
1
k

k∑
i=1

∥X̄i. − X̄..∥
2, with X̄i. =

1
ni

ni∑
j=1

Xij, 1 ≤ i ≤ k, X̄.. =
1
k

k∑
i=1

X̄i..

Routine calculations show that

T̃k =

(
1
k

−
1
k2

) k∑
i=1

h̃1(Xi) −
1
k2

k∑
i,l=1
i̸=l

h2(Xi,Xl),

with h̃1(Xi) = h2(Xi,Xi), h2(Xi,Xl) = ⟨X̄i., X̄l.⟩. We have that E{h2(Xi,Xl)} = ⟨µi, µl⟩, ∀i ̸= l, and, assuming
∫
ci(t, t)dt < ∞,

E{h̃1(Xi)} = ⟨µi, µi⟩ +
1
ni

∫
ci(t, t)dt.

herefore T̃k is a biased estimator of Dk. The bias can be removed by replacing h̃1(Xi) with h1(Xi), defined as

h1(Xi) =
1

ni(ni − 1)

ni∑
u,v=1
u̸=v

⟨Xiu, Xiv⟩.

et

Tk =

(
1
k

−
1
k2

) k∑
i=1

h1(Xi) −
1
k2

k∑
i,l=1
i̸=l

h2(Xi,Xl).

Then, E(Tk) = Dk. Since E(Tk) = 0 under H0 and E(Tk) > 0 under alternatives, the null hypothesis is rejected for large
values of Tk. Now, in order to determine what large values are in this context, we have to calculate its distribution under
the null hypothesis, or (at least) an approximation of it. The null distribution of Tk is clearly unknown. Next, we try to
approximate it by means of its asymptotic null distribution.

3. The asymptotic distribution of the test statistic

By applying the Decomposition Lemma of Efron and Stein [10], after some rearrangements, one gets that

Tk = Dk + Tk,Lin + Rk, (2)

with Tk,Lin = (1/k)
∑k

i=1 Lik, Lik = h1(Xi) − ⟨µi, µi⟩ − 2⟨X̄i. − µi, µ̄.⟩, 1 ≤ i ≤ k, and

Rk = −
1
k2

k∑
i=1

{h1(Xi) − ⟨µi, µi⟩} +
2
k2

k∑
i=1

⟨X̄i. − µi, µi⟩ −
1
k2

k∑
i,l=1
i̸=l

⟨X̄i. − µi, X̄l. − µl⟩.

learly, E(Tk,Lin) = E(Rk) = 0. The variance of Tk,Lin is given in the next lemma.
3
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Lemma 1. Suppose that X1, . . . , Xk are integrable satisfying (1), that Xi = {Xi1, . . . , Xini} are ni ≥ 2 independent random
unctions from Xi, 1 ≤ i ≤ k, and that X1, . . . ,Xk are independent. Then

var(Tk,Lin) =
1
k2

k∑
i=1

(
2

ni(ni − 1)
θi +

4
ni

γi

)
,

here

γi =

∫∫
ci(t, s){µi(t) − µ̄.(t)}{µi(s) − µ̄.(s)}dtds, 1 ≤ i ≤ k.

Notice that var(Tk,Lin) > 0 is equivalent to
∑k

i=1 θi > 0, and the latter is implied by (1).
If H0 is true, then var(Tk,Lin) simplifies to

var0(Tk,Lin) =
2
k2

k∑
i=1

1
ni(ni − 1)

θi. (3)

The next result shows that the term Rk in (2) is negligible in comparison to Tk,Lin.

Lemma 2. Suppose that the assumptions in Lemma 1 are fulfilled. Then var(Rk)/var(Tk,Lin) → 0.

Since Tk,Lin is an average of independent random variables it readily follows that, conveniently scaled and under some
assumptions (specifically, that the Lindeberg condition in (4) holds true), it is asymptotically normally distributed. This
fact together with the result in Lemma 2 leads to the following result.

Theorem 1. Suppose that the assumptions in Lemma 1 are fulfilled and that

1/k2

var(Tk,Lin)

k∑
i=1

E[L2ikI{L
2
ik > ε k2 var(Tk,Lin)}] → 0, ∀ε > 0. (4)

Then
Tk − Dk√
var(Tk,Lin)

L
−→ Z, (5)

where Z has a standard normal distribution.

As an immediate consequence of Theorem 1, taking into account that H0 is equivalent to Dk = 0, we next derive the
asymptotic null distribution of Tk.

Corollary 1. Suppose that the assumptions in Theorem 1 are fulfilled and that H0 is true. Then
√
kTk/σ0k

L
−→ Z, where Z has

a standard normal distribution and σ 2
0k = k var0(Tk,Lin), with var0(Tk,Lin) as defined in (3).

Recall that the test is one-sided rejecting the null hypothesis for large values of Tk. If σ 2
0k were a known quantity, in

view of Corollary 1, the test that rejects H0 when
√
kTk/σ0k ≥ z1−α,

or some α ∈ (0, 1), where Φ(z1−α) = 1−α and Φ stands for the cumulative distribution function of the standard normal
distribution, would have (asymptotic) level α.

In general, checking that Lindeberg condition holds is not an easy task. Because of this reason, in most cases it is
easier to see that some sufficient conditions are met. Next we provide some conditions for (4) to hold. First we list such
conditions, then we comment on them, and finally Proposition 1 shows that they imply (4).

Assumption 1. ∃ τ > 0 and k0 = k0(τ ) ∈ N such that 1
k

∑k
i=1 θi ≥ τ , ∀k ≥ k0.

ssumption 2. E(∥Xi − µi∥
4) ≤ M , ∀i.

ssumption 3. n4max
n4min

1
k = o(1), where nmax = max

1≤i≤k
ni and nmin = min

1≤i≤k
ni.

ssumption 4. Either γ1 = · · · = γk = 0, or not all γis are equal to 0 and (1/k)Γk = o(1), where Γk =

1/k)
{∑k E(⟨X − µ , µ − µ̄ ⟩

4)/n2
}

/

(
1 ∑k

γ /n
)2

.
i=1 i i i . i k i=1 i i

4
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Assumption 1 is tantamount to say that there is a percentage of 100 · p% of covariance operators, for some 0 < p ≤ 1,
say θ1, . . . , θ[pk], such that θi ≥ c , for some c > 0, 1 ≤ i ≤ [nk]. This is clearly a nonrestrictive assumption. Assumption 2
is similar or even weaker than other comparable conditions used in the finite dimensional case: for univariate data, if
the design is not balanced, the derivations in Boos and Brownie [5] require the fourth moment to exist; for data with
dimension greater than 1 but finite, Assumption 1 in Gupta et al. [15] is stronger since it requires the finiteness of the
moment of order 4 + δ of the absolute value of each component of the random vector, for some δ > 0. Assumption 3
tells us how different the sample sizes can be in relation to k. In particular, for either balanced designs, n1 = · · · = nk,
r bounded sample sizes, it imposes no restriction. In the finite dimensional setting, for univariate normal populations,
ark and Park [25] assume that maxi ni < amini ni, for some positive constant a, which is more limiting than our

assumption. Finally, we will see that Assumption 4 is not a severe restriction. Under H0 it is automatically satisfied because
γ1 = · · · = γk = 0. Thus, it only happens to be a constraint under alternatives. Let Yi = ⟨Xi − µi, µi − µ̄.⟩/

√
ni 1 ≤ i ≤ k.

otice that Y1, . . . , Yk are k independent random variables. Let Wk be an equal mixture of the random variables Y1, . . . , Yk.
hen Γk is the kurtosis of Wk. This assumption allows the kurtosis of Wk to increase with k, but at a lower rate than k,
hich seems not to be a hard limitation.

roposition 1. Suppose that the assumptions in Lemma 1 and Assumptions 1–4 are fulfilled. Then (4) holds.

. Estimating the null variance

In order to get a critical region for testing H0 using the result in Corollary 1, we need a consistent estimator of σ0k.
ecall that σ 2

0k = k × var0(Tk,Lin) = 2/k
∑k

i=1 θi/ni(ni − 1). σ 2
0k is unknown because θ1, . . . , θk are unknown quantities.

rom expression (1), θi can be unbiasedly estimated by replacing c2i (t, s) with an unbiased estimator. Assume that ni ≥ 4,
≤ i ≤ k, then c2i (t, s) can be unbiasedly estimated by

ĉ2i (t, s) =
1

ni(ni − 1)(ni − 2)(ni − 3)

∑
1≤u̸=v ̸=w ̸=z≤ni

h(Xiu, Xiv; t, s)h(Xiw, Xiz; t, s),

here h(Xiu, Xiv; t, s) =
1
2 {Xiu(t) − Xiv(t)}{Xiu(s) − Xiv(s)}.

Note that

ĉ2i (t, s) =
1

ni(ni − 1)

∑
1≤u̸=v≤ni

h(Xiu, Xiv; t, s)S2i(u,v)(t, s), (6)

where S2i(u,v)(t, s) =
1

ni−3

∑
w ̸=u,v{Xiw(t) − X̄i(u,v)(t)}{Xiw(s) − X̄i(u,v)(s)}, and X̄i(u,v)(t) =

1
ni−2

∑
w ̸=u,v Xiw(t). Formula (6) is

seful for computational purposes.
Let σ̂ 2

0k = (2/k)
∑k

i=1 θ̂i/ni(ni − 1), where θ̂i =
∫∫

ĉ2i (t, s)dtds. Next proposition shows that, under some mild
assumptions, the quotient σ̂ 2

0k/σ
2
0k converges in probability to 1.

Proposition 2. Suppose that the assumptions in Lemma 1 and Assumptions 1–3 are fulfilled, and that ni ≥ 4, 1 ≤ i ≤ k.
Then σ̂ 2

0k/σ
2
0k

P
−→ 1.

As an immediate consequence of Corollary 1 and Proposition 2, we have the following result.

Theorem 2. Suppose that the assumptions in Corollary 1 and Proposition 2 are fulfilled. Then
√
kTk/σ̂0k

L
−→ Z, where Z has

a standard normal distribution.

Let α ∈ (0, 1). As a consequence of Theorem 2, the test rejecting H0 when
√
kTk/σ̂0k ≥ z1−α is asymptotically correct

in the sense that its type I error is asymptotically equal to the nominal value α.

emark 1. Let R(X11, . . . , X1n1 , . . . , Xk1, . . . , Xknk ) =
√
kTk/σ̂0k. Notice that R(aX11 + µ, . . . , aX1n1 + µ, . . . , aXk1 +

µ, . . . , aXknk + µ) = R(X11, . . . , X1n1 , . . . , Xk1, . . . , Xknk ), ∀a ∈ R, a ̸= 0, ∀µ ∈ L2, that is, the test statistic is invariant
nder location and scale transformations.

Before ending this section, we want to underline that σ̂0k is consistent for σ0k under quite weak assumptions. If stronger
onditions are assumed, then other estimators of σ0k may be considered. For instance, if we could reasonably assume
hat X1, . . . , Xk have a common variance function, c1(·, ·) = · · · = ck(·, ·) := c(·, ·), then σ 2

0k = k × var0(Tk,Lin) =

θ/k)
∑k

i=1 1/ni(ni − 1), where θ =
∫∫

c2(t, s)dtds. In this case we have to estimate θ . Under H0, if E[{Xi(t)−µi(t)}2{Xi(s)−
µi(s)}2] ≤ M , 1 ≤ i ≤ k, 0 ≤ t, s ≤ 1, for some positive constant M , and if

∫∫
c(t, t)dt < ∞, then θ can be consistently

estimated by means of θ̂ =
∫∫

ĉ(t, s)2dtds, where

ĉ(t, s) = (N − k)−1
∑
i,j

{
Xij(t) − X̄i.(t)

} {
Xij(s) − X̄i.(s)

}
.

A sketch of the proof of the consistency of θ̂ can be found in Section 10.
5
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5. Power

This section studies what sort of alternatives can be detected by the proposed test. Let σ 2
k = k × var(Tk,Lin). Notice

hat

0 ≤ σ 2
0k/σ

2
k ≤ 1. (7)

nder the assumptions in Theorem 1 and Proposition 2, we have that

P
(

√
k
Tk
σ̂0k

> z1−α

)
= P

(
√
k
Tk − Dk

σk
>

σ̂0k

σk
z1−α −

√
k
Dk

σk

)
≈ Φ

(
√
k
Dk

σk
−

σ0k

σk
z1−α

)
. (8)

In the light of (7) and (8), and taking into account that Dk ≥ 0, we consider the following three cases: (i)
√
kDk/σk → 0,

(ii)
√
kDk/σk → δ ∈ (0, ∞), and (iii)

√
kDk/σk → ∞.

In case (iii) it is clear that P(
√
kTk/σ̂0k > z1−α) → 1, and thus the test is consistent against that sort of alternatives. From

(8), it is apparent that to derive the power in cases (i) and (ii) we must first study the quotient σ0k/σk. Next proposition
shows that, in these cases, σ0k/σk → 1.

Proposition 3. Suppose that the assumptions in Lemma 1 and Assumptions 1 and 2 are fulfilled, that

n2
max = o(k), (9)

and
√
kDk/σk → δ ∈ [0, ∞). Then σ0k/σk → 1.

As an immediate consequence of Theorem 1 and Propositions 2 and 3, we have the following.

Corollary 2. Suppose that the assumptions in Theorem 1 and Propositions 2 and 3 are fulfilled. Then
√
kTk/σ̂0k

L
−→ Z + δ,

where Z has a standard normal distribution.

From Corollary 2, in cases (i) and (ii) we have that

P
(

√
k
Tk
σ̂0k

> z1−α

)
→ Φ (δ − z1−α) =

{
α if δ = 0,
> α if δ ∈ (0, ∞).

Summarizing, the proposed test asymptotically detects those alternatives such that
√
kDk/σk → δ ∈ (0, ∞]. It is consistent

gainst those alternatives satisfying
√
kDk/σk → ∞. The alternatives fulfilling

√
kDk/σk → δ ∈ (0, ∞) play the role of

contiguous alternatives in the classical setting of fixed k and large sample sizes. The test is not able to detect those cases
in which

√
kDk/σk → 0. This is not surprising since it entails that the between means variance Dk is much more smaller

han the standard deviation of Tk.
As an illustration, we consider the case where 1 ≤ m = mk ≤ k populations have an equal mean, say µ ̸= 0, and the

ther k − m populations have a mean equal to 0. Let pk = m/k. For simplicity, we will also assume that the populations
re homoscedastic, that is, ci(t, s) = c(t, s), 1 ≤ i ≤ k, ∀t, s ∈ [0, 1], and that the design is balanced, that is, ni = n,
≤ i ≤ k. Let γ =

∫∫
µ(t)µ(s)c(t, s)dtds, θ =

∫∫
c2(t, s)dtds, and assume that both quantities are positive. With this

otation, δk :=
√
kDk/σk =

√
kpk(1 − pk)∥µ∥

2/
√
2θ/n(n − 1) + 4γ pk(1 − pk)/n.

In this setting, the question that naturally arises is how small (or big) must m be so that the test can detect that H0 is
not true? In order to answer this question, we will assume that condition (9) in Proposition 3 holds. If m is a fixed number
that does not depend on k (or equivalently k − m is a fixed number that does not depend on k), then δk → 0. Therefore,
the test it is not able to detect alternatives with a finite number of different means. This is a special case of pk → 0. Next,
we see that the test can detect alternatives with pk → 0 but at a lower speed than 1/k. The following cases can arise:

(a) pk → p ∈ (0, 1): then δk → ∞, for any choice of n, and thus we are in case (iii);
(b) pk → 0 and n remains bounded: then the asymptotic behavior of δk coincides with that of

√
kpk, and thus,

(b.1) if
√
kpk → 0, which is equivalent to pk = o(k−1/2), then we are in case (i),

(b.2) if
√
kpk → δ ∈ (0, ∞), then we are in case (ii),

(b.3) if
√
kpk → ∞, then we are in case (iii);

(c) pk → 0, n → ∞, npk → ρ ∈ (0, +∞]: then δk → ∞ and thus we are in case (iii).
(d) pk → 0, n → ∞, npk → 0: then the asymptotic behavior of δk coincides with that of

√
knpk, which from (9) is√

knpk = o(kpk), and thus,

(d.1) if
√
knpk → 0, then we are in case (i),

(d.2) if
√
knpk → δ ∈ (0, ∞), then we are in case (ii),

(d.3) if
√
knpk → ∞, then we are in case (iii).
6
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The answer to the question how small must m be so that the test can detect that H0 is not true is that we must take
= O(f (k)) and n = O(

√
k/f (k)), with f such that f (k) → ∞, f (k)/k → 0 and n → ∞. For instance, we could take

m = ka and n = k0.5−a, for some 0 < a < 0.5, or m = log(k) and n =
√
k/log(k), among many possible choices.

emark 2. With the aim of improving the asymptotic power of the test in case (d.2), an anonymous reviewer suggested
s to consider a max-type statistic, instead of Tk. Reasoning as in Section 2, H0 is equivalent to maxi̸=j ∥µi−µj∥

2
= 0. Now,

since ∥µi−µj∥
2 can be unbiasedly estimated by means of Tij = h1(Xi)+h1(Xj)−2h2(Xi,Xj), one could take Tmax = maxi̸=j Tij

s the test statistic. Let Tall = (T12, T13, . . . , Tk−1k)⊤ ∈ RD, where the superindex ⊤ denotes transpose and D = k(k−1)/2. If
ni/n1 → τi ∈ (0, ∞) ∀i, when mini ni → ∞, then for each fixed k,

√
n1Tall converges in law to a D-variate normal random

vector, Z = (Z1, . . . , ZD)⊤, with mean µall = (∥µ1 −µ2∥
2, . . . , ∥µk−1 −µk∥

2)⊤ and a certain covariance matrix. Therefore,
Tmax converges in law to maxi Zi. To derive the asymptotic distribution of Tmax we have assumed that mini ni → ∞ (not
required to get the asymptotic distribution of Tk). In addition, the law of maxi Zi is not free of nuisance parameters, even
under the null hypothesis, and thus cannot be used to approximate the null distribution of Tmax. A sound study of Tmax
deserves to be considered in a separate paper.

Remark 3. All our results have been stated under the tacit assumption that realizations of X11, . . . , Xknk , i.e., complete
trajectories of functions are observable. In practice, these functions are observed at a finite grid of points and the curves
X11, . . . , Xknk are recovered by using nonparametric techniques, such as local linear regression. The statistic is then
calculated from X̂11, . . . , X̂knk , which stand for the resulting curve estimators. Under suitable assumptions, all previous
results remain valid when the test statistic is calculated from X̂11, . . . , X̂knk . See, e.g., Jiang et al. [21], in particular the
comments made after the proof of their Theorem 2.

6. Simulation results for a finite number of populations

Recall that the proposed test, which rejects H0 when
√
kTk/σ̂0k ≥ z1−α , has asymptotically type I error equal to α. To

study the level of the proposed test for a finite value of k, we have carried out a simulation experiment as follows. We have
generated a sample from each of k populations (k = 30, 40, 50, 100, 200, 300, 400, 500), all of them with the same mean
that, without loss of generality since the test statistic is location invariant, we took equal to 0. The size of each sample
has been randomly generated from a discrete uniform random law UD{a, a+1, . . . , b}, with (a, b) = (5, 10), (11, 20). The
data {Xij(t), t ∈ [0, 1], 1 ≤ j ≤ ni, 1 ≤ i ≤ k} have been generated in discretized versions Xij(tr ), for r ∈ {1, . . . , 50},
where the values tr were chosen equispaced in the interval [0, 1]. Four different types of random functions have been
considered: the data were generated from a Wiener process with dispersion parameter σ = 1 for all populations (recall
from Remark 1 that the test statistic is invariant under scale transformations, so the same results would be obtained for
other choices of σ ), and three heteroscedastic versions, where the data from population i were generated from a Wiener
process with standard deviation σi, which in turn was randomly generated from a uniform distribution on (1, s), 1 ≤ i ≤ k,
s = 1.5, 2, 3. Each case was run 10,000 times. Table 1 shows the fractions of p-values less than or equal to 0.05 and 0.10,
which are the estimated type I error probabilities for nominal significance level α=0.05 and 0.10, respectively. Looking at
this table we observe that, in general, the actual levels are not far from the nominal values even for small values of k,
specially in the case of homoscedastic populations; as the value of σ is allowed to vary in a wider interval, a larger value of
k is required for the empirical levels to closely match the nominal significance values. We also see that the approximation
is better for larger sample sizes.

To study the power, we have considered the same type of random functions as those used for the level, but now the
mean function for population i was taken µi(t) =

i
k I(t > t0), 1 ≤ i ≤ k, for several values of t0. Although the test statistic

s invariant under scale and location changes, the power is greatly influenced by the choice of the scale. Recall that the
ower is (asymptotically) an increasing function of

√
kDk/σk, and thus the power increases with Dk (which measures how

different the means are), with k, with the sample sizes (recall that σk decreases as the sample sizes increase), and decreases
when the scale increases. Because of this reason, in order to study the power we have considered several values of the
scale parameter for the homoscedastic case. Table 2 shows the fractions of p-values less than or equal to 0.05 and 0.10,
which are the estimated powers for nominal significance level α=0.05 and 0.10, respectively. They have been obtained
by generating 2,000 samples in each case (for the power we observed, in some preliminary simulations, that the results
using 2,000 samples and those obtained with 10,000 samples were very close, so in order to save computation time, we
took 2,000 samples). Looking at this table we observe that the above considerations, which are valid asymptotically, also
hold for finite sample sizes.

We illustrate the applicability of our methodology through two real data examples. First, we have applied the new test
to compare the mean of the occupancy rate across the 52 Spanish provinces. The data were taken from the website of
the Spanish National Institute of Statistics, http://www.ine.es. For each province, we took as sample the monthly observed
occupancy rate from 2011 to 2019. Therefore, we have k = 52 populations, each sample curve is observed in 12 points
(months) and the sample sizes are n1 = n2 = · · · = n52 = 9. We can consider the data as i.i.d. since the accompanying note
states ‘‘due to different updates in the Establishments Directory, data from different years are not directly comparable’’.
Fig. 1 displays the sample curves of the occupancy rate for each province and the group sample means. Each color
7
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Table 1
Observed proportion of rejections in 10,000 simulated data sets for each scenario, for functional data, under the null hypothesis. The size of each
sample has been randomly generated from a discrete uniform random law UD{a, a + 1, . . . , b}, with (a, b) = (5, 10), (11, 20). The data were
generated from a Wiener process with mean 0 and with dispersion parameter σ = 1 for all populations and three heteroscedastic versions. The
nominal significance levels are α = 0.05 and 0.10.
Number of
populations
k

Sample sizes
limits
ni

Dispersion parameters of the Wiener processes

σi = 1 σi ∼ U(1, 1.5) σi ∼ U(1, 2) σi ∼ U(1, 3)

5% 10% 5% 10% 5% 10% 5% 10%

30 5–10 .0717 .1176 .0714 .1143 .0753 .1191 .0787 .1228
11–20 .0651 .1104 .0629 .1053 .0656 .1105 .0668 .1069

40 5–10 .0666 .1102 .0716 .1195 .0696 .1134 .0740 .1198
11–20 .0617 .1063 .0631 .1097 .0699 .1129 .0662 .1078

50 5–10 .0704 .1142 .0682 .1152 .0685 .1128 .0722 .1181
11–20 .0612 .1093 .0677 .1115 .0582 .1036 .0694 .1135

100 5–10 .0634 .1102 .0662 .1148 .0661 .1153 .0654 .1162
11–20 .0597 .1074 .0605 .1086 .0610 .1062 .0588 .1062

200 5–10 .0575 .1115 .0590 .1082 .0592 .1084 .0595 .1110
11–20 .0596 .1088 .0560 .1061 .0577 .1025 .0633 .1092

300 5–10 .0588 .1081 .0553 .1024 .0641 .1138 .0595 .1096
11–20 .0549 .1067 .0527 .1011 .0587 .1071 .0590 .1058

400 5–10 .0544 .1001 .0572 .1075 .0565 .1013 .0622 .1100
11–20 .0546 .1045 .0569 .1059 .0590 .1023 .0546 .1046

500 5–10 .0574 .1080 .0584 .1081 .0610 .1089 .0565 .1046
11–20 .0545 .1029 .0516 .1004 .0573 .1085 .0590 .1076

Table 2
Observed proportion of rejections in 2,000 simulated data sets for each scenario, for functional data, under alternatives. The size of each sample has
been randomly generated from a discrete uniform random law UD{a, a + 1, . . . , b}, with (a, b) = (5, 10), (11, 20). The data were generated from a
Wiener process where the mean function for population i is µi(t) =

i
k I(t > t0), 1 ≤ i ≤ k, for several values of t0 and different dispersion values σ .

he nominal significance levels are α = 0.05 and 0.10.
Number
of
populations
k

t0 Sample
sizes
limits
ni

Dispersion parameters of the Wiener processes

σi = s σi ∼ U(1, s)

s = 1 s = 1.5 s = 2 s = 1.5 s = 2 s = 3

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

100 0.5 5–10 .9860 .9955 .6365 .7435 .3335 .4480 .8255 .9025 .5725 .6990 .2555 .3515
11–20 1.000 1.000 .9695 .9870 .7105 .8050 .9985 .9995 .9425 .9740 .5845 .7070

0.7 5–10 .8420 .9025 .3620 .4930 .1760 .2700 .4990 .6160 .3230 .4470 .1700 .2450
11–20 .9985 .9995 .7725 .8620 .4010 .5400 .9350 .9720 .7125 .8165 .3515 .4595

0.9 5–10 .2975 .4295 .1295 .2260 .0950 .1620 .1745 .2720 .1355 .2030 .0955 .1575
11–20 .6750 .7835 .2480 .3685 .1495 .2360 .3845 .5065 .2260 .3355 .1190 .1985

200 0.5 5–10 .9995 1.000 .8665 .9255 .5005 .6300 .9735 .9870 .7750 .8635 .4005 .5270
11–20 1.000 1.000 1.000 1.000 .9020 .9475 1.000 1.000 .9995 1.000 .7950 .8730

0.7 5–10 .9805 .9950 .5300 .6610 .2790 .3950 .7650 .8605 .4955 .6175 .2105 .3110
11–20 1.000 1.000 .9545 .9830 .6210 .7505 .9990 .9995 .9445 .9755 .4950 .6270

0.9 5–10 .4240 .5645 .1595 .2560 .1185 .2020 .2525 .3575 .1640 .2490 .0925 .1720
11–20 .9060 .9540 .3695 .5010 .1890 .2940 .5985 .7305 .3365 .4795 .1665 .2525

300 0.5 5–10 1.000 1.000 .9420 .9690 .6425 .7435 .9960 1.000 .9065 .9560 .4830 .6305
11–20 1.000 1.000 1.000 1.000 .9740 .9905 1.000 1.000 1.000 1.000 .9240 .9640

0.7 5–10 .9990 .9995 .6740 .7925 .3550 .4740 .8920 .9495 .6200 .7410 .2625 .3885
11–20 1.000 1.000 .9935 .9960 .7645 .8450 1.000 1.000 .9810 .9920 .6120 .7440

0.9 5–10 .5800 .7060 .2245 .3355 .1225 .2000 .3110 .4535 .1995 .3115 .1110 .1840
11–20 .9885 .9960 .4975 .6335 .2575 .3695 .7265 .8245 .4415 .5870 .1960 .2960

corresponds to a province. We have applied the proposed test to check the equality of the 52 mean functions and got a
p-value < 0.001 which leads us to reject the null hypothesis.

The second data set consists of samples of Auslan (Australian Sign Language) signs. Auslan is the language used by the
ustralian Deaf and non-vocal communities. This data set is available in the R package mfds (Górecki and Smaga [13]).
n particular, 27 examples of each of 95 Auslan signs were captured from a native signer using high-quality position
rackers and instrumented gloves and were collected over a period of nine weeks. The average length of each sign
as approximately 57 frames. Each hand generated a total of 11 features: 3 for orientation (roll, pitch, yaw), 3 for
osition (x, y, z) and 5 for finger bends. Therefore, we have k = 95 populations, 22 variables, and the sample sizes
re n1 = n2 = · · · = n95 = 27. For a more detailed description of the variables we refer to Kadous and Sammut [23]. In
ig. 2 the sample curves of the 2565 signs and the group sample means for the variable that measures the x-position of
he left hand are represented. We have applied the test to check the equality of the 95 mean functions for each of the 22
ariables. In all the cases the null hypothesis is rejected.
8
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Fig. 1. All curves (left) and sample mean of each group (right) of the occupancy rate per month in Spain, from January 2011 to December
2019. There are k = 52 populations (the 52 Spanish province), each sample curve is observed in 12 points (months) and the sample sizes are
1 = n2 = · · · = n52 = 9.

Fig. 2. All curves (left) and sample mean of each group (right) of the x-position of the left hand in the Auslan data set. There are k = 95 populations
the different Auslan signs), 22 variables, and the sample sizes are n1 = n2 = · · · = n95 = 27.

. Comparison with existing tests

In the Introduction we cited some tests for the comparison of the means of k independent populations, that were
esigned for k fixed and increasing sample sizes. One may wonder if such tests are still valid in the setting considered
n this paper. This section discusses such issue for the tests in Cuesta-Albertos and Febrero-Bande [8], Horváth and
ice [20], Cuevas et al. [9], Zhang et al. [31,32] and the approaches reviewed in Zhang [30]. The test in Cuesta-Albertos and
ebrero-Bande [8] consists of randomly generating an element of L2 (according to some adequate distribution), and then
rojecting the data on this element. The projected data has dimension 1, and so one can apply any technique designed
or the univariate case. Notice that a random projection may lead to the rejection of the null hypothesis, while another
andom projection could induce the opposite conclusion. To avoid this inconvenience, these authors have proposed to take
everal random projections, calculate the p-value for each projection, and then apply some correction, as for example the
rocedure in Benjamini and Yekutieli [3], which controls the false discovery rate. In order to numerically investigate
he validity of this test for large k, we partially repeated the experiment in Table 1. To apply the test in [8] we used the
unction fanova.RPm from the R package fda.usc. For each case, we took 5, 10 and 30 random projections and adjusted
he global p-value by using the procedure in [3]. Results based on 1000 simulated functions for each scenario are reported
n Table 3. Looking at this table we see that the test becomes more liberal as k increases, specially for smaller sample
izes. In the light of the outputs of this experiment, it can be concluded that the test in [8] is not valid in the setting of a
arge k and small ni.

The test in Horváth and Rice [20] is also based on projections. Specifically, it considers the projections of the data
n the eigenfunctions associated with the d largest eigenvalues of an estimator of a certain covariance operator. These
rojections are also known as the scores. This way each function in the data set is transformed into a point of Rd. Then,
hese authors build a test statistic that compares the sample mean of the scores of each sample with an estimator of the
9
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Table 3
Observed proportion of rejections in 1000 simulated data sets for each scenario, for functional data, under the null hypothesis, obtained by applying
the test in Cuesta-Albertos and Febrero-Bande [8] with different numbers of random projections (RP). The nominal significance levels are α = 0.05
nd 0.10.
Number
of
populations
k

Sample sizes
limits \ Number
of projections
ni \ RP

Dispersion parameters of the Wiener processes

σi = 1 σi ∼ U(1, 3)

5% 10% 5% 10%

5 15 30 5 15 30 5 15 30 5 15 30

30 5–10 .098 .098 .075 .180 .171 .153 .096 .103 .104 .171 .173 .172
11–20 .076 .072 .060 .133 .121 .116 .080 .076 .072 .134 .118 .119

40 5–10 .107 .093 .098 .193 .176 .161 .102 .105 .103 .185 .189 .182
11–20 .087 .081 .084 .153 .137 .130 .071 .073 .070 .130 .117 .129

50 5–10 .140 .134 .121 .236 .226 .216 .129 .112 .114 .229 .203 .199
11–20 .085 .072 .073 .142 .132 .111 .084 .087 .076 .145 .141 .149

100 5–10 .202 .182 .205 .330 .324 .309 .178 .165 .171 .305 .270 .273
11–20 .108 .095 .099 .186 .182 .162 .098 .095 .085 .175 .167 .160

200 5–10 .389 .384 .388 .558 .578 .554 .306 .325 .322 .473 .479 .488
11–20 .167 .167 .158 .285 .270 .263 .159 .156 .147 .248 .250 .246

Table 4
Observed proportion of rejections in 1000 simulated data sets for each scenario, for functional data, under the null hypothesis, obtained by applying
the test in Horváth and Rice [20]. The nominal significance levels are α = 0.05 and 0.10.
Sample sizes
limits
ni

Number of populations

k = 30 k = 40 k = 50

Dispersion parameters of the Weiner processes

σi = 1 σi ∼ U(1, 3) σi = 1 σi ∼ U(1, 3) σi = 1 σi ∼ U(1, 3)

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

5–10 .844 .887 .867 .896 .937 .961 .932 .959 .972 .982 .966 .978
11–20 .429 .534 .423 .536 .514 .618 .488 .616 .563 .675 .574 .683

common mean under the null hypothesis. When the null hypothesis is true, the test statistic is asymptotically (in the
sense that k is fixed and ni → ∞) free distributed. In order to numerically investigate the validity of this test for large
, we partially repeated the experiment in Table 1. Results based on 1000 simulated curves for each case are reported in
able 4. Looking at this table we see that the test is very liberal for all tried values of k and that it becomes more liberal
s k increases, specially for smaller sample sizes. Therefore, it can be concluded that the test in [20] is not valid in the
etting of a large k and small ni.
Next, we deal with the test in Cuevas et al. [9] which, in a sense that will be explained next, is close to our proposal.

hese authors proposed to use two test statistics which, sharing the usual terminology of ANOVA, measure the between
roups variability. The statistic considered in this paper, Tk, also measures such variability. If the design were balanced
n1 = · · · = nk), then the three statistics (the two ones in [9] and Tk) are equivalent. Of course, we could have considered
ny other statistic measuring the between groups variability. We took Tk for three main reasons: it is unbiased for Dk and

the null hypothesis can be rewritten in terms of Dk; the asymptotics for Tk (as k → ∞) possess convenient expressions
than can be approximated; and finally, Tk is, in some sense, similar to other statistics than have been previously considered
for testing problems when the number of populations increases (see, e.g. Cousido-Rocha et al. [6] and Zhan and Hart [29]
for the comparison of univariate continuous populations; Jiménez-Gamero et al. [22] for the comparison of d-variate
populations; Park and Park [25] for the equality of means of univariate normal populations).

As said before, Cuevas et al. [9] proposed to use two test statistics for testing H0. For technical reasons, they only
erived the limit distribution of one of then, specifically that of Vn,k =

∑
i<j ni∥X̄i. − X̄j.∥

2, which was shown to converge
n law (assuming that k is fixed and ni → ∞) under the null hypothesis to Vk =

∑
i<j ∥Zi − pijZj∥2, where Z1, . . . , Zk

are independent zero mean Gaussian elements taking values in L2, and Zi has the same covariance function as Xi, ci(t, s),
1 ≤ i ≤ k. Such a result was derived by assuming ni/n → pi > 0, 1 ≤ i ≤ k, n being the total sample size, n = n1+· · ·+nk.
With this notation, pij = pi/pj, 1 ≤ i, j ≤ k. Rejection of H0 is for large values of Vn,k. In order to decide what is large,
one must estimate the null distribution of Vn,k. With this aim, these authors propose to use a bootstrap in the limit
procedure, that consists in approximating the distribution of Vn,k by that of Vk with pij and ci replaced by ni/nj and
ĉi(t, s) = 1/(ni − 1)

∑ni
j=1{Xij(t) − X̄i.(t)}{Xij(s) − X̄i.(s)}, 1 ≤ i, j ≤ k, respectively, which in turn is approximated by

simulation. At this point one may wonder if the above convergence still holds when k → ∞, that is, if Vn,k and Vk
converge in law to the same limit. Theorems 3 and 4 provide a decomposition for Vn,k and Vk, respectively, which is
similar to that in (2) for Tk. From those decompositions, it will be seen that, in general, Vn,k and Vk have different limits
(in law), which implies that the test in [9] is not suitable for testing H0 in the setting of a large k and small ni.
10
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Theorem 3. Suppose that X1, . . . , Xk satisfy Assumption 2, that Xi = {Xi1, . . . , Xini} are ni ≥ 2 independent random functions
from Xi, 1 ≤ i ≤ k, that X1, . . . ,Xk are independent, and that H0 is true with µ1 = · · · = µk = 0. Let θi be as defined in (1),
τi =

∫
ci(t, t)dt, ϱi =

∫∫
E
{
X2
i (t)X

2
i (s)

}
dtds, 1 ≤ i ≤ k. Then

Vn,k = E(Vn,k) + Vn,k,lin + Vn,k,rem,

E(Vn,k) =

k−1∑
i=1

(k − i)τi +
k∑

i=2

(n1 + · · · + ni−1)τi/ni,

Vn,k,lin =

k∑
i=1

φ(Xi), φ(Xi) = {(n1 + · · · + ni−1 + ni(k − i))}
(

∥X̄i.∥
2
−

τi

ni

)
, 1 ≤ i ≤ k,

E{φ(Xi)} = 0, 1 ≤ i ≤ k,

var{φ(Xi)} = {(n1 + · · · + ni−1 + ni(k − i))}2
{
2
ni − 1
n3
i

θi +
1
n3
i
(ϱi − τi)

}
, 1 ≤ i ≤ k.

f, in addition,
∑k

i=1 θi > 0 and nmax = o(
√
k), then var(Vn,k,rem)/var(Vn,k,lin) → 0.

Reasoning as for Tk, from Theorem 3 it follows that, under the conditions in it and if we also assume that
φ(X1), . . . , φ(Xk) meet Lindeberg condition, then

Vn,k − E(Vn,k)
√

var{φ(X1)} + · · · + var{φ(Xk)}
L

−→ Z,

where Z has a standard normal distribution. This result is parallel to that obtained in Theorem 1 for Tk. Notice that
Theorem 3 requires stronger assumptions than Theorem 1. In addition, the practical use of Theorem 3 would require the
estimation of var{φ(X1)} + · · · + var{φ(Xk)}, which is more involved than the estimation of σ 2

0k.
Since we are deriving asymptotics when k → ∞, instead of deriving the limit of Vk, we next derive the limit in law

of Ṽk, defined as Vk with pij replaced by ni/nj.

Theorem 4. Suppose that Z1, . . . , Zk are independent zero mean Gaussian elements taking values in L2 and that Zi has the
same covariance function as Xi, 1 ≤ i ≤ k. With the notation in the statement of Theorem 3 we have that

Ṽk = E(Vn,k) + Ṽk,lin + Ṽk,rem,

Ṽk,lin =

k∑
i=1

ϕ(Zi), ϕ(Zi) = {(n1 + · · · + ni−1 + ni(k − i))}
(
∥Zi∥2

− τi
)
/ni, 1 ≤ i ≤ k,

E{ϕ(Zi)} = 0, 1 ≤ i ≤ k,
var{ϕ(Zi)} = 2{(n1 + · · · + ni−1 + ni(k − i))}2θi/n2

i , 1 ≤ i ≤ k.

f, in addition,
∑k

i=1 θi > 0 and nmax = o(
√
k), then var(Ṽk,rem)/var(Ṽk,lin) → 0.

Notice that, in general, the variance of ϕ(Zi) and that of φ(Xi) are different. If X1, . . . , Xk are Gaussian, then those
variances coincide and, under some general conditions, both Vn,k and Ṽk have the same asymptotic distribution (when
k → ∞). In order to illustrate this fact numerically, we have partially repeated the experiment in Table 1 as follows: we
first considered data generated from a Wiener process, as described in Section 6. This case is labeled in Table 5 as W .
Since these data are Gaussian, from the above discussion, it is expected to obtain actual levels close to the nominal values.
To see that this is not the case when the data are not Gaussian, we have also generated non-Gaussian data. Specifically,
we have generated samples from

Y (t) = A0 +
√
2

5∑
j=1

Cj cos(2π jt) +
√
2

5∑
j=1

Sj sin(2π jt),

where A0, C1, . . . , C5 and S1, . . . , S5 are independent random variables, having a Laplace distribution (two-sided exponen-
tial distribution). This case is labeled in Table 5 as L. The results in Table 5 are based on 1000 samples from each scenario,
and each p-value was calculated by generating 1000 samples from (an estimation of) the asymptotic null distribution,
that is, from Vk. Since the bootstrap in the limit approximation is very time consuming, we only tried k = 30, 40.
able 5 summarizes the output of this experiment. Looking at this table we see that, as expected, for the Gaussian data
he observed proportion of rejections is in all cases close to the nominal value; but for non-Gaussian data the test is
xtremely conservative, notably for smaller sample sizes. Thus, to safely apply this test to functional data, one should first
pply some Gaussianity test (see, for example, the tests in Górecki et al. [12], Cuesta-Albertos et al. [7], and Henze and
iménez-Gamero [18]). Nevertheless, the main disadvantage of the test in [9] resides in the computational time required
o calculate the p-value.
11
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Table 5
Observed proportion of rejections in 1000 simulated data sets for each scenario, for functional data, under the null hypothesis, obtained by applying
the test in Cuevas et al. [9]. W denotes the Wiener process and L the non-Gaussian data. The nominal significance levels are α = 0.05 and 0.10.
Number of
populations
k

Sample sizes
limits
ni

W L

Dispersion parameters of the Wiener processes

σi = 1 σi ∼ U(1, 3) σi = 1 σi ∼ U(1, 3)

5% 10% 5% 10% 5% 10% 5% 10%

30 5–10 .057 .105 .043 .095 .005 .023 .002 .015
11–20 .047 .101 .060 .109 .005 .032 .009 .030

40 5–10 .048 .098 .049 .098 .005 .021 .002 .013
11–20 .051 .098 .048 .089 .009 .031 .006 .028

Table 6
Observed proportion of rejections in 1000 simulated data sets for each scenario, for functional data, under the null hypothesis, obtained by applying
the test in Zhang et al. [31,32] and the approaches reviewed in Zhang [30] that are described at the end of Section 7. W denotes the Wiener process
nd L the non-Gaussian data. The nominal significance levels are α = 0.05 and 0.10.

Number of
populations k

Sample sizes
limits ni

Tests

LN LB Lb FN FB Fb GPF Fm

W 30 5–10 5% .066 .070 .042 .040 .042 .005 .066 .048
σi = 1 10% .118 .127 .103 .101 .101 .016 .113 .094

11–20 5% .062 .065 .047 .054 .054 .009 .058 .048
10% .100 .101 .095 .089 .089 .040 .103 .093

40 5–10 5% .070 .072 .055 .055 .055 .003 .076 .048
10% .121 .126 .108 .103 .104 .008 .114 .105

11–20 5% .064 .065 .059 .057 .057 .021 .061 .053
10% .107 .108 .098 .102 .102 .044 .112 .108

L 30 5–10 5% .064 .071 .011 .052 .052 .000 .062 .056
σi = 1 10% .133 .139 .036 .113 .122 .000 .132 .106

11–20 5% .042 .046 .015 .037 .040 .001 .047 .042
10% .087 .090 .035 .079 .085 .005 .091 .086

40 5–10 5% .059 .061 .008 .049 .051 .000 .059 .066
10% .106 .118 .027 .093 .096 .000 .108 .112

11–20 5% .045 .047 .008 .040 .043 .001 .047 .047
10% .103 .103 .040 .094 .096 .002 .100 .092

We repeated the simulation experiment in Table 5 for the tests in Zhang et al. [31,32] and the approaches reviewed
in Zhang [30], that are implemented in the R package fdANOVA (see Górecki and Smaga [14]). The tests in [31,32] are
esigned to compare populations with the same covariance function. Moreover, to derive their properties, it is assumed
hat the populations only differ in their mean curves (see Condition A (2) in [32] and Condition (A2) in [31]). The null
istribution of the test statistic in [31], denoted as Fm in Table 6, is approximated by means of a bootstrap estimator
nd the null distribution of the test statistic in [32], which is denoted as GPF in Table 6, is approximated by using the
elch–Satterthwaite χ2-approximation. The approaches reviewed in Zhang [30] use as test statistics S =

∑
i ni∥X̄i− X̃..∥

2,
here X̃..(·) = (1/N)

∑
i,j Xij(·) and N =

∑k
i=1 ni, and F = S/(k−1)

∑
i,j ∥Xij−X̄i∥

2. Although they can be applied in the case
f populations with different covariance functions, in fdANOVA they are only implemented in the homoscedastic case. To
pproximate the null distribution, fdANOVA offers three possibilities: the Welch–Satterthwaite approximation with naive
nd bias reduced estimators (valid when the curves are Gaussian) of the target parameters and via bootstraping. The tests
ased on S (F ) that employ these approximations are denoted in Table 6 as SN , SB and Sb (FN , FB and Fb), respectively.
able 6 summarizes the output of this experiment for the homoscedastic case (σi = 1). For the heteroscedastic case
σi ∼ U(1, 3)), all tests are rather liberal. Looking at Table 6 we see that FB, FN , and Fm have reasonable sizes; Lb only
orks for the Gaussian data; LN , LB and GPF work better for large sample sizes and Fb is extremely conservative.
To end this Section, we investigate the adequacy of the proposed test in the classical setting: k is fixed and mini ni →

. Specifically, we derive its asymptotic null distribution in such a case. Under H0, we always have that

k × var(Tk) =
(k − 1)2

k3

k∑
i=1

2
ni(ni − 1)

θi +
2
k3
∑
i̸=j

θij,

with θij =
∫∫

ci(t, s)cj(t, s)dtds. Thus, for moderate and large k, k × var(Tk) ≈ σ 2
0k, which is the variance we used to

normalize Tk. If n1/ni → τi ∈ (0, ∞) ∀i, as mini ni → ∞, then, under H0 and assuming that ηi =
∫
ci(t, t)dt < ∞ ∀i,

routine calculations show that

n1Tk
L

−→
k − 1
k2

k∑
(⟨Gi,Gi⟩ − ηi) −

1
k2
∑

⟨Gi,Gj⟩,
i=1 i̸=j

12
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Table 7
Observed proportion of rejections in 10,000 simulated data sets for each scenario, for functional data, under the null hypothesis in the classical
framework. That is, k is fixed and mini ni → ∞. W denotes the Wiener process and L the non-Gaussian data. The nominal significance levels are
α = 0.05 and 0.10.
Number of
populations
k

Sample sizes
limits
ni

W L

Dispersion parameters of the Wiener processes

σi = 1 σi ∼ U(1, 3) σi = 1 σi ∼ U(1, 3)

5% 10% 5% 10% 5% 10% 5% 10%

3 5–10 .0769 .1064 .0758 .1071 .0417 .0779 .0458 .0788
11–20 .0577 .0880 .0623 .0901 .0378 .0732 .0381 .0734
21–30 .0604 .0894 .0563 .0817 .0388 .0722 .0359 .0688
31–40 .0556 .0802 .0515 .0738 .0383 .0722 .0343 .0664
41–50 .0543 .0804 .0580 .0833 .0406 .0756 .0334 .0633
51–60 .0568 .0831 .0544 .0797 .0374 .0737 .0333 .0627

5 5–10 .0535 .0969 .0800 .1142 .0535 .0960 .0573 .0955
11–20 .0679 .1031 .0705 .0996 .0453 .0851 .0516 .0912
21–30 .0680 .1000 .0674 .1007 .0477 .0855 .0521 .0908
31–40 .0661 .0920 .0627 .0941 .0499 .0921 .0445 .0842
41–50 .0673 .1023 .0607 .0912 .0450 .0853 .0452 .0823
51–60 .0620 .0895 .0634 .0924 .0456 .0858 .0444 .0816

where G1, . . . ,Gk are zero mean, independent Gaussian processes on L2, with covariance functions τ1c1(t, s), . . ., τkck(t, s).
Therefore, the asymptotic null distribution of Tk differs in each setting. Nevertheless, one may wonder if the test, which
has been specifically designed for large k, gives tolerable results in the classical framework. In order to study this point
numerically, we have repeated the simulation experiments in Table 5 for small k (k = 3, 5) and several sample sizes,
based on 10,000 simulated data sets. In each case, the test rejects H0 when

√
kTk/σ̂0k > z1−α . Table 7 displays the results

obtained. In view of these outcomes, we conclude that the actual levels are quite reasonable, specially for k = 5.

. Data with finite dimension

So far we have assumed that the available data consist of functional data. A close inspection of the developments
eveals that all stated results remain valid whenever the data have finite dimension by defining adequately all involved
orms and operators as follows. Assume that the data take values in Rd, where we consider the usual scalar product and
he Euclidean norm. In this setting, each ci = (ci,j,r )1≤j,r≤d is the covariance matrix of Xi, which is a d×d-matrix, ci ∈ Md×d,
1 ≤ i ≤ k, and the covariance operator is the usual product of the covariance matrix by a vector. If ci has eigenvalues
λi1, . . . , λid, then

θi =

d∑
j=1

λ2
ij = trace(cici) =

d∑
j,r=1

c2i,j,r

and γi = (µi − µ̄.)⊤ci(µi − µ̄.). We will not reformulate all previous results, which keep on being true mutatis mutandis.
For the special case of d = 1, and assuming that the data are normally distributed, Park and Park [25] have proposed

two tests, that will be denoted by T1 and T2, whose associated statistics, conveniently normalized, are also asymptotically
normal. The statistic of test T1 is closely related to Tk: the numerator is the same for both statistics, only differing in their
denominators, being in both cases the square root of an estimator of the variance of the numerator. In our proposal, the
variance estimator does not assume any parametric model, while the variance estimator used in [25], heavily relies on
the normality assumption. Now, naturally two questions arise:

(a) Since the tests in [25] are built by assuming normal populations, one may wonder if those tests still work for
non-normal data.

(b) If the data were normally distributed, it should be expected that test T1 had a better behavior than our proposal,
since the former incorporates this information (the normality of the data) in its construction. In this setting, one
may wonder if the loss due to use the test based on Tk is considerable or by contrast it is negligible.

To numerically investigate these two questions, we have carried out two simulation experiments. In order to investigate
question (a) we have generated data with equal means, that is under H0, for normal data and non-normal data. Specifically,
for each scenario we generated 10,000 samples of data coming from homoscedastic normal populations with equal mean,
heteroscedastic normal populations with equal mean and negative exponential populations with equal mean. In all cases
the sizes of the samples from each population were generated from a discrete uniform random law UD{8, . . . , 20}, because
the practical application of test T2 requires sample sizes greater than or equal to 8. Table 8 reports the fractions of p-values
less than or equal to 0.05 and 0.10, which are the estimated type I error probabilities for nominal significance level α=0.05
and 0.10, respectively. The results for the proposal in this paper are headed by T . Looking at this table we see that in
13
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Table 8
Observed proportion of rejections in 10,000 simulated data sets for each scenario, for univariate data, with sample sizes ni ∼ UD{8, . . . , 20}, under
he null hypothesis. The proposed test, denoted by T , is compared in terms of the estimated type I error to the two tests proposed by Park and
Park [25], denoted by T1 and T2 . The nominal significance levels are α = 0.05 and 0.10.
Number of
populations
k

N(0, σ 2) Exp(1)

σi = 1 ∀i σi ∼ U(1, 3)

T T1 T2 T T1 T2 T T1 T2

30 5% .0657 .0687 .0596 .0664 .0691 .0633 .0564 .0434 .3993
10% .1105 .1141 .1005 .1056 .1080 .1049 .0981 .0806 .4801

40 5% .0636 .0655 .0609 .0638 .0659 .0619 .0527 .0396 .4700
10% .1078 .1099 .0994 .1050 .1067 .1057 .0984 .0798 .5472

50 5% .0620 .0633 .0605 .0663 .0676 .0607 .0518 .0372 .5378
10% .1065 .1086 .1035 .1124 .1149 .1050 .0997 .0768 .6188

100 5% .0513 .0522 .0568 .0606 .0614 .0573 .0539 .0371 .7419
10% .1028 .1039 .1011 .1052 .1058 .1054 .1011 .0759 .8091

200 5% .0528 .0533 .0540 .0606 .0612 .0576 .0565 .0367 .9155
10% .1018 .1022 .1017 .1090 .1094 .1050 .1039 .0779 .9470

300 5% .0547 .0549 .0532 .0559 .0561 .0566 .0532 .0337 .9761
10% .1083 .1087 .1025 .1028 .1031 .1016 .1003 .0734 .9863

400 5% .0551 .0554 .0537 .0565 .0566 .0548 .0506 .0319 .9940
10% .1015 .1021 .1005 .1055 .1060 .1030 .1008 .0704 .9965

500 5% .0538 .0542 .0534 .0515 .0516 .0499 .0505 .0321 .9974
10% .1025 .1022 .0977 .1002 .1009 .0966 .1004 .0693 .9985

Table 9
Observed proportion of rejections in 10,000 simulated data sets for each scenario, for univariate data, with sample sizes ni ∼ UD{8, . . . , 20}, under
lternatives. The proposed test, denoted by T , is compared in terms of the estimated power to the two tests proposed by Park and Park [25],
enoted by T1 and T2 . The nominal significance levels are α = 0.05 and 0.10.
Number of
populations
k

Dispersion parameters

σi = 1 ∀i σi = 3 ∀i σi ∼ U(1, 3)

T T1 T2 T T1 T2 T T1 T2

30 5% .7757 .7809 .7311 .2036 .2102 .2940 .1900 .1965 .2830
10% .8368 .8401 .7982 .2876 .2947 .3839 .2714 .2777 .3707

40 5% .8560 .8589 .8247 .1354 .1397 .1277 .2145 .2199 .3217
10% .9018 .9038 .8781 .2112 .2153 .1971 .3070 .3134 .4183

50 5% .9065 .9084 .8749 .1366 .1402 .1298 .2437 .2489 .3642
10% .9382 .9399 .9148 .2181 .2211 .1983 .3402 .3439 .4662

100 5% .9907 .9908 .9852 .1788 .1809 .1688 .3393 .3414 .5388
10% .9959 .9959 .9928 .2718 .2739 .2586 .4527 .4544 .6412

200 5% 1.000 1.000 .9998 .2582 .2592 .2413 .4983 .4998 .7559
10% 1.000 1.000 1.000 .3648 .3661 .3465 .6276 .6286 .8393

300 5% 1.000 1.000 1.000 .3151 .3162 .2919 .6452 .6464 .8843
10% 1.000 1.000 1.000 .4370 .4383 .4153 .7549 .7557 .9332

400 5% 1.000 1.000 1.000 .3751 .3757 .3486 .7424 .7430 .9457
10% 1.000 1.000 1.000 .5080 .5086 .4797 .8346 .8350 .9709

500 5% 1.000 1.000 1.000 .4331 .4339 .4033 .8201 .8204 .9765
10% 1.000 1.000 1.000 .5673 .5679 .5346 .8930 .8933 .9880

the case of normal populations the three tests behave quite closely, but for exponential data test T1 is very conservative
the level decreases as k increases) and test T2 is very liberal. The observed level of the test proposed in this paper is very
close to the nominal values in all cases. It is concluded that T1 and T2 should not be used for non-normal data.

Now, we numerically explore question (b). From the previous experiment, we have learnt that, under the null
ypothesis and for normal data, the proposal in this paper and the tests in [25] perform very closely. We have also
earnt that it is not advisable to apply the tests in [25] for non-normal data (since the actual levels are far apart from
he nominal values). So, to compare the powers we must restrict to the case of normal populations with different means.
herefore, to numerically compare the powers we generated samples from homoscedastic (with σi = 1 and σi = 3, ∀i) and

heteroscedastic (σi ∼ U(1, 3)) normal populations, with the 80% of the populations with mean equal to 0 and the mean
of the other 20% randomly generated from a law U(0, 1). As in the previous experiment, 10,000 samples were generated
for each scenario. Table 9 displays the results obtained. Looking at this table, we see that T and T1 have very close power,
o it seems that there is no advantage in using a variance estimator relying on the normality assumption. In some cases
and T1 outperform T2, while in other cases the opposite is observed.
Before ending this section, we summarize the results of a real data set application. Specifically, we applied the new

est to compare the mean of the number of births per month, relative to the number of women, across the 52 Spanish
rovinces in 2019. So we have k = 52 populations. The data were taken from the website of the Spanish National Institute
f Statistics, http://www.ine.es. For each province, we took as sample the observed number of births each month in 2019,
14
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Fig. 3. 1000 times the sample mean of the number of births per month, relative to the number of woman, for each province in Spain in 2019.

over the number of women in the province at the beginning of that year, therefore n1 = n2 = · · · = n52 = 12. We
raphically checked that there is no seasonality (the month does not have an effect on the number of births), so we can
onsider the data as i.i.d. The value of the test statistic for this data set is Tk = 227.1637, which clearly led us to reject
he null hypothesis that the mean of the number of births per month, relative to the number of woman, is constant along
he 52 Spanish provinces. Fig. 3 displays 1000 times the sample mean of the number of births per month, relative to
he number of woman, for each province. Looking at this figure one can see that there are some provinces with a small
elative number of births, most of these quantities are between 1 and 1.5, and there are three provinces having a relative
igh number of births, specially province 52.

. Concluding remarks

This paper proposes and studies a test for the equality of the means of a large number of populations. No parametric
ssumption is made on the populations and the procedure can be applied to functional data and to finite dimensional data.
he test statistic converges under the null hypothesis to a standard normal distribution, so the critical points are available.
hen it was numerically compared with other tests specifically designed for normal univariate data, our proposal gave

ery close results.

0. Proofs

This section sketches the proofs of the results stated in the previous sections.

roof of Lemma 1. Because L1k, . . . , Lkk are independent random variables, it follows that var(TK ,Lin) =
1
k2
∑k

i=1 var(Lik).
o calculate var(Lik) we rewrite Lik as follows,

Lik =
1

ni(ni − 1)

∑
1≤u<v≤ni

⟨Xiu − µi, Xiv − µi⟩ + 2
1
ni

ni∑
r=1

⟨Xir − µi, µi − µ̄.⟩. (10)

Taking into account that var(Lik) = E(L2ik), E(⟨Xiu −µi, Xiv −µi⟩
2) = θi, ∀u ̸= v, E(⟨Xiu −µi, Xiv −µi⟩⟨Xil −µi, Xij −µi⟩) = 0,

∀1 ≤ u < v ≤ ni, 1 ≤ j < l ≤ ni so that (u, v) ̸= (j, l), E(⟨Xir −µi, µi − µ̄.⟩
2) = γi and E(⟨Xiu −µi, Xiv −µi⟩)(⟨Xir −µi, µi −

µ̄.⟩) = 0, 1 ≤ u ̸= v, r ≤ ni, the result follows. □

Proof of Lemma 2. Taking into account that Rk = −
Tk,Lin
k + R1 − R2, with R1 = (2/k2)

∑k
i=1⟨X̄i − µi, µi − µ̄.⟩, R2 =

2/k2)
∑

1≤i<l≤k⟨X̄i. − µi, X̄l. − µl⟩, it suffices to show that E(R2
i )/var(Tk,Lin) → 0, i = 1, 2. Since E(R2

1) = (4/k4)
∑k

i=1 γi/ni,
t readily follows that E(R2

1)/var(Tk,Lin) ≤ 1/k2 → 0. As for R2,

E(R2
2) =

2
k4

∑
1≤i̸=l≤k

1
ninl

∫∫
ci(t, s)cl(t, s)dtds ≤

2
k2

(
1
k

k∑
i=1

‘
√

θi

ni

)2

≤
2
k3

k∑
i=1

θi

n2
i
, (11)

hich implies that E(R2
2)/var(TK ,Lin) ≤ 1/k → 0, and the proof is complete. □

roof of Proposition 1. From Corollary 1.9.3 in Serfling [27], it suffices to show that

1
k4

k∑
i=1

E(L4ik) = o
(
var2(Tk,Lin)

)
. (12)

rom (10) and taking into account that |x + y|r ≤ cr (|x|r +|y|r ), x, y ∈ R, r > 0, with cr = 1 if 0 < r ≤ 1 and cr = 2r ,
otherwise, it follows that

E(L4ik) ≤
16

4 4 E
{(∑

1≤u̸=v≤n ⟨Xiu − µi, Xiv − µi⟩

)4}
+

16
4 E
{(∑ni

u=1⟨Xiu − µi, µi − µ̄.⟩
)4}

. (13)

ni (ni−1) i ni

15
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From Assumption 2,

E
{(∑

1≤u̸=v≤ni
⟨Xiu − µi, Xiv − µi⟩

)4}
≤ n4

i M. (14)

rom (14), Assumptions 1 and 3 and taking into account that k2 var(Tk,Lin) ≥
∑k

i=1
1

ni(ni−1)θi,

1
k4

∑k
i=1

1
n4i (ni−1)4

E
{(∑

1≤u̸=v≤ni
⟨Xiu − µi, Xiv − µi⟩

)4}
var2(Tk,Lin)

≤ M
n4
max

n4
min

1
k

= o(1). (15)

e have that

E

⎧⎨⎩
( ni∑

u=1

⟨Xiu − µi, µi − µ̄.⟩

)4
⎫⎬⎭ = niE

(
⟨Xi − µi, µi − µ̄.⟩

4)
+ 3ni(ni − 1)E2 (

⟨Xi − µi, µi − µ̄.⟩
2)

≤ 4n2
i E
(
⟨Xi − µi, µi − µ̄.⟩

4) . (16)

From (16) and Assumption 4,

1
k4

∑k
i=1

1
n4i
E
{(∑ni

u=1⟨Xiu − µi, µi − µ̄.⟩
)4}

var2(Tk,Lin)
≤ 4

1
k

1
k

∑k
i=1 E(⟨Xi − µi, µi − µ̄.⟩

4)/n2
i(

1
k

∑k
i=1 γi/ni

)2 = o(1). (17)

inally, (13), (15) and (17) imply (12), and hence the result is proven. □

roof of Proposition 2. Let ε > 0, by Markov inequality,

P
(
|σ̂ 2

0k − σ 2
0k| > σ 2

0kε
)

≤ E{(σ̂ 2
0k − σ 2

0k)
2
}/ε2σ 2

0k. (18)

ince E(θ̂2
i ) = θ2

i , 1 ≤ i ≤ k, we have that

E{(σ̂ 2
0k − σ 2

0k)
2
} = (1/k2)

k∑
i=1

E{(θ̂i − θi)2}/n2
i (ni − 1)2. (19)

rom Assumption 2, routine calculations show that

E{(θ̂i − θi)2} ≤ M, ∀i. (20)

rom (18)–(20) and Assumption 1, we get that

P
(

|σ̂ 2
0k − σ 2

0k|

σ 2
0k

> ε

)
≤

M
ε2

n4
max

n4
min

1
k
, (21)

rom Assumption 3, the right-hand side of (21) is o(1), which implies the result. □

roof of the consistency θ̂ in the homoscedastic case. We have that

|θ̂ − θ | =

∫∫
|ĉ(t, s) − c(t, s)||ĉ(t, s) − c(t, s)|dtds.

herefore

E
(
|θ̂ − θ |

)
≤

∫∫
E1/2

[{ĉ(t, s) − c(t, s)}2]E1/2
[{ĉ(t, s) + c(t, s)}2]dtds.

nder the stated assumptions, routine calculations show that E[{ĉ(t, s) − c(t, s)}2] ≤ C/k and E[{ĉ(t, s) + c(t, s)}2] ≤ C ,
or all 0 ≤ t, s ≤ 1, for a positive constant C , which implies that E

(
|θ̂ − θ |

)
→ 0, and hence the consistency of θ̂ as an

stimator of θ . □

roof of Proposition 3. We will show it by reduction to absurdity.
Suppose that 1

σ2
0k

1
k

∑k
i=1

γi
ni

↛ 0 which is equivalent to

∃ε1 > 0 such that ε1 <
1

σ 2

1
k

k∑ γi

n
for an infinite number of values of k. (22)
0k i=1 i
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F

F

L

F

T

i

A

p
E
M

A

R

By applying the Cauchy–Schwarz inequality and Assumption 2, one gets

1
σ 2
0k

1
k

k∑
i=1

γi

ni
≤ M

Dk

σ 2
0k

. (23)

rom (22) and (23),

0 < ε2 =
ε1

M
≤

Dk

σ 2
0k

, for an infinite number of values of k. (24)

rom Assumption 1 it follows that

σ 2
0k ≥ τ/n2

max (25)

et ε3 > 0 be arbitrary but fixed. We are assuming that
√
kDk

σk
→ δ ∈ [0, ∞), which implies that

∃k0 = k0(ε3) such that
√
k
Dk

σk
≤ δ + ε3, ∀k ≥ k0. (26)

rom (23), (25) and (26),

M
(

k
n2
max

)1/2 Dk/σ
2
0k√

1 + Dk/σ
2
0k

≤ δ + ε3, ∀k ≥ k0. (27)

aking into account that the function f (x) = x/
√
1 + x is increasing ∀x ≥ 0, from (24) it follows that

Dk/σ
2
0k√

1 + Dk/σ
2
0k

≥
ε2

√
1 + ε2

, for an infinite number of values of k. (28)

From (27) and (28) it follows that M(k/n2
max)

1/2
≤ δ + ε3, for an infinite number of values of k, which contradicts (9),

mplying that 1
σ2
0k

1
k

∑k
i=1

γi
ni

→ 0. □

Proof of Theorems 3 and 4. Their proofs are parallel to that of Lemmas 1 and 2. To save space we omit it. □
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