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1. Introduction

Let Xi,...,Xx be k random vectors taking values in RY, for some d € N, with finite means and variances. Let
Xi1,...,Xin be iid. (independent and identically distributed) from X;, 1 < i < k. The k samples are assumed to be
independent. A classical problem in Statistics is that of testing for the equality of the means of the k populations, that is,
testing for

Ho: py1=-- =,

with ; = E(X;), 1 <j < k. When d = 1, if the populations are homoscedastic, following normal distributions and k is a
fixed quantity, then the ANOVA F-test provides an exact solution to the above problem. If the normality assumption is
dropped but the sample sizes are large, then the F-test is asymptotically valid. For heteroscedastic populations, Cochran’s
test gives an asymptotically free distributed test. A similar scenario could be described for d-variate data.

In the context of functional data, it is also of interest testing for the equality of mean functions. Some papers have dealt
with this problem: Benko et al. [4] (for k = 2), Horvath and Kokoszka [19] (for k = 2) and Horvath and Rice [20] (for
k > 2) have proposed tests based on projections onto the space determined by the leading eigenfunctions of an estimator
of the covariance operator of the joint population; Ghiglietti et al. [11] (for k = 2) have proposed a test based on a
generalized Mahalanobis distance for infinite dimensional spaces whose computation involves calculating the eigenvalues
and eigenfunctions of an estimator of the covariance operator of the joint population; Yuan et al. [28] and Zhang et al. [33]
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(for k = 2), and Cuevas et al. [9], Zhang et al. [31,32] and the approaches reviewed in Zhang [30] (for k > 2) consider
tests based on calculating the norms of the difference between sample means; Cuesta-Albertos and Febrero-Bande [8] (for
k > 2) have proposed a test based on random projections; among many others. A common way of approximating the null
distribution of a test statistics is by means of its asymptotic null distribution, whenever it does not depend on unknown
quantities. The test statistics in [4,19,20] are (under the null) asymptotically free distributed, although the associated
tests are not universally consistent. Other test statistics have asymptotic null distributions depending on unknowns and,
hence, their null distribution must be approximated by using alternative estimators. The consistency of the bootstrap
approximation has been stated in Paparoditis and Sapatinas [24].

So far we have assumed that k is arbitrary but fixed and used the term asymptotically to mean n; — oo, 1 <i < k.
The case in which k is allowed to increase has also received attention in the statistical literature. In particular, when
d = 1, if the sample sizes n; = - - - = n;, are fixed and assuming that the data are i.i.d., Boos and Brownie [5], and Akritas
and Arnold [1] have proven that, conveniently normalized, the F-test has asymptotically a standard normal distribution.
This result is also true for unbalanced designs, but in such a case the asymptotic variance depends on the kurtosis of the
population (the fourth moment is assumed to exist). Harrar and Gupta [17] devised a transformation that speeds up the
convergence to the limiting distribution. Assuming independent data from a d-variate population (d > 2) with the same
distribution across the groups except for their means, which are allowed to vary between groups, Gupta et al. [15] have
proven that, conveniently normalized, commonly used statistics in MANOVA are also asymptotically normal distributed.
Besides, they proved that the variance of the asymptotic distribution depends on fourth order moments of the population,
which are assumed to exist. Although it is not required the sample sizes to be equal, they are assumed to be close
(in certain sense). Notice that those papers assume, among other things, that the populations have equal variances. For
univariate normal populations, that may have different variances, when the samples have “similar” sample sizes (in the
sense that max; n; < amin; n;, for some positive constant a), Park and Park [25] proposed two tests whose associated
statistics, conveniently normalized, are asymptotically normal. The assumption that the populations have all of them a
normal distribution is crucial in order to derive the asymptotic distribution. In fact, we have carried out some simulations,
with data coming from a negative exponential distribution (and other non-normal populations) for several values of the
common mean and several values of k, and observed that the empirical type I errors were far apart from the nominal
value (results are reported in Section 7). Akritas and Papadatos [2] and Harrar and Bathke [16] proposed tests for the
equality of a large number of univariate and d-variate means, not requiring homoscedasticity, respectively. Assumption
1 in [16], needed to derive the asymptotic null distribution of the tests statistics in that paper, and some of these test
statistics cannot be carried to the infinite dimensional case.

This paper proposes and studies a test of Hy with k large, requiring neither normality nor homoscedasticity nor
equality of distributions. We start by assuming that the data are functions. Our procedure is fully functional, not based
on projections. The test statistic is asymptotically free distributed, not relying on resampling or Monte-Carlo methods to
obtain critical values. Then, we show the way the new test can be applied to data with finite (but arbitrary) dimension.
The sample sizes can be bounded or they can increase with k at a certain rate that will be specified later in the text. The
design can be balanced or unbalanced but, for unbalanced designs, the ratio between the maximum and the minimum
sample size cannot be greater than a certain power of k. One of the advantages of our proposal is that, in comparison
with existing tests for finite dimensional data, it requires weaker assumptions.

The paper unfolds as follows. Based on a characterization of Hy, Section 2 proposes a test statistic. In Section 3 it is
shown that, adequately normalized, it asymptotically has a standard normal distribution. The practical use of such statistic
requires an estimator of its null variance. This issue is dealt with in Section 4. The power of the test rejecting the null for
large values of the test statistic is studied in Section 5, in which alternatives that this test is able to detect are identified.
The results in Sections 2-5 are valid for k — oo. Section 6 summarizes the results of a simulation study designed to
study the goodness of the asymptotic null distribution as an approximation of the null distribution of the test statistic,
and to study the power of the proposed test, for a finite k. This section also contains two real data set applications. In the
previous paragraph we cited some tests for the comparison of the means of k(>2) independent populations, that were
designed for k fixed and increasing sample sizes. One may wonder if such tests are still valid in the setting considered in
this paper. Section 7 deals with this issue for the tests proposed in [8,9,20,31,32] and the approaches reviewed in [30].
This section also investigates the validity of the new test in the case of a fixed k and large sample sizes. Although in those
sections we have assumed functional data, Section 8 shows how the test can be applied to finite dimensional data. This
section also displays the results of some simulation experiments, where the proposed test is compared with those in [25]
for one-dimensional data. A real data set application is included as well. Section 9 concludes the paper. All proofs are
deferred to Section 10. All computations have been carried out using programs written in the R language [26]. The R code
for the calculation of the proposed test statistic is available in the Supplementary Material.

The following notation will be used along the paper: all limits in this paper are taken when k — oo; £ denotes

. . . . P . s as.
convergence in distribution; — denotes convergence in probability; = denotes the almost sure convergence; M denotes
a positive constant whose exact value is unimportant and may vary across the text; and an unspecified integral denotes
integration over the compact interval [0,1].
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2. The test statistic

Assume that Xy, ..., X, are random functions defined on a common probability space (£2, A, P) with values in the
separable Hilbert space [* = ([0, 1], R), the space of square integrable real-valued functions defined on the compact
interval [0,1], with the usual inner product (f, g) [ f(t)g(t)dt and norm |f|| = (f,f)"2 f,g € L% Assume that
X; is integrable, that is, that E||X;|| < oo, which imphes that there is a unique function u; € [?, the mean function of
X;, satisfying E((X;, x)) = (ui, x), Vx € >, 1 < i < k. It follows that u;(t) = E{X(t)} for almost all t € [0, 1]. Let
ci(t, s) = E[{Xi(t) — wi(t)H{Xi(s) — pi(s)}], s, t € [0, 1], stand for the covariance function of X;, and let ¢; : [> — L? denote
the covariance operator of X;, defined as Cif (t) = f ci(t, s)f (s)ds, ¥f € L?, which is assumed to satisfy

0<9,~://c3(t,s)dtds<oo, 1<i<k (1)
Along this paper it is assumed that the available data consist of independent random samples from each population, that
is, we assume that X; = {X, ..., Xi,;} are n; independent random functions from X;, 1 < i < k, and that Xy, ..., X;

are independent. On the basis of the available data, we are interested in testing Hy, where the equalities under Hy are
understood in the [? sense, that is, ||/L,' — ujll = 0, Vi # j. Notice that Hy is equivalent to Dy = 0, where

Zm,w kme (L, i), '4k2m

Since the sample mean is unbiased for the population mean, the above equivalence leads us to consider the following
test statistic for testing Ho,

k nj k
1 - _ 1 -1 _
= - Xi —X |2, with X;=— ) X, 1<i<k X =-9Y X.
kgyh i ; mg;, <i< ”kzjh

Routine calculations show that

k k
~ 1 1 - 1
Ty=-—-— Xi Y xia X )
k (k kz);m( ) 2 ;hz( D)
il

with iy(X;) = ha(Xi, Xi), ha(Xi, X0) = (Xi, X;). We have that E{hy(Xi, X))} = (i, ), Vi # I, and, assuming [ ¢i(t, t)dt < oo,
- 1
E(A(0) = G ) + - [ e, e

Therefore Tk is a biased estimator of Dy. The bias can be removed by replacing fz](X,») with hy(X;), defined as
n
1 1
hX)= — § Xius Xiv)-
l( l) ni(ni — 1) < iu zv)

u,v=1

Let

k
1 1 1
Ti=(--—= X)— —
. (k kz);nm =

Then, E(Ty) = Dy. Since E(Ty) = 0 under Hy and E(Ty) > O under alternatives, the null hypothesis is rejected for large
values of Ty. Now, in order to determine what large values are in this context, we have to calculate its distribution under
the null hypothesis, or (at least) an approximation of it. The null distribution of T is clearly unknown. Next, we try to
approximate it by means of its asymptotic null distribution.

k
ha(Xi, X)).
il=1

i£l

3. The asymptotic distribution of the test statistic

By applying the Decomposition Lemma of Efron and Stein [10], after some rearrangements, one gets that
Tie = Dy + Ty 1in + Ri, (2)
with Tisin = (1/k) X L Lit = ha(Xe) — (i, ) — 2X, — i, ), 1 < i < k, and
¢ 2 & 1
Ry = Z: (s pid} ta Z — Wiy Mi) — @ ;(XL = i, Xt — ).
- - il
Clearly, E(Tk 1in) = E(Ry) = 0. The variance of T 1, is given in the next lemma.

3
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Lemma 1. Suppose that Xy, ..., Xy are integrable satisfying (1), that X; = {Xy1, ..., Xip;} are n; > 2 independent random
functions from X;, 1 <i <k, and that X4, ..., Xy are independent. Then

4
UaerLm IZZ( (= 1) 0; + )’1>,
where
yi = f / &t S)puilt) — AL(OWls) — f))deds, 1< < k.

Notice that var(T in) > O is equivalent to ZL] 6; > 0, and the latter is implied by (1).
If Hy is true, then var(Ty 1;,) simplifies to

k
2
varo(Tisin) = 17 Z o (n 1 3)
_ i

The next result shows that the term Ry in (2) is negligible in comparison to Ty ji.

Lemma 2. Suppose that the assumptions in Lemma 1 are fulfilled. Then var(Ry)/var(Tk tin) — O.

Since Ty 1in is an average of independent random variables it readily follows that, conveniently scaled and under some
assumptions (specifically, that the Lindeberg condition in (4) holds true), it is asymptotically normally distributed. This
fact together with the result in Lemma 2 leads to the following result.

Theorem 1. Suppose that the assumptions in Lemma 1 are fulfilled and that
k

1/k? .
E[Lg I{L; k* var(T, 0, Ve>0. 4
UaerLm;[,k{ws var(Teun)})] > 0, Ve > (4)
Then
Ty — D
e De e, (5)
var(Ty i)

where Z has a standard normal distribution.

As an immediate consequence of Theorem 1, taking into account that Hy is equivalent to D, = 0, we next derive the
asymptotic null distribution of Tj.
Corollary 1. Suppose that the assumptions in Theorem 1 are fulfilled and that Hy is true. Then ~/kT /Ook =N Z, where Z has

a standard normal distribution and ogk = kvaro(Ty 1in), with varo(Ty 1in) as defined in (3).

Recall that the test is one-sided rejecting the null hypothesis for large values of Tj. If aozk were a known quantity, in
view of Corollary 1, the test that rejects Hy when

VT /oo > 21-a>

for some « € (0, 1), where &(z;_,) = 1 —« and @ stands for the cumulative distribution function of the standard normal
distribution, would have (asymptotic) level «.

In general, checking that Lindeberg condition holds is not an easy task. Because of this reason, in most cases it is
easier to see that some sufficient conditions are met. Next we provide some conditions for (4) to hold. First we list such
conditions, then we comment on them, and finally Proposition 1 shows that they imply (4).

Assumption 1. 3t > 0 and kg = ko(7) € N such that % Zf‘:l 0; > 1, Vk > ko.
Assumption 2. E(||X; — uil|*) < M, Vi.

4
Assumption 3. "TJ 1 — o(1), where nyg = max n; and npi; = min n;.

min 1<i<k 1<i<k

Assumption 4. Either yy = --- = y» = 0, or 2not all y;s are equal to 0 and (1/k)I, = o(1), where I}, =
(/0| S B — g i — )y} /(3 mmi)
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Assumption 1 is tantamount to say that there is a percentage of 100 - p% of covariance operators, for some 0 < p < 1,
say 61, ..., 6k, such that §; > ¢, for some ¢ > 0, 1 < i < [nk]. This is clearly a nonrestrictive assumption. Assumption 2
is similar or even weaker than other comparable conditions used in the finite dimensional case: for univariate data, if
the design is not balanced, the derivations in Boos and Brownie [5] require the fourth moment to exist; for data with
dimension greater than 1 but finite, Assumption 1 in Gupta et al. [15] is stronger since it requires the finiteness of the
moment of order 4 + § of the absolute value of each component of the random vector, for some § > 0. Assumption 3
tells us how different the sample sizes can be in relation to k. In particular, for either balanced designs, n; = --- = n,
or bounded sample sizes, it imposes no restriction. In the finite dimensional setting, for univariate normal populations,
Park and Park [25] assume that max;n; < amin;n; for some positive constant a, which is more limiting than our
assumption. Finally, we will see that Assumption 4 is not a severe restriction. Under Hj it is automatically satisfied because
y1 = --- =y = 0. Thus, it only happens to be a constraint under alternatives. Let Y; = (X; — w;, i — 1) //mi 1 <i < k.
Notice that Y, ..., Y, are k independent random variables. Let W), be an equal mixture of the random variables Y1, ..., Y.
Then I, is the kurtosis of W,. This assumption allows the kurtosis of W; to increase with k, but at a lower rate than k,
which seems not to be a hard limitation.

Proposition 1. Suppose that the assumptions in Lemma 1 and Assumptions 1-4 are fulfilled. Then (4) holds.
4. Estimating the null variance

In order to get a critical region for testing Hy using the result in Corollary 1, we need a consistent estimator of og.
Recall that 002k = k x varg(Ty in) = 2/k Zf.‘zl 6;/ni(n; — 1). aozk is unknown because 04, ..., 6, are unknown quantities.
From expression (1), 6; can be unbiasedly estimated by replacing c,-z(t, s) with an unbiased estimator. Assume that n; > 4,
1 <i <k, then ciz(t, s) can be unbiasedly estimated by

~ 1
'zts = hX 7X'v;t7 hX'qu';tv )

G (£ ) ni(n; — 1)(n; — 2)(n; — 3) 1<u#;#<ni . (Ko, Xeri £, 5)

where h(Xiy, Xi: t,5) = 3{Xu(t) — Xip(£)}{Xiu(s) — Xiu(5)}.
Note that

~ 1

2t s)= —— h(Xiw, Xiv: t, 5)S2, (. S), 6
) = D A, Xivi £, 5)S7, (L) (6)

1<uz#v<n;
where S2,(¢,5) = 2537, L, (X (6) = K o) (OHXi(8) — Xigwup ()}, and Xiw)(6) = 755 3,4, Xiu(t). Formula (6) is
useful for computational purposes. .
Let 62, = (2/k) Zf:l 6;/ni(n; — 1), where §; = Jf ck(t, s)dtds. Next proposition shows that, under some mild
assumptions, the quotient 62, /o, converges in probability to 1.

Proposition 2. Suppose that the assumptions in Lemma 1 and Assumptions 1-3 are fulfilled, and that n; > 4, 1 <i < k.
Then 62, /02 —> 1.

As an immediate consequence of Corollary 1 and Proposition 2, we have the following result.

Theorem 2. Suppose that the assumptions in Corollary 1 and Proposition 2 are fulfilled. Then ~/kT /Ook £ Z, where Z has
a standard normal distribution.

Let o € (0, 1). As a consequence of Theorem 2, the test rejecting Hy when ~/kT /Ook > Z1_q is asymptotically correct
in the sense that its type I error is asymptotically equal to the nominal value «.

Remark 1. Let R(Xiyy, ..., Xiny, ooy Xkts ooy Xkny) = «/ETk/&Ok. Notice that R(aXi; + w,...,aXy,, + @, ..., aXe +
My ooy X, + ) = RX11, o Xy -5 Xkt -+, Xk ), Ya € Ry a # 0,V € 12, that is, the test statistic is invariant
under location and scale transformations.

Before ending this section, we want to underline that &¢y is consistent for oo, under quite weak assumptions. If stronger
conditions are assumed, then other estimators of og, may be considered. For instance, if we could reasonably assume
that Xy, ..., X, have a common variance function, ¢{(-,-) = --- = (-, -) = c(-,-), then f’ozk = k x varg(Ty1in) =
6/k) YK 1/ni(n; — 1), where 6 = [J c2(t, s)dtds. In this case we have to estimate 6. Under Ho, if E[{X;(t)— ui(t)}*{Xi(s)—
wi($)’1<M,1<i<k 0<t,s <1, for some positive constant M, and if [[ c(t, t)dt < oo, then 6 can be consistently
estimated by means of & = [ &(t, s)2dtds, where

&t,s)= (N =)™ Y {Xy(t) = X (O} {X(s) — Xi(5)} -
ij
A sketch of the proof of the consistency of 6 can be found in Section 10.

5



M.D. Jiménez-Gamero and A.M. Franco-Pereira Journal of Multivariate Analysis 185 (2021) 104778

5. Power

This section studies what sort of alternatives can be detected by the proposed test. Let o,f = k x var(Ty in).- Notice
that

0<og/of <1 (7)

Under the assumptions in Theorem 1 and Proposition 2, we have that

T T, — D o D D
p (ﬁﬁ . z> _p (ﬁ’k J Gk, ﬁ—") ~ o (ﬁ—" _ "O'z) . ®)

Ook Ok Ok Ok Ok Ok

In the light of (7) and (8), and taking into account that D, > 0, we consider the following three cases: (i) \/EDk/crk — 0,
(ii) VkDy /oy — 8 € (0, 00), and (iii) v/kDy /o — oo.

In case (iii) it is clear that P(\/ETk/éOk > Z1_4) — 1, and thus the test is consistent against that sort of alternatives. From
(8), it is apparent that to derive the power in cases (i) and (ii) we must first study the quotient og,/ok. Next proposition
shows that, in these cases, ooy /o — 1.

Proposition 3. Suppose that the assumptions in Lemma 1 and Assumptions 1 and 2 are fulfilled, that
n2 . = o(k), 9)
and ~/kDy /oy — 8 € [0, oo). Then oo /oy — 1.
As an immediate consequence of Theorem 1 and Propositions 2 and 3, we have the following.
Corollary 2. Suppose that the assumptions in Theorem 1 and Propositions 2 and 3 are fulfilled. Then ~/kT}./Gok Lz + 3,
where Z has a standard normal distribution.

From Corollary 2, in cases (i) and (ii) we have that

T o5
P(\@Ak >zla>—>q)(8—zla)={a if § =0,

O0k >a ifé € (0, o0).

Summarizing, the proposed test asymptotically detects those alternatives such that ~/kDj Jor — 8 € (0, oo]. It is consistent
against those alternatives satisfying v/kDy /o, — oco. The alternatives fulfilling v/kDy/or, — 8 € (0, o0) play the role of
contiguous alternatives in the classical setting of fixed k and large sample sizes. The test is not able to detect those cases
in which +/kDy /oy — 0. This is not surprising since it entails that the between means variance Dy, is much more smaller
than the standard deviation of Tj.

As an illustration, we consider the case where 1 < m = m; < k populations have an equal mean, say u # 0, and the
other k — m populations have a mean equal to 0. Let p, = m/k. For simplicity, we will also assume that the populations
are homoscedastic, that is, c¢i(t,s) = c(t,s), 1 <i < k, Vt, s € [0, 1], and that the design is balanced, that is, n; = n,
1<i<klety = [[ut)uls)(t,s)dtds, 0 = [[c?(t,s)dtds, and assume that both quantities are positive. With this
notation, & := vkDi/ox = Vkpk(1 — p)llell?/+/20 /n(n — 1) + 4y pe(1 — pi)/n.

In this setting, the question that naturally arises is how small (or big) must m be so that the test can detect that Hy is
not true? In order to answer this question, we will assume that condition (9) in Proposition 3 holds. If m is a fixed number
that does not depend on k (or equivalently k — m is a fixed number that does not depend on k), then §; — 0. Therefore,
the test it is not able to detect alternatives with a finite number of different means. This is a special case of p, — 0. Next,
we see that the test can detect alternatives with py — 0 but at a lower speed than 1/k. The following cases can arise:

(a) px — p € (0, 1): then 8, — oo, for any choice of n, and thus we are in case (iii);
(b) px — 0 and n remains bounded: then the asymptotic behavior of § coincides with that of \/ﬁpk, and thus,

(b.1) if vkpy — 0, which is equivalent to py = o(k~'/2), then we are in case (i),
(b.2) if vkpx — 8 € (0, o0), then we are in case (ii),
(b.3) if v/kpx — oo, then we are in case (iii);

(c) px > 0, n — oo, npy — p € (0, +oc]: then §; — oo and thus we are in case (iii).
(d) pp > 0, n — oo, npy — 0: then the asymptotic behavior of §; coincides with that of \/Enpk. which from (9) is
Jknpy = o(kpy), and thus,

(d.1) if v/knpy — 0, then we are in case (i),
(d.2) if vknpy — 8 € (0, oo), then we are in case (ii),
(d.3) if v/knpy — oo, then we are in case (iii).
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The answer to the question how small must m be so that the test can detect that Hy is not true is that we must take
m = O(f(k)) and n = O(\/E/f(k)), with f such that f(k) — oo, f(k)/k — 0 and n — oo. For instance, we could take
m = k* and n = k%>~¢, for some 0 < a < 0.5, or m = log(k) and n = \/k/log(k), among many possible choices.

Remark 2. With the aim of improving the asymptotic power of the test in case (d.2), an anonymous reviewer suggested
us to consider a max-type statistic, instead of Ty. Reasoning as in Section 2, Hg is equivalent to max;; || i; —Mj||2 = 0. Now,
since ||,u,,'—/,Lj||2 can be unbiasedly estimated by means of Tj; = h1(X;)+h1(X;)—2hy(X;, X;), one could take T = maX;y; Tj
as the test statistic. Let Ty = (Tq2, T13, . .., Tkeik)| € RP, where the supermdex T denotes transpose and D = k(k—1)/2. If
ni/ny — 1 € (0, 0o) Vi, when min; n; — oo, then for each fixed k, ./n1Ty converges in law to a D-variate normal random
vector, Z = (Z4, ..., Zp)", with mean pay = (|1 — p2ll?, - ., llptk—1 — i ll*)™ and a certain covariance matrix. Therefore,
Tmax converges in law to max; Z;. To derive the asymptotic distribution of Tp,.x we have assumed that min; n; — oo (not
required to get the asymptotic distribution of Ty). In addition, the law of max; Z; is not free of nuisance parameters, even
under the null hypothesis, and thus cannot be used to approximate the null distribution of Tyax. A sound study of T«
deserves to be considered in a separate paper.

Remark 3. All our results have been stated under the tacit assumption that realizations of Xy, ..., Xy, i.e., complete
trajectories of functions are observable. In practice, these functions are observed at a finite grid of points and the curves
X1ty « ooy Ximy, are | recovered by using nonparametric techniques, such as local linear regression. The statistic is then
calculated from XH, .. ank, which stand for the resulting curve estlmators Under suitable assumptions, all previous
results remain valid when the test statistic is calculated from Xn, .. ank See, e.g., Jiang et al. [21], in particular the
comments made after the proof of their Theorem 2.

6. Simulation results for a finite number of populations

Recall that the proposed test, which rejects Hy when +/kTj /Ook > Z1_q, has asymptotically type I error equal to a. To
study the level of the proposed test for a finite value of k, we have carried out a simulation experiment as follows. We have
generated a sample from each of k populations (k = 30, 40, 50, 100, 200, 300, 400, 500), all of them with the same mean
that, without loss of generality since the test statistic is location invariant, we took equal to 0. The size of each sample
has been randomly generated from a discrete uniform random law UD{a, a+ 1, ..., b}, with (a, b) = (5, 10), (11, 20). The
data {Xj(t), t € [0,1], 1 <j < n;, 1 < i < k} have been generated in discretized versions Xj(t;), for r € {1, ..., 50},
where the values t, were chosen equispaced in the interval [0, 1]. Four different types of random functions have been
considered: the data were generated from a Wiener process with dispersion parameter o = 1 for all populations (recall
from Remark 1 that the test statistic is invariant under scale transformations, so the same results would be obtained for
other choices of o), and three heteroscedastic versions, where the data from population i were generated from a Wiener
process with standard deviation o;, which in turn was randomly generated from a uniform distributionon (1,s),1 <i <k,
s = 1.5, 2, 3. Each case was run 10,000 times. Table 1 shows the fractions of p-values less than or equal to 0.05 and 0.10,
which are the estimated type I error probabilities for nominal significance level «=0.05 and 0.10, respectively. Looking at
this table we observe that, in general, the actual levels are not far from the nominal values even for small values of k,
specially in the case of homoscedastic populations; as the value of ¢ is allowed to vary in a wider interval, a larger value of
k is required for the empirical levels to closely match the nominal significance values. We also see that the approximation
is better for larger sample sizes.

To study the power, we have considered the same type of random functions as those used for the level, but now the
mean function for population i was taken p;(t) = il(t > tg), 1 <1i <k, for several values of ;. Although the test statistic
is invariant under scale and location changes, the power is greatly influenced by the choice of the scale. Recall that the
power is (asymptotically) an increasing function of v/kDy /ox, and thus the power increases with Dy, (which measures how
different the means are), with k, with the sample sizes (recall that o} decreases as the sample sizes increase), and decreases
when the scale increases. Because of this reason, in order to study the power we have considered several values of the
scale parameter for the homoscedastic case. Table 2 shows the fractions of p-values less than or equal to 0.05 and 0.10,
which are the estimated powers for nominal significance level @=0.05 and 0.10, respectively. They have been obtained
by generating 2,000 samples in each case (for the power we observed, in some preliminary simulations, that the results
using 2,000 samples and those obtained with 10,000 samples were very close, so in order to save computation time, we
took 2,000 samples). Looking at this table we observe that the above considerations, which are valid asymptotically, also
hold for finite sample sizes.

We illustrate the applicability of our methodology through two real data examples. First, we have applied the new test
to compare the mean of the occupancy rate across the 52 Spanish provinces. The data were taken from the website of
the Spanish National Institute of Statistics, http://www.ine.es. For each province, we took as sample the monthly observed
occupancy rate from 2011 to 2019. Therefore, we have k = 52 populations, each sample curve is observed in 12 points
(months) and the sample sizes are n; = n, = - - - = ns; = 9. We can consider the data as i.i.d. since the accompanying note
states “due to different updates in the Establishments Directory, data from different years are not directly comparable”.
Fig. 1 displays the sample curves of the occupancy rate for each province and the group sample means. Each color
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Table 1
Observed proportion of rejections in 10,000 simulated data sets for each scenario, for functional data, under the null hypothesis. The size of each
sample has been randomly generated from a discrete uniform random law UD{a,a + 1,..., b}, with (a,b) = (5,10), (11,20). The data were

generated from a Wiener process with mean 0 and with dispersion parameter o = 1 for all populations and three heteroscedastic versions. The
nominal significance levels are « = 0.05 and 0.10.

Number of Sample sizes Dispersion parameters of the Wiener processes
Eopulatlons i;mlts oi=1 o; ~ U(1,1.5) oi ~U(1,2) o; ~ U(1,3)
X 5% 10% 5% 10% 5% 10% 5% 10%
30 5-10 0717 1176 .0714 1143 .0753 1191 .0787 1228
11-20 .0651 1104 .0629 1053 .0656 .1105 .0668 .1069
40 5-10 .0666 .1102 .0716 1195 .0696 1134 .0740 .1198
11-20 .0617 .1063 .0631 .1097 .0699 1129 .0662 .1078
50 5-10 .0704 1142 .0682 1152 .0685 1128 .0722 1181
11-20 .0612 .1093 .0677 1115 .0582 .1036 .0694 1135
100 5-10 .0634 1102 .0662 1148 .0661 1153 .0654 1162
11-20 .0597 1074 .0605 .1086 .0610 .1062 .0588 .1062
200 5-10 .0575 1115 .0590 .1082 .0592 .1084 .0595 .1110
11-20 .0596 .1088 .0560 1061 .0577 1025 .0633 .1092
300 5-10 .0588 .1081 .0553 .1024 .0641 1138 .0595 .1096
11-20 .0549 .1067 .0527 1011 .0587 1071 .0590 .1058
400 5-10 .0544 .1001 .0572 .1075 .0565 1013 .0622 .1100
11-20 .0546 .1045 .0569 .1059 .0590 .1023 .0546 .1046
500 5-10 .0574 .1080 .0584 .1081 .0610 .1089 .0565 .1046
11-20 .0545 1029 .0516 .1004 .0573 .1085 .0590 .1076
Table 2
Observed proportion of rejections in 2,000 simulated data sets for each scenario, for functional data, under alternatives. The size of each sample has
been randomly generated from a discrete uniform random law UD{a,a + 1, ..., b}, with (a, b) = (5, 10), (11, 20). The data were generated from a

Wiener process where the mean function for population i is u;(t) = ,{I(t > ty), 1 <i <k, for several values of t;, and different dispersion values o.
The nominal significance levels are « = 0.05 and 0.10.

Number to Sample Dispersion parameters of the Wiener processes
populations limits
k n; s=1 s=15 s=2 s=1.5 s=2 s=3
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
100 05 5-10 9860 9955 .6365 .7435 3335 4480 .8255 9025 5725 .6990 .2555 3515
11-20 1.000 1.000 9695 9870 7105 .8050 9985 9995 9425 9740 5845 7070
0.7 5-10 .8420 9025 3620 4930 .1760 .2700 4990 .6160 .3230 4470 .1700  .2450
11-20 9985 9995 7725 8620 4010 .5400 9350 9720 .7125 8165 3515  .4595
09 5-10 2975 4295 1295 2260 .0950 .1620 .1745 2720 .1355 .2030 .0955 .1575
11-20 .6750 7835 2480 3685 .1495 2360 3845 5065 .2260 .3355 .1190  .1985
200 05 5-10 9995 1.000 8665 9255 5005 .6300 9735 9870 .7750 .8635 .4005 .5270
11-20 1.000 1000 1.000 1.000 .9020 .9475 1.000 1.000 .9995 1.000 .7950 .8730
0.7 5-10 9805 9950 5300 .6610 .2790 3950 .7650 .8605 4955 .6175 2105 3110
11-20 1.000 1.000 9545 9830 .6210 .7505 9990 .9995 9445 9755 4950 .6270
09 5-10 4240 5645 .1595 2560 .1185  .2020 .2525 3575 .1640 .2490 .0925 .1720
11-20 .9060 .9540 .3695 5010 .1890 2940 5985 7305 3365 4795 .1665 2525
300 05 5-10 1.000 1.000 9420 9690 .6425 7435 9960 1.000 9065 9560  .4830  .6305
11-20 1.000 1.000 1.000 1.000 .9740 .9905 1.000 1.000 1.000 1.000 .9240 .9640
07 5-10 9990 9995 6740 7925 3550 4740 8920 .9495 .6200 .7410 .2625  .3885
11-20 1.000 1.000 9935 9960 .7645 .8450 1.000 1.000 9810 .9920 .6120  .7440
09 5-10 5800 .7060 .2245 3355 .1225 2000 3110 4535 .1995 3115 .1110 .1840
11-20 9885 9960 4975 6335 2575 3695 7265 .8245 4415 5870 .1960  .2960

corresponds to a province. We have applied the proposed test to check the equality of the 52 mean functions and got a
p-value < 0.001 which leads us to reject the null hypothesis.

The second data set consists of samples of Auslan (Australian Sign Language) signs. Auslan is the language used by the
Australian Deaf and non-vocal communities. This data set is available in the R package mfds (Gérecki and Smaga [13]).
In particular, 27 examples of each of 95 Auslan signs were captured from a native signer using high-quality position
trackers and instrumented gloves and were collected over a period of nine weeks. The average length of each sign
was approximately 57 frames. Each hand generated a total of 11 features: 3 for orientation (roll, pitch, yaw), 3 for
position (X, y, z) and 5 for finger bends. Therefore, we have k = 95 populations, 22 variables, and the sample sizes
are ny = ny, = --- = ngs = 27. For a more detailed description of the variables we refer to Kadous and Sammut [23]. In
Fig. 2 the sample curves of the 2565 signs and the group sample means for the variable that measures the x-position of
the left hand are represented. We have applied the test to check the equality of the 95 mean functions for each of the 22
variables. In all the cases the null hypothesis is rejected.
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Fig. 1. All curves (left) and sample mean of each group (right) of the occupancy rate per month in Spain, from January 2011 to December
2019. There are k = 52 populations (the 52 Spanish province), each sample curve is observed in 12 points (months) and the sample sizes are
ny =le=-~-=n5z=9.
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Fig. 2. All curves (left) and sample mean of each group (right) of the x-position of the left hand in the Auslan data set. There are k = 95 populations
(the different Auslan signs), 22 variables, and the sample sizes are ny =n;, = --+ = ngs = 27.

7. Comparison with existing tests

In the Introduction we cited some tests for the comparison of the means of k independent populations, that were
designed for k fixed and increasing sample sizes. One may wonder if such tests are still valid in the setting considered
in this paper. This section discusses such issue for the tests in Cuesta-Albertos and Febrero-Bande [8], Horvath and
Rice [20], Cuevas et al. [9], Zhang et al. [31,32] and the approaches reviewed in Zhang [30]. The test in Cuesta-Albertos and
Febrero-Bande [8] consists of randomly generating an element of L? (according to some adequate distribution), and then
projecting the data on this element. The projected data has dimension 1, and so one can apply any technique designed
for the univariate case. Notice that a random projection may lead to the rejection of the null hypothesis, while another
random projection could induce the opposite conclusion. To avoid this inconvenience, these authors have proposed to take
several random projections, calculate the p-value for each projection, and then apply some correction, as for example the
procedure in Benjamini and Yekutieli [3], which controls the false discovery rate. In order to numerically investigate
the validity of this test for large k, we partially repeated the experiment in Table 1. To apply the test in [8] we used the
function fanova.RPm from the R package fda.usc. For each case, we took 5, 10 and 30 random projections and adjusted
the global p-value by using the procedure in [3]. Results based on 1000 simulated functions for each scenario are reported
in Table 3. Looking at this table we see that the test becomes more liberal as k increases, specially for smaller sample
sizes. In the light of the outputs of this experiment, it can be concluded that the test in [8] is not valid in the setting of a
large k and small n;.

The test in Horvath and Rice [20] is also based on projections. Specifically, it considers the projections of the data
on the eigenfunctions associated with the d largest eigenvalues of an estimator of a certain covariance operator. These
projections are also known as the scores. This way each function in the data set is transformed into a point of RY. Then,
these authors build a test statistic that compares the sample mean of the scores of each sample with an estimator of the
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Table 3

Observed proportion of rejections in 1000 simulated data sets for each scenario, for functional data, under the null hypothesis, obtained by applying
the test in Cuesta-Albertos and Febrero-Bande [8] with different numbers of random projections (RP). The nominal significance levels are o« = 0.05
and 0.10.

Number Sample sizes Dispersion parameters of the Wiener processes
of ' limits .\ Number o =1 o ~ U1, 3)
populations of projections
k n; \ RP 5% 10% 5% 10%
5 15 30 5 15 30 5 15 30 5 15 30
30 5-10 .098 .098 .075 .180 171 153 .096 .103 .104 171 173 172
11-20 .076 .072 .060 133 121 116 .080 .076 .072 134 118 119
40 5-10 .107 .093 .098 193 176 .161 .102 .105 .103 185 .189 .182
11-20 .087 .081 .084 153 137 130 .071 .073 .070 130 117 129
50 5-10 .140 134 121 236 226 216 129 112 114 229 203 .199
11-20 .085 .072 .073 142 132 111 .084 .087 .076 .145 141 .149
100 5-10 202 182 205 330 324 .309 178 .165 171 .305 270 273
11-20 .108 .095 .099 .186 182 .162 .098 .095 .085 175 .167 .160
200 5-10 .389 .384 .388 558 578 .554 .306 325 322 473 479 488
11-20 167 167 158 285 270 263 159 .156 147 .248 250 .246
Table 4

Observed proportion of rejections in 1000 simulated data sets for each scenario, for functional data, under the null hypothesis, obtained by applying
the test in Horvath and Rice [20]. The nominal significance levels are @ = 0.05 and 0.10.

Sample sizes Number of populations
limits k=30 k = 40 k=50
. Dispersion parameters of the Weiner processes
o =1 o; ~ U(1,3) =1 o; ~ U(1, 3) =1 o; ~ U(1, 3)
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
5-10 844 .887 .867 .896 937 961 932 959 972 982 .966 978
11-20 429 534 423 536 514 618 488 616 .563 675 574 .683

common mean under the null hypothesis. When the null hypothesis is true, the test statistic is asymptotically (in the
sense that k is fixed and n; — o0) free distributed. In order to numerically investigate the validity of this test for large
k, we partially repeated the experiment in Table 1. Results based on 1000 simulated curves for each case are reported in
Table 4. Looking at this table we see that the test is very liberal for all tried values of k and that it becomes more liberal
as k increases, specially for smaller sample sizes. Therefore, it can be concluded that the test in [20] is not valid in the
setting of a large k and small n;.

Next, we deal with the test in Cuevas et al. [9] which, in a sense that will be explained next, is close to our proposal.
These authors proposed to use two test statistics which, sharing the usual terminology of ANOVA, measure the between
groups variability. The statistic considered in this paper, Ty, also measures such variability. If the design were balanced
(n; = --- = ng), then the three statistics (the two ones in [9] and T) are equivalent. Of course, we could have considered
any other statistic measuring the between groups variability. We took Tj for three main reasons: it is unbiased for Dy and
the null hypothesis can be rewritten in terms of Dy; the asymptotics for T, (as k — o0) possess convenient expressions
than can be approximated; and finally, Ty is, in some sense, similar to other statistics than have been previously considered
for testing problems when the number of populations increases (see, e.g. Cousido-Rocha et al. [6] and Zhan and Hart [29]
for the comparison of univariate continuous populations; Jiménez-Gamero et al. [22] for the comparison of d-variate
populations; Park and Park [25] for the equality of means of univariate normal populations).

As said before, Cuevas et al. [9] proposed to use two test statistics for testing Hy. For technical reasons, they only
derived the limit distribution of one of then, specifically that of V,, , = ij nill X — )_(] 1>, which was shown to converge
in law (assuming that k is fixed and n; — o0) under the null hypothesis to V, = ij 1Z: — psZill?, where Z1, ..., Z,
are independent zero mean Gaussian elements taking values in L?, and Z; has the same covariance function as X;, ci(t, s),
1 <i < k. Such a result was derived by assuming n;/n — p; > 0, 1 <i < k, n being the total sample size,n = ny+- - - 4n.
With this notation, pj = p;i/p;, 1 < i,j < k. Rejection of Hy is for large values of V, . In order to decide what is large,
one must estimate the null distribution of V,, x. With this aim, these authors propose to use a bootstrap in the limit
procedure, that consists in approximating the distribution of V, by that of Vi with p; and ¢; replaced by n;/n; and
G(t,s) = 1/(n; — 1)2}1;1{X,-j(t) - )_(i,(t)}{Xij(s) — Xi(s)}, 1 < i,j < k, respectively, which in turn is approximated by
simulation. At this point one may wonder if the above convergence still holds when k — oo, that is, if V,; and Vj
converge in law to the same limit. Theorems 3 and 4 provide a decomposition for V,; and Vi, respectively, which is
similar to that in (2) for Ti. From those decompositions, it will be seen that, in general, V,, ; and Vj have different limits
(in law), which implies that the test in [9] is not suitable for testing Hy in the setting of a large k and small n;.
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Theorem 3. Suppose that Xy, ..., X satisfy Assumption 2, that X; = {Xi1, ..., Xip;} are n; > 2 independent random functions

from Xi, 1 <i <k, that Xy, ..., Xy are independent, and that Hy is true with u, = --- = ux = 0. Let 6; be as defined in (1),
= [c(t, t)dt, o _ffE{x2 £)X?(s)} dtds, 1 < i < k. Then

Vn k = E(Vn k) + Vn k,lin + Vn k,rem>

E(Vii) = Z (k—1) r,+Z ny o )T/,
i=1

vnk,m—2¢ ¢(Xi) = {(n1 + -~ +n,-1+n,-(k—i))}<||)'<i.||2—:>, 1<i<k,
E{¢p(Xi)} =0, 1=<i=<k,
var{g(X} = {(n + -+ + niy 4+ nilk — ) {2"'

1
—3(Qf—ri)}, 1<i<k

i i
If, in addition, Y, 6; > 0 and g, = o(v/k), then var(Vy i rem)/var(Va i jin) — O.
Reasoning as for Ty, from Theorem 3 it follows that, under the conditions in it and if we also assume that
¢(X1), ..., ¢(Xy) meet Lindeberg condition, then
Vik — E(Vn,k) c
Vvar{g(Xi)} + - - - + var{¢p(Xi)}

where Z has a standard normal distribution. This result is parallel to that obtained in Theorem 1 for Ty. Notice that
Theorem 3 requires stronger assumptions than Theorem 1. In addition, the practical use of Theorem 3 would require the
estimation of var{¢(X;)} + - - - + var{¢(Xy)}, which is more involved than the estimation of crozk.

Since we are deriving asymptotics when k — oo, instead of deriving the limit of Vi, we next derive the limit in law
of Vi, defined as Vi with pj; replaced by n;/n;.

)

Theorem 4. Suppose that Zy, ..., Z are independent zero mean Gaussian elements taking values in L> and that Z; has the
same covariance function as X;, 1 < i < k. With the notation in the statement of Theorem 3 we have that

Vi = E( Vi) + Victin + Vi rems
Viciin = Zw(l Z)={m + - +ni +mk— D))} (1Z1° — =) /m, 1<i<k

E{p(Z)} = 0, 1<ic<k,
var{p(Z)} = 2{(ny + -+ ni_q + ik — )26/, 1<i<k

If, in addition, Y, 6; > 0 and Ny, = o(v/k), then var(Vy rem)/var(V jin) — O.

Notice that, in general, the variance of ¢(Z;) and that of ¢(X;) are different. If Xy, ..., X, are Gaussian, then those
variances coincide and, under some general conditions, both V,, ; and Vj have the same asymptotic distribution (when
k — 00). In order to illustrate this fact numerically, we have partially repeated the experiment in Table 1 as follows: we
first considered data generated from a Wiener process, as described in Section 6. This case is labeled in Table 5 as W.
Since these data are Gaussian, from the above discussion, it is expected to obtain actual levels close to the nominal values.
To see that this is not the case when the data are not Gaussian, we have also generated non-Gaussian data. Specifically,
we have generated samples from

5 5
£)=Ao+v2 ) Geos(2mjt) +v/2 ) §sin(2jt),
j=1 j=1

where Ag, Cq,...,Cs and Sy, ..., S5 are independent random variables, having a Laplace distribution (two-sided exponen-
tial distribution). This case is labeled in Table 5 as L. The results in Table 5 are based on 1000 samples from each scenario,
and each p-value was calculated by generating 1000 samples from (an estimation of) the asymptotic null distribution,
that is, from V. Since the bootstrap in the limit approximation is very time consuming, we only tried k = 30, 40.
Table 5 summarizes the output of this experiment. Looking at this table we see that, as expected, for the Gaussian data
the observed proportion of rejections is in all cases close to the nominal value; but for non-Gaussian data the test is
extremely conservative, notably for smaller sample sizes. Thus, to safely apply this test to functional data, one should first
apply some Gaussianity test (see, for example, the tests in Gérecki et al. [12], Cuesta-Albertos et al. [7], and Henze and
Jiménez-Gamero [18]). Nevertheless, the main disadvantage of the test in [9] resides in the computational time required
to calculate the p-value.
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Table 5

Observed proportion of rejections in 1000 simulated data sets for each scenario, for functional data, under the null hypothesis, obtained by applying
the test in Cuevas et al. [9]. W denotes the Wiener process and L the non-Gaussian data. The nominal significance levels are « = 0.05 and 0.10.

Number of Sample sizes w L
Ip{)opulanons :;rruts Dispersion parameters of the Wiener processes
' oi=1 o~ U(1,3) oi=1 o~ U(1,3)
5% 10% 5% 10% 5% 10% 5% 10%
30 5-10 .057 .105 .043 .095 .005 .023 .002 .015
11-20 .047 .101 .060 .109 .005 .032 .009 .030
40 5-10 .048 .098 .049 .098 .005 .021 .002 .013
11-20 051 .098 .048 .089 .009 .031 .006 .028
Table 6

Observed proportion of rejections in 1000 simulated data sets for each scenario, for functional data, under the null hypothesis, obtained by applying
the test in Zhang et al. [31,32] and the approaches reviewed in Zhang [30] that are described at the end of Section 7. W denotes the Wiener process
and L the non-Gaussian data. The nominal significance levels are « = 0.05 and 0.10.

Number of Sample sizes Tests

populations k limits n; IN LB Ib N B Fb GPF Fm
w 30 5-10 5% .066 .070 .042 .040 .042 .005 .066 .048
o =1 10% 118 127 .103 .101 .101 .016 113 .094
11-20 5% .062 .065 .047 .054 .054 .009 .058 .048
10% .100 .101 .095 .089 .089 .040 .103 .093
40 5-10 5% .070 .072 .055 .055 .055 .003 .076 .048
10% 121 126 .108 .103 .104 .008 114 .105
11-20 5% .064 .065 .059 .057 .057 .021 .061 .053
10% 107 .108 .098 .102 .102 .044 112 .108
L 30 5-10 5% .064 .071 .011 .052 .052 .000 .062 .056
o =1 10% 133 139 .036 113 122 .000 132 .106
11-20 5% .042 .046 .015 .037 .040 .001 .047 .042
10% .087 .090 .035 .079 .085 .005 .091 .086
40 5-10 5% .059 .061 .008 .049 .051 .000 .059 .066
10% .106 118 .027 .093 .096 .000 .108 112
11-20 5% .045 .047 .008 .040 .043 .001 .047 .047
10% .103 .103 .040 .094 .096 .002 .100 .092

We repeated the simulation experiment in Table 5 for the tests in Zhang et al. [31,32] and the approaches reviewed
in Zhang [30], that are implemented in the R package fdANOVA (see Goérecki and Smaga [14]). The tests in [31,32] are
designed to compare populations with the same covariance function. Moreover, to derive their properties, it is assumed
that the populations only differ in their mean curves (see Condition A (2) in [32] and Condition (A2) in [31]). The null
distribution of the test statistic in [31], denoted as Fm in Table 6, is approximated by means of a bootstrap estimator
and the null distribution of the test statistic in [32], which is denoted as GPF in Table 6, is approximated by using the
Welch-Satterthwaite x2-approximation. The approaches reviewed in Zhang [30] use as test statistics S = Zi nill X —X_|1%,
where X (-) = (1/N) > i;Xij(-)and N = Zf:l ni,and F = S/(k—1) 3, ; IX; —Xi||2. Although they can be applied in the case
of populations with different covariance functions, in fdANOVA they are only implemented in the homoscedastic case. To
approximate the null distribution, £dANOVA offers three possibilities: the Welch-Satterthwaite approximation with naive
and bias reduced estimators (valid when the curves are Gaussian) of the target parameters and via bootstraping. The tests
based on S (F) that employ these approximations are denoted in Table 6 as SN, SB and Sb (FN, FB and Fb), respectively.
Table 6 summarizes the output of this experiment for the homoscedastic case (o; = 1). For the heteroscedastic case
(o7 ~ U(1, 3)), all tests are rather liberal. Looking at Table 6 we see that FB, FN, and Fm have reasonable sizes; Lb only
works for the Gaussian data; LN, LB and GPF work better for large sample sizes and Fb is extremely conservative.

To end this Section, we investigate the adequacy of the proposed test in the classical setting: k is fixed and min; n; —
oo. Specifically, we derive its asymptotic null distribution in such a case. Under Hy, we always have that

k
(k— 1) 2 2
k x var(Ty) = P E i — 1)9i + @ E 0y,
i=1 i#j

with 6; = f f ci(t, s)ci(t, s)dtds. Thus, for moderate and large k, k x var(Ty) =~ aozk, which is the variance we used to
normalize Ty. If ny/n; — 7; € (0, 00) Vi, as min; n; — oo, then, under Hy and assuming that n; = f ci(t, t)dt < oo Vi,
routine calculations show that

k
r k—1 1
mT, — 2 E (Gi, Gi) —mi) — 2 E . (Gi, Gj),
i=1 ]
12



M.D. Jiménez-Gamero and A.M. Franco-Pereira Journal of Multivariate Analysis 185 (2021) 104778

Table 7

Observed proportion of rejections in 10,000 simulated data sets for each scenario, for functional data, under the null hypothesis in the classical
framework. That is, k is fixed and min; n; — co. W denotes the Wiener process and L the non-Gaussian data. The nominal significance levels are
«a = 0.05 and 0.10.

Number of Sample sizes w L
gopulatlons ::mts Dispersion parameters of the Wiener processes
' o =1 o; ~ U(1, 3) o =1 o ~ U(1, 3)
5% 10% 5% 10% 5% 10% 5% 10%
3 5-10 0769 .1064 0758 .1071 0417 0779 .0458 0788
11-20 0577 .0880 .0623 .0901 .0378 0732 0381 0734
21-30 .0604 .0894 .0563 0817 .0388 0722 .0359 .0688
31-40 0556 .0802 0515 0738 0383 0722 0343 0664
41-50 0543 .0804 .0580 .0833 .0406 0756 .0334 .0633
51-60 0568 0831 0544 0797 0374 0737 0333 0627
5 5-10 0535 0969 .0800 1142 0535 .0960 0573 0955
11-20 0679 .1031 .0705 .0996 .0453 0851 0516 0912
21-30 .0680 .1000 0674 .1007 0477 .0855 0521 .0908
31-40 0661 10920 0627 0941 .0499 0921 .0445 0842
41-50 0673 .1023 .0607 0912 .0450 .0853 0452 0823
51-60 .0620 .0895 .0634 0924 .0456 .0858 .0444 0816
where G, . .., G are zero mean, independent Gaussian processes on L2, with covariance functions t;¢;(t, s), . . ., TkCk(t, S).

Therefore, the asymptotic null distribution of T differs in each setting. Nevertheless, one may wonder if the test, which
has been specifically designed for large k, gives tolerable results in the classical framework. In order to study this point
numerically, we have repeated the simulation experiments in Table 5 for small k (k = 3,5) and several sample sizes,
based on 10,000 simulated data sets. In each case, the test rejects Hy when +/kTj /Ook > Z1_q. Table 7 displays the results
obtained. In view of these outcomes, we conclude that the actual levels are quite reasonable, specially for k = 5.

8. Data with finite dimension

So far we have assumed that the available data consist of functional data. A close inspection of the developments
reveals that all stated results remain valid whenever the data have finite dimension by defining adequately all involved
norms and operators as follows. Assume that the data take values in RY, where we consider the usual scalar product and
the Euclidean norm. In this setting, each ¢; = (¢;j )1<jr<a is the covariance matrix of X;, which is a d x d-matrix, ¢; € Mgy,
1 < i < k, and the covariance operator is the usual product of the covariance matrix by a vector. If ¢; has eigenvalues
Ails - . ., Aig, then

d

d
6 = Z Aj = trace(cic;) = Z tir
=1

j.or=1

and y; = (i — j1.)" ci(ui — j2.). We will not reformulate all previous results, which keep on being true mutatis mutandis.

For the special case of d = 1, and assuming that the data are normally distributed, Park and Park [25] have proposed
two tests, that will be denoted by 77 and 7, whose associated statistics, conveniently normalized, are also asymptotically
normal. The statistic of test 77 is closely related to Ty: the numerator is the same for both statistics, only differing in their
denominators, being in both cases the square root of an estimator of the variance of the numerator. In our proposal, the
variance estimator does not assume any parametric model, while the variance estimator used in [25], heavily relies on
the normality assumption. Now, naturally two questions arise:

(a) Since the tests in [25] are built by assuming normal populations, one may wonder if those tests still work for
non-normal data.

(b) If the data were normally distributed, it should be expected that test 7; had a better behavior than our proposal,
since the former incorporates this information (the normality of the data) in its construction. In this setting, one
may wonder if the loss due to use the test based on Ty is considerable or by contrast it is negligible.

To numerically investigate these two questions, we have carried out two simulation experiments. In order to investigate
question (a) we have generated data with equal means, that is under Hy, for normal data and non-normal data. Specifically,
for each scenario we generated 10,000 samples of data coming from homoscedastic normal populations with equal mean,
heteroscedastic normal populations with equal mean and negative exponential populations with equal mean. In all cases
the sizes of the samples from each population were generated from a discrete uniform random law UD{8, . .., 20}, because
the practical application of test 7; requires sample sizes greater than or equal to 8. Table 8 reports the fractions of p-values
less than or equal to 0.05 and 0.10, which are the estimated type I error probabilities for nominal significance level «=0.05
and 0.10, respectively. The results for the proposal in this paper are headed by 7. Looking at this table we see that in
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Table 8

Observed proportion of rejections in 10,000 simulated data sets for each scenario, for univariate data, with sample sizes n; ~ UD{8, ..., 20}, under
the null hypothesis. The proposed test, denoted by 7, is compared in terms of the estimated type I error to the two tests proposed by Park and
Park [25], denoted by 77 and 73. The nominal significance levels are « = 0.05 and 0.10.

Number of N(0, o?) Exp(1)
I[{)opulatlons o =1 Vi o ~ U1, 3)
T Ti T2 T Ti T2 T T T2
30 5% .0657 .0687 .0596 .0664 .0691 .0633 .0564 .0434 .3993
10% .1105 1141 .1005 .1056 .1080 .1049 .0981 .0806 4801
40 5% .0636 .0655 .0609 .0638 .0659 .0619 .0527 .0396 4700
10% .1078 .1099 .0994 .1050 .1067 .1057 .0984 .0798 5472
50 5% .0620 .0633 .0605 .0663 .0676 .0607 .0518 .0372 5378
10% .1065 .1086 .1035 1124 .1149 .1050 .0997 .0768 .6188
100 5% .0513 .0522 .0568 .0606 .0614 .0573 .0539 .0371 7419
10% .1028 .1039 1011 .1052 .1058 .1054 1011 .0759 .8091
200 5% .0528 .0533 .0540 .0606 .0612 .0576 .0565 .0367 9155
10% .1018 1022 1017 .1090 .1094 .1050 1039 .0779 .9470
300 5% .0547 .0549 .0532 .0559 .0561 .0566 .0532 .0337 9761
10% .1083 .1087 1025 1028 .1031 .1016 .1003 .0734 .9863
400 5% .0551 .0554 .0537 .0565 .0566 .0548 .0506 .0319 .9940
10% .1015 1021 .1005 .1055 .1060 .1030 .1008 .0704 .9965
500 5% .0538 .0542 .0534 .0515 .0516 .0499 .0505 .0321 9974
10% .1025 .1022 .0977 .1002 .1009 .0966 .1004 .0693 .9985
Table 9
Observed proportion of rejections in 10,000 simulated data sets for each scenario, for univariate data, with sample sizes n; ~ UD{8, ..., 20}, under

alternatives. The proposed test, denoted by 7, is compared in terms of the estimated power to the two tests proposed by Park and Park [25],
denoted by 77 and 73. The nominal significance levels are « = 0.05 and 0.10.

Number of Dispersion parameters
IF{’OP”““OHS Gi=1 Vi oi=3 Vi oi~U(13)
T Ti T2 T Ti T2 T Ti T2
30 5% 7757 .7809 7311 .2036 .2102 .2940 .1900 .1965 .2830
10% .8368 .8401 7982 .2876 2947 3839 2714 2777 .3707
40 5% .8560 .8589 .8247 1354 1397 1277 2145 2199 3217
10% 9018 .9038 .8781 2112 2153 1971 .3070 3134 4183
50 5% .9065 .9084 .8749 .1366 .1402 1298 .2437 .2489 .3642
10% 9382 .9399 9148 2181 2211 .1983 .3402 3439 4662
100 5% .9907 .9908 .9852 1788 .1809 .1688 3393 3414 .5388
10% 9959 .9959 .9928 2718 2739 .2586 4527 4544 .6412
200 5% 1.000 1.000 .9998 .2582 2592 2413 4983 4998 7559
10% 1.000 1.000 1.000 .3648 3661 .3465 .6276 .6286 .8393
300 5% 1.000 1.000 1.000 3151 3162 2919 .6452 .6464 .8843
10% 1.000 1.000 1.000 4370 4383 4153 7549 7557 9332
400 5% 1.000 1.000 1.000 3751 3757 .3486 7424 7430 .9457
10% 1.000 1.000 1.000 .5080 .5086 4797 .8346 .8350 .9709
500 5% 1.000 1.000 1.000 4331 4339 14033 .8201 .8204 .9765
10% 1.000 1.000 1.000 5673 5679 5346 .8930 .8933 .9880

the case of normal populations the three tests behave quite closely, but for exponential data test 77 is very conservative
(the level decreases as k increases) and test 7 is very liberal. The observed level of the test proposed in this paper is very
close to the nominal values in all cases. It is concluded that 7; and 7; should not be used for non-normal data.

Now, we numerically explore question (b). From the previous experiment, we have learnt that, under the null
hypothesis and for normal data, the proposal in this paper and the tests in [25] perform very closely. We have also
learnt that it is not advisable to apply the tests in [25] for non-normal data (since the actual levels are far apart from
the nominal values). So, to compare the powers we must restrict to the case of normal populations with different means.
Therefore, to numerically compare the powers we generated samples from homoscedastic (with o; = 1 and o; = 3, Vi) and
heteroscedastic (o; ~ U(1, 3)) normal populations, with the 80% of the populations with mean equal to 0 and the mean
of the other 20% randomly generated from a law U(0, 1). As in the previous experiment, 10,000 samples were generated
for each scenario. Table 9 displays the results obtained. Looking at this table, we see that 7 and 7; have very close power,
so it seems that there is no advantage in using a variance estimator relying on the normality assumption. In some cases
T and 7; outperform 73, while in other cases the opposite is observed.

Before ending this section, we summarize the results of a real data set application. Specifically, we applied the new
test to compare the mean of the number of births per month, relative to the number of women, across the 52 Spanish
provinces in 2019. So we have k = 52 populations. The data were taken from the website of the Spanish National Institute
of Statistics, http://www.ine.es. For each province, we took as sample the observed number of births each month in 2019,
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Fig. 3. 1000 times the sample mean of the number of births per month, relative to the number of woman, for each province in Spain in 2019.

over the number of women in the province at the beginning of that year, therefore ny = n, = --- = ns; = 12. We
graphically checked that there is no seasonality (the month does not have an effect on the number of births), so we can
consider the data as i.i.d. The value of the test statistic for this data set is Ty = 227.1637, which clearly led us to reject
the null hypothesis that the mean of the number of births per month, relative to the number of woman, is constant along
the 52 Spanish provinces. Fig. 3 displays 1000 times the sample mean of the number of births per month, relative to
the number of woman, for each province. Looking at this figure one can see that there are some provinces with a small
relative number of births, most of these quantities are between 1 and 1.5, and there are three provinces having a relative
high number of births, specially province 52.

9. Concluding remarks

This paper proposes and studies a test for the equality of the means of a large number of populations. No parametric
assumption is made on the populations and the procedure can be applied to functional data and to finite dimensional data.
The test statistic converges under the null hypothesis to a standard normal distribution, so the critical points are available.
When it was numerically compared with other tests specifically designed for normal univariate data, our proposal gave
very close results.

10. Proofs

This section sketches the proofs of the results stated in the previous sections.

Proof of Lemma 1. Because Ly, ..., Ly are independent random variables, it follows that var(Ty 1in) = kiz ZL var(Li).
To calculate var(L;,) we rewrite Ly as follows,
1 1@
Ly = ——— Z Xiu — Wiy Xip — pi) +2— Z(Xir — Wi, li — [L.). (10)
m(n; — 1) n;

1<u<v<n; r=1

Taking into account that var(Lie) = E(Lg), E((Xiu — i, Xiv — 1)) = 01, Yau 7 v, E(Xiu — phi. Xiw — pa) Xt — i, Xij — i) ) = 0,
Vi<u<v<mn1<j<I<nsothat(u,v)# (D E((Xi — i, i — 2.)%) = i and E((Xiu — pi, Xio — i) (Xir — iy phi —
1)) =0,1<u#v,r < n, the result follows. O

Proof of Lemma 2. Taking into account that Ry, = —T"‘TL"’ + Ry — Ry, with Ry = (2/k?) Z;‘z] X; — i, phi — ), Ry =
(2/K*) D" 1 i< Xi — pin Xi. — ), it suffices to show that E(R?)/var(Tin) — 0, i = 1, 2. Since E(R}) = (4/k*) S/
it readily follows that E(R%)/var(Tk,L,',,) < 1/k* — 0. As for Ry,

k 2 k
2 1 2 (1< VG 2 &6
2y . © - ) i ! = b
E(Ry) = @ E o // ci(t, s)g(t, s)dtds < 2 (k ;:1 n ) < e ;:] s (11)

1<i#l<k

which implies that E(R%)/var(TK_Lm) < 1/k — 0, and the proof is complete. O

Proof of Proposition 1. From Corollary 1.9.3 in Serfling [27], it suffices to show that

k
1
@ ZE(Lﬁ() = 0 (var*(Te i) - (12)
i=1
From (10) and taking into account that [x + y|" < ¢;(|x|"+1y"), x,y€R, r >0, withc, =1if0<r <1landc =2,
otherwise, it follows that
4 _ RV
E(LY) < i E {(Zlgu#vgni Kiu — i, Xiy — M,»)) } + LE?E {(ZZ;1<Xm — Wiy i — L)) } . (13)

7
ni(ng

15
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From Assumption 2,

4
E {(Z]§u7év§ni (Xiu — i, Xiv — Mi)) } < niM. (14)
From (14), Assumptions 1 and 3 and taking into account that k? var(Ty in) > Zle me,»,
k 1 4
1 Zi:l WE (leu#vsni (Xiw — i, Xiv — Mi)) 2o
- < M- _ — o(1). (15)
k4 var?(Ty tin) nt. k

We have that

n;j 4
E (Z( i — Mis hi — I_L)) = mE ((Xi — i, i — 2.)*) + 3mi(n; — DE* (X — i, i — 1.)°)

u=1

IA

an’E ((Xi — pis i — )% (16)
From (16) and Assumption 4,

Y 4 >l (X — i — ) 4y /2
1 T e { S P T B = i ) o )

k4 var?(Ty i ok
( k,Lm) <% Z;:l Vi/ni)
Finally, (13), (15) and (17) imply (12), and hence the result is proven. O

Proof of Proposition 2. Let ¢ > 0, by Markov inequality,
p (|602k - G(Jzk| > U()zkg) = E{(&Ok oOk) }/8 UOk (18)

Since E(éf) =62, 1<i <k we have that

E{(62, — 02} = (1/k?) ZE (6; — 6;}/n2(n; — 1), (19)
i=1
From Assumption 2, routine calculations show that
E{(6: — 6’} <M, Vi (20)
From (18)-(20) and Assumption 1, we get that
52, — o3 Mnt 1
P<|00Ic ZUOkl >8) <= Tax , (21)
Ook € nmm k

From Assumption 3, the right-hand side of (21) is o(1), which implies the result. O
Proof of the consistency 6 in the homoscedastic case. We have that
16—0| = / (e, s) — c(t, s)[|E(t, s) — c(t, s)|dtds.
Therefore
|9 —9| /f E'2[{é(t, s) — c(t, s)Y1EV2[{E(t, ) + c(t, 5)}*1dtds.

Under the stated assumptions, routine calculations show that E[{¢(t, s) — c(t, 5)}?] < C/k and E[{c(t, s) + c(t, 5)}?] < C,
for all 0 < t,s < 1, for a positive constant C, which implies that E ( —6]) — 0, and hence the consistency of f as an
estimator of 6. O

Proof of Proposmon 3. We will show it by reduction to absurdity.

Suppose that k i1 % - 0 which is equivalent to
- 1

k
Jde; > 0 such that ¢; < — Z Z for an infinite number of values of k. (22)
—1 1
16
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By applying the Cauchy-Schwarz inequality and Assumption 2, one gets

k
11<&y D
Y M (23)
GOk k i=1 i UOI(

D

O<ery=—<—, for an infinite number of values of k. (24)
Ook

From Assumption 1 it follows that

U()Zk z t/nrznax (25)

Let €3 > 0 be arbitrary but fixed. We are assuming that ﬁg—ﬁ — § € [0, o0), which implies that

D
ko = koles) such that vk— < 8 +e3, Vk > ko. (26)
Ok

From (23), (25) and (26),

k \'? Dy/ol
M (—) & <d+e3, Vk=ko. (27)
Mnax/ [1 4+ Dy/od,
Taking into account that the function f(x) = x/+/1 + x is increasing Vx > 0, from (24) it follows that
Dk/oozk > )
\/1+Dk/o.02k \/1+82

From (27) and (28) it follows that M(k/n%,,)"/?> < § + &3, for an infinite number of values of k, which contradicts (9),
implying that —-; vk 4,0 0

i=1 n;

2
ma.

, for an infinite number of values of k. (28)

Ok

Proof of Theorems 3 and 4. Their proofs are parallel to that of Lemmas 1 and 2. To save space we omit it. O
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